assembler_ppc.hpp 90.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
/*
 * Copyright (c) 2002, 2013, Oracle and/or its affiliates. All rights reserved.
 * Copyright 2012, 2013 SAP AG. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#ifndef CPU_PPC_VM_ASSEMBLER_PPC_HPP
#define CPU_PPC_VM_ASSEMBLER_PPC_HPP

#include "asm/register.hpp"

// Address is an abstraction used to represent a memory location
// as used in assembler instructions.
// PPC instructions grok either baseReg + indexReg or baseReg + disp.
// So far we do not use this as simplification by this class is low
// on PPC with its simple addressing mode. Use RegisterOrConstant to
// represent an offset.
class Address VALUE_OBJ_CLASS_SPEC {
};

class AddressLiteral VALUE_OBJ_CLASS_SPEC {
 private:
  address          _address;
  RelocationHolder _rspec;

  RelocationHolder rspec_from_rtype(relocInfo::relocType rtype, address addr) {
    switch (rtype) {
    case relocInfo::external_word_type:
      return external_word_Relocation::spec(addr);
    case relocInfo::internal_word_type:
      return internal_word_Relocation::spec(addr);
    case relocInfo::opt_virtual_call_type:
      return opt_virtual_call_Relocation::spec();
    case relocInfo::static_call_type:
      return static_call_Relocation::spec();
    case relocInfo::runtime_call_type:
      return runtime_call_Relocation::spec();
    case relocInfo::none:
      return RelocationHolder();
    default:
      ShouldNotReachHere();
      return RelocationHolder();
    }
  }

 protected:
  // creation
  AddressLiteral() : _address(NULL), _rspec(NULL) {}

 public:
  AddressLiteral(address addr, RelocationHolder const& rspec)
    : _address(addr),
      _rspec(rspec) {}

  AddressLiteral(address addr, relocInfo::relocType rtype = relocInfo::none)
    : _address((address) addr),
      _rspec(rspec_from_rtype(rtype, (address) addr)) {}

  AddressLiteral(oop* addr, relocInfo::relocType rtype = relocInfo::none)
    : _address((address) addr),
      _rspec(rspec_from_rtype(rtype, (address) addr)) {}

  intptr_t value() const { return (intptr_t) _address; }

  const RelocationHolder& rspec() const { return _rspec; }
};

// Argument is an abstraction used to represent an outgoing
// actual argument or an incoming formal parameter, whether
// it resides in memory or in a register, in a manner consistent
// with the PPC Application Binary Interface, or ABI. This is
// often referred to as the native or C calling convention.

class Argument VALUE_OBJ_CLASS_SPEC {
 private:
  int _number;  // The number of the argument.
 public:
  enum {
    // Only 8 registers may contain integer parameters.
    n_register_parameters = 8,
    // Can have up to 8 floating registers.
101 102 103 104 105 106 107 108 109 110 111
    n_float_register_parameters = 8,

    // PPC C calling conventions.
    // The first eight arguments are passed in int regs if they are int.
    n_int_register_parameters_c = 8,
    // The first thirteen float arguments are passed in float regs.
    n_float_register_parameters_c = 13,
    // Only the first 8 parameters are not placed on the stack. Aix disassembly
    // shows that xlC places all float args after argument 8 on the stack AND
    // in a register. This is not documented, but we follow this convention, too.
    n_regs_not_on_stack_c = 8,
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
  };
  // creation
  Argument(int number) : _number(number) {}

  int  number() const { return _number; }

  // Locating register-based arguments:
  bool is_register() const { return _number < n_register_parameters; }

  Register as_register() const {
    assert(is_register(), "must be a register argument");
    return as_Register(number() + R3_ARG1->encoding());
  }
};

G
goetz 已提交
127
#if !defined(ABI_ELFv2)
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
// A ppc64 function descriptor.
struct FunctionDescriptor VALUE_OBJ_CLASS_SPEC {
 private:
  address _entry;
  address _toc;
  address _env;

 public:
  inline address entry() const { return _entry; }
  inline address toc()   const { return _toc; }
  inline address env()   const { return _env; }

  inline void set_entry(address entry) { _entry = entry; }
  inline void set_toc(  address toc)   { _toc   = toc; }
  inline void set_env(  address env)   { _env   = env; }

  inline static ByteSize entry_offset() { return byte_offset_of(FunctionDescriptor, _entry); }
  inline static ByteSize toc_offset()   { return byte_offset_of(FunctionDescriptor, _toc); }
  inline static ByteSize env_offset()   { return byte_offset_of(FunctionDescriptor, _env); }

  // Friend functions can be called without loading toc and env.
  enum {
    friend_toc = 0xcafe,
    friend_env = 0xc0de
  };

  inline bool is_friend_function() const {
    return (toc() == (address) friend_toc) && (env() == (address) friend_env);
  }

  // Constructor for stack-allocated instances.
  FunctionDescriptor() {
    _entry = (address) 0xbad;
    _toc   = (address) 0xbad;
    _env   = (address) 0xbad;
  }
};
G
goetz 已提交
165
#endif
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

class Assembler : public AbstractAssembler {
 protected:
  // Displacement routines
  static void print_instruction(int inst);
  static int  patched_branch(int dest_pos, int inst, int inst_pos);
  static int  branch_destination(int inst, int pos);

  friend class AbstractAssembler;

  // Code patchers need various routines like inv_wdisp()
  friend class NativeInstruction;
  friend class NativeGeneralJump;
  friend class Relocation;

 public:

  enum shifts {
    XO_21_29_SHIFT = 2,
    XO_21_30_SHIFT = 1,
    XO_27_29_SHIFT = 2,
    XO_30_31_SHIFT = 0,
    SPR_5_9_SHIFT  = 11u, // SPR_5_9 field in bits 11 -- 15
    SPR_0_4_SHIFT  = 16u, // SPR_0_4 field in bits 16 -- 20
    RS_SHIFT       = 21u, // RS field in bits 21 -- 25
    OPCODE_SHIFT   = 26u, // opcode in bits 26 -- 31
  };

  enum opcdxos_masks {
    XL_FORM_OPCODE_MASK = (63u << OPCODE_SHIFT) | (1023u << 1),
    ADDI_OPCODE_MASK    = (63u << OPCODE_SHIFT),
    ADDIS_OPCODE_MASK   = (63u << OPCODE_SHIFT),
    BXX_OPCODE_MASK     = (63u << OPCODE_SHIFT),
    BCXX_OPCODE_MASK    = (63u << OPCODE_SHIFT),
    // trap instructions
    TDI_OPCODE_MASK     = (63u << OPCODE_SHIFT),
    TWI_OPCODE_MASK     = (63u << OPCODE_SHIFT),
    TD_OPCODE_MASK      = (63u << OPCODE_SHIFT) | (1023u << 1),
    TW_OPCODE_MASK      = (63u << OPCODE_SHIFT) | (1023u << 1),
    LD_OPCODE_MASK      = (63u << OPCODE_SHIFT) | (3u << XO_30_31_SHIFT), // DS-FORM
    STD_OPCODE_MASK     = LD_OPCODE_MASK,
    STDU_OPCODE_MASK    = STD_OPCODE_MASK,
    STDX_OPCODE_MASK    = (63u << OPCODE_SHIFT) | (1023u << 1),
    STDUX_OPCODE_MASK   = STDX_OPCODE_MASK,
    STW_OPCODE_MASK     = (63u << OPCODE_SHIFT),
    STWU_OPCODE_MASK    = STW_OPCODE_MASK,
    STWX_OPCODE_MASK    = (63u << OPCODE_SHIFT) | (1023u << 1),
    STWUX_OPCODE_MASK   = STWX_OPCODE_MASK,
    MTCTR_OPCODE_MASK   = ~(31u << RS_SHIFT),
    ORI_OPCODE_MASK     = (63u << OPCODE_SHIFT),
    ORIS_OPCODE_MASK    = (63u << OPCODE_SHIFT),
    RLDICR_OPCODE_MASK  = (63u << OPCODE_SHIFT) | (7u << XO_27_29_SHIFT)
  };

  enum opcdxos {
    ADD_OPCODE    = (31u << OPCODE_SHIFT | 266u << 1),
    ADDC_OPCODE   = (31u << OPCODE_SHIFT |  10u << 1),
    ADDI_OPCODE   = (14u << OPCODE_SHIFT),
    ADDIS_OPCODE  = (15u << OPCODE_SHIFT),
    ADDIC__OPCODE = (13u << OPCODE_SHIFT),
    ADDE_OPCODE   = (31u << OPCODE_SHIFT | 138u << 1),
    SUBF_OPCODE   = (31u << OPCODE_SHIFT |  40u << 1),
    SUBFC_OPCODE  = (31u << OPCODE_SHIFT |   8u << 1),
    SUBFE_OPCODE  = (31u << OPCODE_SHIFT | 136u << 1),
    SUBFIC_OPCODE = (8u  << OPCODE_SHIFT),
    SUBFZE_OPCODE = (31u << OPCODE_SHIFT | 200u << 1),
    DIVW_OPCODE   = (31u << OPCODE_SHIFT | 491u << 1),
    MULLW_OPCODE  = (31u << OPCODE_SHIFT | 235u << 1),
    MULHW_OPCODE  = (31u << OPCODE_SHIFT |  75u << 1),
    MULHWU_OPCODE = (31u << OPCODE_SHIFT |  11u << 1),
    MULLI_OPCODE  = (7u  << OPCODE_SHIFT),
    AND_OPCODE    = (31u << OPCODE_SHIFT |  28u << 1),
    ANDI_OPCODE   = (28u << OPCODE_SHIFT),
    ANDIS_OPCODE  = (29u << OPCODE_SHIFT),
    ANDC_OPCODE   = (31u << OPCODE_SHIFT |  60u << 1),
    ORC_OPCODE    = (31u << OPCODE_SHIFT | 412u << 1),
    OR_OPCODE     = (31u << OPCODE_SHIFT | 444u << 1),
    ORI_OPCODE    = (24u << OPCODE_SHIFT),
    ORIS_OPCODE   = (25u << OPCODE_SHIFT),
    XOR_OPCODE    = (31u << OPCODE_SHIFT | 316u << 1),
    XORI_OPCODE   = (26u << OPCODE_SHIFT),
    XORIS_OPCODE  = (27u << OPCODE_SHIFT),

    NEG_OPCODE    = (31u << OPCODE_SHIFT | 104u << 1),

    RLWINM_OPCODE = (21u << OPCODE_SHIFT),
    CLRRWI_OPCODE = RLWINM_OPCODE,
    CLRLWI_OPCODE = RLWINM_OPCODE,

    RLWIMI_OPCODE = (20u << OPCODE_SHIFT),

    SLW_OPCODE    = (31u << OPCODE_SHIFT |  24u << 1),
    SLWI_OPCODE   = RLWINM_OPCODE,
    SRW_OPCODE    = (31u << OPCODE_SHIFT | 536u << 1),
    SRWI_OPCODE   = RLWINM_OPCODE,
    SRAW_OPCODE   = (31u << OPCODE_SHIFT | 792u << 1),
    SRAWI_OPCODE  = (31u << OPCODE_SHIFT | 824u << 1),

    CMP_OPCODE    = (31u << OPCODE_SHIFT |   0u << 1),
    CMPI_OPCODE   = (11u << OPCODE_SHIFT),
    CMPL_OPCODE   = (31u << OPCODE_SHIFT |  32u << 1),
    CMPLI_OPCODE  = (10u << OPCODE_SHIFT),

    ISEL_OPCODE   = (31u << OPCODE_SHIFT |  15u << 1),

    MTLR_OPCODE   = (31u << OPCODE_SHIFT | 467u << 1 | 8 << SPR_0_4_SHIFT),
    MFLR_OPCODE   = (31u << OPCODE_SHIFT | 339u << 1 | 8 << SPR_0_4_SHIFT),

    MTCRF_OPCODE  = (31u << OPCODE_SHIFT | 144u << 1),
    MFCR_OPCODE   = (31u << OPCODE_SHIFT | 19u << 1),
    MCRF_OPCODE   = (19u << OPCODE_SHIFT | 0u << 1),

    // condition register logic instructions
    CRAND_OPCODE  = (19u << OPCODE_SHIFT | 257u << 1),
    CRNAND_OPCODE = (19u << OPCODE_SHIFT | 225u << 1),
    CROR_OPCODE   = (19u << OPCODE_SHIFT | 449u << 1),
    CRXOR_OPCODE  = (19u << OPCODE_SHIFT | 193u << 1),
    CRNOR_OPCODE  = (19u << OPCODE_SHIFT |  33u << 1),
    CREQV_OPCODE  = (19u << OPCODE_SHIFT | 289u << 1),
    CRANDC_OPCODE = (19u << OPCODE_SHIFT | 129u << 1),
    CRORC_OPCODE  = (19u << OPCODE_SHIFT | 417u << 1),

    BCLR_OPCODE   = (19u << OPCODE_SHIFT | 16u << 1),
    BXX_OPCODE      = (18u << OPCODE_SHIFT),
    BCXX_OPCODE     = (16u << OPCODE_SHIFT),

    // CTR-related opcodes
    BCCTR_OPCODE  = (19u << OPCODE_SHIFT | 528u << 1),
    MTCTR_OPCODE  = (31u << OPCODE_SHIFT | 467u << 1 | 9 << SPR_0_4_SHIFT),
    MFCTR_OPCODE  = (31u << OPCODE_SHIFT | 339u << 1 | 9 << SPR_0_4_SHIFT),


    LWZ_OPCODE   = (32u << OPCODE_SHIFT),
    LWZX_OPCODE  = (31u << OPCODE_SHIFT |  23u << 1),
    LWZU_OPCODE  = (33u << OPCODE_SHIFT),
301
    LWBRX_OPCODE = (31u << OPCODE_SHIFT |  534 << 1),
302 303 304 305 306 307 308 309

    LHA_OPCODE   = (42u << OPCODE_SHIFT),
    LHAX_OPCODE  = (31u << OPCODE_SHIFT | 343u << 1),
    LHAU_OPCODE  = (43u << OPCODE_SHIFT),

    LHZ_OPCODE   = (40u << OPCODE_SHIFT),
    LHZX_OPCODE  = (31u << OPCODE_SHIFT | 279u << 1),
    LHZU_OPCODE  = (41u << OPCODE_SHIFT),
310
    LHBRX_OPCODE = (31u << OPCODE_SHIFT |  790 << 1),
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678

    LBZ_OPCODE   = (34u << OPCODE_SHIFT),
    LBZX_OPCODE  = (31u << OPCODE_SHIFT |  87u << 1),
    LBZU_OPCODE  = (35u << OPCODE_SHIFT),

    STW_OPCODE   = (36u << OPCODE_SHIFT),
    STWX_OPCODE  = (31u << OPCODE_SHIFT | 151u << 1),
    STWU_OPCODE  = (37u << OPCODE_SHIFT),
    STWUX_OPCODE = (31u << OPCODE_SHIFT | 183u << 1),

    STH_OPCODE   = (44u << OPCODE_SHIFT),
    STHX_OPCODE  = (31u << OPCODE_SHIFT | 407u << 1),
    STHU_OPCODE  = (45u << OPCODE_SHIFT),

    STB_OPCODE   = (38u << OPCODE_SHIFT),
    STBX_OPCODE  = (31u << OPCODE_SHIFT | 215u << 1),
    STBU_OPCODE  = (39u << OPCODE_SHIFT),

    EXTSB_OPCODE = (31u << OPCODE_SHIFT | 954u << 1),
    EXTSH_OPCODE = (31u << OPCODE_SHIFT | 922u << 1),
    EXTSW_OPCODE = (31u << OPCODE_SHIFT | 986u << 1),               // X-FORM

    // 32 bit opcode encodings

    LWA_OPCODE    = (58u << OPCODE_SHIFT |   2u << XO_30_31_SHIFT), // DS-FORM
    LWAX_OPCODE   = (31u << OPCODE_SHIFT | 341u << XO_21_30_SHIFT), // X-FORM

    CNTLZW_OPCODE = (31u << OPCODE_SHIFT |  26u << XO_21_30_SHIFT), // X-FORM

    // 64 bit opcode encodings

    LD_OPCODE     = (58u << OPCODE_SHIFT |   0u << XO_30_31_SHIFT), // DS-FORM
    LDU_OPCODE    = (58u << OPCODE_SHIFT |   1u << XO_30_31_SHIFT), // DS-FORM
    LDX_OPCODE    = (31u << OPCODE_SHIFT |  21u << XO_21_30_SHIFT), // X-FORM

    STD_OPCODE    = (62u << OPCODE_SHIFT |   0u << XO_30_31_SHIFT), // DS-FORM
    STDU_OPCODE   = (62u << OPCODE_SHIFT |   1u << XO_30_31_SHIFT), // DS-FORM
    STDUX_OPCODE  = (31u << OPCODE_SHIFT | 181u << 1),                  // X-FORM
    STDX_OPCODE   = (31u << OPCODE_SHIFT | 149u << XO_21_30_SHIFT), // X-FORM

    RLDICR_OPCODE = (30u << OPCODE_SHIFT |   1u << XO_27_29_SHIFT), // MD-FORM
    RLDICL_OPCODE = (30u << OPCODE_SHIFT |   0u << XO_27_29_SHIFT), // MD-FORM
    RLDIC_OPCODE  = (30u << OPCODE_SHIFT |   2u << XO_27_29_SHIFT), // MD-FORM
    RLDIMI_OPCODE = (30u << OPCODE_SHIFT |   3u << XO_27_29_SHIFT), // MD-FORM

    SRADI_OPCODE  = (31u << OPCODE_SHIFT | 413u << XO_21_29_SHIFT), // XS-FORM

    SLD_OPCODE    = (31u << OPCODE_SHIFT |  27u << 1),              // X-FORM
    SRD_OPCODE    = (31u << OPCODE_SHIFT | 539u << 1),              // X-FORM
    SRAD_OPCODE   = (31u << OPCODE_SHIFT | 794u << 1),              // X-FORM

    MULLD_OPCODE  = (31u << OPCODE_SHIFT | 233u << 1),              // XO-FORM
    MULHD_OPCODE  = (31u << OPCODE_SHIFT |  73u << 1),              // XO-FORM
    MULHDU_OPCODE = (31u << OPCODE_SHIFT |   9u << 1),              // XO-FORM
    DIVD_OPCODE   = (31u << OPCODE_SHIFT | 489u << 1),              // XO-FORM

    CNTLZD_OPCODE = (31u << OPCODE_SHIFT |  58u << XO_21_30_SHIFT), // X-FORM
    NAND_OPCODE   = (31u << OPCODE_SHIFT | 476u << XO_21_30_SHIFT), // X-FORM
    NOR_OPCODE    = (31u << OPCODE_SHIFT | 124u << XO_21_30_SHIFT), // X-FORM


    // opcodes only used for floating arithmetic
    FADD_OPCODE   = (63u << OPCODE_SHIFT |  21u << 1),
    FADDS_OPCODE  = (59u << OPCODE_SHIFT |  21u << 1),
    FCMPU_OPCODE  = (63u << OPCODE_SHIFT |  00u << 1),
    FDIV_OPCODE   = (63u << OPCODE_SHIFT |  18u << 1),
    FDIVS_OPCODE  = (59u << OPCODE_SHIFT |  18u << 1),
    FMR_OPCODE    = (63u << OPCODE_SHIFT |  72u << 1),
    // These are special Power6 opcodes, reused for "lfdepx" and "stfdepx"
    // on Power7.  Do not use.
    // MFFGPR_OPCODE  = (31u << OPCODE_SHIFT | 607u << 1),
    // MFTGPR_OPCODE  = (31u << OPCODE_SHIFT | 735u << 1),
    CMPB_OPCODE    = (31u << OPCODE_SHIFT |  508  << 1),
    POPCNTB_OPCODE = (31u << OPCODE_SHIFT |  122  << 1),
    POPCNTW_OPCODE = (31u << OPCODE_SHIFT |  378  << 1),
    POPCNTD_OPCODE = (31u << OPCODE_SHIFT |  506  << 1),
    FABS_OPCODE    = (63u << OPCODE_SHIFT |  264u << 1),
    FNABS_OPCODE   = (63u << OPCODE_SHIFT |  136u << 1),
    FMUL_OPCODE    = (63u << OPCODE_SHIFT |   25u << 1),
    FMULS_OPCODE   = (59u << OPCODE_SHIFT |   25u << 1),
    FNEG_OPCODE    = (63u << OPCODE_SHIFT |   40u << 1),
    FSUB_OPCODE    = (63u << OPCODE_SHIFT |   20u << 1),
    FSUBS_OPCODE   = (59u << OPCODE_SHIFT |   20u << 1),

    // PPC64-internal FPU conversion opcodes
    FCFID_OPCODE   = (63u << OPCODE_SHIFT |  846u << 1),
    FCFIDS_OPCODE  = (59u << OPCODE_SHIFT |  846u << 1),
    FCTID_OPCODE   = (63u << OPCODE_SHIFT |  814u << 1),
    FCTIDZ_OPCODE  = (63u << OPCODE_SHIFT |  815u << 1),
    FCTIW_OPCODE   = (63u << OPCODE_SHIFT |   14u << 1),
    FCTIWZ_OPCODE  = (63u << OPCODE_SHIFT |   15u << 1),
    FRSP_OPCODE    = (63u << OPCODE_SHIFT |   12u << 1),

    // WARNING: using fmadd results in a non-compliant vm. Some floating
    // point tck tests will fail.
    FMADD_OPCODE   = (59u << OPCODE_SHIFT |   29u << 1),
    DMADD_OPCODE   = (63u << OPCODE_SHIFT |   29u << 1),
    FMSUB_OPCODE   = (59u << OPCODE_SHIFT |   28u << 1),
    DMSUB_OPCODE   = (63u << OPCODE_SHIFT |   28u << 1),
    FNMADD_OPCODE  = (59u << OPCODE_SHIFT |   31u << 1),
    DNMADD_OPCODE  = (63u << OPCODE_SHIFT |   31u << 1),
    FNMSUB_OPCODE  = (59u << OPCODE_SHIFT |   30u << 1),
    DNMSUB_OPCODE  = (63u << OPCODE_SHIFT |   30u << 1),

    LFD_OPCODE     = (50u << OPCODE_SHIFT |   00u << 1),
    LFDU_OPCODE    = (51u << OPCODE_SHIFT |   00u << 1),
    LFDX_OPCODE    = (31u << OPCODE_SHIFT |  599u << 1),
    LFS_OPCODE     = (48u << OPCODE_SHIFT |   00u << 1),
    LFSU_OPCODE    = (49u << OPCODE_SHIFT |   00u << 1),
    LFSX_OPCODE    = (31u << OPCODE_SHIFT |  535u << 1),

    STFD_OPCODE    = (54u << OPCODE_SHIFT |   00u << 1),
    STFDU_OPCODE   = (55u << OPCODE_SHIFT |   00u << 1),
    STFDX_OPCODE   = (31u << OPCODE_SHIFT |  727u << 1),
    STFS_OPCODE    = (52u << OPCODE_SHIFT |   00u << 1),
    STFSU_OPCODE   = (53u << OPCODE_SHIFT |   00u << 1),
    STFSX_OPCODE   = (31u << OPCODE_SHIFT |  663u << 1),

    FSQRT_OPCODE   = (63u << OPCODE_SHIFT |   22u << 1),            // A-FORM
    FSQRTS_OPCODE  = (59u << OPCODE_SHIFT |   22u << 1),            // A-FORM

    // Vector instruction support for >= Power6
    // Vector Storage Access
    LVEBX_OPCODE   = (31u << OPCODE_SHIFT |    7u << 1),
    LVEHX_OPCODE   = (31u << OPCODE_SHIFT |   39u << 1),
    LVEWX_OPCODE   = (31u << OPCODE_SHIFT |   71u << 1),
    LVX_OPCODE     = (31u << OPCODE_SHIFT |  103u << 1),
    LVXL_OPCODE    = (31u << OPCODE_SHIFT |  359u << 1),
    STVEBX_OPCODE  = (31u << OPCODE_SHIFT |  135u << 1),
    STVEHX_OPCODE  = (31u << OPCODE_SHIFT |  167u << 1),
    STVEWX_OPCODE  = (31u << OPCODE_SHIFT |  199u << 1),
    STVX_OPCODE    = (31u << OPCODE_SHIFT |  231u << 1),
    STVXL_OPCODE   = (31u << OPCODE_SHIFT |  487u << 1),
    LVSL_OPCODE    = (31u << OPCODE_SHIFT |    6u << 1),
    LVSR_OPCODE    = (31u << OPCODE_SHIFT |   38u << 1),

    // Vector Permute and Formatting
    VPKPX_OPCODE   = (4u  << OPCODE_SHIFT |  782u     ),
    VPKSHSS_OPCODE = (4u  << OPCODE_SHIFT |  398u     ),
    VPKSWSS_OPCODE = (4u  << OPCODE_SHIFT |  462u     ),
    VPKSHUS_OPCODE = (4u  << OPCODE_SHIFT |  270u     ),
    VPKSWUS_OPCODE = (4u  << OPCODE_SHIFT |  334u     ),
    VPKUHUM_OPCODE = (4u  << OPCODE_SHIFT |   14u     ),
    VPKUWUM_OPCODE = (4u  << OPCODE_SHIFT |   78u     ),
    VPKUHUS_OPCODE = (4u  << OPCODE_SHIFT |  142u     ),
    VPKUWUS_OPCODE = (4u  << OPCODE_SHIFT |  206u     ),
    VUPKHPX_OPCODE = (4u  << OPCODE_SHIFT |  846u     ),
    VUPKHSB_OPCODE = (4u  << OPCODE_SHIFT |  526u     ),
    VUPKHSH_OPCODE = (4u  << OPCODE_SHIFT |  590u     ),
    VUPKLPX_OPCODE = (4u  << OPCODE_SHIFT |  974u     ),
    VUPKLSB_OPCODE = (4u  << OPCODE_SHIFT |  654u     ),
    VUPKLSH_OPCODE = (4u  << OPCODE_SHIFT |  718u     ),

    VMRGHB_OPCODE  = (4u  << OPCODE_SHIFT |   12u     ),
    VMRGHW_OPCODE  = (4u  << OPCODE_SHIFT |  140u     ),
    VMRGHH_OPCODE  = (4u  << OPCODE_SHIFT |   76u     ),
    VMRGLB_OPCODE  = (4u  << OPCODE_SHIFT |  268u     ),
    VMRGLW_OPCODE  = (4u  << OPCODE_SHIFT |  396u     ),
    VMRGLH_OPCODE  = (4u  << OPCODE_SHIFT |  332u     ),

    VSPLT_OPCODE   = (4u  << OPCODE_SHIFT |  524u     ),
    VSPLTH_OPCODE  = (4u  << OPCODE_SHIFT |  588u     ),
    VSPLTW_OPCODE  = (4u  << OPCODE_SHIFT |  652u     ),
    VSPLTISB_OPCODE= (4u  << OPCODE_SHIFT |  780u     ),
    VSPLTISH_OPCODE= (4u  << OPCODE_SHIFT |  844u     ),
    VSPLTISW_OPCODE= (4u  << OPCODE_SHIFT |  908u     ),

    VPERM_OPCODE   = (4u  << OPCODE_SHIFT |   43u     ),
    VSEL_OPCODE    = (4u  << OPCODE_SHIFT |   42u     ),

    VSL_OPCODE     = (4u  << OPCODE_SHIFT |  452u     ),
    VSLDOI_OPCODE  = (4u  << OPCODE_SHIFT |   44u     ),
    VSLO_OPCODE    = (4u  << OPCODE_SHIFT | 1036u     ),
    VSR_OPCODE     = (4u  << OPCODE_SHIFT |  708u     ),
    VSRO_OPCODE    = (4u  << OPCODE_SHIFT | 1100u     ),

    // Vector Integer
    VADDCUW_OPCODE = (4u  << OPCODE_SHIFT |  384u     ),
    VADDSHS_OPCODE = (4u  << OPCODE_SHIFT |  832u     ),
    VADDSBS_OPCODE = (4u  << OPCODE_SHIFT |  768u     ),
    VADDSWS_OPCODE = (4u  << OPCODE_SHIFT |  896u     ),
    VADDUBM_OPCODE = (4u  << OPCODE_SHIFT |    0u     ),
    VADDUWM_OPCODE = (4u  << OPCODE_SHIFT |  128u     ),
    VADDUHM_OPCODE = (4u  << OPCODE_SHIFT |   64u     ),
    VADDUBS_OPCODE = (4u  << OPCODE_SHIFT |  512u     ),
    VADDUWS_OPCODE = (4u  << OPCODE_SHIFT |  640u     ),
    VADDUHS_OPCODE = (4u  << OPCODE_SHIFT |  576u     ),
    VSUBCUW_OPCODE = (4u  << OPCODE_SHIFT | 1408u     ),
    VSUBSHS_OPCODE = (4u  << OPCODE_SHIFT | 1856u     ),
    VSUBSBS_OPCODE = (4u  << OPCODE_SHIFT | 1792u     ),
    VSUBSWS_OPCODE = (4u  << OPCODE_SHIFT | 1920u     ),
    VSUBUBM_OPCODE = (4u  << OPCODE_SHIFT | 1024u     ),
    VSUBUWM_OPCODE = (4u  << OPCODE_SHIFT | 1152u     ),
    VSUBUHM_OPCODE = (4u  << OPCODE_SHIFT | 1088u     ),
    VSUBUBS_OPCODE = (4u  << OPCODE_SHIFT | 1536u     ),
    VSUBUWS_OPCODE = (4u  << OPCODE_SHIFT | 1664u     ),
    VSUBUHS_OPCODE = (4u  << OPCODE_SHIFT | 1600u     ),

    VMULESB_OPCODE = (4u  << OPCODE_SHIFT |  776u     ),
    VMULEUB_OPCODE = (4u  << OPCODE_SHIFT |  520u     ),
    VMULESH_OPCODE = (4u  << OPCODE_SHIFT |  840u     ),
    VMULEUH_OPCODE = (4u  << OPCODE_SHIFT |  584u     ),
    VMULOSB_OPCODE = (4u  << OPCODE_SHIFT |  264u     ),
    VMULOUB_OPCODE = (4u  << OPCODE_SHIFT |    8u     ),
    VMULOSH_OPCODE = (4u  << OPCODE_SHIFT |  328u     ),
    VMULOUH_OPCODE = (4u  << OPCODE_SHIFT |   72u     ),
    VMHADDSHS_OPCODE=(4u  << OPCODE_SHIFT |   32u     ),
    VMHRADDSHS_OPCODE=(4u << OPCODE_SHIFT |   33u     ),
    VMLADDUHM_OPCODE=(4u  << OPCODE_SHIFT |   34u     ),
    VMSUBUHM_OPCODE= (4u  << OPCODE_SHIFT |   36u     ),
    VMSUMMBM_OPCODE= (4u  << OPCODE_SHIFT |   37u     ),
    VMSUMSHM_OPCODE= (4u  << OPCODE_SHIFT |   40u     ),
    VMSUMSHS_OPCODE= (4u  << OPCODE_SHIFT |   41u     ),
    VMSUMUHM_OPCODE= (4u  << OPCODE_SHIFT |   38u     ),
    VMSUMUHS_OPCODE= (4u  << OPCODE_SHIFT |   39u     ),

    VSUMSWS_OPCODE = (4u  << OPCODE_SHIFT | 1928u     ),
    VSUM2SWS_OPCODE= (4u  << OPCODE_SHIFT | 1672u     ),
    VSUM4SBS_OPCODE= (4u  << OPCODE_SHIFT | 1800u     ),
    VSUM4UBS_OPCODE= (4u  << OPCODE_SHIFT | 1544u     ),
    VSUM4SHS_OPCODE= (4u  << OPCODE_SHIFT | 1608u     ),

    VAVGSB_OPCODE  = (4u  << OPCODE_SHIFT | 1282u     ),
    VAVGSW_OPCODE  = (4u  << OPCODE_SHIFT | 1410u     ),
    VAVGSH_OPCODE  = (4u  << OPCODE_SHIFT | 1346u     ),
    VAVGUB_OPCODE  = (4u  << OPCODE_SHIFT | 1026u     ),
    VAVGUW_OPCODE  = (4u  << OPCODE_SHIFT | 1154u     ),
    VAVGUH_OPCODE  = (4u  << OPCODE_SHIFT | 1090u     ),

    VMAXSB_OPCODE  = (4u  << OPCODE_SHIFT |  258u     ),
    VMAXSW_OPCODE  = (4u  << OPCODE_SHIFT |  386u     ),
    VMAXSH_OPCODE  = (4u  << OPCODE_SHIFT |  322u     ),
    VMAXUB_OPCODE  = (4u  << OPCODE_SHIFT |    2u     ),
    VMAXUW_OPCODE  = (4u  << OPCODE_SHIFT |  130u     ),
    VMAXUH_OPCODE  = (4u  << OPCODE_SHIFT |   66u     ),
    VMINSB_OPCODE  = (4u  << OPCODE_SHIFT |  770u     ),
    VMINSW_OPCODE  = (4u  << OPCODE_SHIFT |  898u     ),
    VMINSH_OPCODE  = (4u  << OPCODE_SHIFT |  834u     ),
    VMINUB_OPCODE  = (4u  << OPCODE_SHIFT |  514u     ),
    VMINUW_OPCODE  = (4u  << OPCODE_SHIFT |  642u     ),
    VMINUH_OPCODE  = (4u  << OPCODE_SHIFT |  578u     ),

    VCMPEQUB_OPCODE= (4u  << OPCODE_SHIFT |    6u     ),
    VCMPEQUH_OPCODE= (4u  << OPCODE_SHIFT |   70u     ),
    VCMPEQUW_OPCODE= (4u  << OPCODE_SHIFT |  134u     ),
    VCMPGTSH_OPCODE= (4u  << OPCODE_SHIFT |  838u     ),
    VCMPGTSB_OPCODE= (4u  << OPCODE_SHIFT |  774u     ),
    VCMPGTSW_OPCODE= (4u  << OPCODE_SHIFT |  902u     ),
    VCMPGTUB_OPCODE= (4u  << OPCODE_SHIFT |  518u     ),
    VCMPGTUH_OPCODE= (4u  << OPCODE_SHIFT |  582u     ),
    VCMPGTUW_OPCODE= (4u  << OPCODE_SHIFT |  646u     ),

    VAND_OPCODE    = (4u  << OPCODE_SHIFT | 1028u     ),
    VANDC_OPCODE   = (4u  << OPCODE_SHIFT | 1092u     ),
    VNOR_OPCODE    = (4u  << OPCODE_SHIFT | 1284u     ),
    VOR_OPCODE     = (4u  << OPCODE_SHIFT | 1156u     ),
    VXOR_OPCODE    = (4u  << OPCODE_SHIFT | 1220u     ),
    VRLB_OPCODE    = (4u  << OPCODE_SHIFT |    4u     ),
    VRLW_OPCODE    = (4u  << OPCODE_SHIFT |  132u     ),
    VRLH_OPCODE    = (4u  << OPCODE_SHIFT |   68u     ),
    VSLB_OPCODE    = (4u  << OPCODE_SHIFT |  260u     ),
    VSKW_OPCODE    = (4u  << OPCODE_SHIFT |  388u     ),
    VSLH_OPCODE    = (4u  << OPCODE_SHIFT |  324u     ),
    VSRB_OPCODE    = (4u  << OPCODE_SHIFT |  516u     ),
    VSRW_OPCODE    = (4u  << OPCODE_SHIFT |  644u     ),
    VSRH_OPCODE    = (4u  << OPCODE_SHIFT |  580u     ),
    VSRAB_OPCODE   = (4u  << OPCODE_SHIFT |  772u     ),
    VSRAW_OPCODE   = (4u  << OPCODE_SHIFT |  900u     ),
    VSRAH_OPCODE   = (4u  << OPCODE_SHIFT |  836u     ),

    // Vector Floating-Point
    // not implemented yet

    // Vector Status and Control
    MTVSCR_OPCODE  = (4u  << OPCODE_SHIFT | 1604u     ),
    MFVSCR_OPCODE  = (4u  << OPCODE_SHIFT | 1540u     ),

    // Icache and dcache related instructions
    DCBA_OPCODE    = (31u << OPCODE_SHIFT |  758u << 1),
    DCBZ_OPCODE    = (31u << OPCODE_SHIFT | 1014u << 1),
    DCBST_OPCODE   = (31u << OPCODE_SHIFT |   54u << 1),
    DCBF_OPCODE    = (31u << OPCODE_SHIFT |   86u << 1),

    DCBT_OPCODE    = (31u << OPCODE_SHIFT |  278u << 1),
    DCBTST_OPCODE  = (31u << OPCODE_SHIFT |  246u << 1),
    ICBI_OPCODE    = (31u << OPCODE_SHIFT |  982u << 1),

    // Instruction synchronization
    ISYNC_OPCODE   = (19u << OPCODE_SHIFT |  150u << 1),
    // Memory barriers
    SYNC_OPCODE    = (31u << OPCODE_SHIFT |  598u << 1),
    EIEIO_OPCODE   = (31u << OPCODE_SHIFT |  854u << 1),

    // Trap instructions
    TDI_OPCODE     = (2u  << OPCODE_SHIFT),
    TWI_OPCODE     = (3u  << OPCODE_SHIFT),
    TD_OPCODE      = (31u << OPCODE_SHIFT |   68u << 1),
    TW_OPCODE      = (31u << OPCODE_SHIFT |    4u << 1),

    // Atomics.
    LWARX_OPCODE   = (31u << OPCODE_SHIFT |   20u << 1),
    LDARX_OPCODE   = (31u << OPCODE_SHIFT |   84u << 1),
    STWCX_OPCODE   = (31u << OPCODE_SHIFT |  150u << 1),
    STDCX_OPCODE   = (31u << OPCODE_SHIFT |  214u << 1)

  };

  // Trap instructions TO bits
  enum trap_to_bits {
    // single bits
    traptoLessThanSigned      = 1 << 4, // 0, left end
    traptoGreaterThanSigned   = 1 << 3,
    traptoEqual               = 1 << 2,
    traptoLessThanUnsigned    = 1 << 1,
    traptoGreaterThanUnsigned = 1 << 0, // 4, right end

    // compound ones
    traptoUnconditional       = (traptoLessThanSigned |
                                 traptoGreaterThanSigned |
                                 traptoEqual |
                                 traptoLessThanUnsigned |
                                 traptoGreaterThanUnsigned)
  };

  // Branch hints BH field
  enum branch_hint_bh {
    // bclr cases:
    bhintbhBCLRisReturn            = 0,
    bhintbhBCLRisNotReturnButSame  = 1,
    bhintbhBCLRisNotPredictable    = 3,

    // bcctr cases:
    bhintbhBCCTRisNotReturnButSame = 0,
    bhintbhBCCTRisNotPredictable   = 3
  };

  // Branch prediction hints AT field
  enum branch_hint_at {
    bhintatNoHint     = 0,  // at=00
    bhintatIsNotTaken = 2,  // at=10
    bhintatIsTaken    = 3   // at=11
  };

  // Branch prediction hints
  enum branch_hint_concept {
    // Use the same encoding as branch_hint_at to simply code.
    bhintNoHint       = bhintatNoHint,
    bhintIsNotTaken   = bhintatIsNotTaken,
    bhintIsTaken      = bhintatIsTaken
  };

  // Used in BO field of branch instruction.
  enum branch_condition {
    bcondCRbiIs0      =  4, // bo=001at
    bcondCRbiIs1      = 12, // bo=011at
    bcondAlways       = 20  // bo=10100
  };

  // Branch condition with combined prediction hints.
  enum branch_condition_with_hint {
    bcondCRbiIs0_bhintNoHint     = bcondCRbiIs0 | bhintatNoHint,
    bcondCRbiIs0_bhintIsNotTaken = bcondCRbiIs0 | bhintatIsNotTaken,
    bcondCRbiIs0_bhintIsTaken    = bcondCRbiIs0 | bhintatIsTaken,
    bcondCRbiIs1_bhintNoHint     = bcondCRbiIs1 | bhintatNoHint,
    bcondCRbiIs1_bhintIsNotTaken = bcondCRbiIs1 | bhintatIsNotTaken,
    bcondCRbiIs1_bhintIsTaken    = bcondCRbiIs1 | bhintatIsTaken,
  };

679 680 681 682 683 684 685 686
  // Elemental Memory Barriers (>=Power 8)
  enum Elemental_Membar_mask_bits {
    StoreStore = 1 << 0,
    StoreLoad  = 1 << 1,
    LoadStore  = 1 << 2,
    LoadLoad   = 1 << 3
  };

687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
  // Branch prediction hints.
  inline static int add_bhint_to_boint(const int bhint, const int boint) {
    switch (boint) {
      case bcondCRbiIs0:
      case bcondCRbiIs1:
        // branch_hint and branch_hint_at have same encodings
        assert(   (int)bhintNoHint     == (int)bhintatNoHint
               && (int)bhintIsNotTaken == (int)bhintatIsNotTaken
               && (int)bhintIsTaken    == (int)bhintatIsTaken,
               "wrong encodings");
        assert((bhint & 0x03) == bhint, "wrong encodings");
        return (boint & ~0x03) | bhint;
      case bcondAlways:
        // no branch_hint
        return boint;
      default:
        ShouldNotReachHere();
        return 0;
    }
  }

  // Extract bcond from boint.
  inline static int inv_boint_bcond(const int boint) {
    int r_bcond = boint & ~0x03;
    assert(r_bcond == bcondCRbiIs0 ||
           r_bcond == bcondCRbiIs1 ||
           r_bcond == bcondAlways,
           "bad branch condition");
    return r_bcond;
  }

  // Extract bhint from boint.
  inline static int inv_boint_bhint(const int boint) {
    int r_bhint = boint & 0x03;
    assert(r_bhint == bhintatNoHint ||
           r_bhint == bhintatIsNotTaken ||
           r_bhint == bhintatIsTaken,
           "bad branch hint");
    return r_bhint;
  }

  // Calculate opposite of given bcond.
  inline static int opposite_bcond(const int bcond) {
    switch (bcond) {
      case bcondCRbiIs0:
        return bcondCRbiIs1;
      case bcondCRbiIs1:
        return bcondCRbiIs0;
      default:
        ShouldNotReachHere();
        return 0;
    }
  }

  // Calculate opposite of given bhint.
  inline static int opposite_bhint(const int bhint) {
    switch (bhint) {
      case bhintatNoHint:
        return bhintatNoHint;
      case bhintatIsNotTaken:
        return bhintatIsTaken;
      case bhintatIsTaken:
        return bhintatIsNotTaken;
      default:
        ShouldNotReachHere();
        return 0;
    }
  }

  // PPC branch instructions
  enum ppcops {
    b_op    = 18,
    bc_op   = 16,
    bcr_op  = 19
  };

  enum Condition {
    negative         = 0,
    less             = 0,
    positive         = 1,
    greater          = 1,
    zero             = 2,
    equal            = 2,
    summary_overflow = 3,
  };

 public:
  // Helper functions for groups of instructions

  enum Predict { pt = 1, pn = 0 }; // pt = predict taken

  // instruction must start at passed address
  static int instr_len(unsigned char *instr) { return BytesPerInstWord; }

  // instruction must be left-justified in argument
  static int instr_len(unsigned long instr)  { return BytesPerInstWord; }

  // longest instructions
  static int instr_maxlen() { return BytesPerInstWord; }

  // Test if x is within signed immediate range for nbits.
  static bool is_simm(int x, unsigned int nbits) {
    assert(0 < nbits && nbits < 32, "out of bounds");
    const int   min      = -( ((int)1) << nbits-1 );
    const int   maxplus1 =  ( ((int)1) << nbits-1 );
    return min <= x && x < maxplus1;
  }

  static bool is_simm(jlong x, unsigned int nbits) {
    assert(0 < nbits && nbits < 64, "out of bounds");
    const jlong min      = -( ((jlong)1) << nbits-1 );
    const jlong maxplus1 =  ( ((jlong)1) << nbits-1 );
    return min <= x && x < maxplus1;
  }

  // Test if x is within unsigned immediate range for nbits
  static bool is_uimm(int x, unsigned int nbits) {
    assert(0 < nbits && nbits < 32, "out of bounds");
    const int   maxplus1 = ( ((int)1) << nbits );
    return 0 <= x && x < maxplus1;
  }

  static bool is_uimm(jlong x, unsigned int nbits) {
    assert(0 < nbits && nbits < 64, "out of bounds");
    const jlong maxplus1 =  ( ((jlong)1) << nbits );
    return 0 <= x && x < maxplus1;
  }

 protected:
  // helpers

  // X is supposed to fit in a field "nbits" wide
  // and be sign-extended. Check the range.
  static void assert_signed_range(intptr_t x, int nbits) {
    assert(nbits == 32 || (-(1 << nbits-1) <= x && x < (1 << nbits-1)),
           "value out of range");
  }

  static void assert_signed_word_disp_range(intptr_t x, int nbits) {
    assert((x & 3) == 0, "not word aligned");
    assert_signed_range(x, nbits + 2);
  }

  static void assert_unsigned_const(int x, int nbits) {
    assert(juint(x) < juint(1 << nbits), "unsigned constant out of range");
  }

  static int fmask(juint hi_bit, juint lo_bit) {
    assert(hi_bit >= lo_bit && hi_bit < 32, "bad bits");
    return (1 << ( hi_bit-lo_bit + 1 )) - 1;
  }

  // inverse of u_field
  static int inv_u_field(int x, int hi_bit, int lo_bit) {
    juint r = juint(x) >> lo_bit;
    r &= fmask(hi_bit, lo_bit);
    return int(r);
  }

  // signed version: extract from field and sign-extend
  static int inv_s_field_ppc(int x, int hi_bit, int lo_bit) {
    x = x << (31-hi_bit);
    x = x >> (31-hi_bit+lo_bit);
    return x;
  }

  static int u_field(int x, int hi_bit, int lo_bit) {
    assert((x & ~fmask(hi_bit, lo_bit)) == 0, "value out of range");
    int r = x << lo_bit;
    assert(inv_u_field(r, hi_bit, lo_bit) == x, "just checking");
    return r;
  }

  // Same as u_field for signed values
  static int s_field(int x, int hi_bit, int lo_bit) {
    int nbits = hi_bit - lo_bit + 1;
    assert(nbits == 32 || (-(1 << nbits-1) <= x && x < (1 << nbits-1)),
      "value out of range");
    x &= fmask(hi_bit, lo_bit);
    int r = x << lo_bit;
    return r;
  }

  // inv_op for ppc instructions
  static int inv_op_ppc(int x) { return inv_u_field(x, 31, 26); }

  // Determine target address from li, bd field of branch instruction.
  static intptr_t inv_li_field(int x) {
    intptr_t r = inv_s_field_ppc(x, 25, 2);
    r = (r << 2);
    return r;
  }
  static intptr_t inv_bd_field(int x, intptr_t pos) {
    intptr_t r = inv_s_field_ppc(x, 15, 2);
    r = (r << 2) + pos;
    return r;
  }

  #define inv_opp_u_field(x, hi_bit, lo_bit) inv_u_field(x, 31-(lo_bit), 31-(hi_bit))
  #define inv_opp_s_field(x, hi_bit, lo_bit) inv_s_field_ppc(x, 31-(lo_bit), 31-(hi_bit))
  // Extract instruction fields from instruction words.
 public:
889 890 891 892 893
  static int inv_ra_field(int x)  { return inv_opp_u_field(x, 15, 11); }
  static int inv_rb_field(int x)  { return inv_opp_u_field(x, 20, 16); }
  static int inv_rt_field(int x)  { return inv_opp_u_field(x, 10,  6); }
  static int inv_rta_field(int x) { return inv_opp_u_field(x, 15, 11); }
  static int inv_rs_field(int x)  { return inv_opp_u_field(x, 10,  6); }
894 895
  // Ds uses opp_s_field(x, 31, 16), but lowest 2 bits must be 0.
  // Inv_ds_field uses range (x, 29, 16) but shifts by 2 to ensure that lowest bits are 0.
896 897 898 899 900 901 902
  static int inv_ds_field(int x)  { return inv_opp_s_field(x, 29, 16) << 2; }
  static int inv_d1_field(int x)  { return inv_opp_s_field(x, 31, 16); }
  static int inv_si_field(int x)  { return inv_opp_s_field(x, 31, 16); }
  static int inv_to_field(int x)  { return inv_opp_u_field(x, 10, 6);  }
  static int inv_lk_field(int x)  { return inv_opp_u_field(x, 31, 31); }
  static int inv_bo_field(int x)  { return inv_opp_u_field(x, 10,  6); }
  static int inv_bi_field(int x)  { return inv_opp_u_field(x, 15, 11); }
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939

  #define opp_u_field(x, hi_bit, lo_bit) u_field(x, 31-(lo_bit), 31-(hi_bit))
  #define opp_s_field(x, hi_bit, lo_bit) s_field(x, 31-(lo_bit), 31-(hi_bit))

  // instruction fields
  static int aa(       int         x)  { return  opp_u_field(x,             30, 30); }
  static int ba(       int         x)  { return  opp_u_field(x,             15, 11); }
  static int bb(       int         x)  { return  opp_u_field(x,             20, 16); }
  static int bc(       int         x)  { return  opp_u_field(x,             25, 21); }
  static int bd(       int         x)  { return  opp_s_field(x,             29, 16); }
  static int bf( ConditionRegister cr) { return  bf(cr->encoding()); }
  static int bf(       int         x)  { return  opp_u_field(x,              8,  6); }
  static int bfa(ConditionRegister cr) { return  bfa(cr->encoding()); }
  static int bfa(      int         x)  { return  opp_u_field(x,             13, 11); }
  static int bh(       int         x)  { return  opp_u_field(x,             20, 19); }
  static int bi(       int         x)  { return  opp_u_field(x,             15, 11); }
  static int bi0(ConditionRegister cr, Condition c) { return (cr->encoding() << 2) | c; }
  static int bo(       int         x)  { return  opp_u_field(x,             10,  6); }
  static int bt(       int         x)  { return  opp_u_field(x,             10,  6); }
  static int d1(       int         x)  { return  opp_s_field(x,             31, 16); }
  static int ds(       int         x)  { assert((x & 0x3) == 0, "unaligned offset"); return opp_s_field(x, 31, 16); }
  static int eh(       int         x)  { return  opp_u_field(x,             31, 31); }
  static int flm(      int         x)  { return  opp_u_field(x,             14,  7); }
  static int fra(    FloatRegister r)  { return  fra(r->encoding());}
  static int frb(    FloatRegister r)  { return  frb(r->encoding());}
  static int frc(    FloatRegister r)  { return  frc(r->encoding());}
  static int frs(    FloatRegister r)  { return  frs(r->encoding());}
  static int frt(    FloatRegister r)  { return  frt(r->encoding());}
  static int fra(      int         x)  { return  opp_u_field(x,             15, 11); }
  static int frb(      int         x)  { return  opp_u_field(x,             20, 16); }
  static int frc(      int         x)  { return  opp_u_field(x,             25, 21); }
  static int frs(      int         x)  { return  opp_u_field(x,             10,  6); }
  static int frt(      int         x)  { return  opp_u_field(x,             10,  6); }
  static int fxm(      int         x)  { return  opp_u_field(x,             19, 12); }
  static int l10(      int         x)  { return  opp_u_field(x,             10, 10); }
  static int l15(      int         x)  { return  opp_u_field(x,             15, 15); }
  static int l910(     int         x)  { return  opp_u_field(x,             10,  9); }
940
  static int e1215(    int         x)  { return  opp_u_field(x,             15, 12); }
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
  static int lev(      int         x)  { return  opp_u_field(x,             26, 20); }
  static int li(       int         x)  { return  opp_s_field(x,             29,  6); }
  static int lk(       int         x)  { return  opp_u_field(x,             31, 31); }
  static int mb2125(   int         x)  { return  opp_u_field(x,             25, 21); }
  static int me2630(   int         x)  { return  opp_u_field(x,             30, 26); }
  static int mb2126(   int         x)  { return  opp_u_field(((x & 0x1f) << 1) | ((x & 0x20) >> 5), 26, 21); }
  static int me2126(   int         x)  { return  mb2126(x); }
  static int nb(       int         x)  { return  opp_u_field(x,             20, 16); }
  //static int opcd(   int         x)  { return  opp_u_field(x,              5,  0); } // is contained in our opcodes
  static int oe(       int         x)  { return  opp_u_field(x,             21, 21); }
  static int ra(       Register    r)  { return  ra(r->encoding()); }
  static int ra(       int         x)  { return  opp_u_field(x,             15, 11); }
  static int rb(       Register    r)  { return  rb(r->encoding()); }
  static int rb(       int         x)  { return  opp_u_field(x,             20, 16); }
  static int rc(       int         x)  { return  opp_u_field(x,             31, 31); }
  static int rs(       Register    r)  { return  rs(r->encoding()); }
  static int rs(       int         x)  { return  opp_u_field(x,             10,  6); }
  // we don't want to use R0 in memory accesses, because it has value `0' then
  static int ra0mem(   Register    r)  { assert(r != R0, "cannot use register R0 in memory access"); return ra(r); }
  static int ra0mem(   int         x)  { assert(x != 0,  "cannot use register 0 in memory access");  return ra(x); }

  // register r is target
  static int rt(       Register    r)  { return rs(r); }
  static int rt(       int         x)  { return rs(x); }
  static int rta(      Register    r)  { return ra(r); }
  static int rta0mem(  Register    r)  { rta(r); return ra0mem(r); }

  static int sh1620(   int         x)  { return  opp_u_field(x,             20, 16); }
  static int sh30(     int         x)  { return  opp_u_field(x,             30, 30); }
  static int sh162030( int         x)  { return  sh1620(x & 0x1f) | sh30((x & 0x20) >> 5); }
  static int si(       int         x)  { return  opp_s_field(x,             31, 16); }
  static int spr(      int         x)  { return  opp_u_field(x,             20, 11); }
  static int sr(       int         x)  { return  opp_u_field(x,             15, 12); }
  static int tbr(      int         x)  { return  opp_u_field(x,             20, 11); }
  static int th(       int         x)  { return  opp_u_field(x,             10,  7); }
976 977
  static int thct(     int         x)  { assert((x&8) == 0, "must be valid cache specification");  return th(x); }
  static int thds(     int         x)  { assert((x&8) == 8, "must be valid stream specification"); return th(x); }
978 979 980 981
  static int to(       int         x)  { return  opp_u_field(x,             10,  6); }
  static int u(        int         x)  { return  opp_u_field(x,             19, 16); }
  static int ui(       int         x)  { return  opp_u_field(x,             31, 16); }

982
  // Support vector instructions for >= Power6.
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
  static int vra(      int         x)  { return  opp_u_field(x,             15, 11); }
  static int vrb(      int         x)  { return  opp_u_field(x,             20, 16); }
  static int vrc(      int         x)  { return  opp_u_field(x,             25, 21); }
  static int vrs(      int         x)  { return  opp_u_field(x,             10,  6); }
  static int vrt(      int         x)  { return  opp_u_field(x,             10,  6); }

  static int vra(   VectorRegister r)  { return  vra(r->encoding());}
  static int vrb(   VectorRegister r)  { return  vrb(r->encoding());}
  static int vrc(   VectorRegister r)  { return  vrc(r->encoding());}
  static int vrs(   VectorRegister r)  { return  vrs(r->encoding());}
  static int vrt(   VectorRegister r)  { return  vrt(r->encoding());}

  static int vsplt_uim( int        x)  { return  opp_u_field(x,             15, 12); } // for vsplt* instructions
  static int vsplti_sim(int        x)  { return  opp_u_field(x,             15, 11); } // for vsplti* instructions
  static int vsldoi_shb(int        x)  { return  opp_u_field(x,             25, 22); } // for vsldoi instruction
  static int vcmp_rc(   int        x)  { return  opp_u_field(x,             21, 21); } // for vcmp* instructions

  //static int xo1(     int        x)  { return  opp_u_field(x,             29, 21); }// is contained in our opcodes
  //static int xo2(     int        x)  { return  opp_u_field(x,             30, 21); }// is contained in our opcodes
  //static int xo3(     int        x)  { return  opp_u_field(x,             30, 22); }// is contained in our opcodes
  //static int xo4(     int        x)  { return  opp_u_field(x,             30, 26); }// is contained in our opcodes
  //static int xo5(     int        x)  { return  opp_u_field(x,             29, 27); }// is contained in our opcodes
  //static int xo6(     int        x)  { return  opp_u_field(x,             30, 27); }// is contained in our opcodes
  //static int xo7(     int        x)  { return  opp_u_field(x,             31, 30); }// is contained in our opcodes

 protected:
  // Compute relative address for branch.
  static intptr_t disp(intptr_t x, intptr_t off) {
    int xx = x - off;
    xx = xx >> 2;
    return xx;
  }

 public:
  // signed immediate, in low bits, nbits long
  static int simm(int x, int nbits) {
    assert_signed_range(x, nbits);
    return x & ((1 << nbits) - 1);
  }

  // unsigned immediate, in low bits, nbits long
  static int uimm(int x, int nbits) {
    assert_unsigned_const(x, nbits);
    return x & ((1 << nbits) - 1);
  }

  static void set_imm(int* instr, short s) {
1030 1031 1032 1033
    // imm is always in the lower 16 bits of the instruction,
    // so this is endian-neutral. Same for the get_imm below.
    uint32_t w = *(uint32_t *)instr;
    *instr = (int)((w & ~0x0000FFFF) | (s & 0x0000FFFF));
1034 1035 1036
  }

  static int get_imm(address a, int instruction_number) {
1037
    return (short)((int *)a)[instruction_number];
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
  }

  static inline int hi16_signed(  int x) { return (int)(int16_t)(x >> 16); }
  static inline int lo16_unsigned(int x) { return x & 0xffff; }

 protected:

  // Extract the top 32 bits in a 64 bit word.
  static int32_t hi32(int64_t x) {
    int32_t r = int32_t((uint64_t)x >> 32);
    return r;
  }

 public:

  static inline unsigned int align_addr(unsigned int addr, unsigned int a) {
    return ((addr + (a - 1)) & ~(a - 1));
  }

  static inline bool is_aligned(unsigned int addr, unsigned int a) {
    return (0 == addr % a);
  }

  void flush() {
    AbstractAssembler::flush();
  }

  inline void emit_int32(int);  // shadows AbstractAssembler::emit_int32
  inline void emit_data(int);
  inline void emit_data(int, RelocationHolder const&);
  inline void emit_data(int, relocInfo::relocType rtype);

  // Emit an address.
  inline address emit_addr(const address addr = NULL);

G
goetz 已提交
1073
#if !defined(ABI_ELFv2)
1074 1075 1076 1077 1078 1079 1080
  // Emit a function descriptor with the specified entry point, TOC,
  // and ENV. If the entry point is NULL, the descriptor will point
  // just past the descriptor.
  // Use values from friend functions as defaults.
  inline address emit_fd(address entry = NULL,
                         address toc = (address) FunctionDescriptor::friend_toc,
                         address env = (address) FunctionDescriptor::friend_env);
G
goetz 已提交
1081
#endif
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106

  /////////////////////////////////////////////////////////////////////////////////////
  // PPC instructions
  /////////////////////////////////////////////////////////////////////////////////////

  // Memory instructions use r0 as hard coded 0, e.g. to simulate loading
  // immediates. The normal instruction encoders enforce that r0 is not
  // passed to them. Use either extended mnemonics encoders or the special ra0
  // versions.

  // Issue an illegal instruction.
  inline void illtrap();
  static inline bool is_illtrap(int x);

  // PPC 1, section 3.3.8, Fixed-Point Arithmetic Instructions
  inline void addi( Register d, Register a, int si16);
  inline void addis(Register d, Register a, int si16);
 private:
  inline void addi_r0ok( Register d, Register a, int si16);
  inline void addis_r0ok(Register d, Register a, int si16);
 public:
  inline void addic_( Register d, Register a, int si16);
  inline void subfic( Register d, Register a, int si16);
  inline void add(    Register d, Register a, Register b);
  inline void add_(   Register d, Register a, Register b);
1107 1108
  inline void subf(   Register d, Register a, Register b);  // d = b - a    "Sub_from", as in ppc spec.
  inline void sub(    Register d, Register a, Register b);  // d = a - b    Swap operands of subf for readability.
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
  inline void subf_(  Register d, Register a, Register b);
  inline void addc(   Register d, Register a, Register b);
  inline void addc_(  Register d, Register a, Register b);
  inline void subfc(  Register d, Register a, Register b);
  inline void subfc_( Register d, Register a, Register b);
  inline void adde(   Register d, Register a, Register b);
  inline void adde_(  Register d, Register a, Register b);
  inline void subfe(  Register d, Register a, Register b);
  inline void subfe_( Register d, Register a, Register b);
  inline void neg(    Register d, Register a);
  inline void neg_(   Register d, Register a);
  inline void mulli(  Register d, Register a, int si16);
  inline void mulld(  Register d, Register a, Register b);
  inline void mulld_( Register d, Register a, Register b);
  inline void mullw(  Register d, Register a, Register b);
  inline void mullw_( Register d, Register a, Register b);
  inline void mulhw(  Register d, Register a, Register b);
  inline void mulhw_( Register d, Register a, Register b);
  inline void mulhd(  Register d, Register a, Register b);
  inline void mulhd_( Register d, Register a, Register b);
  inline void mulhdu( Register d, Register a, Register b);
  inline void mulhdu_(Register d, Register a, Register b);
  inline void divd(   Register d, Register a, Register b);
  inline void divd_(  Register d, Register a, Register b);
  inline void divw(   Register d, Register a, Register b);
  inline void divw_(  Register d, Register a, Register b);

  // extended mnemonics
  inline void li(   Register d, int si16);
  inline void lis(  Register d, int si16);
  inline void addir(Register d, int si16, Register a);

  static bool is_addi(int x) {
     return ADDI_OPCODE == (x & ADDI_OPCODE_MASK);
  }
  static bool is_addis(int x) {
     return ADDIS_OPCODE == (x & ADDIS_OPCODE_MASK);
  }
  static bool is_bxx(int x) {
     return BXX_OPCODE == (x & BXX_OPCODE_MASK);
  }
  static bool is_b(int x) {
     return BXX_OPCODE == (x & BXX_OPCODE_MASK) && inv_lk_field(x) == 0;
  }
  static bool is_bl(int x) {
     return BXX_OPCODE == (x & BXX_OPCODE_MASK) && inv_lk_field(x) == 1;
  }
  static bool is_bcxx(int x) {
     return BCXX_OPCODE == (x & BCXX_OPCODE_MASK);
  }
  static bool is_bxx_or_bcxx(int x) {
     return is_bxx(x) || is_bcxx(x);
  }
  static bool is_bctrl(int x) {
     return x == 0x4e800421;
  }
  static bool is_bctr(int x) {
     return x == 0x4e800420;
  }
  static bool is_bclr(int x) {
     return BCLR_OPCODE == (x & XL_FORM_OPCODE_MASK);
  }
  static bool is_li(int x) {
     return is_addi(x) && inv_ra_field(x)==0;
  }
  static bool is_lis(int x) {
     return is_addis(x) && inv_ra_field(x)==0;
  }
  static bool is_mtctr(int x) {
     return MTCTR_OPCODE == (x & MTCTR_OPCODE_MASK);
  }
  static bool is_ld(int x) {
     return LD_OPCODE == (x & LD_OPCODE_MASK);
  }
  static bool is_std(int x) {
     return STD_OPCODE == (x & STD_OPCODE_MASK);
  }
  static bool is_stdu(int x) {
     return STDU_OPCODE == (x & STDU_OPCODE_MASK);
  }
  static bool is_stdx(int x) {
     return STDX_OPCODE == (x & STDX_OPCODE_MASK);
  }
  static bool is_stdux(int x) {
     return STDUX_OPCODE == (x & STDUX_OPCODE_MASK);
  }
  static bool is_stwx(int x) {
     return STWX_OPCODE == (x & STWX_OPCODE_MASK);
  }
  static bool is_stwux(int x) {
     return STWUX_OPCODE == (x & STWUX_OPCODE_MASK);
  }
  static bool is_stw(int x) {
     return STW_OPCODE == (x & STW_OPCODE_MASK);
  }
  static bool is_stwu(int x) {
     return STWU_OPCODE == (x & STWU_OPCODE_MASK);
  }
  static bool is_ori(int x) {
     return ORI_OPCODE == (x & ORI_OPCODE_MASK);
  };
  static bool is_oris(int x) {
     return ORIS_OPCODE == (x & ORIS_OPCODE_MASK);
  };
  static bool is_rldicr(int x) {
     return (RLDICR_OPCODE == (x & RLDICR_OPCODE_MASK));
  };
  static bool is_nop(int x) {
    return x == 0x60000000;
  }
  // endgroup opcode for Power6
  static bool is_endgroup(int x) {
1221
    return is_ori(x) && inv_ra_field(x) == 1 && inv_rs_field(x) == 1 && inv_d1_field(x) == 0;
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
  }


 private:
  // PPC 1, section 3.3.9, Fixed-Point Compare Instructions
  inline void cmpi( ConditionRegister bf, int l, Register a, int si16);
  inline void cmp(  ConditionRegister bf, int l, Register a, Register b);
  inline void cmpli(ConditionRegister bf, int l, Register a, int ui16);
  inline void cmpl( ConditionRegister bf, int l, Register a, Register b);

 public:
  // extended mnemonics of Compare Instructions
  inline void cmpwi( ConditionRegister crx, Register a, int si16);
  inline void cmpdi( ConditionRegister crx, Register a, int si16);
  inline void cmpw(  ConditionRegister crx, Register a, Register b);
  inline void cmpd(  ConditionRegister crx, Register a, Register b);
  inline void cmplwi(ConditionRegister crx, Register a, int ui16);
  inline void cmpldi(ConditionRegister crx, Register a, int ui16);
  inline void cmplw( ConditionRegister crx, Register a, Register b);
  inline void cmpld( ConditionRegister crx, Register a, Register b);

  inline void isel(   Register d, Register a, Register b, int bc);
1244 1245 1246 1247
  // Convenient version which takes: Condition register, Condition code and invert flag. Omit b to keep old value.
  inline void isel(   Register d, ConditionRegister cr, Condition cc, bool inv, Register a, Register b = noreg);
  // Set d = 0 if (cr.cc) equals 1, otherwise b.
  inline void isel_0( Register d, ConditionRegister cr, Condition cc, Register b = noreg);
1248 1249

  // PPC 1, section 3.3.11, Fixed-Point Logical Instructions
1250
         void andi(   Register a, Register s, int ui16);   // optimized version
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
  inline void andi_(  Register a, Register s, int ui16);
  inline void andis_( Register a, Register s, int ui16);
  inline void ori(    Register a, Register s, int ui16);
  inline void oris(   Register a, Register s, int ui16);
  inline void xori(   Register a, Register s, int ui16);
  inline void xoris(  Register a, Register s, int ui16);
  inline void andr(   Register a, Register s, Register b);  // suffixed by 'r' as 'and' is C++ keyword
  inline void and_(   Register a, Register s, Register b);
  // Turn or0(rx,rx,rx) into a nop and avoid that we accidently emit a
  // SMT-priority change instruction (see SMT instructions below).
  inline void or_unchecked(Register a, Register s, Register b);
  inline void orr(    Register a, Register s, Register b);  // suffixed by 'r' as 'or' is C++ keyword
  inline void or_(    Register a, Register s, Register b);
  inline void xorr(   Register a, Register s, Register b);  // suffixed by 'r' as 'xor' is C++ keyword
  inline void xor_(   Register a, Register s, Register b);
  inline void nand(   Register a, Register s, Register b);
  inline void nand_(  Register a, Register s, Register b);
  inline void nor(    Register a, Register s, Register b);
  inline void nor_(   Register a, Register s, Register b);
  inline void andc(   Register a, Register s, Register b);
  inline void andc_(  Register a, Register s, Register b);
  inline void orc(    Register a, Register s, Register b);
  inline void orc_(   Register a, Register s, Register b);
  inline void extsb(  Register a, Register s);
  inline void extsh(  Register a, Register s);
  inline void extsw(  Register a, Register s);

  // extended mnemonics
  inline void nop();
  // NOP for FP and BR units (different versions to allow them to be in one group)
  inline void fpnop0();
  inline void fpnop1();
  inline void brnop0();
  inline void brnop1();
  inline void brnop2();

  inline void mr(      Register d, Register s);
  inline void ori_opt( Register d, int ui16);
  inline void oris_opt(Register d, int ui16);

  // endgroup opcode for Power6
  inline void endgroup();

  // count instructions
  inline void cntlzw(  Register a, Register s);
  inline void cntlzw_( Register a, Register s);
  inline void cntlzd(  Register a, Register s);
  inline void cntlzd_( Register a, Register s);

  // PPC 1, section 3.3.12, Fixed-Point Rotate and Shift Instructions
  inline void sld(     Register a, Register s, Register b);
  inline void sld_(    Register a, Register s, Register b);
  inline void slw(     Register a, Register s, Register b);
  inline void slw_(    Register a, Register s, Register b);
  inline void srd(     Register a, Register s, Register b);
  inline void srd_(    Register a, Register s, Register b);
  inline void srw(     Register a, Register s, Register b);
  inline void srw_(    Register a, Register s, Register b);
  inline void srad(    Register a, Register s, Register b);
  inline void srad_(   Register a, Register s, Register b);
  inline void sraw(    Register a, Register s, Register b);
  inline void sraw_(   Register a, Register s, Register b);
  inline void sradi(   Register a, Register s, int sh6);
  inline void sradi_(  Register a, Register s, int sh6);
  inline void srawi(   Register a, Register s, int sh5);
  inline void srawi_(  Register a, Register s, int sh5);

  // extended mnemonics for Shift Instructions
  inline void sldi(    Register a, Register s, int sh6);
  inline void sldi_(   Register a, Register s, int sh6);
  inline void slwi(    Register a, Register s, int sh5);
  inline void slwi_(   Register a, Register s, int sh5);
  inline void srdi(    Register a, Register s, int sh6);
  inline void srdi_(   Register a, Register s, int sh6);
  inline void srwi(    Register a, Register s, int sh5);
  inline void srwi_(   Register a, Register s, int sh5);

  inline void clrrdi(  Register a, Register s, int ui6);
  inline void clrrdi_( Register a, Register s, int ui6);
  inline void clrldi(  Register a, Register s, int ui6);
  inline void clrldi_( Register a, Register s, int ui6);
  inline void clrlsldi(Register a, Register s, int clrl6, int shl6);
  inline void clrlsldi_(Register a, Register s, int clrl6, int shl6);
  inline void extrdi(  Register a, Register s, int n, int b);
  // testbit with condition register
  inline void testbitdi(ConditionRegister cr, Register a, Register s, int ui6);

  // rotate instructions
  inline void rotldi(  Register a, Register s, int n);
  inline void rotrdi(  Register a, Register s, int n);
  inline void rotlwi(  Register a, Register s, int n);
  inline void rotrwi(  Register a, Register s, int n);

  // Rotate Instructions
  inline void rldic(   Register a, Register s, int sh6, int mb6);
  inline void rldic_(  Register a, Register s, int sh6, int mb6);
  inline void rldicr(  Register a, Register s, int sh6, int mb6);
  inline void rldicr_( Register a, Register s, int sh6, int mb6);
  inline void rldicl(  Register a, Register s, int sh6, int mb6);
  inline void rldicl_( Register a, Register s, int sh6, int mb6);
  inline void rlwinm(  Register a, Register s, int sh5, int mb5, int me5);
  inline void rlwinm_( Register a, Register s, int sh5, int mb5, int me5);
  inline void rldimi(  Register a, Register s, int sh6, int mb6);
  inline void rldimi_( Register a, Register s, int sh6, int mb6);
  inline void rlwimi(  Register a, Register s, int sh5, int mb5, int me5);
  inline void insrdi(  Register a, Register s, int n,   int b);
  inline void insrwi(  Register a, Register s, int n,   int b);

  // PPC 1, section 3.3.2 Fixed-Point Load Instructions
  // 4 bytes
  inline void lwzx( Register d, Register s1, Register s2);
  inline void lwz(  Register d, int si16,    Register s1);
  inline void lwzu( Register d, int si16,    Register s1);

  // 4 bytes
  inline void lwax( Register d, Register s1, Register s2);
  inline void lwa(  Register d, int si16,    Register s1);

1369 1370 1371
  // 4 bytes reversed
  inline void lwbrx( Register d, Register s1, Register s2);

1372 1373 1374 1375 1376
  // 2 bytes
  inline void lhzx( Register d, Register s1, Register s2);
  inline void lhz(  Register d, int si16,    Register s1);
  inline void lhzu( Register d, int si16,    Register s1);

1377 1378 1379
  // 2 bytes reversed
  inline void lhbrx( Register d, Register s1, Register s2);

1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
  // 2 bytes
  inline void lhax( Register d, Register s1, Register s2);
  inline void lha(  Register d, int si16,    Register s1);
  inline void lhau( Register d, int si16,    Register s1);

  // 1 byte
  inline void lbzx( Register d, Register s1, Register s2);
  inline void lbz(  Register d, int si16,    Register s1);
  inline void lbzu( Register d, int si16,    Register s1);

  // 8 bytes
  inline void ldx(  Register d, Register s1, Register s2);
  inline void ld(   Register d, int si16,    Register s1);
  inline void ldu(  Register d, int si16,    Register s1);

  //  PPC 1, section 3.3.3 Fixed-Point Store Instructions
  inline void stwx( Register d, Register s1, Register s2);
  inline void stw(  Register d, int si16,    Register s1);
  inline void stwu( Register d, int si16,    Register s1);

  inline void sthx( Register d, Register s1, Register s2);
  inline void sth(  Register d, int si16,    Register s1);
  inline void sthu( Register d, int si16,    Register s1);

  inline void stbx( Register d, Register s1, Register s2);
  inline void stb(  Register d, int si16,    Register s1);
  inline void stbu( Register d, int si16,    Register s1);

  inline void stdx( Register d, Register s1, Register s2);
  inline void std(  Register d, int si16,    Register s1);
  inline void stdu( Register d, int si16,    Register s1);
  inline void stdux(Register s, Register a,  Register b);

  // PPC 1, section 3.3.13 Move To/From System Register Instructions
  inline void mtlr( Register s1);
  inline void mflr( Register d);
  inline void mtctr(Register s1);
  inline void mfctr(Register d);
  inline void mtcrf(int fxm, Register s);
  inline void mfcr( Register d);
  inline void mcrf( ConditionRegister crd, ConditionRegister cra);
  inline void mtcr( Register s);

  // PPC 1, section 2.4.1 Branch Instructions
  inline void b(  address a, relocInfo::relocType rt = relocInfo::none);
  inline void b(  Label& L);
  inline void bl( address a, relocInfo::relocType rt = relocInfo::none);
  inline void bl( Label& L);
  inline void bc( int boint, int biint, address a, relocInfo::relocType rt = relocInfo::none);
  inline void bc( int boint, int biint, Label& L);
  inline void bcl(int boint, int biint, address a, relocInfo::relocType rt = relocInfo::none);
  inline void bcl(int boint, int biint, Label& L);

  inline void bclr(  int boint, int biint, int bhint, relocInfo::relocType rt = relocInfo::none);
  inline void bclrl( int boint, int biint, int bhint, relocInfo::relocType rt = relocInfo::none);
  inline void bcctr( int boint, int biint, int bhint = bhintbhBCCTRisNotReturnButSame,
                         relocInfo::relocType rt = relocInfo::none);
  inline void bcctrl(int boint, int biint, int bhint = bhintbhBCLRisReturn,
                         relocInfo::relocType rt = relocInfo::none);

  // helper function for b, bcxx
  inline bool is_within_range_of_b(address a, address pc);
  inline bool is_within_range_of_bcxx(address a, address pc);

  // get the destination of a bxx branch (b, bl, ba, bla)
  static inline address  bxx_destination(address baddr);
  static inline address  bxx_destination(int instr, address pc);
  static inline intptr_t bxx_destination_offset(int instr, intptr_t bxx_pos);

  // extended mnemonics for branch instructions
  inline void blt(ConditionRegister crx, Label& L);
  inline void bgt(ConditionRegister crx, Label& L);
  inline void beq(ConditionRegister crx, Label& L);
  inline void bso(ConditionRegister crx, Label& L);
  inline void bge(ConditionRegister crx, Label& L);
  inline void ble(ConditionRegister crx, Label& L);
  inline void bne(ConditionRegister crx, Label& L);
  inline void bns(ConditionRegister crx, Label& L);

  // Branch instructions with static prediction hints.
  inline void blt_predict_taken(    ConditionRegister crx, Label& L);
  inline void bgt_predict_taken(    ConditionRegister crx, Label& L);
  inline void beq_predict_taken(    ConditionRegister crx, Label& L);
  inline void bso_predict_taken(    ConditionRegister crx, Label& L);
  inline void bge_predict_taken(    ConditionRegister crx, Label& L);
  inline void ble_predict_taken(    ConditionRegister crx, Label& L);
  inline void bne_predict_taken(    ConditionRegister crx, Label& L);
  inline void bns_predict_taken(    ConditionRegister crx, Label& L);
  inline void blt_predict_not_taken(ConditionRegister crx, Label& L);
  inline void bgt_predict_not_taken(ConditionRegister crx, Label& L);
  inline void beq_predict_not_taken(ConditionRegister crx, Label& L);
  inline void bso_predict_not_taken(ConditionRegister crx, Label& L);
  inline void bge_predict_not_taken(ConditionRegister crx, Label& L);
  inline void ble_predict_not_taken(ConditionRegister crx, Label& L);
  inline void bne_predict_not_taken(ConditionRegister crx, Label& L);
  inline void bns_predict_not_taken(ConditionRegister crx, Label& L);

  // for use in conjunction with testbitdi:
  inline void btrue( ConditionRegister crx, Label& L);
  inline void bfalse(ConditionRegister crx, Label& L);

  inline void bltl(ConditionRegister crx, Label& L);
  inline void bgtl(ConditionRegister crx, Label& L);
  inline void beql(ConditionRegister crx, Label& L);
  inline void bsol(ConditionRegister crx, Label& L);
  inline void bgel(ConditionRegister crx, Label& L);
  inline void blel(ConditionRegister crx, Label& L);
  inline void bnel(ConditionRegister crx, Label& L);
  inline void bnsl(ConditionRegister crx, Label& L);

  // extended mnemonics for Branch Instructions via LR
  // We use `blr' for returns.
  inline void blr(relocInfo::relocType rt = relocInfo::none);

  // extended mnemonics for Branch Instructions with CTR
  // bdnz means `decrement CTR and jump to L if CTR is not zero'
  inline void bdnz(Label& L);
  // Decrement and branch if result is zero.
  inline void bdz(Label& L);
  // we use `bctr[l]' for jumps/calls in function descriptor glue
  // code, e.g. calls to runtime functions
  inline void bctr( relocInfo::relocType rt = relocInfo::none);
  inline void bctrl(relocInfo::relocType rt = relocInfo::none);
  // conditional jumps/branches via CTR
  inline void beqctr( ConditionRegister crx, relocInfo::relocType rt = relocInfo::none);
  inline void beqctrl(ConditionRegister crx, relocInfo::relocType rt = relocInfo::none);
  inline void bnectr( ConditionRegister crx, relocInfo::relocType rt = relocInfo::none);
  inline void bnectrl(ConditionRegister crx, relocInfo::relocType rt = relocInfo::none);

  // condition register logic instructions
  inline void crand( int d, int s1, int s2);
  inline void crnand(int d, int s1, int s2);
  inline void cror(  int d, int s1, int s2);
  inline void crxor( int d, int s1, int s2);
  inline void crnor( int d, int s1, int s2);
  inline void creqv( int d, int s1, int s2);
  inline void crandc(int d, int s1, int s2);
  inline void crorc( int d, int s1, int s2);

  // icache and dcache related instructions
  inline void icbi(  Register s1, Register s2);
  //inline void dcba(Register s1, Register s2); // Instruction for embedded processor only.
  inline void dcbz(  Register s1, Register s2);
  inline void dcbst( Register s1, Register s2);
  inline void dcbf(  Register s1, Register s2);

  enum ct_cache_specification {
    ct_primary_cache   = 0,
    ct_secondary_cache = 2
  };
  // dcache read hint
  inline void dcbt(    Register s1, Register s2);
  inline void dcbtct(  Register s1, Register s2, int ct);
  inline void dcbtds(  Register s1, Register s2, int ds);
  // dcache write hint
  inline void dcbtst(  Register s1, Register s2);
  inline void dcbtstct(Register s1, Register s2, int ct);

  //  machine barrier instructions:
  //
  //  - sync    two-way memory barrier, aka fence
  //  - lwsync  orders  Store|Store,
  //                     Load|Store,
  //                     Load|Load,
  //            but not Store|Load
  //  - eieio   orders memory accesses for device memory (only)
  //  - isync   invalidates speculatively executed instructions
  //            From the Power ISA 2.06 documentation:
  //             "[...] an isync instruction prevents the execution of
  //            instructions following the isync until instructions
  //            preceding the isync have completed, [...]"
  //            From IBM's AIX assembler reference:
  //             "The isync [...] instructions causes the processor to
  //            refetch any instructions that might have been fetched
  //            prior to the isync instruction. The instruction isync
  //            causes the processor to wait for all previous instructions
  //            to complete. Then any instructions already fetched are
  //            discarded and instruction processing continues in the
  //            environment established by the previous instructions."
  //
  //  semantic barrier instructions:
  //  (as defined in orderAccess.hpp)
  //
  //  - release  orders Store|Store,       (maps to lwsync)
  //                     Load|Store
  //  - acquire  orders  Load|Store,       (maps to lwsync)
  //                     Load|Load
  //  - fence    orders Store|Store,       (maps to sync)
  //                     Load|Store,
  //                     Load|Load,
  //                    Store|Load
  //
 private:
  inline void sync(int l);
 public:
  inline void sync();
  inline void lwsync();
  inline void ptesync();
  inline void eieio();
  inline void isync();
1580
  inline void elemental_membar(int e); // Elemental Memory Barriers (>=Power 8)
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868

  // atomics
  inline void lwarx_unchecked(Register d, Register a, Register b, int eh1 = 0);
  inline void ldarx_unchecked(Register d, Register a, Register b, int eh1 = 0);
  inline bool lxarx_hint_exclusive_access();
  inline void lwarx(  Register d, Register a, Register b, bool hint_exclusive_access = false);
  inline void ldarx(  Register d, Register a, Register b, bool hint_exclusive_access = false);
  inline void stwcx_( Register s, Register a, Register b);
  inline void stdcx_( Register s, Register a, Register b);

  // Instructions for adjusting thread priority for simultaneous
  // multithreading (SMT) on Power5.
 private:
  inline void smt_prio_very_low();
  inline void smt_prio_medium_high();
  inline void smt_prio_high();

 public:
  inline void smt_prio_low();
  inline void smt_prio_medium_low();
  inline void smt_prio_medium();

  // trap instructions
  inline void twi_0(Register a); // for load with acquire semantics use load+twi_0+isync (trap can't occur)
  // NOT FOR DIRECT USE!!
 protected:
  inline void tdi_unchecked(int tobits, Register a, int si16);
  inline void twi_unchecked(int tobits, Register a, int si16);
  inline void tdi(          int tobits, Register a, int si16);   // asserts UseSIGTRAP
  inline void twi(          int tobits, Register a, int si16);   // asserts UseSIGTRAP
  inline void td(           int tobits, Register a, Register b); // asserts UseSIGTRAP
  inline void tw(           int tobits, Register a, Register b); // asserts UseSIGTRAP

  static bool is_tdi(int x, int tobits, int ra, int si16) {
     return (TDI_OPCODE == (x & TDI_OPCODE_MASK))
         && (tobits == inv_to_field(x))
         && (ra == -1/*any reg*/ || ra == inv_ra_field(x))
         && (si16 == inv_si_field(x));
  }

  static bool is_twi(int x, int tobits, int ra, int si16) {
     return (TWI_OPCODE == (x & TWI_OPCODE_MASK))
         && (tobits == inv_to_field(x))
         && (ra == -1/*any reg*/ || ra == inv_ra_field(x))
         && (si16 == inv_si_field(x));
  }

  static bool is_twi(int x, int tobits, int ra) {
     return (TWI_OPCODE == (x & TWI_OPCODE_MASK))
         && (tobits == inv_to_field(x))
         && (ra == -1/*any reg*/ || ra == inv_ra_field(x));
  }

  static bool is_td(int x, int tobits, int ra, int rb) {
     return (TD_OPCODE == (x & TD_OPCODE_MASK))
         && (tobits == inv_to_field(x))
         && (ra == -1/*any reg*/ || ra == inv_ra_field(x))
         && (rb == -1/*any reg*/ || rb == inv_rb_field(x));
  }

  static bool is_tw(int x, int tobits, int ra, int rb) {
     return (TW_OPCODE == (x & TW_OPCODE_MASK))
         && (tobits == inv_to_field(x))
         && (ra == -1/*any reg*/ || ra == inv_ra_field(x))
         && (rb == -1/*any reg*/ || rb == inv_rb_field(x));
  }

 public:
  // PPC floating point instructions
  // PPC 1, section 4.6.2 Floating-Point Load Instructions
  inline void lfs(  FloatRegister d, int si16,   Register a);
  inline void lfsu( FloatRegister d, int si16,   Register a);
  inline void lfsx( FloatRegister d, Register a, Register b);
  inline void lfd(  FloatRegister d, int si16,   Register a);
  inline void lfdu( FloatRegister d, int si16,   Register a);
  inline void lfdx( FloatRegister d, Register a, Register b);

  // PPC 1, section 4.6.3 Floating-Point Store Instructions
  inline void stfs(  FloatRegister s, int si16,   Register a);
  inline void stfsu( FloatRegister s, int si16,   Register a);
  inline void stfsx( FloatRegister s, Register a, Register b);
  inline void stfd(  FloatRegister s, int si16,   Register a);
  inline void stfdu( FloatRegister s, int si16,   Register a);
  inline void stfdx( FloatRegister s, Register a, Register b);

  // PPC 1, section 4.6.4 Floating-Point Move Instructions
  inline void fmr(  FloatRegister d, FloatRegister b);
  inline void fmr_( FloatRegister d, FloatRegister b);

  //  inline void mffgpr( FloatRegister d, Register b);
  //  inline void mftgpr( Register d, FloatRegister b);
  inline void cmpb(   Register a, Register s, Register b);
  inline void popcntb(Register a, Register s);
  inline void popcntw(Register a, Register s);
  inline void popcntd(Register a, Register s);

  inline void fneg(  FloatRegister d, FloatRegister b);
  inline void fneg_( FloatRegister d, FloatRegister b);
  inline void fabs(  FloatRegister d, FloatRegister b);
  inline void fabs_( FloatRegister d, FloatRegister b);
  inline void fnabs( FloatRegister d, FloatRegister b);
  inline void fnabs_(FloatRegister d, FloatRegister b);

  // PPC 1, section 4.6.5.1 Floating-Point Elementary Arithmetic Instructions
  inline void fadd(  FloatRegister d, FloatRegister a, FloatRegister b);
  inline void fadd_( FloatRegister d, FloatRegister a, FloatRegister b);
  inline void fadds( FloatRegister d, FloatRegister a, FloatRegister b);
  inline void fadds_(FloatRegister d, FloatRegister a, FloatRegister b);
  inline void fsub(  FloatRegister d, FloatRegister a, FloatRegister b);
  inline void fsub_( FloatRegister d, FloatRegister a, FloatRegister b);
  inline void fsubs( FloatRegister d, FloatRegister a, FloatRegister b);
  inline void fsubs_(FloatRegister d, FloatRegister a, FloatRegister b);
  inline void fmul(  FloatRegister d, FloatRegister a, FloatRegister c);
  inline void fmul_( FloatRegister d, FloatRegister a, FloatRegister c);
  inline void fmuls( FloatRegister d, FloatRegister a, FloatRegister c);
  inline void fmuls_(FloatRegister d, FloatRegister a, FloatRegister c);
  inline void fdiv(  FloatRegister d, FloatRegister a, FloatRegister b);
  inline void fdiv_( FloatRegister d, FloatRegister a, FloatRegister b);
  inline void fdivs( FloatRegister d, FloatRegister a, FloatRegister b);
  inline void fdivs_(FloatRegister d, FloatRegister a, FloatRegister b);

  // PPC 1, section 4.6.6 Floating-Point Rounding and Conversion Instructions
  inline void frsp(  FloatRegister d, FloatRegister b);
  inline void fctid( FloatRegister d, FloatRegister b);
  inline void fctidz(FloatRegister d, FloatRegister b);
  inline void fctiw( FloatRegister d, FloatRegister b);
  inline void fctiwz(FloatRegister d, FloatRegister b);
  inline void fcfid( FloatRegister d, FloatRegister b);
  inline void fcfids(FloatRegister d, FloatRegister b);

  // PPC 1, section 4.6.7 Floating-Point Compare Instructions
  inline void fcmpu( ConditionRegister crx, FloatRegister a, FloatRegister b);

  inline void fsqrt( FloatRegister d, FloatRegister b);
  inline void fsqrts(FloatRegister d, FloatRegister b);

  // Vector instructions for >= Power6.
  inline void lvebx(    VectorRegister d, Register s1, Register s2);
  inline void lvehx(    VectorRegister d, Register s1, Register s2);
  inline void lvewx(    VectorRegister d, Register s1, Register s2);
  inline void lvx(      VectorRegister d, Register s1, Register s2);
  inline void lvxl(     VectorRegister d, Register s1, Register s2);
  inline void stvebx(   VectorRegister d, Register s1, Register s2);
  inline void stvehx(   VectorRegister d, Register s1, Register s2);
  inline void stvewx(   VectorRegister d, Register s1, Register s2);
  inline void stvx(     VectorRegister d, Register s1, Register s2);
  inline void stvxl(    VectorRegister d, Register s1, Register s2);
  inline void lvsl(     VectorRegister d, Register s1, Register s2);
  inline void lvsr(     VectorRegister d, Register s1, Register s2);
  inline void vpkpx(    VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vpkshss(  VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vpkswss(  VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vpkshus(  VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vpkswus(  VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vpkuhum(  VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vpkuwum(  VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vpkuhus(  VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vpkuwus(  VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vupkhpx(  VectorRegister d, VectorRegister b);
  inline void vupkhsb(  VectorRegister d, VectorRegister b);
  inline void vupkhsh(  VectorRegister d, VectorRegister b);
  inline void vupklpx(  VectorRegister d, VectorRegister b);
  inline void vupklsb(  VectorRegister d, VectorRegister b);
  inline void vupklsh(  VectorRegister d, VectorRegister b);
  inline void vmrghb(   VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vmrghw(   VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vmrghh(   VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vmrglb(   VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vmrglw(   VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vmrglh(   VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vsplt(    VectorRegister d, int ui4,          VectorRegister b);
  inline void vsplth(   VectorRegister d, int ui3,          VectorRegister b);
  inline void vspltw(   VectorRegister d, int ui2,          VectorRegister b);
  inline void vspltisb( VectorRegister d, int si5);
  inline void vspltish( VectorRegister d, int si5);
  inline void vspltisw( VectorRegister d, int si5);
  inline void vperm(    VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
  inline void vsel(     VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
  inline void vsl(      VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vsldoi(   VectorRegister d, VectorRegister a, VectorRegister b, int si4);
  inline void vslo(     VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vsr(      VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vsro(     VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vaddcuw(  VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vaddshs(  VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vaddsbs(  VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vaddsws(  VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vaddubm(  VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vadduwm(  VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vadduhm(  VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vaddubs(  VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vadduws(  VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vadduhs(  VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vsubcuw(  VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vsubshs(  VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vsubsbs(  VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vsubsws(  VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vsububm(  VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vsubuwm(  VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vsubuhm(  VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vsububs(  VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vsubuws(  VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vsubuhs(  VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vmulesb(  VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vmuleub(  VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vmulesh(  VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vmuleuh(  VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vmulosb(  VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vmuloub(  VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vmulosh(  VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vmulouh(  VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vmhaddshs(VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
  inline void vmhraddshs(VectorRegister d,VectorRegister a, VectorRegister b, VectorRegister c);
  inline void vmladduhm(VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
  inline void vmsubuhm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
  inline void vmsummbm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
  inline void vmsumshm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
  inline void vmsumshs( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
  inline void vmsumuhm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
  inline void vmsumuhs( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
  inline void vsumsws(  VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vsum2sws( VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vsum4sbs( VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vsum4ubs( VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vsum4shs( VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vavgsb(   VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vavgsw(   VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vavgsh(   VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vavgub(   VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vavguw(   VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vavguh(   VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vmaxsb(   VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vmaxsw(   VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vmaxsh(   VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vmaxub(   VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vmaxuw(   VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vmaxuh(   VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vminsb(   VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vminsw(   VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vminsh(   VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vminub(   VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vminuw(   VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vminuh(   VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vcmpequb( VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vcmpequh( VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vcmpequw( VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vcmpgtsh( VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vcmpgtsb( VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vcmpgtsw( VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vcmpgtub( VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vcmpgtuh( VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vcmpgtuw( VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vcmpequb_(VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vcmpequh_(VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vcmpequw_(VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vcmpgtsh_(VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vcmpgtsb_(VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vcmpgtsw_(VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vcmpgtub_(VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vcmpgtuh_(VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vcmpgtuw_(VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vand(     VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vandc(    VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vnor(     VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vor(      VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vxor(     VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vrlb(     VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vrlw(     VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vrlh(     VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vslb(     VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vskw(     VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vslh(     VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vsrb(     VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vsrw(     VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vsrh(     VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vsrab(    VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vsraw(    VectorRegister d, VectorRegister a, VectorRegister b);
  inline void vsrah(    VectorRegister d, VectorRegister a, VectorRegister b);
  // Vector Floating-Point not implemented yet
  inline void mtvscr(   VectorRegister b);
  inline void mfvscr(   VectorRegister d);

  // The following encoders use r0 as second operand. These instructions
  // read r0 as '0'.
  inline void lwzx( Register d, Register s2);
  inline void lwz(  Register d, int si16);
  inline void lwax( Register d, Register s2);
  inline void lwa(  Register d, int si16);
1869
  inline void lwbrx(Register d, Register s2);
1870 1871 1872 1873
  inline void lhzx( Register d, Register s2);
  inline void lhz(  Register d, int si16);
  inline void lhax( Register d, Register s2);
  inline void lha(  Register d, int si16);
1874
  inline void lhbrx(Register d, Register s2);
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
  inline void lbzx( Register d, Register s2);
  inline void lbz(  Register d, int si16);
  inline void ldx(  Register d, Register s2);
  inline void ld(   Register d, int si16);
  inline void stwx( Register d, Register s2);
  inline void stw(  Register d, int si16);
  inline void sthx( Register d, Register s2);
  inline void sth(  Register d, int si16);
  inline void stbx( Register d, Register s2);
  inline void stb(  Register d, int si16);
  inline void stdx( Register d, Register s2);
  inline void std(  Register d, int si16);

  // PPC 2, section 3.2.1 Instruction Cache Instructions
  inline void icbi(    Register s2);
  // PPC 2, section 3.2.2 Data Cache Instructions
  //inlinevoid dcba(   Register s2); // Instruction for embedded processor only.
  inline void dcbz(    Register s2);
  inline void dcbst(   Register s2);
  inline void dcbf(    Register s2);
  // dcache read hint
  inline void dcbt(    Register s2);
  inline void dcbtct(  Register s2, int ct);
  inline void dcbtds(  Register s2, int ds);
  // dcache write hint
  inline void dcbtst(  Register s2);
  inline void dcbtstct(Register s2, int ct);

  // Atomics: use ra0mem to disallow R0 as base.
  inline void lwarx_unchecked(Register d, Register b, int eh1);
  inline void ldarx_unchecked(Register d, Register b, int eh1);
  inline void lwarx( Register d, Register b, bool hint_exclusive_access);
  inline void ldarx( Register d, Register b, bool hint_exclusive_access);
  inline void stwcx_(Register s, Register b);
  inline void stdcx_(Register s, Register b);
  inline void lfs(   FloatRegister d, int si16);
  inline void lfsx(  FloatRegister d, Register b);
  inline void lfd(   FloatRegister d, int si16);
  inline void lfdx(  FloatRegister d, Register b);
  inline void stfs(  FloatRegister s, int si16);
  inline void stfsx( FloatRegister s, Register b);
  inline void stfd(  FloatRegister s, int si16);
  inline void stfdx( FloatRegister s, Register b);
  inline void lvebx( VectorRegister d, Register s2);
  inline void lvehx( VectorRegister d, Register s2);
  inline void lvewx( VectorRegister d, Register s2);
  inline void lvx(   VectorRegister d, Register s2);
  inline void lvxl(  VectorRegister d, Register s2);
  inline void stvebx(VectorRegister d, Register s2);
  inline void stvehx(VectorRegister d, Register s2);
  inline void stvewx(VectorRegister d, Register s2);
  inline void stvx(  VectorRegister d, Register s2);
  inline void stvxl( VectorRegister d, Register s2);
  inline void lvsl(  VectorRegister d, Register s2);
  inline void lvsr(  VectorRegister d, Register s2);

  // RegisterOrConstant versions.
  // These emitters choose between the versions using two registers and
  // those with register and immediate, depending on the content of roc.
  // If the constant is not encodable as immediate, instructions to
  // load the constant are emitted beforehand. Store instructions need a
  // tmp reg if the constant is not encodable as immediate.
  // Size unpredictable.
  void ld(  Register d, RegisterOrConstant roc, Register s1 = noreg);
  void lwa( Register d, RegisterOrConstant roc, Register s1 = noreg);
  void lwz( Register d, RegisterOrConstant roc, Register s1 = noreg);
  void lha( Register d, RegisterOrConstant roc, Register s1 = noreg);
  void lhz( Register d, RegisterOrConstant roc, Register s1 = noreg);
  void lbz( Register d, RegisterOrConstant roc, Register s1 = noreg);
  void std( Register d, RegisterOrConstant roc, Register s1 = noreg, Register tmp = noreg);
  void stw( Register d, RegisterOrConstant roc, Register s1 = noreg, Register tmp = noreg);
  void sth( Register d, RegisterOrConstant roc, Register s1 = noreg, Register tmp = noreg);
  void stb( Register d, RegisterOrConstant roc, Register s1 = noreg, Register tmp = noreg);
  void add( Register d, RegisterOrConstant roc, Register s1);
  void subf(Register d, RegisterOrConstant roc, Register s1);
  void cmpd(ConditionRegister d, RegisterOrConstant roc, Register s1);


  // Emit several instructions to load a 64 bit constant. This issues a fixed
  // instruction pattern so that the constant can be patched later on.
  enum {
    load_const_size = 5 * BytesPerInstWord
  };
         void load_const(Register d, long a,            Register tmp = noreg);
  inline void load_const(Register d, void* a,           Register tmp = noreg);
  inline void load_const(Register d, Label& L,          Register tmp = noreg);
  inline void load_const(Register d, AddressLiteral& a, Register tmp = noreg);

  // Load a 64 bit constant, optimized, not identifyable.
1964
  // Tmp can be used to increase ILP. Set return_simm16_rest = true to get a
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
  // 16 bit immediate offset. This is useful if the offset can be encoded in
  // a succeeding instruction.
         int load_const_optimized(Register d, long a,  Register tmp = noreg, bool return_simm16_rest = false);
  inline int load_const_optimized(Register d, void* a, Register tmp = noreg, bool return_simm16_rest = false) {
    return load_const_optimized(d, (long)(unsigned long)a, tmp, return_simm16_rest);
  }

  // Creation
  Assembler(CodeBuffer* code) : AbstractAssembler(code) {
#ifdef CHECK_DELAY
    delay_state = no_delay;
#endif
  }

  // Testing
#ifndef PRODUCT
  void test_asm();
#endif
};


#endif // CPU_PPC_VM_ASSEMBLER_PPC_HPP