advancedThresholdPolicy.cpp 20.9 KB
Newer Older
1
/*
2
 * Copyright (c) 2010, 2013, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */
24 25 26 27 28 29 30 31 32

#include "precompiled.hpp"
#include "runtime/advancedThresholdPolicy.hpp"
#include "runtime/simpleThresholdPolicy.inline.hpp"

#ifdef TIERED
// Print an event.
void AdvancedThresholdPolicy::print_specific(EventType type, methodHandle mh, methodHandle imh,
                                             int bci, CompLevel level) {
33
  tty->print(" rate=");
34 35 36
  if (mh->prev_time() == 0) tty->print("n/a");
  else tty->print("%f", mh->rate());

37 38
  tty->print(" k=%.2lf,%.2lf", threshold_scale(CompLevel_full_profile, Tier3LoadFeedback),
                               threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback));
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

}

void AdvancedThresholdPolicy::initialize() {
  // Turn on ergonomic compiler count selection
  if (FLAG_IS_DEFAULT(CICompilerCountPerCPU) && FLAG_IS_DEFAULT(CICompilerCount)) {
    FLAG_SET_DEFAULT(CICompilerCountPerCPU, true);
  }
  int count = CICompilerCount;
  if (CICompilerCountPerCPU) {
    // Simple log n seems to grow too slowly for tiered, try something faster: log n * log log n
    int log_cpu = log2_intptr(os::active_processor_count());
    int loglog_cpu = log2_intptr(MAX2(log_cpu, 1));
    count = MAX2(log_cpu * loglog_cpu, 1) * 3 / 2;
  }

  set_c1_count(MAX2(count / 3, 1));
56 57
  set_c2_count(MAX2(count - c1_count(), 1));
  FLAG_SET_ERGO(intx, CICompilerCount, c1_count() + c2_count());
58 59 60 61 62 63 64 65 66 67 68 69 70 71

  // Some inlining tuning
#ifdef X86
  if (FLAG_IS_DEFAULT(InlineSmallCode)) {
    FLAG_SET_DEFAULT(InlineSmallCode, 2000);
  }
#endif

#ifdef SPARC
  if (FLAG_IS_DEFAULT(InlineSmallCode)) {
    FLAG_SET_DEFAULT(InlineSmallCode, 2500);
  }
#endif

72
  set_increase_threshold_at_ratio();
73 74 75 76
  set_start_time(os::javaTimeMillis());
}

// update_rate() is called from select_task() while holding a compile queue lock.
77
void AdvancedThresholdPolicy::update_rate(jlong t, Method* m) {
78 79 80 81
  // Skip update if counters are absent.
  // Can't allocate them since we are holding compile queue lock.
  if (m->method_counters() == NULL)  return;

82 83 84
  if (is_old(m)) {
    // We don't remove old methods from the queue,
    // so we can just zero the rate.
85
    m->set_rate(0);
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
    return;
  }

  // We don't update the rate if we've just came out of a safepoint.
  // delta_s is the time since last safepoint in milliseconds.
  jlong delta_s = t - SafepointSynchronize::end_of_last_safepoint();
  jlong delta_t = t - (m->prev_time() != 0 ? m->prev_time() : start_time()); // milliseconds since the last measurement
  // How many events were there since the last time?
  int event_count = m->invocation_count() + m->backedge_count();
  int delta_e = event_count - m->prev_event_count();

  // We should be running for at least 1ms.
  if (delta_s >= TieredRateUpdateMinTime) {
    // And we must've taken the previous point at least 1ms before.
    if (delta_t >= TieredRateUpdateMinTime && delta_e > 0) {
101 102 103 104
      m->set_prev_time(t);
      m->set_prev_event_count(event_count);
      m->set_rate((float)delta_e / (float)delta_t); // Rate is events per millisecond
    } else {
105 106
      if (delta_t > TieredRateUpdateMaxTime && delta_e == 0) {
        // If nothing happened for 25ms, zero the rate. Don't modify prev values.
107
        m->set_rate(0);
108
      }
109
    }
110 111 112 113 114
  }
}

// Check if this method has been stale from a given number of milliseconds.
// See select_task().
115
bool AdvancedThresholdPolicy::is_stale(jlong t, jlong timeout, Method* m) {
116 117 118 119 120 121 122 123 124 125 126 127 128
  jlong delta_s = t - SafepointSynchronize::end_of_last_safepoint();
  jlong delta_t = t - m->prev_time();
  if (delta_t > timeout && delta_s > timeout) {
    int event_count = m->invocation_count() + m->backedge_count();
    int delta_e = event_count - m->prev_event_count();
    // Return true if there were no events.
    return delta_e == 0;
  }
  return false;
}

// We don't remove old methods from the compile queue even if they have
// very low activity. See select_task().
129
bool AdvancedThresholdPolicy::is_old(Method* method) {
130 131 132
  return method->invocation_count() > 50000 || method->backedge_count() > 500000;
}

133
double AdvancedThresholdPolicy::weight(Method* method) {
134 135 136 137
  return (method->rate() + 1) * ((method->invocation_count() + 1) *  (method->backedge_count() + 1));
}

// Apply heuristics and return true if x should be compiled before y
138
bool AdvancedThresholdPolicy::compare_methods(Method* x, Method* y) {
139 140 141 142 143 144 145 146 147 148 149 150 151
  if (x->highest_comp_level() > y->highest_comp_level()) {
    // recompilation after deopt
    return true;
  } else
    if (x->highest_comp_level() == y->highest_comp_level()) {
      if (weight(x) > weight(y)) {
        return true;
      }
    }
  return false;
}

// Is method profiled enough?
152 153
bool AdvancedThresholdPolicy::is_method_profiled(Method* method) {
  MethodData* mdo = method->method_data();
154 155 156 157 158 159 160 161 162 163 164
  if (mdo != NULL) {
    int i = mdo->invocation_count_delta();
    int b = mdo->backedge_count_delta();
    return call_predicate_helper<CompLevel_full_profile>(i, b, 1);
  }
  return false;
}

// Called with the queue locked and with at least one element
CompileTask* AdvancedThresholdPolicy::select_task(CompileQueue* compile_queue) {
  CompileTask *max_task = NULL;
165
  Method* max_method = NULL;
166 167 168 169
  jlong t = os::javaTimeMillis();
  // Iterate through the queue and find a method with a maximum rate.
  for (CompileTask* task = compile_queue->first(); task != NULL;) {
    CompileTask* next_task = task->next();
170 171
    Method* method = task->method();
    update_rate(t, method);
172 173 174 175 176
    if (max_task == NULL) {
      max_task = task;
      max_method = method;
    } else {
      // If a method has been stale for some time, remove it from the queue.
177
      if (is_stale(t, TieredCompileTaskTimeout, method) && !is_old(method)) {
178
        if (PrintTieredEvents) {
179
          print_event(REMOVE_FROM_QUEUE, method, method, task->osr_bci(), (CompLevel)task->comp_level());
180
        }
181
        compile_queue->remove_and_mark_stale(task);
182 183 184 185 186 187
        method->clear_queued_for_compilation();
        task = next_task;
        continue;
      }

      // Select a method with a higher rate
188
      if (compare_methods(method, max_method)) {
189 190 191 192 193 194 195
        max_task = task;
        max_method = method;
      }
    }
    task = next_task;
  }

196
  if (max_task->comp_level() == CompLevel_full_profile && TieredStopAtLevel > CompLevel_full_profile
197
      && is_method_profiled(max_method)) {
198 199
    max_task->set_comp_level(CompLevel_limited_profile);
    if (PrintTieredEvents) {
200
      print_event(UPDATE_IN_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level());
201 202 203 204 205 206 207 208 209 210
    }
  }

  return max_task;
}

double AdvancedThresholdPolicy::threshold_scale(CompLevel level, int feedback_k) {
  double queue_size = CompileBroker::queue_size(level);
  int comp_count = compiler_count(level);
  double k = queue_size / (feedback_k * comp_count) + 1;
211 212 213 214 215 216 217 218 219 220 221

  // Increase C1 compile threshold when the code cache is filled more
  // than specified by IncreaseFirstTierCompileThresholdAt percentage.
  // The main intention is to keep enough free space for C2 compiled code
  // to achieve peak performance if the code cache is under stress.
  if ((TieredStopAtLevel == CompLevel_full_optimization) && (level != CompLevel_full_optimization))  {
    double current_reverse_free_ratio = CodeCache::reverse_free_ratio();
    if (current_reverse_free_ratio > _increase_threshold_at_ratio) {
      k *= exp(current_reverse_free_ratio - _increase_threshold_at_ratio);
    }
  }
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
  return k;
}

// Call and loop predicates determine whether a transition to a higher
// compilation level should be performed (pointers to predicate functions
// are passed to common()).
// Tier?LoadFeedback is basically a coefficient that determines of
// how many methods per compiler thread can be in the queue before
// the threshold values double.
bool AdvancedThresholdPolicy::loop_predicate(int i, int b, CompLevel cur_level) {
  switch(cur_level) {
  case CompLevel_none:
  case CompLevel_limited_profile: {
    double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
    return loop_predicate_helper<CompLevel_none>(i, b, k);
  }
  case CompLevel_full_profile: {
    double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
    return loop_predicate_helper<CompLevel_full_profile>(i, b, k);
  }
  default:
    return true;
  }
}

bool AdvancedThresholdPolicy::call_predicate(int i, int b, CompLevel cur_level) {
  switch(cur_level) {
  case CompLevel_none:
  case CompLevel_limited_profile: {
    double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
    return call_predicate_helper<CompLevel_none>(i, b, k);
  }
  case CompLevel_full_profile: {
    double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
    return call_predicate_helper<CompLevel_full_profile>(i, b, k);
  }
  default:
    return true;
  }
}

// If a method is old enough and is still in the interpreter we would want to
// start profiling without waiting for the compiled method to arrive.
// We also take the load on compilers into the account.
266
bool AdvancedThresholdPolicy::should_create_mdo(Method* method, CompLevel cur_level) {
267 268 269 270 271 272 273 274 275 276 277
  if (cur_level == CompLevel_none &&
      CompileBroker::queue_size(CompLevel_full_optimization) <=
      Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
    int i = method->invocation_count();
    int b = method->backedge_count();
    double k = Tier0ProfilingStartPercentage / 100.0;
    return call_predicate_helper<CompLevel_none>(i, b, k) || loop_predicate_helper<CompLevel_none>(i, b, k);
  }
  return false;
}

278 279 280 281 282 283 284 285 286 287 288
// Inlining control: if we're compiling a profiled method with C1 and the callee
// is known to have OSRed in a C2 version, don't inline it.
bool AdvancedThresholdPolicy::should_not_inline(ciEnv* env, ciMethod* callee) {
  CompLevel comp_level = (CompLevel)env->comp_level();
  if (comp_level == CompLevel_full_profile ||
      comp_level == CompLevel_limited_profile) {
    return callee->highest_osr_comp_level() == CompLevel_full_optimization;
  }
  return false;
}

289
// Create MDO if necessary.
290
void AdvancedThresholdPolicy::create_mdo(methodHandle mh, JavaThread* THREAD) {
291 292
  if (mh->is_native() || mh->is_abstract() || mh->is_accessor()) return;
  if (mh->method_data() == NULL) {
293
    Method::build_interpreter_method_data(mh, CHECK_AND_CLEAR);
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
  }
}


/*
 * Method states:
 *   0 - interpreter (CompLevel_none)
 *   1 - pure C1 (CompLevel_simple)
 *   2 - C1 with invocation and backedge counting (CompLevel_limited_profile)
 *   3 - C1 with full profiling (CompLevel_full_profile)
 *   4 - C2 (CompLevel_full_optimization)
 *
 * Common state transition patterns:
 * a. 0 -> 3 -> 4.
 *    The most common path. But note that even in this straightforward case
 *    profiling can start at level 0 and finish at level 3.
 *
 * b. 0 -> 2 -> 3 -> 4.
 *    This case occures when the load on C2 is deemed too high. So, instead of transitioning
 *    into state 3 directly and over-profiling while a method is in the C2 queue we transition to
 *    level 2 and wait until the load on C2 decreases. This path is disabled for OSRs.
 *
 * c. 0 -> (3->2) -> 4.
 *    In this case we enqueue a method for compilation at level 3, but the C1 queue is long enough
 *    to enable the profiling to fully occur at level 0. In this case we change the compilation level
 *    of the method to 2, because it'll allow it to run much faster without full profiling while c2
 *    is compiling.
 *
 * d. 0 -> 3 -> 1 or 0 -> 2 -> 1.
 *    After a method was once compiled with C1 it can be identified as trivial and be compiled to
 *    level 1. These transition can also occur if a method can't be compiled with C2 but can with C1.
 *
 * e. 0 -> 4.
 *    This can happen if a method fails C1 compilation (it will still be profiled in the interpreter)
 *    or because of a deopt that didn't require reprofiling (compilation won't happen in this case because
 *    the compiled version already exists).
 *
 * Note that since state 0 can be reached from any other state via deoptimization different loops
 * are possible.
 *
 */

// Common transition function. Given a predicate determines if a method should transition to another level.
337
CompLevel AdvancedThresholdPolicy::common(Predicate p, Method* method, CompLevel cur_level, bool disable_feedback) {
338 339 340 341
  CompLevel next_level = cur_level;
  int i = method->invocation_count();
  int b = method->backedge_count();

342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
  if (is_trivial(method)) {
    next_level = CompLevel_simple;
  } else {
    switch(cur_level) {
    case CompLevel_none:
      // If we were at full profile level, would we switch to full opt?
      if (common(p, method, CompLevel_full_profile, disable_feedback) == CompLevel_full_optimization) {
        next_level = CompLevel_full_optimization;
      } else if ((this->*p)(i, b, cur_level)) {
        // C1-generated fully profiled code is about 30% slower than the limited profile
        // code that has only invocation and backedge counters. The observation is that
        // if C2 queue is large enough we can spend too much time in the fully profiled code
        // while waiting for C2 to pick the method from the queue. To alleviate this problem
        // we introduce a feedback on the C2 queue size. If the C2 queue is sufficiently long
        // we choose to compile a limited profiled version and then recompile with full profiling
        // when the load on C2 goes down.
        if (!disable_feedback && CompileBroker::queue_size(CompLevel_full_optimization) >
                                 Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
          next_level = CompLevel_limited_profile;
        } else {
          next_level = CompLevel_full_profile;
        }
364
      }
365 366 367 368 369 370
      break;
    case CompLevel_limited_profile:
      if (is_method_profiled(method)) {
        // Special case: we got here because this method was fully profiled in the interpreter.
        next_level = CompLevel_full_optimization;
      } else {
371
        MethodData* mdo = method->method_data();
372 373 374 375 376 377 378 379 380
        if (mdo != NULL) {
          if (mdo->would_profile()) {
            if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
                                     Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
                                     (this->*p)(i, b, cur_level))) {
              next_level = CompLevel_full_profile;
            }
          } else {
            next_level = CompLevel_full_optimization;
381 382 383
          }
        }
      }
384 385 386
      break;
    case CompLevel_full_profile:
      {
387
        MethodData* mdo = method->method_data();
388 389 390 391 392 393 394 395
        if (mdo != NULL) {
          if (mdo->would_profile()) {
            int mdo_i = mdo->invocation_count_delta();
            int mdo_b = mdo->backedge_count_delta();
            if ((this->*p)(mdo_i, mdo_b, cur_level)) {
              next_level = CompLevel_full_optimization;
            }
          } else {
396 397 398 399
            next_level = CompLevel_full_optimization;
          }
        }
      }
400
      break;
401 402
    }
  }
403
  return MIN2(next_level, (CompLevel)TieredStopAtLevel);
404 405 406
}

// Determine if a method should be compiled with a normal entry point at a different level.
407
CompLevel AdvancedThresholdPolicy::call_event(Method* method, CompLevel cur_level) {
408
  CompLevel osr_level = MIN2((CompLevel) method->highest_osr_comp_level(),
409
                             common(&AdvancedThresholdPolicy::loop_predicate, method, cur_level, true));
410 411 412 413 414 415
  CompLevel next_level = common(&AdvancedThresholdPolicy::call_predicate, method, cur_level);

  // If OSR method level is greater than the regular method level, the levels should be
  // equalized by raising the regular method level in order to avoid OSRs during each
  // invocation of the method.
  if (osr_level == CompLevel_full_optimization && cur_level == CompLevel_full_profile) {
416
    MethodData* mdo = method->method_data();
417 418 419 420 421 422 423 424 425 426 427
    guarantee(mdo != NULL, "MDO should not be NULL");
    if (mdo->invocation_count() >= 1) {
      next_level = CompLevel_full_optimization;
    }
  } else {
    next_level = MAX2(osr_level, next_level);
  }
  return next_level;
}

// Determine if we should do an OSR compilation of a given method.
428
CompLevel AdvancedThresholdPolicy::loop_event(Method* method, CompLevel cur_level) {
429
  CompLevel next_level = common(&AdvancedThresholdPolicy::loop_predicate, method, cur_level, true);
430 431 432
  if (cur_level == CompLevel_none) {
    // If there is a live OSR method that means that we deopted to the interpreter
    // for the transition.
433
    CompLevel osr_level = MIN2((CompLevel)method->highest_osr_comp_level(), next_level);
434 435 436 437
    if (osr_level > CompLevel_none) {
      return osr_level;
    }
  }
438
  return next_level;
439 440 441
}

// Update the rate and submit compile
442
void AdvancedThresholdPolicy::submit_compile(methodHandle mh, int bci, CompLevel level, JavaThread* thread) {
443 444
  int hot_count = (bci == InvocationEntryBci) ? mh->invocation_count() : mh->backedge_count();
  update_rate(os::javaTimeMillis(), mh());
445
  CompileBroker::compile_method(mh, bci, level, mh, hot_count, "tiered", thread);
446 447 448 449
}

// Handle the invocation event.
void AdvancedThresholdPolicy::method_invocation_event(methodHandle mh, methodHandle imh,
450
                                                      CompLevel level, nmethod* nm, JavaThread* thread) {
451
  if (should_create_mdo(mh(), level)) {
452
    create_mdo(mh, thread);
453
  }
454
  if (is_compilation_enabled() && !CompileBroker::compilation_is_in_queue(mh)) {
455 456
    CompLevel next_level = call_event(mh(), level);
    if (next_level != level) {
457
      compile(mh, InvocationEntryBci, next_level, thread);
458 459 460 461 462 463 464
    }
  }
}

// Handle the back branch event. Notice that we can compile the method
// with a regular entry from here.
void AdvancedThresholdPolicy::method_back_branch_event(methodHandle mh, methodHandle imh,
465
                                                       int bci, CompLevel level, nmethod* nm, JavaThread* thread) {
466
  if (should_create_mdo(mh(), level)) {
467
    create_mdo(mh, thread);
468
  }
469 470
  // Check if MDO should be created for the inlined method
  if (should_create_mdo(imh(), level)) {
471
    create_mdo(imh, thread);
472
  }
473

474 475 476 477
  if (is_compilation_enabled()) {
    CompLevel next_osr_level = loop_event(imh(), level);
    CompLevel max_osr_level = (CompLevel)imh->highest_osr_comp_level();
    // At the very least compile the OSR version
478
    if (!CompileBroker::compilation_is_in_queue(imh) && (next_osr_level != level)) {
479
      compile(imh, bci, next_osr_level, thread);
480 481
    }

482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
    // Use loop event as an opportunity to also check if there's been
    // enough calls.
    CompLevel cur_level, next_level;
    if (mh() != imh()) { // If there is an enclosing method
      guarantee(nm != NULL, "Should have nmethod here");
      cur_level = comp_level(mh());
      next_level = call_event(mh(), cur_level);

      if (max_osr_level == CompLevel_full_optimization) {
        // The inlinee OSRed to full opt, we need to modify the enclosing method to avoid deopts
        bool make_not_entrant = false;
        if (nm->is_osr_method()) {
          // This is an osr method, just make it not entrant and recompile later if needed
          make_not_entrant = true;
        } else {
          if (next_level != CompLevel_full_optimization) {
            // next_level is not full opt, so we need to recompile the
            // enclosing method without the inlinee
            cur_level = CompLevel_none;
            make_not_entrant = true;
          }
        }
        if (make_not_entrant) {
          if (PrintTieredEvents) {
            int osr_bci = nm->is_osr_method() ? nm->osr_entry_bci() : InvocationEntryBci;
            print_event(MAKE_NOT_ENTRANT, mh(), mh(), osr_bci, level);
          }
          nm->make_not_entrant();
        }
      }
512
      if (!CompileBroker::compilation_is_in_queue(mh)) {
513 514 515 516 517
        // Fix up next_level if necessary to avoid deopts
        if (next_level == CompLevel_limited_profile && max_osr_level == CompLevel_full_profile) {
          next_level = CompLevel_full_profile;
        }
        if (cur_level != next_level) {
518
          compile(mh, InvocationEntryBci, next_level, thread);
519 520 521 522 523
        }
      }
    } else {
      cur_level = comp_level(imh());
      next_level = call_event(imh(), cur_level);
524
      if (!CompileBroker::compilation_is_in_queue(imh) && (next_level != cur_level)) {
525
        compile(imh, InvocationEntryBci, next_level, thread);
526
      }
527 528 529 530 531
    }
  }
}

#endif // TIERED