allocation.cpp 19.0 KB
Newer Older
D
duke 已提交
1
/*
2
 * Copyright (c) 1997, 2005, Oracle and/or its affiliates. All rights reserved.
D
duke 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
D
duke 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
 *
 */

# include "incls/_precompiled.incl"
# include "incls/_allocation.cpp.incl"

void* CHeapObj::operator new(size_t size){
  return (void *) AllocateHeap(size, "CHeapObj-new");
}

void CHeapObj::operator delete(void* p){
 FreeHeap(p);
}

void* StackObj::operator new(size_t size)  { ShouldNotCallThis(); return 0; };
void  StackObj::operator delete(void* p)   { ShouldNotCallThis(); };
void* _ValueObj::operator new(size_t size)  { ShouldNotCallThis(); return 0; };
void  _ValueObj::operator delete(void* p)   { ShouldNotCallThis(); };

void* ResourceObj::operator new(size_t size, allocation_type type) {
  address res;
  switch (type) {
   case C_HEAP:
    res = (address)AllocateHeap(size, "C_Heap: ResourceOBJ");
46
    DEBUG_ONLY(set_allocation_type(res, C_HEAP);)
D
duke 已提交
47 48
    break;
   case RESOURCE_AREA:
49
    // new(size) sets allocation type RESOURCE_AREA.
D
duke 已提交
50 51 52 53 54 55 56 57 58 59 60
    res = (address)operator new(size);
    break;
   default:
    ShouldNotReachHere();
  }
  return res;
}

void ResourceObj::operator delete(void* p) {
  assert(((ResourceObj *)p)->allocated_on_C_heap(),
         "delete only allowed for C_HEAP objects");
61
  DEBUG_ONLY(((ResourceObj *)p)->_allocation = (uintptr_t)badHeapOopVal;)
D
duke 已提交
62 63 64
  FreeHeap(p);
}

65 66 67 68
#ifdef ASSERT
void ResourceObj::set_allocation_type(address res, allocation_type type) {
    // Set allocation type in the resource object
    uintptr_t allocation = (uintptr_t)res;
69
    assert((allocation & allocation_mask) == 0, "address should be aligned to 4 bytes at least");
70 71 72 73
    assert(type <= allocation_mask, "incorrect allocation type");
    ((ResourceObj *)res)->_allocation = ~(allocation + type);
}

74
ResourceObj::allocation_type ResourceObj::get_allocation_type() const {
75 76 77 78
    assert(~(_allocation | allocation_mask) == (uintptr_t)this, "lost resource object");
    return (allocation_type)((~_allocation) & allocation_mask);
}

79
ResourceObj::ResourceObj() { // default constructor
80 81
    if (~(_allocation | allocation_mask) != (uintptr_t)this) {
      set_allocation_type((address)this, STACK_OR_EMBEDDED);
82 83 84 85
    } else if (allocated_on_stack()) {
      // For some reason we got a value which looks like an allocation on stack.
      // Pass if it is really allocated on stack.
      assert(Thread::current()->on_local_stack((address)this),"should be on stack");
86 87 88 89 90 91
    } else {
      assert(allocated_on_res_area() || allocated_on_C_heap() || allocated_on_arena(),
             "allocation_type should be set by operator new()");
    }
}

92
ResourceObj::ResourceObj(const ResourceObj& r) { // default copy constructor
93 94 95 96 97 98 99 100 101 102 103 104
    // Used in ClassFileParser::parse_constant_pool_entries() for ClassFileStream.
    set_allocation_type((address)this, STACK_OR_EMBEDDED);
}

ResourceObj& ResourceObj::operator=(const ResourceObj& r) { // default copy assignment
    // Used in InlineTree::ok_to_inline() for WarmCallInfo.
    assert(allocated_on_stack(), "copy only into local");
    // Keep current _allocation value;
    return *this;
}

ResourceObj::~ResourceObj() {
105 106
    // allocated_on_C_heap() also checks that encoded (in _allocation) address == this.
    if (!allocated_on_C_heap()) {  // ResourceObj::delete() zaps _allocation for C_heap.
107
      _allocation = (uintptr_t)badHeapOopVal; // zap type
108 109 110 111 112
    }
}
#endif // ASSERT


D
duke 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
void trace_heap_malloc(size_t size, const char* name, void* p) {
  // A lock is not needed here - tty uses a lock internally
  tty->print_cr("Heap malloc " INTPTR_FORMAT " %7d %s", p, size, name == NULL ? "" : name);
}


void trace_heap_free(void* p) {
  // A lock is not needed here - tty uses a lock internally
  tty->print_cr("Heap free   " INTPTR_FORMAT, p);
}

bool warn_new_operator = false; // see vm_main

//--------------------------------------------------------------------------------------
// ChunkPool implementation

// MT-safe pool of chunks to reduce malloc/free thrashing
// NB: not using Mutex because pools are used before Threads are initialized
class ChunkPool {
  Chunk*       _first;        // first cached Chunk; its first word points to next chunk
  size_t       _num_chunks;   // number of unused chunks in pool
  size_t       _num_used;     // number of chunks currently checked out
  const size_t _size;         // size of each chunk (must be uniform)

  // Our three static pools
  static ChunkPool* _large_pool;
  static ChunkPool* _medium_pool;
  static ChunkPool* _small_pool;

  // return first element or null
  void* get_first() {
    Chunk* c = _first;
    if (_first) {
      _first = _first->next();
      _num_chunks--;
    }
    return c;
  }

 public:
  // All chunks in a ChunkPool has the same size
   ChunkPool(size_t size) : _size(size) { _first = NULL; _num_chunks = _num_used = 0; }

  // Allocate a new chunk from the pool (might expand the pool)
  void* allocate(size_t bytes) {
    assert(bytes == _size, "bad size");
    void* p = NULL;
    { ThreadCritical tc;
      _num_used++;
      p = get_first();
      if (p == NULL) p = os::malloc(bytes);
    }
    if (p == NULL)
      vm_exit_out_of_memory(bytes, "ChunkPool::allocate");

    return p;
  }

  // Return a chunk to the pool
  void free(Chunk* chunk) {
    assert(chunk->length() + Chunk::aligned_overhead_size() == _size, "bad size");
    ThreadCritical tc;
    _num_used--;

    // Add chunk to list
    chunk->set_next(_first);
    _first = chunk;
    _num_chunks++;
  }

  // Prune the pool
  void free_all_but(size_t n) {
    // if we have more than n chunks, free all of them
    ThreadCritical tc;
    if (_num_chunks > n) {
      // free chunks at end of queue, for better locality
      Chunk* cur = _first;
      for (size_t i = 0; i < (n - 1) && cur != NULL; i++) cur = cur->next();

      if (cur != NULL) {
        Chunk* next = cur->next();
        cur->set_next(NULL);
        cur = next;

        // Free all remaining chunks
        while(cur != NULL) {
          next = cur->next();
          os::free(cur);
          _num_chunks--;
          cur = next;
        }
      }
    }
  }

  // Accessors to preallocated pool's
  static ChunkPool* large_pool()  { assert(_large_pool  != NULL, "must be initialized"); return _large_pool;  }
  static ChunkPool* medium_pool() { assert(_medium_pool != NULL, "must be initialized"); return _medium_pool; }
  static ChunkPool* small_pool()  { assert(_small_pool  != NULL, "must be initialized"); return _small_pool;  }

  static void initialize() {
    _large_pool  = new ChunkPool(Chunk::size        + Chunk::aligned_overhead_size());
    _medium_pool = new ChunkPool(Chunk::medium_size + Chunk::aligned_overhead_size());
    _small_pool  = new ChunkPool(Chunk::init_size   + Chunk::aligned_overhead_size());
  }
218 219 220 221 222 223 224

  static void clean() {
    enum { BlocksToKeep = 5 };
     _small_pool->free_all_but(BlocksToKeep);
     _medium_pool->free_all_but(BlocksToKeep);
     _large_pool->free_all_but(BlocksToKeep);
  }
D
duke 已提交
225 226 227 228 229 230 231 232 233 234
};

ChunkPool* ChunkPool::_large_pool  = NULL;
ChunkPool* ChunkPool::_medium_pool = NULL;
ChunkPool* ChunkPool::_small_pool  = NULL;

void chunkpool_init() {
  ChunkPool::initialize();
}

235 236 237 238 239
void
Chunk::clean_chunk_pool() {
  ChunkPool::clean();
}

D
duke 已提交
240 241 242

//--------------------------------------------------------------------------------------
// ChunkPoolCleaner implementation
243
//
D
duke 已提交
244 245

class ChunkPoolCleaner : public PeriodicTask {
246
  enum { CleaningInterval = 5000 };      // cleaning interval in ms
D
duke 已提交
247 248 249 250

 public:
   ChunkPoolCleaner() : PeriodicTask(CleaningInterval) {}
   void task() {
251
     ChunkPool::clean();
D
duke 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
   }
};

//--------------------------------------------------------------------------------------
// Chunk implementation

void* Chunk::operator new(size_t requested_size, size_t length) {
  // requested_size is equal to sizeof(Chunk) but in order for the arena
  // allocations to come out aligned as expected the size must be aligned
  // to expected arean alignment.
  // expect requested_size but if sizeof(Chunk) doesn't match isn't proper size we must align it.
  assert(ARENA_ALIGN(requested_size) == aligned_overhead_size(), "Bad alignment");
  size_t bytes = ARENA_ALIGN(requested_size) + length;
  switch (length) {
   case Chunk::size:        return ChunkPool::large_pool()->allocate(bytes);
   case Chunk::medium_size: return ChunkPool::medium_pool()->allocate(bytes);
   case Chunk::init_size:   return ChunkPool::small_pool()->allocate(bytes);
   default: {
     void *p =  os::malloc(bytes);
     if (p == NULL)
       vm_exit_out_of_memory(bytes, "Chunk::new");
     return p;
   }
  }
}

void Chunk::operator delete(void* p) {
  Chunk* c = (Chunk*)p;
  switch (c->length()) {
   case Chunk::size:        ChunkPool::large_pool()->free(c); break;
   case Chunk::medium_size: ChunkPool::medium_pool()->free(c); break;
   case Chunk::init_size:   ChunkPool::small_pool()->free(c); break;
   default:                 os::free(c);
  }
}

Chunk::Chunk(size_t length) : _len(length) {
  _next = NULL;         // Chain on the linked list
}


void Chunk::chop() {
  Chunk *k = this;
  while( k ) {
    Chunk *tmp = k->next();
    // clear out this chunk (to detect allocation bugs)
    if (ZapResourceArea) memset(k->bottom(), badResourceValue, k->length());
    delete k;                   // Free chunk (was malloc'd)
    k = tmp;
  }
}

void Chunk::next_chop() {
  _next->chop();
  _next = NULL;
}


void Chunk::start_chunk_pool_cleaner_task() {
#ifdef ASSERT
  static bool task_created = false;
  assert(!task_created, "should not start chuck pool cleaner twice");
  task_created = true;
#endif
  ChunkPoolCleaner* cleaner = new ChunkPoolCleaner();
  cleaner->enroll();
}

//------------------------------Arena------------------------------------------

Arena::Arena(size_t init_size) {
  size_t round_size = (sizeof (char *)) - 1;
  init_size = (init_size+round_size) & ~round_size;
  _first = _chunk = new (init_size) Chunk(init_size);
  _hwm = _chunk->bottom();      // Save the cached hwm, max
  _max = _chunk->top();
  set_size_in_bytes(init_size);
}

Arena::Arena() {
  _first = _chunk = new (Chunk::init_size) Chunk(Chunk::init_size);
  _hwm = _chunk->bottom();      // Save the cached hwm, max
  _max = _chunk->top();
  set_size_in_bytes(Chunk::init_size);
}

Arena::Arena(Arena *a) : _chunk(a->_chunk), _hwm(a->_hwm), _max(a->_max), _first(a->_first) {
  set_size_in_bytes(a->size_in_bytes());
}

Arena *Arena::move_contents(Arena *copy) {
  copy->destruct_contents();
  copy->_chunk = _chunk;
  copy->_hwm   = _hwm;
  copy->_max   = _max;
  copy->_first = _first;
  copy->set_size_in_bytes(size_in_bytes());
  // Destroy original arena
  reset();
  return copy;            // Return Arena with contents
}

Arena::~Arena() {
  destruct_contents();
}

// Destroy this arenas contents and reset to empty
void Arena::destruct_contents() {
  if (UseMallocOnly && _first != NULL) {
    char* end = _first->next() ? _first->top() : _hwm;
    free_malloced_objects(_first, _first->bottom(), end, _hwm);
  }
  _first->chop();
  reset();
}


// Total of all Chunks in arena
size_t Arena::used() const {
  size_t sum = _chunk->length() - (_max-_hwm); // Size leftover in this Chunk
  register Chunk *k = _first;
  while( k != _chunk) {         // Whilst have Chunks in a row
    sum += k->length();         // Total size of this Chunk
    k = k->next();              // Bump along to next Chunk
  }
  return sum;                   // Return total consumed space.
}


// Grow a new Chunk
void* Arena::grow( size_t x ) {
  // Get minimal required size.  Either real big, or even bigger for giant objs
  size_t len = MAX2(x, (size_t) Chunk::size);

  Chunk *k = _chunk;            // Get filled-up chunk address
  _chunk = new (len) Chunk(len);

  if (_chunk == NULL)
      vm_exit_out_of_memory(len * Chunk::aligned_overhead_size(), "Arena::grow");

  if (k) k->set_next(_chunk);   // Append new chunk to end of linked list
  else _first = _chunk;
  _hwm  = _chunk->bottom();     // Save the cached hwm, max
  _max =  _chunk->top();
  set_size_in_bytes(size_in_bytes() + len);
  void* result = _hwm;
  _hwm += x;
  return result;
}



// Reallocate storage in Arena.
void *Arena::Arealloc(void* old_ptr, size_t old_size, size_t new_size) {
  assert(new_size >= 0, "bad size");
  if (new_size == 0) return NULL;
#ifdef ASSERT
  if (UseMallocOnly) {
    // always allocate a new object  (otherwise we'll free this one twice)
    char* copy = (char*)Amalloc(new_size);
    size_t n = MIN2(old_size, new_size);
    if (n > 0) memcpy(copy, old_ptr, n);
    Afree(old_ptr,old_size);    // Mostly done to keep stats accurate
    return copy;
  }
#endif
  char *c_old = (char*)old_ptr; // Handy name
  // Stupid fast special case
  if( new_size <= old_size ) {  // Shrink in-place
    if( c_old+old_size == _hwm) // Attempt to free the excess bytes
      _hwm = c_old+new_size;    // Adjust hwm
    return c_old;
  }

  // make sure that new_size is legal
  size_t corrected_new_size = ARENA_ALIGN(new_size);

  // See if we can resize in-place
  if( (c_old+old_size == _hwm) &&       // Adjusting recent thing
      (c_old+corrected_new_size <= _max) ) {      // Still fits where it sits
    _hwm = c_old+corrected_new_size;      // Adjust hwm
    return c_old;               // Return old pointer
  }

  // Oops, got to relocate guts
  void *new_ptr = Amalloc(new_size);
  memcpy( new_ptr, c_old, old_size );
  Afree(c_old,old_size);        // Mostly done to keep stats accurate
  return new_ptr;
}


// Determine if pointer belongs to this Arena or not.
bool Arena::contains( const void *ptr ) const {
#ifdef ASSERT
  if (UseMallocOnly) {
    // really slow, but not easy to make fast
    if (_chunk == NULL) return false;
    char** bottom = (char**)_chunk->bottom();
    for (char** p = (char**)_hwm - 1; p >= bottom; p--) {
      if (*p == ptr) return true;
    }
    for (Chunk *c = _first; c != NULL; c = c->next()) {
      if (c == _chunk) continue;  // current chunk has been processed
      char** bottom = (char**)c->bottom();
      for (char** p = (char**)c->top() - 1; p >= bottom; p--) {
        if (*p == ptr) return true;
      }
    }
    return false;
  }
#endif
  if( (void*)_chunk->bottom() <= ptr && ptr < (void*)_hwm )
    return true;                // Check for in this chunk
  for (Chunk *c = _first; c; c = c->next()) {
    if (c == _chunk) continue;  // current chunk has been processed
    if ((void*)c->bottom() <= ptr && ptr < (void*)c->top()) {
      return true;              // Check for every chunk in Arena
    }
  }
  return false;                 // Not in any Chunk, so not in Arena
}


#ifdef ASSERT
void* Arena::malloc(size_t size) {
  assert(UseMallocOnly, "shouldn't call");
  // use malloc, but save pointer in res. area for later freeing
  char** save = (char**)internal_malloc_4(sizeof(char*));
  return (*save = (char*)os::malloc(size));
}

// for debugging with UseMallocOnly
void* Arena::internal_malloc_4(size_t x) {
  assert( (x&(sizeof(char*)-1)) == 0, "misaligned size" );
  if (_hwm + x > _max) {
    return grow(x);
  } else {
    char *old = _hwm;
    _hwm += x;
    return old;
  }
}
#endif


//--------------------------------------------------------------------------------------
// Non-product code

#ifndef PRODUCT
// The global operator new should never be called since it will usually indicate
// a memory leak.  Use CHeapObj as the base class of such objects to make it explicit
// that they're allocated on the C heap.
// Commented out in product version to avoid conflicts with third-party C++ native code.
// %% note this is causing a problem on solaris debug build. the global
// new is being called from jdk source and causing data corruption.
// src/share/native/sun/awt/font/fontmanager/textcache/hsMemory.cpp::hsSoftNew
// define CATCH_OPERATOR_NEW_USAGE if you want to use this.
#ifdef CATCH_OPERATOR_NEW_USAGE
void* operator new(size_t size){
  static bool warned = false;
  if (!warned && warn_new_operator)
    warning("should not call global (default) operator new");
  warned = true;
  return (void *) AllocateHeap(size, "global operator new");
}
#endif

void AllocatedObj::print() const       { print_on(tty); }
void AllocatedObj::print_value() const { print_value_on(tty); }

void AllocatedObj::print_on(outputStream* st) const {
  st->print_cr("AllocatedObj(" INTPTR_FORMAT ")", this);
}

void AllocatedObj::print_value_on(outputStream* st) const {
  st->print("AllocatedObj(" INTPTR_FORMAT ")", this);
}

size_t Arena::_bytes_allocated = 0;

AllocStats::AllocStats() {
  start_mallocs = os::num_mallocs;
  start_frees = os::num_frees;
  start_malloc_bytes = os::alloc_bytes;
  start_res_bytes = Arena::_bytes_allocated;
}

int     AllocStats::num_mallocs() { return os::num_mallocs - start_mallocs; }
size_t  AllocStats::alloc_bytes() { return os::alloc_bytes - start_malloc_bytes; }
size_t  AllocStats::resource_bytes() { return Arena::_bytes_allocated - start_res_bytes; }
int     AllocStats::num_frees() { return os::num_frees - start_frees; }
void    AllocStats::print() {
  tty->print("%d mallocs (%ldK), %d frees, %ldK resrc",
             num_mallocs(), alloc_bytes()/K, num_frees(), resource_bytes()/K);
}


// debugging code
inline void Arena::free_all(char** start, char** end) {
  for (char** p = start; p < end; p++) if (*p) os::free(*p);
}

void Arena::free_malloced_objects(Chunk* chunk, char* hwm, char* max, char* hwm2) {
  assert(UseMallocOnly, "should not call");
  // free all objects malloced since resource mark was created; resource area
  // contains their addresses
  if (chunk->next()) {
    // this chunk is full, and some others too
    for (Chunk* c = chunk->next(); c != NULL; c = c->next()) {
      char* top = c->top();
      if (c->next() == NULL) {
        top = hwm2;     // last junk is only used up to hwm2
        assert(c->contains(hwm2), "bad hwm2");
      }
      free_all((char**)c->bottom(), (char**)top);
    }
    assert(chunk->contains(hwm), "bad hwm");
    assert(chunk->contains(max), "bad max");
    free_all((char**)hwm, (char**)max);
  } else {
    // this chunk was partially used
    assert(chunk->contains(hwm), "bad hwm");
    assert(chunk->contains(hwm2), "bad hwm2");
    free_all((char**)hwm, (char**)hwm2);
  }
}


ReallocMark::ReallocMark() {
#ifdef ASSERT
  Thread *thread = ThreadLocalStorage::get_thread_slow();
  _nesting = thread->resource_area()->nesting();
#endif
}

void ReallocMark::check() {
#ifdef ASSERT
  if (_nesting != Thread::current()->resource_area()->nesting()) {
    fatal("allocation bug: array could grow within nested ResourceMark");
  }
#endif
}

#endif // Non-product