/* * Copyright 1997-2007 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. * */ # include "incls/_precompiled.incl" # include "incls/_frame_sparc.cpp.incl" void RegisterMap::pd_clear() { if (_thread->has_last_Java_frame()) { frame fr = _thread->last_frame(); _window = fr.sp(); } else { _window = NULL; } _younger_window = NULL; } // Unified register numbering scheme: each 32-bits counts as a register // number, so all the V9 registers take 2 slots. const static int R_L_nums[] = {0+040,2+040,4+040,6+040,8+040,10+040,12+040,14+040}; const static int R_I_nums[] = {0+060,2+060,4+060,6+060,8+060,10+060,12+060,14+060}; const static int R_O_nums[] = {0+020,2+020,4+020,6+020,8+020,10+020,12+020,14+020}; const static int R_G_nums[] = {0+000,2+000,4+000,6+000,8+000,10+000,12+000,14+000}; static RegisterMap::LocationValidType bad_mask = 0; static RegisterMap::LocationValidType R_LIO_mask = 0; static bool register_map_inited = false; static void register_map_init() { if (!register_map_inited) { register_map_inited = true; int i; for (i = 0; i < 8; i++) { assert(R_L_nums[i] < RegisterMap::location_valid_type_size, "in first chunk"); assert(R_I_nums[i] < RegisterMap::location_valid_type_size, "in first chunk"); assert(R_O_nums[i] < RegisterMap::location_valid_type_size, "in first chunk"); assert(R_G_nums[i] < RegisterMap::location_valid_type_size, "in first chunk"); } bad_mask |= (1LL << R_O_nums[6]); // SP bad_mask |= (1LL << R_O_nums[7]); // cPC bad_mask |= (1LL << R_I_nums[6]); // FP bad_mask |= (1LL << R_I_nums[7]); // rPC bad_mask |= (1LL << R_G_nums[2]); // TLS bad_mask |= (1LL << R_G_nums[7]); // reserved by libthread for (i = 0; i < 8; i++) { R_LIO_mask |= (1LL << R_L_nums[i]); R_LIO_mask |= (1LL << R_I_nums[i]); R_LIO_mask |= (1LL << R_O_nums[i]); } } } address RegisterMap::pd_location(VMReg regname) const { register_map_init(); assert(regname->is_reg(), "sanity check"); // Only the GPRs get handled this way if( !regname->is_Register()) return NULL; // don't talk about bad registers if ((bad_mask & ((LocationValidType)1 << regname->value())) != 0) { return NULL; } // Convert to a GPR Register reg; int second_word = 0; // 32-bit registers for in, out and local if (!regname->is_concrete()) { // HMM ought to return NULL for any non-concrete (odd) vmreg // this all tied up in the fact we put out double oopMaps for // register locations. When that is fixed we'd will return NULL // (or assert here). reg = regname->prev()->as_Register(); #ifdef _LP64 second_word = sizeof(jint); #else return NULL; #endif // _LP64 } else { reg = regname->as_Register(); } if (reg->is_out()) { assert(_younger_window != NULL, "Younger window should be available"); return second_word + (address)&_younger_window[reg->after_save()->sp_offset_in_saved_window()]; } if (reg->is_local() || reg->is_in()) { assert(_window != NULL, "Window should be available"); return second_word + (address)&_window[reg->sp_offset_in_saved_window()]; } // Only the window'd GPRs get handled this way; not the globals. return NULL; } #ifdef ASSERT void RegisterMap::check_location_valid() { register_map_init(); assert((_location_valid[0] & bad_mask) == 0, "cannot have special locations for SP,FP,TLS,etc."); } #endif // We are shifting windows. That means we are moving all %i to %o, // getting rid of all current %l, and keeping all %g. This is only // complicated if any of the location pointers for these are valid. // The normal case is that everything is in its standard register window // home, and _location_valid[0] is zero. In that case, this routine // does exactly nothing. void RegisterMap::shift_individual_registers() { if (!update_map()) return; // this only applies to maps with locations register_map_init(); check_location_valid(); LocationValidType lv = _location_valid[0]; LocationValidType lv0 = lv; lv &= ~R_LIO_mask; // clear %l, %o, %i regs // if we cleared some non-%g locations, we may have to do some shifting if (lv != lv0) { // copy %i0-%i5 to %o0-%o5, if they have special locations // This can happen in within stubs which spill argument registers // around a dynamic link operation, such as resolve_opt_virtual_call. for (int i = 0; i < 8; i++) { if (lv0 & (1LL << R_I_nums[i])) { _location[R_O_nums[i]] = _location[R_I_nums[i]]; lv |= (1LL << R_O_nums[i]); } } } _location_valid[0] = lv; check_location_valid(); } bool frame::safe_for_sender(JavaThread *thread) { address sp = (address)_sp; if (sp != NULL && (sp <= thread->stack_base() && sp >= thread->stack_base() - thread->stack_size())) { // Unfortunately we can only check frame complete for runtime stubs and nmethod // other generic buffer blobs are more problematic so we just assume they are // ok. adapter blobs never have a frame complete and are never ok. if (_cb != NULL && !_cb->is_frame_complete_at(_pc)) { if (_cb->is_nmethod() || _cb->is_adapter_blob() || _cb->is_runtime_stub()) { return false; } } return true; } return false; } // constructors // Construct an unpatchable, deficient frame frame::frame(intptr_t* sp, unpatchable_t, address pc, CodeBlob* cb) { #ifdef _LP64 assert( (((intptr_t)sp & (wordSize-1)) == 0), "frame constructor passed an invalid sp"); #endif _sp = sp; _younger_sp = NULL; _pc = pc; _cb = cb; _sp_adjustment_by_callee = 0; assert(pc == NULL && cb == NULL || pc != NULL, "can't have a cb and no pc!"); if (_cb == NULL && _pc != NULL ) { _cb = CodeCache::find_blob(_pc); } _deopt_state = unknown; #ifdef ASSERT if ( _cb != NULL && _cb->is_nmethod()) { // Without a valid unextended_sp() we can't convert the pc to "original" assert(!((nmethod*)_cb)->is_deopt_pc(_pc), "invariant broken"); } #endif // ASSERT } frame::frame(intptr_t* sp, intptr_t* younger_sp, bool younger_frame_adjusted_stack) { _sp = sp; _younger_sp = younger_sp; if (younger_sp == NULL) { // make a deficient frame which doesn't know where its PC is _pc = NULL; _cb = NULL; } else { _pc = (address)younger_sp[I7->sp_offset_in_saved_window()] + pc_return_offset; assert( (intptr_t*)younger_sp[FP->sp_offset_in_saved_window()] == (intptr_t*)((intptr_t)sp - STACK_BIAS), "younger_sp must be valid"); // Any frame we ever build should always "safe" therefore we should not have to call // find_blob_unsafe // In case of native stubs, the pc retrieved here might be // wrong. (the _last_native_pc will have the right value) // So do not put add any asserts on the _pc here. } if (younger_frame_adjusted_stack) { // compute adjustment to this frame's SP made by its interpreted callee _sp_adjustment_by_callee = (intptr_t*)((intptr_t)younger_sp[I5_savedSP->sp_offset_in_saved_window()] + STACK_BIAS) - sp; } else { _sp_adjustment_by_callee = 0; } _deopt_state = unknown; // It is important that frame be fully construct when we do this lookup // as get_original_pc() needs correct value for unextended_sp() if (_pc != NULL) { _cb = CodeCache::find_blob(_pc); if (_cb != NULL && _cb->is_nmethod() && ((nmethod*)_cb)->is_deopt_pc(_pc)) { _pc = ((nmethod*)_cb)->get_original_pc(this); _deopt_state = is_deoptimized; } else { _deopt_state = not_deoptimized; } } } bool frame::is_interpreted_frame() const { return Interpreter::contains(pc()); } // sender_sp intptr_t* frame::interpreter_frame_sender_sp() const { assert(is_interpreted_frame(), "interpreted frame expected"); return fp(); } #ifndef CC_INTERP void frame::set_interpreter_frame_sender_sp(intptr_t* sender_sp) { assert(is_interpreted_frame(), "interpreted frame expected"); Unimplemented(); } #endif // CC_INTERP #ifdef ASSERT // Debugging aid static frame nth_sender(int n) { frame f = JavaThread::current()->last_frame(); for(int i = 0; i < n; ++i) f = f.sender((RegisterMap*)NULL); printf("first frame %d\n", f.is_first_frame() ? 1 : 0); printf("interpreted frame %d\n", f.is_interpreted_frame() ? 1 : 0); printf("java frame %d\n", f.is_java_frame() ? 1 : 0); printf("entry frame %d\n", f.is_entry_frame() ? 1 : 0); printf("native frame %d\n", f.is_native_frame() ? 1 : 0); if (f.is_compiled_frame()) { if (f.is_deoptimized_frame()) printf("deoptimized frame 1\n"); else printf("compiled frame 1\n"); } return f; } #endif frame frame::sender_for_entry_frame(RegisterMap *map) const { assert(map != NULL, "map must be set"); // Java frame called from C; skip all C frames and return top C // frame of that chunk as the sender JavaFrameAnchor* jfa = entry_frame_call_wrapper()->anchor(); assert(!entry_frame_is_first(), "next Java fp must be non zero"); assert(jfa->last_Java_sp() > _sp, "must be above this frame on stack"); intptr_t* last_Java_sp = jfa->last_Java_sp(); // Since we are walking the stack now this nested anchor is obviously walkable // even if it wasn't when it was stacked. if (!jfa->walkable()) { // Capture _last_Java_pc (if needed) and mark anchor walkable. jfa->capture_last_Java_pc(_sp); } assert(jfa->last_Java_pc() != NULL, "No captured pc!"); map->clear(); map->make_integer_regs_unsaved(); map->shift_window(last_Java_sp, NULL); assert(map->include_argument_oops(), "should be set by clear"); return frame(last_Java_sp, frame::unpatchable, jfa->last_Java_pc()); } frame frame::sender_for_interpreter_frame(RegisterMap *map) const { ShouldNotCallThis(); return sender(map); } frame frame::sender_for_compiled_frame(RegisterMap *map) const { ShouldNotCallThis(); return sender(map); } frame frame::sender(RegisterMap* map) const { assert(map != NULL, "map must be set"); assert(CodeCache::find_blob_unsafe(_pc) == _cb, "inconsistent"); // Default is not to follow arguments; update it accordingly below map->set_include_argument_oops(false); if (is_entry_frame()) return sender_for_entry_frame(map); intptr_t* younger_sp = sp(); intptr_t* sp = sender_sp(); bool adjusted_stack = false; // Note: The version of this operation on any platform with callee-save // registers must update the register map (if not null). // In order to do this correctly, the various subtypes of // of frame (interpreted, compiled, glue, native), // must be distinguished. There is no need on SPARC for // such distinctions, because all callee-save registers are // preserved for all frames via SPARC-specific mechanisms. // // *** HOWEVER, *** if and when we make any floating-point // registers callee-saved, then we will have to copy over // the RegisterMap update logic from the Intel code. // The constructor of the sender must know whether this frame is interpreted so it can set the // sender's _sp_adjustment_by_callee field. An osr adapter frame was originally // interpreted but its pc is in the code cache (for c1 -> osr_frame_return_id stub), so it must be // explicitly recognized. adjusted_stack = is_interpreted_frame(); if (adjusted_stack) { map->make_integer_regs_unsaved(); map->shift_window(sp, younger_sp); } else if (_cb != NULL) { // Update the locations of implicitly saved registers to be their // addresses in the register save area. // For %o registers, the addresses of %i registers in the next younger // frame are used. map->shift_window(sp, younger_sp); if (map->update_map()) { // Tell GC to use argument oopmaps for some runtime stubs that need it. // For C1, the runtime stub might not have oop maps, so set this flag // outside of update_register_map. map->set_include_argument_oops(_cb->caller_must_gc_arguments(map->thread())); if (_cb->oop_maps() != NULL) { OopMapSet::update_register_map(this, map); } } } return frame(sp, younger_sp, adjusted_stack); } void frame::patch_pc(Thread* thread, address pc) { if(thread == Thread::current()) { StubRoutines::Sparc::flush_callers_register_windows_func()(); } if (TracePcPatching) { // QQQ this assert is invalid (or too strong anyway) sice _pc could // be original pc and frame could have the deopt pc. // assert(_pc == *O7_addr() + pc_return_offset, "frame has wrong pc"); tty->print_cr("patch_pc at address 0x%x [0x%x -> 0x%x] ", O7_addr(), _pc, pc); } _cb = CodeCache::find_blob(pc); *O7_addr() = pc - pc_return_offset; _cb = CodeCache::find_blob(_pc); if (_cb != NULL && _cb->is_nmethod() && ((nmethod*)_cb)->is_deopt_pc(_pc)) { address orig = ((nmethod*)_cb)->get_original_pc(this); assert(orig == _pc, "expected original to be stored before patching"); _deopt_state = is_deoptimized; } else { _deopt_state = not_deoptimized; } } static bool sp_is_valid(intptr_t* old_sp, intptr_t* young_sp, intptr_t* sp) { return (((intptr_t)sp & (2*wordSize-1)) == 0 && sp <= old_sp && sp >= young_sp); } /* Find the (biased) sp that is just younger than old_sp starting at sp. If not found return NULL. Register windows are assumed to be flushed. */ intptr_t* frame::next_younger_sp_or_null(intptr_t* old_sp, intptr_t* sp) { intptr_t* previous_sp = NULL; intptr_t* orig_sp = sp; int max_frames = (old_sp - sp) / 16; // Minimum frame size is 16 int max_frame2 = max_frames; while(sp != old_sp && sp_is_valid(old_sp, orig_sp, sp)) { if (max_frames-- <= 0) // too many frames have gone by; invalid parameters given to this function break; previous_sp = sp; sp = (intptr_t*)sp[FP->sp_offset_in_saved_window()]; sp = (intptr_t*)((intptr_t)sp + STACK_BIAS); } return (sp == old_sp ? previous_sp : NULL); } /* Determine if "sp" is a valid stack pointer. "sp" is assumed to be younger than "valid_sp". So if "sp" is valid itself then it should be possible to walk frames from "sp" to "valid_sp". The assumption is that the registers windows for the thread stack in question are flushed. */ bool frame::is_valid_stack_pointer(intptr_t* valid_sp, intptr_t* sp) { return next_younger_sp_or_null(valid_sp, sp) != NULL; } bool frame::interpreter_frame_equals_unpacked_fp(intptr_t* fp) { assert(is_interpreted_frame(), "must be interpreter frame"); return this->fp() == fp; } void frame::pd_gc_epilog() { if (is_interpreted_frame()) { // set constant pool cache entry for interpreter methodOop m = interpreter_frame_method(); *interpreter_frame_cpoolcache_addr() = m->constants()->cache(); } } bool frame::is_interpreted_frame_valid() const { #ifdef CC_INTERP // Is there anything to do? #else assert(is_interpreted_frame(), "Not an interpreted frame"); // These are reasonable sanity checks if (fp() == 0 || (intptr_t(fp()) & (2*wordSize-1)) != 0) { return false; } if (sp() == 0 || (intptr_t(sp()) & (2*wordSize-1)) != 0) { return false; } const intptr_t interpreter_frame_initial_sp_offset = interpreter_frame_vm_local_words; if (fp() + interpreter_frame_initial_sp_offset < sp()) { return false; } // These are hacks to keep us out of trouble. // The problem with these is that they mask other problems if (fp() <= sp()) { // this attempts to deal with unsigned comparison above return false; } if (fp() - sp() > 4096) { // stack frames shouldn't be large. return false; } #endif /* CC_INTERP */ return true; } // Windows have been flushed on entry (but not marked). Capture the pc that // is the return address to the frame that contains "sp" as its stack pointer. // This pc resides in the called of the frame corresponding to "sp". // As a side effect we mark this JavaFrameAnchor as having flushed the windows. // This side effect lets us mark stacked JavaFrameAnchors (stacked in the // call_helper) as flushed when we have flushed the windows for the most // recent (i.e. current) JavaFrameAnchor. This saves useless flushing calls // and lets us find the pc just once rather than multiple times as it did // in the bad old _post_Java_state days. // void JavaFrameAnchor::capture_last_Java_pc(intptr_t* sp) { if (last_Java_sp() != NULL && last_Java_pc() == NULL) { // try and find the sp just younger than _last_Java_sp intptr_t* _post_Java_sp = frame::next_younger_sp_or_null(last_Java_sp(), sp); // Really this should never fail otherwise VM call must have non-standard // frame linkage (bad) or stack is not properly flushed (worse). guarantee(_post_Java_sp != NULL, "bad stack!"); _last_Java_pc = (address) _post_Java_sp[ I7->sp_offset_in_saved_window()] + frame::pc_return_offset; } set_window_flushed(); } void JavaFrameAnchor::make_walkable(JavaThread* thread) { if (walkable()) return; // Eventually make an assert guarantee(Thread::current() == (Thread*)thread, "only current thread can flush its registers"); // We always flush in case the profiler wants it but we won't mark // the windows as flushed unless we have a last_Java_frame intptr_t* sp = StubRoutines::Sparc::flush_callers_register_windows_func()(); if (last_Java_sp() != NULL ) { capture_last_Java_pc(sp); } } intptr_t* frame::entry_frame_argument_at(int offset) const { // convert offset to index to deal with tsi int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize); intptr_t* LSP = (intptr_t*) sp()[Lentry_args->sp_offset_in_saved_window()]; return &LSP[index+1]; } BasicType frame::interpreter_frame_result(oop* oop_result, jvalue* value_result) { assert(is_interpreted_frame(), "interpreted frame expected"); methodOop method = interpreter_frame_method(); BasicType type = method->result_type(); if (method->is_native()) { // Prior to notifying the runtime of the method_exit the possible result // value is saved to l_scratch and d_scratch. #ifdef CC_INTERP interpreterState istate = get_interpreterState(); intptr_t* l_scratch = (intptr_t*) &istate->_native_lresult; intptr_t* d_scratch = (intptr_t*) &istate->_native_fresult; #else /* CC_INTERP */ intptr_t* l_scratch = fp() + interpreter_frame_l_scratch_fp_offset; intptr_t* d_scratch = fp() + interpreter_frame_d_scratch_fp_offset; #endif /* CC_INTERP */ address l_addr = (address)l_scratch; #ifdef _LP64 // On 64-bit the result for 1/8/16/32-bit result types is in the other // word half l_addr += wordSize/2; #endif switch (type) { case T_OBJECT: case T_ARRAY: { #ifdef CC_INTERP *oop_result = istate->_oop_temp; #else oop obj = (oop) at(interpreter_frame_oop_temp_offset); assert(obj == NULL || Universe::heap()->is_in(obj), "sanity check"); *oop_result = obj; #endif // CC_INTERP break; } case T_BOOLEAN : { jint* p = (jint*)l_addr; value_result->z = (jboolean)((*p) & 0x1); break; } case T_BYTE : { jint* p = (jint*)l_addr; value_result->b = (jbyte)((*p) & 0xff); break; } case T_CHAR : { jint* p = (jint*)l_addr; value_result->c = (jchar)((*p) & 0xffff); break; } case T_SHORT : { jint* p = (jint*)l_addr; value_result->s = (jshort)((*p) & 0xffff); break; } case T_INT : value_result->i = *(jint*)l_addr; break; case T_LONG : value_result->j = *(jlong*)l_scratch; break; case T_FLOAT : value_result->f = *(jfloat*)d_scratch; break; case T_DOUBLE : value_result->d = *(jdouble*)d_scratch; break; case T_VOID : /* Nothing to do */ break; default : ShouldNotReachHere(); } } else { intptr_t* tos_addr = interpreter_frame_tos_address(); switch(type) { case T_OBJECT: case T_ARRAY: { oop obj = (oop)*tos_addr; assert(obj == NULL || Universe::heap()->is_in(obj), "sanity check"); *oop_result = obj; break; } case T_BOOLEAN : { jint* p = (jint*)tos_addr; value_result->z = (jboolean)((*p) & 0x1); break; } case T_BYTE : { jint* p = (jint*)tos_addr; value_result->b = (jbyte)((*p) & 0xff); break; } case T_CHAR : { jint* p = (jint*)tos_addr; value_result->c = (jchar)((*p) & 0xffff); break; } case T_SHORT : { jint* p = (jint*)tos_addr; value_result->s = (jshort)((*p) & 0xffff); break; } case T_INT : value_result->i = *(jint*)tos_addr; break; case T_LONG : value_result->j = *(jlong*)tos_addr; break; case T_FLOAT : value_result->f = *(jfloat*)tos_addr; break; case T_DOUBLE : value_result->d = *(jdouble*)tos_addr; break; case T_VOID : /* Nothing to do */ break; default : ShouldNotReachHere(); } }; return type; } // Lesp pointer is one word lower than the top item on the stack. intptr_t* frame::interpreter_frame_tos_at(jint offset) const { int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize) - 1; return &interpreter_frame_tos_address()[index]; }