node.cpp 70.6 KB
Newer Older
D
duke 已提交
1
/*
X
xdono 已提交
2
 * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
D
duke 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

#include "incls/_precompiled.incl"
#include "incls/_node.cpp.incl"

class RegMask;
// #include "phase.hpp"
class PhaseTransform;
class PhaseGVN;

// Arena we are currently building Nodes in
const uint Node::NotAMachineReg = 0xffff0000;

#ifndef PRODUCT
extern int nodes_created;
#endif

#ifdef ASSERT

//-------------------------- construct_node------------------------------------
// Set a breakpoint here to identify where a particular node index is built.
void Node::verify_construction() {
  _debug_orig = NULL;
  int old_debug_idx = Compile::debug_idx();
  int new_debug_idx = old_debug_idx+1;
  if (new_debug_idx > 0) {
    // Arrange that the lowest five decimal digits of _debug_idx
    // will repeat thos of _idx.  In case this is somehow pathological,
    // we continue to assign negative numbers (!) consecutively.
    const int mod = 100000;
    int bump = (int)(_idx - new_debug_idx) % mod;
    if (bump < 0)  bump += mod;
    assert(bump >= 0 && bump < mod, "");
    new_debug_idx += bump;
  }
  Compile::set_debug_idx(new_debug_idx);
  set_debug_idx( new_debug_idx );
  assert(Compile::current()->unique() < (uint)MaxNodeLimit, "Node limit exceeded");
  if (BreakAtNode != 0 && (_debug_idx == BreakAtNode || (int)_idx == BreakAtNode)) {
    tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d", _idx, _debug_idx);
    BREAKPOINT;
  }
#if OPTO_DU_ITERATOR_ASSERT
  _last_del = NULL;
  _del_tick = 0;
#endif
  _hash_lock = 0;
}


// #ifdef ASSERT ...

#if OPTO_DU_ITERATOR_ASSERT
void DUIterator_Common::sample(const Node* node) {
  _vdui     = VerifyDUIterators;
  _node     = node;
  _outcnt   = node->_outcnt;
  _del_tick = node->_del_tick;
  _last     = NULL;
}

void DUIterator_Common::verify(const Node* node, bool at_end_ok) {
  assert(_node     == node, "consistent iterator source");
  assert(_del_tick == node->_del_tick, "no unexpected deletions allowed");
}

void DUIterator_Common::verify_resync() {
  // Ensure that the loop body has just deleted the last guy produced.
  const Node* node = _node;
  // Ensure that at least one copy of the last-seen edge was deleted.
  // Note:  It is OK to delete multiple copies of the last-seen edge.
  // Unfortunately, we have no way to verify that all the deletions delete
  // that same edge.  On this point we must use the Honor System.
  assert(node->_del_tick >= _del_tick+1, "must have deleted an edge");
  assert(node->_last_del == _last, "must have deleted the edge just produced");
  // We liked this deletion, so accept the resulting outcnt and tick.
  _outcnt   = node->_outcnt;
  _del_tick = node->_del_tick;
}

void DUIterator_Common::reset(const DUIterator_Common& that) {
  if (this == &that)  return;  // ignore assignment to self
  if (!_vdui) {
    // We need to initialize everything, overwriting garbage values.
    _last = that._last;
    _vdui = that._vdui;
  }
  // Note:  It is legal (though odd) for an iterator over some node x
  // to be reassigned to iterate over another node y.  Some doubly-nested
  // progress loops depend on being able to do this.
  const Node* node = that._node;
  // Re-initialize everything, except _last.
  _node     = node;
  _outcnt   = node->_outcnt;
  _del_tick = node->_del_tick;
}

void DUIterator::sample(const Node* node) {
  DUIterator_Common::sample(node);      // Initialize the assertion data.
  _refresh_tick = 0;                    // No refreshes have happened, as yet.
}

void DUIterator::verify(const Node* node, bool at_end_ok) {
  DUIterator_Common::verify(node, at_end_ok);
  assert(_idx      <  node->_outcnt + (uint)at_end_ok, "idx in range");
}

void DUIterator::verify_increment() {
  if (_refresh_tick & 1) {
    // We have refreshed the index during this loop.
    // Fix up _idx to meet asserts.
    if (_idx > _outcnt)  _idx = _outcnt;
  }
  verify(_node, true);
}

void DUIterator::verify_resync() {
  // Note:  We do not assert on _outcnt, because insertions are OK here.
  DUIterator_Common::verify_resync();
  // Make sure we are still in sync, possibly with no more out-edges:
  verify(_node, true);
}

void DUIterator::reset(const DUIterator& that) {
  if (this == &that)  return;  // self assignment is always a no-op
  assert(that._refresh_tick == 0, "assign only the result of Node::outs()");
  assert(that._idx          == 0, "assign only the result of Node::outs()");
  assert(_idx               == that._idx, "already assigned _idx");
  if (!_vdui) {
    // We need to initialize everything, overwriting garbage values.
    sample(that._node);
  } else {
    DUIterator_Common::reset(that);
    if (_refresh_tick & 1) {
      _refresh_tick++;                  // Clear the "was refreshed" flag.
    }
    assert(_refresh_tick < 2*100000, "DU iteration must converge quickly");
  }
}

void DUIterator::refresh() {
  DUIterator_Common::sample(_node);     // Re-fetch assertion data.
  _refresh_tick |= 1;                   // Set the "was refreshed" flag.
}

void DUIterator::verify_finish() {
  // If the loop has killed the node, do not require it to re-run.
  if (_node->_outcnt == 0)  _refresh_tick &= ~1;
  // If this assert triggers, it means that a loop used refresh_out_pos
  // to re-synch an iteration index, but the loop did not correctly
  // re-run itself, using a "while (progress)" construct.
  // This iterator enforces the rule that you must keep trying the loop
  // until it "runs clean" without any need for refreshing.
  assert(!(_refresh_tick & 1), "the loop must run once with no refreshing");
}


void DUIterator_Fast::verify(const Node* node, bool at_end_ok) {
  DUIterator_Common::verify(node, at_end_ok);
  Node** out    = node->_out;
  uint   cnt    = node->_outcnt;
  assert(cnt == _outcnt, "no insertions allowed");
  assert(_outp >= out && _outp <= out + cnt - !at_end_ok, "outp in range");
  // This last check is carefully designed to work for NO_OUT_ARRAY.
}

void DUIterator_Fast::verify_limit() {
  const Node* node = _node;
  verify(node, true);
  assert(_outp == node->_out + node->_outcnt, "limit still correct");
}

void DUIterator_Fast::verify_resync() {
  const Node* node = _node;
  if (_outp == node->_out + _outcnt) {
    // Note that the limit imax, not the pointer i, gets updated with the
    // exact count of deletions.  (For the pointer it's always "--i".)
    assert(node->_outcnt+node->_del_tick == _outcnt+_del_tick, "no insertions allowed with deletion(s)");
    // This is a limit pointer, with a name like "imax".
    // Fudge the _last field so that the common assert will be happy.
    _last = (Node*) node->_last_del;
    DUIterator_Common::verify_resync();
  } else {
    assert(node->_outcnt < _outcnt, "no insertions allowed with deletion(s)");
    // A normal internal pointer.
    DUIterator_Common::verify_resync();
    // Make sure we are still in sync, possibly with no more out-edges:
    verify(node, true);
  }
}

void DUIterator_Fast::verify_relimit(uint n) {
  const Node* node = _node;
  assert((int)n > 0, "use imax -= n only with a positive count");
  // This must be a limit pointer, with a name like "imax".
  assert(_outp == node->_out + node->_outcnt, "apply -= only to a limit (imax)");
  // The reported number of deletions must match what the node saw.
  assert(node->_del_tick == _del_tick + n, "must have deleted n edges");
  // Fudge the _last field so that the common assert will be happy.
  _last = (Node*) node->_last_del;
  DUIterator_Common::verify_resync();
}

void DUIterator_Fast::reset(const DUIterator_Fast& that) {
  assert(_outp              == that._outp, "already assigned _outp");
  DUIterator_Common::reset(that);
}

void DUIterator_Last::verify(const Node* node, bool at_end_ok) {
  // at_end_ok means the _outp is allowed to underflow by 1
  _outp += at_end_ok;
  DUIterator_Fast::verify(node, at_end_ok);  // check _del_tick, etc.
  _outp -= at_end_ok;
  assert(_outp == (node->_out + node->_outcnt) - 1, "pointer must point to end of nodes");
}

void DUIterator_Last::verify_limit() {
  // Do not require the limit address to be resynched.
  //verify(node, true);
  assert(_outp == _node->_out, "limit still correct");
}

void DUIterator_Last::verify_step(uint num_edges) {
  assert((int)num_edges > 0, "need non-zero edge count for loop progress");
  _outcnt   -= num_edges;
  _del_tick += num_edges;
  // Make sure we are still in sync, possibly with no more out-edges:
  const Node* node = _node;
  verify(node, true);
  assert(node->_last_del == _last, "must have deleted the edge just produced");
}

#endif //OPTO_DU_ITERATOR_ASSERT


#endif //ASSERT


// This constant used to initialize _out may be any non-null value.
// The value NULL is reserved for the top node only.
#define NO_OUT_ARRAY ((Node**)-1)

// This funny expression handshakes with Node::operator new
// to pull Compile::current out of the new node's _out field,
// and then calls a subroutine which manages most field
// initializations.  The only one which is tricky is the
// _idx field, which is const, and so must be initialized
// by a return value, not an assignment.
//
// (Aren't you thankful that Java finals don't require so many tricks?)
#define IDX_INIT(req) this->Init((req), (Compile*) this->_out)
#ifdef _MSC_VER // the IDX_INIT hack falls foul of warning C4355
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
#endif

// Out-of-line code from node constructors.
// Executed only when extra debug info. is being passed around.
static void init_node_notes(Compile* C, int idx, Node_Notes* nn) {
  C->set_node_notes_at(idx, nn);
}

// Shared initialization code.
inline int Node::Init(int req, Compile* C) {
  assert(Compile::current() == C, "must use operator new(Compile*)");
  int idx = C->next_unique();

  // If there are default notes floating around, capture them:
  Node_Notes* nn = C->default_node_notes();
  if (nn != NULL)  init_node_notes(C, idx, nn);

  // Note:  At this point, C is dead,
  // and we begin to initialize the new Node.

  _cnt = _max = req;
  _outcnt = _outmax = 0;
  _class_id = Class_Node;
  _flags = 0;
  _out = NO_OUT_ARRAY;
  return idx;
}

//------------------------------Node-------------------------------------------
// Create a Node, with a given number of required edges.
Node::Node(uint req)
  : _idx(IDX_INIT(req))
{
  assert( req < (uint)(MaxNodeLimit - NodeLimitFudgeFactor), "Input limit exceeded" );
  debug_only( verify_construction() );
  NOT_PRODUCT(nodes_created++);
  if (req == 0) {
    assert( _in == (Node**)this, "Must not pass arg count to 'new'" );
    _in = NULL;
  } else {
    assert( _in[req-1] == this, "Must pass arg count to 'new'" );
    Node** to = _in;
    for(uint i = 0; i < req; i++) {
      to[i] = NULL;
    }
  }
}

//------------------------------Node-------------------------------------------
Node::Node(Node *n0)
  : _idx(IDX_INIT(1))
{
  debug_only( verify_construction() );
  NOT_PRODUCT(nodes_created++);
  // Assert we allocated space for input array already
  assert( _in[0] == this, "Must pass arg count to 'new'" );
  assert( is_not_dead(n0), "can not use dead node");
  _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
}

//------------------------------Node-------------------------------------------
Node::Node(Node *n0, Node *n1)
  : _idx(IDX_INIT(2))
{
  debug_only( verify_construction() );
  NOT_PRODUCT(nodes_created++);
  // Assert we allocated space for input array already
  assert( _in[1] == this, "Must pass arg count to 'new'" );
  assert( is_not_dead(n0), "can not use dead node");
  assert( is_not_dead(n1), "can not use dead node");
  _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
  _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
}

//------------------------------Node-------------------------------------------
Node::Node(Node *n0, Node *n1, Node *n2)
  : _idx(IDX_INIT(3))
{
  debug_only( verify_construction() );
  NOT_PRODUCT(nodes_created++);
  // Assert we allocated space for input array already
  assert( _in[2] == this, "Must pass arg count to 'new'" );
  assert( is_not_dead(n0), "can not use dead node");
  assert( is_not_dead(n1), "can not use dead node");
  assert( is_not_dead(n2), "can not use dead node");
  _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
  _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
  _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
}

//------------------------------Node-------------------------------------------
Node::Node(Node *n0, Node *n1, Node *n2, Node *n3)
  : _idx(IDX_INIT(4))
{
  debug_only( verify_construction() );
  NOT_PRODUCT(nodes_created++);
  // Assert we allocated space for input array already
  assert( _in[3] == this, "Must pass arg count to 'new'" );
  assert( is_not_dead(n0), "can not use dead node");
  assert( is_not_dead(n1), "can not use dead node");
  assert( is_not_dead(n2), "can not use dead node");
  assert( is_not_dead(n3), "can not use dead node");
  _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
  _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
  _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
  _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
}

//------------------------------Node-------------------------------------------
Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, Node *n4)
  : _idx(IDX_INIT(5))
{
  debug_only( verify_construction() );
  NOT_PRODUCT(nodes_created++);
  // Assert we allocated space for input array already
  assert( _in[4] == this, "Must pass arg count to 'new'" );
  assert( is_not_dead(n0), "can not use dead node");
  assert( is_not_dead(n1), "can not use dead node");
  assert( is_not_dead(n2), "can not use dead node");
  assert( is_not_dead(n3), "can not use dead node");
  assert( is_not_dead(n4), "can not use dead node");
  _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
  _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
  _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
  _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
  _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
}

//------------------------------Node-------------------------------------------
Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
                     Node *n4, Node *n5)
  : _idx(IDX_INIT(6))
{
  debug_only( verify_construction() );
  NOT_PRODUCT(nodes_created++);
  // Assert we allocated space for input array already
  assert( _in[5] == this, "Must pass arg count to 'new'" );
  assert( is_not_dead(n0), "can not use dead node");
  assert( is_not_dead(n1), "can not use dead node");
  assert( is_not_dead(n2), "can not use dead node");
  assert( is_not_dead(n3), "can not use dead node");
  assert( is_not_dead(n4), "can not use dead node");
  assert( is_not_dead(n5), "can not use dead node");
  _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
  _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
  _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
  _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
  _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
  _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
}

//------------------------------Node-------------------------------------------
Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
                     Node *n4, Node *n5, Node *n6)
  : _idx(IDX_INIT(7))
{
  debug_only( verify_construction() );
  NOT_PRODUCT(nodes_created++);
  // Assert we allocated space for input array already
  assert( _in[6] == this, "Must pass arg count to 'new'" );
  assert( is_not_dead(n0), "can not use dead node");
  assert( is_not_dead(n1), "can not use dead node");
  assert( is_not_dead(n2), "can not use dead node");
  assert( is_not_dead(n3), "can not use dead node");
  assert( is_not_dead(n4), "can not use dead node");
  assert( is_not_dead(n5), "can not use dead node");
  assert( is_not_dead(n6), "can not use dead node");
  _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
  _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
  _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
  _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
  _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
  _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
  _in[6] = n6; if (n6 != NULL) n6->add_out((Node *)this);
}


//------------------------------clone------------------------------------------
// Clone a Node.
Node *Node::clone() const {
  Compile *compile = Compile::current();
  uint s = size_of();           // Size of inherited Node
  Node *n = (Node*)compile->node_arena()->Amalloc_D(size_of() + _max*sizeof(Node*));
  Copy::conjoint_words_to_lower((HeapWord*)this, (HeapWord*)n, s);
  // Set the new input pointer array
  n->_in = (Node**)(((char*)n)+s);
  // Cannot share the old output pointer array, so kill it
  n->_out = NO_OUT_ARRAY;
  // And reset the counters to 0
  n->_outcnt = 0;
  n->_outmax = 0;
  // Unlock this guy, since he is not in any hash table.
  debug_only(n->_hash_lock = 0);
  // Walk the old node's input list to duplicate its edges
  uint i;
  for( i = 0; i < len(); i++ ) {
    Node *x = in(i);
    n->_in[i] = x;
    if (x != NULL) x->add_out(n);
  }
  if (is_macro())
    compile->add_macro_node(n);

  n->set_idx(compile->next_unique()); // Get new unique index as well
  debug_only( n->verify_construction() );
  NOT_PRODUCT(nodes_created++);
  // Do not patch over the debug_idx of a clone, because it makes it
  // impossible to break on the clone's moment of creation.
  //debug_only( n->set_debug_idx( debug_idx() ) );

  compile->copy_node_notes_to(n, (Node*) this);

  // MachNode clone
  uint nopnds;
  if (this->is_Mach() && (nopnds = this->as_Mach()->num_opnds()) > 0) {
    MachNode *mach  = n->as_Mach();
    MachNode *mthis = this->as_Mach();
    // Get address of _opnd_array.
    // It should be the same offset since it is the clone of this node.
    MachOper **from = mthis->_opnds;
    MachOper **to = (MachOper **)((size_t)(&mach->_opnds) +
                    pointer_delta((const void*)from,
                                  (const void*)(&mthis->_opnds), 1));
    mach->_opnds = to;
    for ( uint i = 0; i < nopnds; ++i ) {
      to[i] = from[i]->clone(compile);
    }
  }
  // cloning CallNode may need to clone JVMState
  if (n->is_Call()) {
    CallNode *call = n->as_Call();
    call->clone_jvms();
  }
  return n;                     // Return the clone
}

//---------------------------setup_is_top--------------------------------------
// Call this when changing the top node, to reassert the invariants
// required by Node::is_top.  See Compile::set_cached_top_node.
void Node::setup_is_top() {
  if (this == (Node*)Compile::current()->top()) {
    // This node has just become top.  Kill its out array.
    _outcnt = _outmax = 0;
    _out = NULL;                           // marker value for top
    assert(is_top(), "must be top");
  } else {
    if (_out == NULL)  _out = NO_OUT_ARRAY;
    assert(!is_top(), "must not be top");
  }
}


//------------------------------~Node------------------------------------------
// Fancy destructor; eagerly attempt to reclaim Node numberings and storage
extern int reclaim_idx ;
extern int reclaim_in  ;
extern int reclaim_node;
void Node::destruct() {
  // Eagerly reclaim unique Node numberings
  Compile* compile = Compile::current();
  if ((uint)_idx+1 == compile->unique()) {
    compile->set_unique(compile->unique()-1);
#ifdef ASSERT
    reclaim_idx++;
#endif
  }
  // Clear debug info:
  Node_Notes* nn = compile->node_notes_at(_idx);
  if (nn != NULL)  nn->clear();
  // Walk the input array, freeing the corresponding output edges
  _cnt = _max;  // forget req/prec distinction
  uint i;
  for( i = 0; i < _max; i++ ) {
    set_req(i, NULL);
    //assert(def->out(def->outcnt()-1) == (Node *)this,"bad def-use hacking in reclaim");
  }
  assert(outcnt() == 0, "deleting a node must not leave a dangling use");
  // See if the input array was allocated just prior to the object
  int edge_size = _max*sizeof(void*);
  int out_edge_size = _outmax*sizeof(void*);
  char *edge_end = ((char*)_in) + edge_size;
  char *out_array = (char*)(_out == NO_OUT_ARRAY? NULL: _out);
  char *out_edge_end = out_array + out_edge_size;
  int node_size = size_of();

  // Free the output edge array
  if (out_edge_size > 0) {
#ifdef ASSERT
    if( out_edge_end == compile->node_arena()->hwm() )
      reclaim_in  += out_edge_size;  // count reclaimed out edges with in edges
#endif
    compile->node_arena()->Afree(out_array, out_edge_size);
  }

  // Free the input edge array and the node itself
  if( edge_end == (char*)this ) {
#ifdef ASSERT
    if( edge_end+node_size == compile->node_arena()->hwm() ) {
      reclaim_in  += edge_size;
      reclaim_node+= node_size;
    }
#else
    // It was; free the input array and object all in one hit
    compile->node_arena()->Afree(_in,edge_size+node_size);
#endif
  } else {

    // Free just the input array
#ifdef ASSERT
    if( edge_end == compile->node_arena()->hwm() )
      reclaim_in  += edge_size;
#endif
    compile->node_arena()->Afree(_in,edge_size);

    // Free just the object
#ifdef ASSERT
    if( ((char*)this) + node_size == compile->node_arena()->hwm() )
      reclaim_node+= node_size;
#else
    compile->node_arena()->Afree(this,node_size);
#endif
  }
  if (is_macro()) {
    compile->remove_macro_node(this);
  }
#ifdef ASSERT
  // We will not actually delete the storage, but we'll make the node unusable.
  *(address*)this = badAddress;  // smash the C++ vtbl, probably
  _in = _out = (Node**) badAddress;
  _max = _cnt = _outmax = _outcnt = 0;
#endif
}

//------------------------------grow-------------------------------------------
// Grow the input array, making space for more edges
void Node::grow( uint len ) {
  Arena* arena = Compile::current()->node_arena();
  uint new_max = _max;
  if( new_max == 0 ) {
    _max = 4;
    _in = (Node**)arena->Amalloc(4*sizeof(Node*));
    Node** to = _in;
    to[0] = NULL;
    to[1] = NULL;
    to[2] = NULL;
    to[3] = NULL;
    return;
  }
  while( new_max <= len ) new_max <<= 1; // Find next power-of-2
  // Trimming to limit allows a uint8 to handle up to 255 edges.
  // Previously I was using only powers-of-2 which peaked at 128 edges.
  //if( new_max >= limit ) new_max = limit-1;
  _in = (Node**)arena->Arealloc(_in, _max*sizeof(Node*), new_max*sizeof(Node*));
  Copy::zero_to_bytes(&_in[_max], (new_max-_max)*sizeof(Node*)); // NULL all new space
  _max = new_max;               // Record new max length
  // This assertion makes sure that Node::_max is wide enough to
  // represent the numerical value of new_max.
  assert(_max == new_max && _max > len, "int width of _max is too small");
}

//-----------------------------out_grow----------------------------------------
// Grow the input array, making space for more edges
void Node::out_grow( uint len ) {
  assert(!is_top(), "cannot grow a top node's out array");
  Arena* arena = Compile::current()->node_arena();
  uint new_max = _outmax;
  if( new_max == 0 ) {
    _outmax = 4;
    _out = (Node **)arena->Amalloc(4*sizeof(Node*));
    return;
  }
  while( new_max <= len ) new_max <<= 1; // Find next power-of-2
  // Trimming to limit allows a uint8 to handle up to 255 edges.
  // Previously I was using only powers-of-2 which peaked at 128 edges.
  //if( new_max >= limit ) new_max = limit-1;
  assert(_out != NULL && _out != NO_OUT_ARRAY, "out must have sensible value");
  _out = (Node**)arena->Arealloc(_out,_outmax*sizeof(Node*),new_max*sizeof(Node*));
  //Copy::zero_to_bytes(&_out[_outmax], (new_max-_outmax)*sizeof(Node*)); // NULL all new space
  _outmax = new_max;               // Record new max length
  // This assertion makes sure that Node::_max is wide enough to
  // represent the numerical value of new_max.
  assert(_outmax == new_max && _outmax > len, "int width of _outmax is too small");
}

#ifdef ASSERT
//------------------------------is_dead----------------------------------------
bool Node::is_dead() const {
  // Mach and pinch point nodes may look like dead.
  if( is_top() || is_Mach() || (Opcode() == Op_Node && _outcnt > 0) )
    return false;
  for( uint i = 0; i < _max; i++ )
    if( _in[i] != NULL )
      return false;
  dump();
  return true;
}
#endif

//------------------------------add_req----------------------------------------
// Add a new required input at the end
void Node::add_req( Node *n ) {
  assert( is_not_dead(n), "can not use dead node");

  // Look to see if I can move precedence down one without reallocating
  if( (_cnt >= _max) || (in(_max-1) != NULL) )
    grow( _max+1 );

  // Find a precedence edge to move
  if( in(_cnt) != NULL ) {       // Next precedence edge is busy?
    uint i;
    for( i=_cnt; i<_max; i++ )
      if( in(i) == NULL )       // Find the NULL at end of prec edge list
        break;                  // There must be one, since we grew the array
    _in[i] = in(_cnt);          // Move prec over, making space for req edge
  }
  _in[_cnt++] = n;            // Stuff over old prec edge
  if (n != NULL) n->add_out((Node *)this);
}

//---------------------------add_req_batch-------------------------------------
// Add a new required input at the end
void Node::add_req_batch( Node *n, uint m ) {
  assert( is_not_dead(n), "can not use dead node");
  // check various edge cases
  if ((int)m <= 1) {
    assert((int)m >= 0, "oob");
    if (m != 0)  add_req(n);
    return;
  }

  // Look to see if I can move precedence down one without reallocating
  if( (_cnt+m) > _max || _in[_max-m] )
    grow( _max+m );

  // Find a precedence edge to move
  if( _in[_cnt] != NULL ) {     // Next precedence edge is busy?
    uint i;
    for( i=_cnt; i<_max; i++ )
      if( _in[i] == NULL )      // Find the NULL at end of prec edge list
        break;                  // There must be one, since we grew the array
    // Slide all the precs over by m positions (assume #prec << m).
    Copy::conjoint_words_to_higher((HeapWord*)&_in[_cnt], (HeapWord*)&_in[_cnt+m], ((i-_cnt)*sizeof(Node*)));
  }

  // Stuff over the old prec edges
  for(uint i=0; i<m; i++ ) {
    _in[_cnt++] = n;
  }

  // Insert multiple out edges on the node.
  if (n != NULL && !n->is_top()) {
    for(uint i=0; i<m; i++ ) {
      n->add_out((Node *)this);
    }
  }
}

//------------------------------del_req----------------------------------------
// Delete the required edge and compact the edge array
void Node::del_req( uint idx ) {
  // First remove corresponding def-use edge
  Node *n = in(idx);
  if (n != NULL) n->del_out((Node *)this);
  _in[idx] = in(--_cnt);  // Compact the array
  _in[_cnt] = NULL;       // NULL out emptied slot
}

//------------------------------ins_req----------------------------------------
// Insert a new required input at the end
void Node::ins_req( uint idx, Node *n ) {
  assert( is_not_dead(n), "can not use dead node");
  add_req(NULL);                // Make space
  assert( idx < _max, "Must have allocated enough space");
  // Slide over
  if(_cnt-idx-1 > 0) {
    Copy::conjoint_words_to_higher((HeapWord*)&_in[idx], (HeapWord*)&_in[idx+1], ((_cnt-idx-1)*sizeof(Node*)));
  }
  _in[idx] = n;                            // Stuff over old required edge
  if (n != NULL) n->add_out((Node *)this); // Add reciprocal def-use edge
}

//-----------------------------find_edge---------------------------------------
int Node::find_edge(Node* n) {
  for (uint i = 0; i < len(); i++) {
    if (_in[i] == n)  return i;
  }
  return -1;
}

//----------------------------replace_edge-------------------------------------
int Node::replace_edge(Node* old, Node* neww) {
  if (old == neww)  return 0;  // nothing to do
  uint nrep = 0;
  for (uint i = 0; i < len(); i++) {
    if (in(i) == old) {
      if (i < req())
        set_req(i, neww);
      else
        set_prec(i, neww);
      nrep++;
    }
  }
  return nrep;
}

//-------------------------disconnect_inputs-----------------------------------
// NULL out all inputs to eliminate incoming Def-Use edges.
// Return the number of edges between 'n' and 'this'
int Node::disconnect_inputs(Node *n) {
  int edges_to_n = 0;

  uint cnt = req();
  for( uint i = 0; i < cnt; ++i ) {
    if( in(i) == 0 ) continue;
    if( in(i) == n ) ++edges_to_n;
    set_req(i, NULL);
  }
  // Remove precedence edges if any exist
  // Note: Safepoints may have precedence edges, even during parsing
  if( (req() != len()) && (in(req()) != NULL) ) {
    uint max = len();
    for( uint i = 0; i < max; ++i ) {
      if( in(i) == 0 ) continue;
      if( in(i) == n ) ++edges_to_n;
      set_prec(i, NULL);
    }
  }

  // Node::destruct requires all out edges be deleted first
  // debug_only(destruct();)   // no reuse benefit expected
  return edges_to_n;
}

//-----------------------------uncast---------------------------------------
// %%% Temporary, until we sort out CheckCastPP vs. CastPP.
// Strip away casting.  (It is depth-limited.)
Node* Node::uncast() const {
  // Should be inline:
  //return is_ConstraintCast() ? uncast_helper(this) : (Node*) this;
815
  if (is_ConstraintCast() || is_CheckCastPP())
D
duke 已提交
816 817 818 819 820 821 822 823 824 825 826 827 828
    return uncast_helper(this);
  else
    return (Node*) this;
}

//---------------------------uncast_helper-------------------------------------
Node* Node::uncast_helper(const Node* p) {
  uint max_depth = 3;
  for (uint i = 0; i < max_depth; i++) {
    if (p == NULL || p->req() != 2) {
      break;
    } else if (p->is_ConstraintCast()) {
      p = p->in(1);
829
    } else if (p->is_CheckCastPP()) {
D
duke 已提交
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
      p = p->in(1);
    } else {
      break;
    }
  }
  return (Node*) p;
}

//------------------------------add_prec---------------------------------------
// Add a new precedence input.  Precedence inputs are unordered, with
// duplicates removed and NULLs packed down at the end.
void Node::add_prec( Node *n ) {
  assert( is_not_dead(n), "can not use dead node");

  // Check for NULL at end
  if( _cnt >= _max || in(_max-1) )
    grow( _max+1 );

  // Find a precedence edge to move
  uint i = _cnt;
  while( in(i) != NULL ) i++;
  _in[i] = n;                                // Stuff prec edge over NULL
  if ( n != NULL) n->add_out((Node *)this);  // Add mirror edge
}

//------------------------------rm_prec----------------------------------------
// Remove a precedence input.  Precedence inputs are unordered, with
// duplicates removed and NULLs packed down at the end.
void Node::rm_prec( uint j ) {

  // Find end of precedence list to pack NULLs
  uint i;
  for( i=j; i<_max; i++ )
    if( !_in[i] )               // Find the NULL at end of prec edge list
      break;
  if (_in[j] != NULL) _in[j]->del_out((Node *)this);
  _in[j] = _in[--i];            // Move last element over removed guy
  _in[i] = NULL;                // NULL out last element
}

//------------------------------size_of----------------------------------------
uint Node::size_of() const { return sizeof(*this); }

//------------------------------ideal_reg--------------------------------------
uint Node::ideal_reg() const { return 0; }

//------------------------------jvms-------------------------------------------
JVMState* Node::jvms() const { return NULL; }

#ifdef ASSERT
//------------------------------jvms-------------------------------------------
bool Node::verify_jvms(const JVMState* using_jvms) const {
  for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
    if (jvms == using_jvms)  return true;
  }
  return false;
}

//------------------------------init_NodeProperty------------------------------
void Node::init_NodeProperty() {
  assert(_max_classes <= max_jushort, "too many NodeProperty classes");
  assert(_max_flags <= max_jushort, "too many NodeProperty flags");
}
#endif

//------------------------------format-----------------------------------------
// Print as assembly
void Node::format( PhaseRegAlloc *, outputStream *st ) const {}
//------------------------------emit-------------------------------------------
// Emit bytes starting at parameter 'ptr'.
void Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {}
//------------------------------size-------------------------------------------
// Size of instruction in bytes
uint Node::size(PhaseRegAlloc *ra_) const { return 0; }

//------------------------------CFG Construction-------------------------------
// Nodes that end basic blocks, e.g. IfTrue/IfFalse, JumpProjNode, Root,
// Goto and Return.
const Node *Node::is_block_proj() const { return 0; }

// Minimum guaranteed type
const Type *Node::bottom_type() const { return Type::BOTTOM; }


//------------------------------raise_bottom_type------------------------------
// Get the worst-case Type output for this Node.
void Node::raise_bottom_type(const Type* new_type) {
  if (is_Type()) {
    TypeNode *n = this->as_Type();
    if (VerifyAliases) {
      assert(new_type->higher_equal(n->type()), "new type must refine old type");
    }
    n->set_type(new_type);
  } else if (is_Load()) {
    LoadNode *n = this->as_Load();
    if (VerifyAliases) {
      assert(new_type->higher_equal(n->type()), "new type must refine old type");
    }
    n->set_type(new_type);
  }
}

//------------------------------Identity---------------------------------------
// Return a node that the given node is equivalent to.
Node *Node::Identity( PhaseTransform * ) {
  return this;                  // Default to no identities
}

//------------------------------Value------------------------------------------
// Compute a new Type for a node using the Type of the inputs.
const Type *Node::Value( PhaseTransform * ) const {
  return bottom_type();         // Default to worst-case Type
}

//------------------------------Ideal------------------------------------------
//
// 'Idealize' the graph rooted at this Node.
//
// In order to be efficient and flexible there are some subtle invariants
// these Ideal calls need to hold.  Running with '+VerifyIterativeGVN' checks
// these invariants, although its too slow to have on by default.  If you are
// hacking an Ideal call, be sure to test with +VerifyIterativeGVN!
//
// The Ideal call almost arbitrarily reshape the graph rooted at the 'this'
// pointer.  If ANY change is made, it must return the root of the reshaped
// graph - even if the root is the same Node.  Example: swapping the inputs
// to an AddINode gives the same answer and same root, but you still have to
// return the 'this' pointer instead of NULL.
//
// You cannot return an OLD Node, except for the 'this' pointer.  Use the
// Identity call to return an old Node; basically if Identity can find
// another Node have the Ideal call make no change and return NULL.
// Example: AddINode::Ideal must check for add of zero; in this case it
// returns NULL instead of doing any graph reshaping.
//
// You cannot modify any old Nodes except for the 'this' pointer.  Due to
// sharing there may be other users of the old Nodes relying on their current
// semantics.  Modifying them will break the other users.
// Example: when reshape "(X+3)+4" into "X+7" you must leave the Node for
// "X+3" unchanged in case it is shared.
//
T
twisti 已提交
971 972 973 974 975 976
// If you modify the 'this' pointer's inputs, you should use
// 'set_req'.  If you are making a new Node (either as the new root or
// some new internal piece) you may use 'init_req' to set the initial
// value.  You can make a new Node with either 'new' or 'clone'.  In
// either case, def-use info is correctly maintained.
//
D
duke 已提交
977
// Example: reshape "(X+3)+4" into "X+7":
T
twisti 已提交
978 979
//    set_req(1, in(1)->in(1));
//    set_req(2, phase->intcon(7));
D
duke 已提交
980
//    return this;
T
twisti 已提交
981 982
// Example: reshape "X*4" into "X<<2"
//    return new (C,3) LShiftINode(in(1), phase->intcon(2));
D
duke 已提交
983 984
//
// You must call 'phase->transform(X)' on any new Nodes X you make, except
T
twisti 已提交
985
// for the returned root node.  Example: reshape "X*31" with "(X<<5)-X".
D
duke 已提交
986
//    Node *shift=phase->transform(new(C,3)LShiftINode(in(1),phase->intcon(5)));
T
twisti 已提交
987
//    return new (C,3) AddINode(shift, in(1));
D
duke 已提交
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
//
// When making a Node for a constant use 'phase->makecon' or 'phase->intcon'.
// These forms are faster than 'phase->transform(new (C,1) ConNode())' and Do
// The Right Thing with def-use info.
//
// You cannot bury the 'this' Node inside of a graph reshape.  If the reshaped
// graph uses the 'this' Node it must be the root.  If you want a Node with
// the same Opcode as the 'this' pointer use 'clone'.
//
Node *Node::Ideal(PhaseGVN *phase, bool can_reshape) {
  return NULL;                  // Default to being Ideal already
}

// Some nodes have specific Ideal subgraph transformations only if they are
// unique users of specific nodes. Such nodes should be put on IGVN worklist
// for the transformations to happen.
bool Node::has_special_unique_user() const {
  assert(outcnt() == 1, "match only for unique out");
  Node* n = unique_out();
  int op  = Opcode();
  if( this->is_Store() ) {
    // Condition for back-to-back stores folding.
    return n->Opcode() == op && n->in(MemNode::Memory) == this;
  } else if( op == Op_AddL ) {
    // Condition for convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y))
    return n->Opcode() == Op_ConvL2I && n->in(1) == this;
  } else if( op == Op_SubI || op == Op_SubL ) {
    // Condition for subI(x,subI(y,z)) ==> subI(addI(x,z),y)
    return n->Opcode() == op && n->in(2) == this;
  }
  return false;
};

1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
//--------------------------find_exact_control---------------------------------
// Skip Proj and CatchProj nodes chains. Check for Null and Top.
Node* Node::find_exact_control(Node* ctrl) {
  if (ctrl == NULL && this->is_Region())
    ctrl = this->as_Region()->is_copy();

  if (ctrl != NULL && ctrl->is_CatchProj()) {
    if (ctrl->as_CatchProj()->_con == CatchProjNode::fall_through_index)
      ctrl = ctrl->in(0);
    if (ctrl != NULL && !ctrl->is_top())
      ctrl = ctrl->in(0);
  }

  if (ctrl != NULL && ctrl->is_Proj())
    ctrl = ctrl->in(0);

  return ctrl;
}

//--------------------------dominates------------------------------------------
// Helper function for MemNode::all_controls_dominate().
// Check if 'this' control node dominates or equal to 'sub' control node.
1043 1044 1045
// We already know that if any path back to Root or Start reaches 'this',
// then all paths so, so this is a simple search for one example,
// not an exhaustive search for a counterexample.
1046 1047 1048 1049
bool Node::dominates(Node* sub, Node_List &nlist) {
  assert(this->is_CFG(), "expecting control");
  assert(sub != NULL && sub->is_CFG(), "expecting control");

1050 1051 1052
  // detect dead cycle without regions
  int iterations_without_region_limit = DominatorSearchLimit;

1053
  Node* orig_sub = sub;
1054 1055
  Node* dom      = this;
  bool  met_dom  = false;
1056
  nlist.clear();
1057

1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
  // Walk 'sub' backward up the chain to 'dom', watching for regions.
  // After seeing 'dom', continue up to Root or Start.
  // If we hit a region (backward split point), it may be a loop head.
  // Keep going through one of the region's inputs.  If we reach the
  // same region again, go through a different input.  Eventually we
  // will either exit through the loop head, or give up.
  // (If we get confused, break out and return a conservative 'false'.)
  while (sub != NULL) {
    if (sub->is_top())  break; // Conservative answer for dead code.
    if (sub == dom) {
1068 1069 1070
      if (nlist.size() == 0) {
        // No Region nodes except loops were visited before and the EntryControl
        // path was taken for loops: it did not walk in a cycle.
1071 1072 1073
        return true;
      } else if (met_dom) {
        break;          // already met before: walk in a cycle
1074
      } else {
1075 1076
        // Region nodes were visited. Continue walk up to Start or Root
        // to make sure that it did not walk in a cycle.
1077
        met_dom = true; // first time meet
1078
        iterations_without_region_limit = DominatorSearchLimit; // Reset
1079 1080 1081
     }
    }
    if (sub->is_Start() || sub->is_Root()) {
1082 1083 1084 1085
      // Success if we met 'dom' along a path to Start or Root.
      // We assume there are no alternative paths that avoid 'dom'.
      // (This assumption is up to the caller to ensure!)
      return met_dom;
1086
    }
1087 1088 1089 1090 1091 1092
    Node* up = sub->in(0);
    // Normalize simple pass-through regions and projections:
    up = sub->find_exact_control(up);
    // If sub == up, we found a self-loop.  Try to push past it.
    if (sub == up && sub->is_Loop()) {
      // Take loop entry path on the way up to 'dom'.
1093
      up = sub->in(1); // in(LoopNode::EntryControl);
1094 1095 1096 1097 1098
    } else if (sub == up && sub->is_Region() && sub->req() != 3) {
      // Always take in(1) path on the way up to 'dom' for clone regions
      // (with only one input) or regions which merge > 2 paths
      // (usually used to merge fast/slow paths).
      up = sub->in(1);
1099
    } else if (sub == up && sub->is_Region()) {
1100 1101 1102
      // Try both paths for Regions with 2 input paths (it may be a loop head).
      // It could give conservative 'false' answer without information
      // which region's input is the entry path.
1103
      iterations_without_region_limit = DominatorSearchLimit; // Reset
1104 1105

      bool region_was_visited_before = false;
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
      // Was this Region node visited before?
      // If so, we have reached it because we accidentally took a
      // loop-back edge from 'sub' back into the body of the loop,
      // and worked our way up again to the loop header 'sub'.
      // So, take the first unexplored path on the way up to 'dom'.
      for (int j = nlist.size() - 1; j >= 0; j--) {
        intptr_t ni = (intptr_t)nlist.at(j);
        Node* visited = (Node*)(ni & ~1);
        bool  visited_twice_already = ((ni & 1) != 0);
        if (visited == sub) {
          if (visited_twice_already) {
            // Visited 2 paths, but still stuck in loop body.  Give up.
            return false;
1119
          }
1120 1121 1122 1123 1124
          // The Region node was visited before only once.
          // (We will repush with the low bit set, below.)
          nlist.remove(j);
          // We will find a new edge and re-insert.
          region_was_visited_before = true;
1125 1126
          break;
        }
1127
      }
1128 1129 1130 1131 1132

      // Find an incoming edge which has not been seen yet; walk through it.
      assert(up == sub, "");
      uint skip = region_was_visited_before ? 1 : 0;
      for (uint i = 1; i < sub->req(); i++) {
1133 1134
        Node* in = sub->in(i);
        if (in != NULL && !in->is_top() && in != sub) {
1135 1136 1137 1138 1139
          if (skip == 0) {
            up = in;
            break;
          }
          --skip;               // skip this nontrivial input
1140
        }
1141
      }
1142 1143 1144

      // Set 0 bit to indicate that both paths were taken.
      nlist.push((Node*)((intptr_t)sub + (region_was_visited_before ? 1 : 0)));
1145
    }
1146 1147 1148 1149 1150 1151 1152

    if (up == sub) {
      break;    // some kind of tight cycle
    }
    if (up == orig_sub && met_dom) {
      // returned back after visiting 'dom'
      break;    // some kind of cycle
1153 1154
    }
    if (--iterations_without_region_limit < 0) {
1155
      break;    // dead cycle
1156
    }
1157 1158
    sub = up;
  }
1159 1160 1161 1162

  // Did not meet Root or Start node in pred. chain.
  // Conservative answer for dead code.
  return false;
1163 1164
}

D
duke 已提交
1165 1166 1167 1168 1169
//------------------------------remove_dead_region-----------------------------
// This control node is dead.  Follow the subgraph below it making everything
// using it dead as well.  This will happen normally via the usual IterGVN
// worklist but this call is more efficient.  Do not update use-def info
// inside the dead region, just at the borders.
1170
static void kill_dead_code( Node *dead, PhaseIterGVN *igvn ) {
D
duke 已提交
1171
  // Con's are a popular node to re-hit in the hash table again.
1172
  if( dead->is_Con() ) return;
D
duke 已提交
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190

  // Can't put ResourceMark here since igvn->_worklist uses the same arena
  // for verify pass with +VerifyOpto and we add/remove elements in it here.
  Node_List  nstack(Thread::current()->resource_area());

  Node *top = igvn->C->top();
  nstack.push(dead);

  while (nstack.size() > 0) {
    dead = nstack.pop();
    if (dead->outcnt() > 0) {
      // Keep dead node on stack until all uses are processed.
      nstack.push(dead);
      // For all Users of the Dead...    ;-)
      for (DUIterator_Last kmin, k = dead->last_outs(kmin); k >= kmin; ) {
        Node* use = dead->last_out(k);
        igvn->hash_delete(use);       // Yank from hash table prior to mod
        if (use->in(0) == dead) {     // Found another dead node
1191
          assert (!use->is_Con(), "Control for Con node should be Root node.");
D
duke 已提交
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
          use->set_req(0, top);       // Cut dead edge to prevent processing
          nstack.push(use);           // the dead node again.
        } else {                      // Else found a not-dead user
          for (uint j = 1; j < use->req(); j++) {
            if (use->in(j) == dead) { // Turn all dead inputs into TOP
              use->set_req(j, top);
            }
          }
          igvn->_worklist.push(use);
        }
        // Refresh the iterator, since any number of kills might have happened.
        k = dead->last_outs(kmin);
      }
    } else { // (dead->outcnt() == 0)
      // Done with outputs.
      igvn->hash_delete(dead);
      igvn->_worklist.remove(dead);
      igvn->set_type(dead, Type::TOP);
      if (dead->is_macro()) {
        igvn->C->remove_macro_node(dead);
      }
      // Kill all inputs to the dead guy
      for (uint i=0; i < dead->req(); i++) {
        Node *n = dead->in(i);      // Get input to dead guy
        if (n != NULL && !n->is_top()) { // Input is valid?
          dead->set_req(i, top);    // Smash input away
          if (n->outcnt() == 0) {   // Input also goes dead?
            if (!n->is_Con())
              nstack.push(n);       // Clear it out as well
          } else if (n->outcnt() == 1 &&
                     n->has_special_unique_user()) {
            igvn->add_users_to_worklist( n );
          } else if (n->outcnt() <= 2 && n->is_Store()) {
            // Push store's uses on worklist to enable folding optimization for
            // store/store and store/load to the same address.
            // The restriction (outcnt() <= 2) is the same as in set_req_X()
            // and remove_globally_dead_node().
            igvn->add_users_to_worklist( n );
          }
        }
      }
    } // (dead->outcnt() == 0)
  }   // while (nstack.size() > 0) for outputs
1235
  return;
D
duke 已提交
1236 1237 1238 1239 1240 1241 1242 1243 1244
}

//------------------------------remove_dead_region-----------------------------
bool Node::remove_dead_region(PhaseGVN *phase, bool can_reshape) {
  Node *n = in(0);
  if( !n ) return false;
  // Lost control into this guy?  I.e., it became unreachable?
  // Aggressively kill all unreachable code.
  if (can_reshape && n->is_top()) {
1245 1246
    kill_dead_code(this, phase->is_IterGVN());
    return false; // Node is dead.
D
duke 已提交
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
  }

  if( n->is_Region() && n->as_Region()->is_copy() ) {
    Node *m = n->nonnull_req();
    set_req(0, m);
    return true;
  }
  return false;
}

//------------------------------Ideal_DU_postCCP-------------------------------
// Idealize graph, using DU info.  Must clone result into new-space
Node *Node::Ideal_DU_postCCP( PhaseCCP * ) {
  return NULL;                 // Default to no change
}

//------------------------------hash-------------------------------------------
// Hash function over Nodes.
uint Node::hash() const {
  uint sum = 0;
  for( uint i=0; i<_cnt; i++ )  // Add in all inputs
    sum = (sum<<1)-(uintptr_t)in(i);        // Ignore embedded NULLs
  return (sum>>2) + _cnt + Opcode();
}

//------------------------------cmp--------------------------------------------
// Compare special parts of simple Nodes
uint Node::cmp( const Node &n ) const {
  return 1;                     // Must be same
}

//------------------------------rematerialize-----------------------------------
// Should we clone rather than spill this instruction?
bool Node::rematerialize() const {
  if ( is_Mach() )
    return this->as_Mach()->rematerialize();
  else
    return (_flags & Flag_rematerialize) != 0;
}

//------------------------------needs_anti_dependence_check---------------------
// Nodes which use memory without consuming it, hence need antidependences.
bool Node::needs_anti_dependence_check() const {
  if( req() < 2 || (_flags & Flag_needs_anti_dependence_check) == 0 )
    return false;
  else
    return in(1)->bottom_type()->has_memory();
}


// Get an integer constant from a ConNode (or CastIINode).
// Return a default value if there is no apparent constant here.
const TypeInt* Node::find_int_type() const {
  if (this->is_Type()) {
    return this->as_Type()->type()->isa_int();
  } else if (this->is_Con()) {
    assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
    return this->bottom_type()->isa_int();
  }
  return NULL;
}

// Get a pointer constant from a ConstNode.
// Returns the constant if it is a pointer ConstNode
intptr_t Node::get_ptr() const {
  assert( Opcode() == Op_ConP, "" );
  return ((ConPNode*)this)->type()->is_ptr()->get_con();
}

1316 1317 1318 1319 1320 1321
// Get a narrow oop constant from a ConNNode.
intptr_t Node::get_narrowcon() const {
  assert( Opcode() == Op_ConN, "" );
  return ((ConNNode*)this)->type()->is_narrowoop()->get_con();
}

D
duke 已提交
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
// Get a long constant from a ConNode.
// Return a default value if there is no apparent constant here.
const TypeLong* Node::find_long_type() const {
  if (this->is_Type()) {
    return this->as_Type()->type()->isa_long();
  } else if (this->is_Con()) {
    assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
    return this->bottom_type()->isa_long();
  }
  return NULL;
}

// Get a double constant from a ConstNode.
// Returns the constant if it is a double ConstNode
jdouble Node::getd() const {
  assert( Opcode() == Op_ConD, "" );
  return ((ConDNode*)this)->type()->is_double_constant()->getd();
}

// Get a float constant from a ConstNode.
// Returns the constant if it is a float ConstNode
jfloat Node::getf() const {
  assert( Opcode() == Op_ConF, "" );
  return ((ConFNode*)this)->type()->is_float_constant()->getf();
}

#ifndef PRODUCT

//----------------------------NotANode----------------------------------------
// Used in debugging code to avoid walking across dead or uninitialized edges.
static inline bool NotANode(const Node* n) {
  if (n == NULL)                   return true;
  if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
  if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
  return false;
}


//------------------------------find------------------------------------------
// Find a neighbor of this Node with the given _idx
// If idx is negative, find its absolute value, following both _in and _out.
static void find_recur( Node* &result, Node *n, int idx, bool only_ctrl,
                        VectorSet &old_space, VectorSet &new_space ) {
  int node_idx = (idx >= 0) ? idx : -idx;
  if (NotANode(n))  return;  // Gracefully handle NULL, -1, 0xabababab, etc.
  // Contained in new_space or old_space?
  VectorSet *v = Compile::current()->node_arena()->contains(n) ? &new_space : &old_space;
  if( v->test(n->_idx) ) return;
  if( (int)n->_idx == node_idx
      debug_only(|| n->debug_idx() == node_idx) ) {
    if (result != NULL)
      tty->print("find: " INTPTR_FORMAT " and " INTPTR_FORMAT " both have idx==%d\n",
                 (uintptr_t)result, (uintptr_t)n, node_idx);
    result = n;
  }
  v->set(n->_idx);
  for( uint i=0; i<n->len(); i++ ) {
    if( only_ctrl && !(n->is_Region()) && (n->Opcode() != Op_Root) && (i != TypeFunc::Control) ) continue;
    find_recur( result, n->in(i), idx, only_ctrl, old_space, new_space );
  }
  // Search along forward edges also:
  if (idx < 0 && !only_ctrl) {
    for( uint j=0; j<n->outcnt(); j++ ) {
      find_recur( result, n->raw_out(j), idx, only_ctrl, old_space, new_space );
    }
  }
#ifdef ASSERT
  // Search along debug_orig edges last:
1390
  for (Node* orig = n->debug_orig(); orig != NULL && n != orig; orig = orig->debug_orig()) {
D
duke 已提交
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
    if (NotANode(orig))  break;
    find_recur( result, orig, idx, only_ctrl, old_space, new_space );
  }
#endif //ASSERT
}

// call this from debugger:
Node* find_node(Node* n, int idx) {
  return n->find(idx);
}

//------------------------------find-------------------------------------------
Node* Node::find(int idx) const {
  ResourceArea *area = Thread::current()->resource_area();
  VectorSet old_space(area), new_space(area);
  Node* result = NULL;
  find_recur( result, (Node*) this, idx, false, old_space, new_space );
  return result;
}

//------------------------------find_ctrl--------------------------------------
// Find an ancestor to this node in the control history with given _idx
Node* Node::find_ctrl(int idx) const {
  ResourceArea *area = Thread::current()->resource_area();
  VectorSet old_space(area), new_space(area);
  Node* result = NULL;
  find_recur( result, (Node*) this, idx, true, old_space, new_space );
  return result;
}
#endif



#ifndef PRODUCT
int Node::_in_dump_cnt = 0;

// -----------------------------Name-------------------------------------------
extern const char *NodeClassNames[];
const char *Node::Name() const { return NodeClassNames[Opcode()]; }

static bool is_disconnected(const Node* n) {
  for (uint i = 0; i < n->req(); i++) {
    if (n->in(i) != NULL)  return false;
  }
  return true;
}

#ifdef ASSERT
static void dump_orig(Node* orig) {
  Compile* C = Compile::current();
  if (NotANode(orig))  orig = NULL;
  if (orig != NULL && !C->node_arena()->contains(orig))  orig = NULL;
  if (orig == NULL)  return;
  tty->print(" !orig=");
  Node* fast = orig->debug_orig(); // tortoise & hare algorithm to detect loops
  if (NotANode(fast))  fast = NULL;
  while (orig != NULL) {
    bool discon = is_disconnected(orig);  // if discon, print [123] else 123
    if (discon)  tty->print("[");
    if (!Compile::current()->node_arena()->contains(orig))
      tty->print("o");
    tty->print("%d", orig->_idx);
    if (discon)  tty->print("]");
    orig = orig->debug_orig();
    if (NotANode(orig))  orig = NULL;
    if (orig != NULL && !C->node_arena()->contains(orig))  orig = NULL;
    if (orig != NULL)  tty->print(",");
    if (fast != NULL) {
      // Step fast twice for each single step of orig:
      fast = fast->debug_orig();
      if (NotANode(fast))  fast = NULL;
      if (fast != NULL && fast != orig) {
        fast = fast->debug_orig();
        if (NotANode(fast))  fast = NULL;
      }
      if (fast == orig) {
        tty->print("...");
        break;
      }
    }
  }
}

void Node::set_debug_orig(Node* orig) {
  _debug_orig = orig;
  if (BreakAtNode == 0)  return;
  if (NotANode(orig))  orig = NULL;
  int trip = 10;
  while (orig != NULL) {
    if (orig->debug_idx() == BreakAtNode || (int)orig->_idx == BreakAtNode) {
      tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d orig._idx=%d orig._debug_idx=%d",
                    this->_idx, this->debug_idx(), orig->_idx, orig->debug_idx());
      BREAKPOINT;
    }
    orig = orig->debug_orig();
    if (NotANode(orig))  orig = NULL;
    if (trip-- <= 0)  break;
  }
}
#endif //ASSERT

//------------------------------dump------------------------------------------
// Dump a Node
void Node::dump() const {
  Compile* C = Compile::current();
  bool is_new = C->node_arena()->contains(this);
  _in_dump_cnt++;
  tty->print("%c%d\t%s\t=== ",
             is_new ? ' ' : 'o', _idx, Name());

  // Dump the required and precedence inputs
  dump_req();
  dump_prec();
  // Dump the outputs
  dump_out();

  if (is_disconnected(this)) {
#ifdef ASSERT
    tty->print("  [%d]",debug_idx());
    dump_orig(debug_orig());
#endif
    tty->cr();
    _in_dump_cnt--;
    return;                     // don't process dead nodes
  }

  // Dump node-specific info
  dump_spec(tty);
#ifdef ASSERT
  // Dump the non-reset _debug_idx
  if( Verbose && WizardMode ) {
    tty->print("  [%d]",debug_idx());
  }
#endif

  const Type *t = bottom_type();

  if (t != NULL && (t->isa_instptr() || t->isa_klassptr())) {
    const TypeInstPtr  *toop = t->isa_instptr();
    const TypeKlassPtr *tkls = t->isa_klassptr();
    ciKlass*           klass = toop ? toop->klass() : (tkls ? tkls->klass() : NULL );
    if( klass && klass->is_loaded() && klass->is_interface() ) {
      tty->print("  Interface:");
    } else if( toop ) {
      tty->print("  Oop:");
    } else if( tkls ) {
      tty->print("  Klass:");
    }
    t->dump();
  } else if( t == Type::MEMORY ) {
    tty->print("  Memory:");
    MemNode::dump_adr_type(this, adr_type(), tty);
  } else if( Verbose || WizardMode ) {
    tty->print("  Type:");
    if( t ) {
      t->dump();
    } else {
      tty->print("no type");
    }
  }
  if (is_new) {
    debug_only(dump_orig(debug_orig()));
    Node_Notes* nn = C->node_notes_at(_idx);
    if (nn != NULL && !nn->is_clear()) {
      if (nn->jvms() != NULL) {
        tty->print(" !jvms:");
        nn->jvms()->dump_spec(tty);
      }
    }
  }
  tty->cr();
  _in_dump_cnt--;
}

//------------------------------dump_req--------------------------------------
void Node::dump_req() const {
  // Dump the required input edges
  for (uint i = 0; i < req(); i++) {    // For all required inputs
    Node* d = in(i);
    if (d == NULL) {
      tty->print("_ ");
    } else if (NotANode(d)) {
      tty->print("NotANode ");  // uninitialized, sentinel, garbage, etc.
    } else {
      tty->print("%c%d ", Compile::current()->node_arena()->contains(d) ? ' ' : 'o', d->_idx);
    }
  }
}


//------------------------------dump_prec-------------------------------------
void Node::dump_prec() const {
  // Dump the precedence edges
  int any_prec = 0;
  for (uint i = req(); i < len(); i++) {       // For all precedence inputs
    Node* p = in(i);
    if (p != NULL) {
      if( !any_prec++ ) tty->print(" |");
      if (NotANode(p)) { tty->print("NotANode "); continue; }
      tty->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
    }
  }
}

//------------------------------dump_out--------------------------------------
void Node::dump_out() const {
  // Delimit the output edges
  tty->print(" [[");
  // Dump the output edges
  for (uint i = 0; i < _outcnt; i++) {    // For all outputs
    Node* u = _out[i];
    if (u == NULL) {
      tty->print("_ ");
    } else if (NotANode(u)) {
      tty->print("NotANode ");
    } else {
      tty->print("%c%d ", Compile::current()->node_arena()->contains(u) ? ' ' : 'o', u->_idx);
    }
  }
  tty->print("]] ");
}

//------------------------------dump_nodes-------------------------------------
static void dump_nodes(const Node* start, int d, bool only_ctrl) {
  Node* s = (Node*)start; // remove const
  if (NotANode(s)) return;

1618 1619
  uint depth = (uint)ABS(d);
  int direction = d;
D
duke 已提交
1620
  Compile* C = Compile::current();
K
kvn 已提交
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
  GrowableArray <Node *> nstack(C->unique());

  nstack.append(s);
  int begin = 0;
  int end = 0;
  for(uint i = 0; i < depth; i++) {
    end = nstack.length();
    for(int j = begin; j < end; j++) {
      Node* tp  = nstack.at(j);
      uint limit = direction > 0 ? tp->len() : tp->outcnt();
      for(uint k = 0; k < limit; k++) {
        Node* n = direction > 0 ? tp->in(k) : tp->raw_out(k);

        if (NotANode(n))  continue;
        // do not recurse through top or the root (would reach unrelated stuff)
        if (n->is_Root() || n->is_top())  continue;
        if (only_ctrl && !n->is_CFG()) continue;

        bool on_stack = nstack.contains(n);
        if (!on_stack) {
          nstack.append(n);
D
duke 已提交
1642 1643 1644
        }
      }
    }
K
kvn 已提交
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
    begin = end;
  }
  end = nstack.length();
  if (direction > 0) {
    for(int j = end-1; j >= 0; j--) {
      nstack.at(j)->dump();
    }
  } else {
    for(int j = 0; j < end; j++) {
      nstack.at(j)->dump();
    }
D
duke 已提交
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
  }
}

//------------------------------dump-------------------------------------------
void Node::dump(int d) const {
  dump_nodes(this, d, false);
}

//------------------------------dump_ctrl--------------------------------------
// Dump a Node's control history to depth
void Node::dump_ctrl(int d) const {
  dump_nodes(this, d, true);
}

// VERIFICATION CODE
// For each input edge to a node (ie - for each Use-Def edge), verify that
// there is a corresponding Def-Use edge.
//------------------------------verify_edges-----------------------------------
void Node::verify_edges(Unique_Node_List &visited) {
  uint i, j, idx;
  int  cnt;
  Node *n;

  // Recursive termination test
  if (visited.member(this))  return;
  visited.push(this);

T
twisti 已提交
1683
  // Walk over all input edges, checking for correspondence
D
duke 已提交
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
  for( i = 0; i < len(); i++ ) {
    n = in(i);
    if (n != NULL && !n->is_top()) {
      // Count instances of (Node *)this
      cnt = 0;
      for (idx = 0; idx < n->_outcnt; idx++ ) {
        if (n->_out[idx] == (Node *)this)  cnt++;
      }
      assert( cnt > 0,"Failed to find Def-Use edge." );
      // Check for duplicate edges
      // walk the input array downcounting the input edges to n
      for( j = 0; j < len(); j++ ) {
        if( in(j) == n ) cnt--;
      }
      assert( cnt == 0,"Mismatched edge count.");
    } else if (n == NULL) {
      assert(i >= req() || i == 0 || is_Region() || is_Phi(), "only regions or phis have null data edges");
    } else {
      assert(n->is_top(), "sanity");
      // Nothing to check.
    }
  }
  // Recursive walk over all input edges
  for( i = 0; i < len(); i++ ) {
    n = in(i);
    if( n != NULL )
      in(i)->verify_edges(visited);
  }
}

//------------------------------verify_recur-----------------------------------
static const Node *unique_top = NULL;

void Node::verify_recur(const Node *n, int verify_depth,
                        VectorSet &old_space, VectorSet &new_space) {
  if ( verify_depth == 0 )  return;
  if (verify_depth > 0)  --verify_depth;

  Compile* C = Compile::current();

  // Contained in new_space or old_space?
  VectorSet *v = C->node_arena()->contains(n) ? &new_space : &old_space;
  // Check for visited in the proper space.  Numberings are not unique
T
twisti 已提交
1727
  // across spaces so we need a separate VectorSet for each space.
D
duke 已提交
1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
  if( v->test_set(n->_idx) ) return;

  if (n->is_Con() && n->bottom_type() == Type::TOP) {
    if (C->cached_top_node() == NULL)
      C->set_cached_top_node((Node*)n);
    assert(C->cached_top_node() == n, "TOP node must be unique");
  }

  for( uint i = 0; i < n->len(); i++ ) {
    Node *x = n->in(i);
    if (!x || x->is_top()) continue;

    // Verify my input has a def-use edge to me
    if (true /*VerifyDefUse*/) {
      // Count use-def edges from n to x
      int cnt = 0;
      for( uint j = 0; j < n->len(); j++ )
        if( n->in(j) == x )
          cnt++;
      // Count def-use edges from x to n
      uint max = x->_outcnt;
      for( uint k = 0; k < max; k++ )
        if (x->_out[k] == n)
          cnt--;
      assert( cnt == 0, "mismatched def-use edge counts" );
    }

    verify_recur(x, verify_depth, old_space, new_space);
  }

}

//------------------------------verify-----------------------------------------
// Check Def-Use info for my subgraph
void Node::verify() const {
  Compile* C = Compile::current();
  Node* old_top = C->cached_top_node();
  ResourceMark rm;
  ResourceArea *area = Thread::current()->resource_area();
  VectorSet old_space(area), new_space(area);
  verify_recur(this, -1, old_space, new_space);
  C->set_cached_top_node(old_top);
}
#endif


//------------------------------walk-------------------------------------------
// Graph walk, with both pre-order and post-order functions
void Node::walk(NFunc pre, NFunc post, void *env) {
  VectorSet visited(Thread::current()->resource_area()); // Setup for local walk
  walk_(pre, post, env, visited);
}

void Node::walk_(NFunc pre, NFunc post, void *env, VectorSet &visited) {
  if( visited.test_set(_idx) ) return;
  pre(*this,env);               // Call the pre-order walk function
  for( uint i=0; i<_max; i++ )
    if( in(i) )                 // Input exists and is not walked?
      in(i)->walk_(pre,post,env,visited); // Walk it with pre & post functions
  post(*this,env);              // Call the post-order walk function
}

void Node::nop(Node &, void*) {}

//------------------------------Registers--------------------------------------
// Do we Match on this edge index or not?  Generally false for Control
// and true for everything else.  Weird for calls & returns.
uint Node::match_edge(uint idx) const {
  return idx;                   // True for other than index 0 (control)
}

// Register classes are defined for specific machines
const RegMask &Node::out_RegMask() const {
  ShouldNotCallThis();
  return *(new RegMask());
}

const RegMask &Node::in_RegMask(uint) const {
  ShouldNotCallThis();
  return *(new RegMask());
}

//=============================================================================
//-----------------------------------------------------------------------------
void Node_Array::reset( Arena *new_arena ) {
  _a->Afree(_nodes,_max*sizeof(Node*));
  _max   = 0;
  _nodes = NULL;
  _a     = new_arena;
}

//------------------------------clear------------------------------------------
// Clear all entries in _nodes to NULL but keep storage
void Node_Array::clear() {
  Copy::zero_to_bytes( _nodes, _max*sizeof(Node*) );
}

//-----------------------------------------------------------------------------
void Node_Array::grow( uint i ) {
  if( !_max ) {
    _max = 1;
    _nodes = (Node**)_a->Amalloc( _max * sizeof(Node*) );
    _nodes[0] = NULL;
  }
  uint old = _max;
  while( i >= _max ) _max <<= 1;        // Double to fit
  _nodes = (Node**)_a->Arealloc( _nodes, old*sizeof(Node*),_max*sizeof(Node*));
  Copy::zero_to_bytes( &_nodes[old], (_max-old)*sizeof(Node*) );
}

//-----------------------------------------------------------------------------
void Node_Array::insert( uint i, Node *n ) {
  if( _nodes[_max-1] ) grow(_max);      // Get more space if full
  Copy::conjoint_words_to_higher((HeapWord*)&_nodes[i], (HeapWord*)&_nodes[i+1], ((_max-i-1)*sizeof(Node*)));
  _nodes[i] = n;
}

//-----------------------------------------------------------------------------
void Node_Array::remove( uint i ) {
  Copy::conjoint_words_to_lower((HeapWord*)&_nodes[i+1], (HeapWord*)&_nodes[i], ((_max-i-1)*sizeof(Node*)));
  _nodes[_max-1] = NULL;
}

//-----------------------------------------------------------------------------
void Node_Array::sort( C_sort_func_t func) {
  qsort( _nodes, _max, sizeof( Node* ), func );
}

//-----------------------------------------------------------------------------
void Node_Array::dump() const {
#ifndef PRODUCT
  for( uint i = 0; i < _max; i++ ) {
    Node *nn = _nodes[i];
    if( nn != NULL ) {
      tty->print("%5d--> ",i); nn->dump();
    }
  }
#endif
}

//--------------------------is_iteratively_computed------------------------------
// Operation appears to be iteratively computed (such as an induction variable)
// It is possible for this operation to return false for a loop-varying
// value, if it appears (by local graph inspection) to be computed by a simple conditional.
bool Node::is_iteratively_computed() {
  if (ideal_reg()) { // does operation have a result register?
    for (uint i = 1; i < req(); i++) {
      Node* n = in(i);
      if (n != NULL && n->is_Phi()) {
        for (uint j = 1; j < n->req(); j++) {
          if (n->in(j) == this) {
            return true;
          }
        }
      }
    }
  }
  return false;
}

//--------------------------find_similar------------------------------
// Return a node with opcode "opc" and same inputs as "this" if one can
// be found; Otherwise return NULL;
Node* Node::find_similar(int opc) {
  if (req() >= 2) {
    Node* def = in(1);
    if (def && def->outcnt() >= 2) {
      for (DUIterator_Fast dmax, i = def->fast_outs(dmax); i < dmax; i++) {
        Node* use = def->fast_out(i);
        if (use->Opcode() == opc &&
            use->req() == req()) {
          uint j;
          for (j = 0; j < use->req(); j++) {
            if (use->in(j) != in(j)) {
              break;
            }
          }
          if (j == use->req()) {
            return use;
          }
        }
      }
    }
  }
  return NULL;
}


//--------------------------unique_ctrl_out------------------------------
// Return the unique control out if only one. Null if none or more than one.
Node* Node::unique_ctrl_out() {
  Node* found = NULL;
  for (uint i = 0; i < outcnt(); i++) {
    Node* use = raw_out(i);
    if (use->is_CFG() && use != this) {
      if (found != NULL) return NULL;
      found = use;
    }
  }
  return found;
}

//=============================================================================
//------------------------------yank-------------------------------------------
// Find and remove
void Node_List::yank( Node *n ) {
  uint i;
  for( i = 0; i < _cnt; i++ )
    if( _nodes[i] == n )
      break;

  if( i < _cnt )
    _nodes[i] = _nodes[--_cnt];
}

//------------------------------dump-------------------------------------------
void Node_List::dump() const {
#ifndef PRODUCT
  for( uint i = 0; i < _cnt; i++ )
    if( _nodes[i] ) {
      tty->print("%5d--> ",i);
      _nodes[i]->dump();
    }
#endif
}

//=============================================================================
//------------------------------remove-----------------------------------------
void Unique_Node_List::remove( Node *n ) {
  if( _in_worklist[n->_idx] ) {
    for( uint i = 0; i < size(); i++ )
      if( _nodes[i] == n ) {
        map(i,Node_List::pop());
        _in_worklist >>= n->_idx;
        return;
      }
    ShouldNotReachHere();
  }
}

//-----------------------remove_useless_nodes----------------------------------
// Remove useless nodes from worklist
void Unique_Node_List::remove_useless_nodes(VectorSet &useful) {

  for( uint i = 0; i < size(); ++i ) {
    Node *n = at(i);
    assert( n != NULL, "Did not expect null entries in worklist");
    if( ! useful.test(n->_idx) ) {
      _in_worklist >>= n->_idx;
      map(i,Node_List::pop());
      // Node *replacement = Node_List::pop();
      // if( i != size() ) { // Check if removing last entry
      //   _nodes[i] = replacement;
      // }
      --i;  // Visit popped node
      // If it was last entry, loop terminates since size() was also reduced
    }
  }
}

//=============================================================================
void Node_Stack::grow() {
  size_t old_top = pointer_delta(_inode_top,_inodes,sizeof(INode)); // save _top
  size_t old_max = pointer_delta(_inode_max,_inodes,sizeof(INode));
  size_t max = old_max << 1;             // max * 2
  _inodes = REALLOC_ARENA_ARRAY(_a, INode, _inodes, old_max, max);
  _inode_max = _inodes + max;
  _inode_top = _inodes + old_top;        // restore _top
}

//=============================================================================
uint TypeNode::size_of() const { return sizeof(*this); }
#ifndef PRODUCT
void TypeNode::dump_spec(outputStream *st) const {
  if( !Verbose && !WizardMode ) {
    // standard dump does this in Verbose and WizardMode
    st->print(" #"); _type->dump_on(st);
  }
}
#endif
uint TypeNode::hash() const {
  return Node::hash() + _type->hash();
}
uint TypeNode::cmp( const Node &n ) const
{ return !Type::cmp( _type, ((TypeNode&)n)._type ); }
const Type *TypeNode::bottom_type() const { return _type; }
const Type *TypeNode::Value( PhaseTransform * ) const { return _type; }

//------------------------------ideal_reg--------------------------------------
uint TypeNode::ideal_reg() const {
  return Matcher::base2reg[_type->base()];
}