frame_sparc.cpp 29.4 KB
Newer Older
D
duke 已提交
1
/*
2
 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
D
duke 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
D
duke 已提交
22 23 24
 *
 */

25 26 27 28
#include "precompiled.hpp"
#include "interpreter/interpreter.hpp"
#include "memory/resourceArea.hpp"
#include "oops/markOop.hpp"
29
#include "oops/method.hpp"
30
#include "oops/oop.inline.hpp"
I
iveresov 已提交
31
#include "prims/methodHandles.hpp"
32 33 34 35 36 37 38 39 40 41 42 43
#include "runtime/frame.inline.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/javaCalls.hpp"
#include "runtime/monitorChunk.hpp"
#include "runtime/signature.hpp"
#include "runtime/stubCodeGenerator.hpp"
#include "runtime/stubRoutines.hpp"
#include "vmreg_sparc.inline.hpp"
#ifdef COMPILER1
#include "c1/c1_Runtime1.hpp"
#include "runtime/vframeArray.hpp"
#endif
D
duke 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177

void RegisterMap::pd_clear() {
  if (_thread->has_last_Java_frame()) {
    frame fr = _thread->last_frame();
    _window = fr.sp();
  } else {
    _window = NULL;
  }
  _younger_window = NULL;
}


// Unified register numbering scheme: each 32-bits counts as a register
// number, so all the V9 registers take 2 slots.
const static int R_L_nums[] = {0+040,2+040,4+040,6+040,8+040,10+040,12+040,14+040};
const static int R_I_nums[] = {0+060,2+060,4+060,6+060,8+060,10+060,12+060,14+060};
const static int R_O_nums[] = {0+020,2+020,4+020,6+020,8+020,10+020,12+020,14+020};
const static int R_G_nums[] = {0+000,2+000,4+000,6+000,8+000,10+000,12+000,14+000};
static RegisterMap::LocationValidType bad_mask = 0;
static RegisterMap::LocationValidType R_LIO_mask = 0;
static bool register_map_inited = false;

static void register_map_init() {
  if (!register_map_inited) {
    register_map_inited = true;
    int i;
    for (i = 0; i < 8; i++) {
      assert(R_L_nums[i] < RegisterMap::location_valid_type_size, "in first chunk");
      assert(R_I_nums[i] < RegisterMap::location_valid_type_size, "in first chunk");
      assert(R_O_nums[i] < RegisterMap::location_valid_type_size, "in first chunk");
      assert(R_G_nums[i] < RegisterMap::location_valid_type_size, "in first chunk");
    }

    bad_mask |= (1LL << R_O_nums[6]); // SP
    bad_mask |= (1LL << R_O_nums[7]); // cPC
    bad_mask |= (1LL << R_I_nums[6]); // FP
    bad_mask |= (1LL << R_I_nums[7]); // rPC
    bad_mask |= (1LL << R_G_nums[2]); // TLS
    bad_mask |= (1LL << R_G_nums[7]); // reserved by libthread

    for (i = 0; i < 8; i++) {
      R_LIO_mask |= (1LL << R_L_nums[i]);
      R_LIO_mask |= (1LL << R_I_nums[i]);
      R_LIO_mask |= (1LL << R_O_nums[i]);
    }
  }
}


address RegisterMap::pd_location(VMReg regname) const {
  register_map_init();

  assert(regname->is_reg(), "sanity check");
  // Only the GPRs get handled this way
  if( !regname->is_Register())
    return NULL;

  // don't talk about bad registers
  if ((bad_mask & ((LocationValidType)1 << regname->value())) != 0) {
    return NULL;
  }

  // Convert to a GPR
  Register reg;
  int second_word = 0;
  // 32-bit registers for in, out and local
  if (!regname->is_concrete()) {
    // HMM ought to return NULL for any non-concrete (odd) vmreg
    // this all tied up in the fact we put out double oopMaps for
    // register locations. When that is fixed we'd will return NULL
    // (or assert here).
    reg = regname->prev()->as_Register();
#ifdef _LP64
    second_word = sizeof(jint);
#else
    return NULL;
#endif // _LP64
  } else {
    reg = regname->as_Register();
  }
  if (reg->is_out()) {
    assert(_younger_window != NULL, "Younger window should be available");
    return second_word + (address)&_younger_window[reg->after_save()->sp_offset_in_saved_window()];
  }
  if (reg->is_local() || reg->is_in()) {
    assert(_window != NULL, "Window should be available");
    return second_word + (address)&_window[reg->sp_offset_in_saved_window()];
  }
  // Only the window'd GPRs get handled this way; not the globals.
  return NULL;
}


#ifdef ASSERT
void RegisterMap::check_location_valid() {
  register_map_init();
  assert((_location_valid[0] & bad_mask) == 0, "cannot have special locations for SP,FP,TLS,etc.");
}
#endif

// We are shifting windows.  That means we are moving all %i to %o,
// getting rid of all current %l, and keeping all %g.  This is only
// complicated if any of the location pointers for these are valid.
// The normal case is that everything is in its standard register window
// home, and _location_valid[0] is zero.  In that case, this routine
// does exactly nothing.
void RegisterMap::shift_individual_registers() {
  if (!update_map())  return;  // this only applies to maps with locations
  register_map_init();
  check_location_valid();

  LocationValidType lv = _location_valid[0];
  LocationValidType lv0 = lv;

  lv &= ~R_LIO_mask;  // clear %l, %o, %i regs

  // if we cleared some non-%g locations, we may have to do some shifting
  if (lv != lv0) {
    // copy %i0-%i5 to %o0-%o5, if they have special locations
    // This can happen in within stubs which spill argument registers
    // around a dynamic link operation, such as resolve_opt_virtual_call.
    for (int i = 0; i < 8; i++) {
      if (lv0 & (1LL << R_I_nums[i])) {
        _location[R_O_nums[i]] = _location[R_I_nums[i]];
        lv |=  (1LL << R_O_nums[i]);
      }
    }
  }

  _location_valid[0] = lv;
  check_location_valid();
}

bool frame::safe_for_sender(JavaThread *thread) {
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218

  address _SP = (address) sp();
  address _FP = (address) fp();
  address _UNEXTENDED_SP = (address) unextended_sp();
  // sp must be within the stack
  bool sp_safe = (_SP <= thread->stack_base()) &&
                 (_SP >= thread->stack_base() - thread->stack_size());

  if (!sp_safe) {
    return false;
  }

  // unextended sp must be within the stack and above or equal sp
  bool unextended_sp_safe = (_UNEXTENDED_SP <= thread->stack_base()) &&
                            (_UNEXTENDED_SP >= _SP);

  if (!unextended_sp_safe) return false;

  // an fp must be within the stack and above (but not equal) sp
  bool fp_safe = (_FP <= thread->stack_base()) &&
                 (_FP > _SP);

  // We know sp/unextended_sp are safe only fp is questionable here

  // If the current frame is known to the code cache then we can attempt to
  // to construct the sender and do some validation of it. This goes a long way
  // toward eliminating issues when we get in frame construction code

  if (_cb != NULL ) {

    // First check if frame is complete and tester is reliable
    // Unfortunately we can only check frame complete for runtime stubs and nmethod
    // other generic buffer blobs are more problematic so we just assume they are
    // ok. adapter blobs never have a frame complete and are never ok.

    if (!_cb->is_frame_complete_at(_pc)) {
      if (_cb->is_nmethod() || _cb->is_adapter_blob() || _cb->is_runtime_stub()) {
        return false;
      }
    }

219 220 221 222 223
    // Could just be some random pointer within the codeBlob
    if (!_cb->code_contains(_pc)) {
      return false;
    }

224 225 226 227 228 229
    // Entry frame checks
    if (is_entry_frame()) {
      // an entry frame must have a valid fp.

      if (!fp_safe) {
        return false;
D
duke 已提交
230
      }
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277

      // Validate the JavaCallWrapper an entry frame must have

      address jcw = (address)entry_frame_call_wrapper();

      bool jcw_safe = (jcw <= thread->stack_base()) && ( jcw > _FP);

      return jcw_safe;

    }

    intptr_t* younger_sp = sp();
    intptr_t* _SENDER_SP = sender_sp(); // sender is actually just _FP
    bool adjusted_stack = is_interpreted_frame();

    address   sender_pc = (address)younger_sp[I7->sp_offset_in_saved_window()] + pc_return_offset;


    // We must always be able to find a recognizable pc
    CodeBlob* sender_blob = CodeCache::find_blob_unsafe(sender_pc);
    if (sender_pc == NULL ||  sender_blob == NULL) {
      return false;
    }

    // It should be safe to construct the sender though it might not be valid

    frame sender(_SENDER_SP, younger_sp, adjusted_stack);

    // Do we have a valid fp?
    address sender_fp = (address) sender.fp();

    // an fp must be within the stack and above (but not equal) current frame's _FP

    bool sender_fp_safe = (sender_fp <= thread->stack_base()) &&
                   (sender_fp > _FP);

    if (!sender_fp_safe) {
      return false;
    }


    // If the potential sender is the interpreter then we can do some more checking
    if (Interpreter::contains(sender_pc)) {
      return sender.is_interpreted_frame_valid(thread);
    }

    // Could just be some random pointer within the codeBlob
T
twisti 已提交
278 279 280
    if (!sender.cb()->code_contains(sender_pc)) {
      return false;
    }
281 282

    // We should never be able to see an adapter if the current frame is something from code cache
T
twisti 已提交
283
    if (sender_blob->is_adapter_blob()) {
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
      return false;
    }

    if( sender.is_entry_frame()) {
      // Validate the JavaCallWrapper an entry frame must have

      address jcw = (address)sender.entry_frame_call_wrapper();

      bool jcw_safe = (jcw <= thread->stack_base()) && ( jcw > sender_fp);

      return jcw_safe;
    }

    // If the frame size is 0 something is bad because every nmethod has a non-zero frame size
    // because you must allocate window space

    if (sender_blob->frame_size() == 0) {
      assert(!sender_blob->is_nmethod(), "should count return address at least");
      return false;
    }

    // The sender should positively be an nmethod or call_stub. On sparc we might in fact see something else.
    // The cause of this is because at a save instruction the O7 we get is a leftover from an earlier
    // window use. So if a runtime stub creates two frames (common in fastdebug/jvmg) then we see the
    // stale pc. So if the sender blob is not something we'd expect we have little choice but to declare
    // the stack unwalkable. pd_get_top_frame_for_signal_handler tries to recover from this by unwinding
    // that initial frame and retrying.

    if (!sender_blob->is_nmethod()) {
      return false;
    }

    // Could put some more validation for the potential non-interpreted sender
    // frame we'd create by calling sender if I could think of any. Wait for next crash in forte...

    // One idea is seeing if the sender_pc we have is one that we'd expect to call to current cb

    // We've validated the potential sender that would be created

    return true;

D
duke 已提交
325
  }
326 327 328 329 330 331 332 333 334

  // Must be native-compiled frame. Since sender will try and use fp to find
  // linkages it must be safe

  if (!fp_safe) return false;

  // could try and do some more potential verification of native frame if we could think of some...

  return true;
D
duke 已提交
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
}

// constructors

// Construct an unpatchable, deficient frame
frame::frame(intptr_t* sp, unpatchable_t, address pc, CodeBlob* cb) {
#ifdef _LP64
  assert( (((intptr_t)sp & (wordSize-1)) == 0), "frame constructor passed an invalid sp");
#endif
  _sp = sp;
  _younger_sp = NULL;
  _pc = pc;
  _cb = cb;
  _sp_adjustment_by_callee = 0;
  assert(pc == NULL && cb == NULL || pc != NULL, "can't have a cb and no pc!");
  if (_cb == NULL && _pc != NULL ) {
    _cb = CodeCache::find_blob(_pc);
  }
  _deopt_state = unknown;
#ifdef ASSERT
  if ( _cb != NULL && _cb->is_nmethod()) {
    // Without a valid unextended_sp() we can't convert the pc to "original"
    assert(!((nmethod*)_cb)->is_deopt_pc(_pc), "invariant broken");
  }
#endif // ASSERT
}

362 363 364 365 366
frame::frame(intptr_t* sp, intptr_t* younger_sp, bool younger_frame_is_interpreted) :
  _sp(sp),
  _younger_sp(younger_sp),
  _deopt_state(unknown),
  _sp_adjustment_by_callee(0) {
D
duke 已提交
367 368 369 370 371 372 373 374 375 376 377 378 379
  if (younger_sp == NULL) {
    // make a deficient frame which doesn't know where its PC is
    _pc = NULL;
    _cb = NULL;
  } else {
    _pc = (address)younger_sp[I7->sp_offset_in_saved_window()] + pc_return_offset;
    assert( (intptr_t*)younger_sp[FP->sp_offset_in_saved_window()] == (intptr_t*)((intptr_t)sp - STACK_BIAS), "younger_sp must be valid");
    // Any frame we ever build should always "safe" therefore we should not have to call
    // find_blob_unsafe
    // In case of native stubs, the pc retrieved here might be
    // wrong.  (the _last_native_pc will have the right value)
    // So do not put add any asserts on the _pc here.
  }
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394

  if (_pc != NULL)
    _cb = CodeCache::find_blob(_pc);

  // Check for MethodHandle call sites.
  if (_cb != NULL) {
    nmethod* nm = _cb->as_nmethod_or_null();
    if (nm != NULL) {
      if (nm->is_deopt_mh_entry(_pc) || nm->is_method_handle_return(_pc)) {
        _sp_adjustment_by_callee = (intptr_t*) ((intptr_t) sp[L7_mh_SP_save->sp_offset_in_saved_window()] + STACK_BIAS) - sp;
        // The SP is already adjusted by this MH call site, don't
        // overwrite this value with the wrong interpreter value.
        younger_frame_is_interpreted = false;
      }
    }
D
duke 已提交
395 396
  }

397 398 399 400
  if (younger_frame_is_interpreted) {
    // compute adjustment to this frame's SP made by its interpreted callee
    _sp_adjustment_by_callee = (intptr_t*) ((intptr_t) younger_sp[I5_savedSP->sp_offset_in_saved_window()] + STACK_BIAS) - sp;
  }
D
duke 已提交
401

402 403 404
  // It is important that the frame is fully constructed when we do
  // this lookup as get_deopt_original_pc() needs a correct value for
  // unextended_sp() which uses _sp_adjustment_by_callee.
D
duke 已提交
405
  if (_pc != NULL) {
406 407 408
    address original_pc = nmethod::get_deopt_original_pc(this);
    if (original_pc != NULL) {
      _pc = original_pc;
D
duke 已提交
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
      _deopt_state = is_deoptimized;
    } else {
      _deopt_state = not_deoptimized;
    }
  }
}

bool frame::is_interpreted_frame() const  {
  return Interpreter::contains(pc());
}

// sender_sp

intptr_t* frame::interpreter_frame_sender_sp() const {
  assert(is_interpreted_frame(), "interpreted frame expected");
  return fp();
}

#ifndef CC_INTERP
void frame::set_interpreter_frame_sender_sp(intptr_t* sender_sp) {
  assert(is_interpreted_frame(), "interpreted frame expected");
  Unimplemented();
}
#endif // CC_INTERP


#ifdef ASSERT
// Debugging aid
static frame nth_sender(int n) {
  frame f = JavaThread::current()->last_frame();

  for(int i = 0; i < n; ++i)
    f = f.sender((RegisterMap*)NULL);

  printf("first frame %d\n",          f.is_first_frame()       ? 1 : 0);
  printf("interpreted frame %d\n",    f.is_interpreted_frame() ? 1 : 0);
  printf("java frame %d\n",           f.is_java_frame()        ? 1 : 0);
  printf("entry frame %d\n",          f.is_entry_frame()       ? 1 : 0);
  printf("native frame %d\n",         f.is_native_frame()      ? 1 : 0);
  if (f.is_compiled_frame()) {
    if (f.is_deoptimized_frame())
      printf("deoptimized frame 1\n");
    else
      printf("compiled frame 1\n");
  }

  return f;
}
#endif


frame frame::sender_for_entry_frame(RegisterMap *map) const {
  assert(map != NULL, "map must be set");
  // Java frame called from C; skip all C frames and return top C
  // frame of that chunk as the sender
  JavaFrameAnchor* jfa = entry_frame_call_wrapper()->anchor();
  assert(!entry_frame_is_first(), "next Java fp must be non zero");
  assert(jfa->last_Java_sp() > _sp, "must be above this frame on stack");
  intptr_t* last_Java_sp = jfa->last_Java_sp();
  // Since we are walking the stack now this nested anchor is obviously walkable
  // even if it wasn't when it was stacked.
  if (!jfa->walkable()) {
    // Capture _last_Java_pc (if needed) and mark anchor walkable.
    jfa->capture_last_Java_pc(_sp);
  }
  assert(jfa->last_Java_pc() != NULL, "No captured pc!");
  map->clear();
  map->make_integer_regs_unsaved();
  map->shift_window(last_Java_sp, NULL);
  assert(map->include_argument_oops(), "should be set by clear");
  return frame(last_Java_sp, frame::unpatchable, jfa->last_Java_pc());
}

frame frame::sender_for_interpreter_frame(RegisterMap *map) const {
  ShouldNotCallThis();
  return sender(map);
}

frame frame::sender_for_compiled_frame(RegisterMap *map) const {
  ShouldNotCallThis();
  return sender(map);
}

frame frame::sender(RegisterMap* map) const {
  assert(map != NULL, "map must be set");

  assert(CodeCache::find_blob_unsafe(_pc) == _cb, "inconsistent");

  // Default is not to follow arguments; update it accordingly below
  map->set_include_argument_oops(false);

  if (is_entry_frame()) return sender_for_entry_frame(map);

502 503
  intptr_t* younger_sp = sp();
  intptr_t* sp         = sender_sp();
D
duke 已提交
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521

  // Note:  The version of this operation on any platform with callee-save
  //        registers must update the register map (if not null).
  //        In order to do this correctly, the various subtypes of
  //        of frame (interpreted, compiled, glue, native),
  //        must be distinguished.  There is no need on SPARC for
  //        such distinctions, because all callee-save registers are
  //        preserved for all frames via SPARC-specific mechanisms.
  //
  //        *** HOWEVER, *** if and when we make any floating-point
  //        registers callee-saved, then we will have to copy over
  //        the RegisterMap update logic from the Intel code.

  // The constructor of the sender must know whether this frame is interpreted so it can set the
  // sender's _sp_adjustment_by_callee field.  An osr adapter frame was originally
  // interpreted but its pc is in the code cache (for c1 -> osr_frame_return_id stub), so it must be
  // explicitly recognized.

522

523 524
  bool frame_is_interpreted = is_interpreted_frame();
  if (frame_is_interpreted) {
D
duke 已提交
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
    map->make_integer_regs_unsaved();
    map->shift_window(sp, younger_sp);
  } else if (_cb != NULL) {
    // Update the locations of implicitly saved registers to be their
    // addresses in the register save area.
    // For %o registers, the addresses of %i registers in the next younger
    // frame are used.
    map->shift_window(sp, younger_sp);
    if (map->update_map()) {
      // Tell GC to use argument oopmaps for some runtime stubs that need it.
      // For C1, the runtime stub might not have oop maps, so set this flag
      // outside of update_register_map.
      map->set_include_argument_oops(_cb->caller_must_gc_arguments(map->thread()));
      if (_cb->oop_maps() != NULL) {
        OopMapSet::update_register_map(this, map);
      }
    }
  }
543
  return frame(sp, younger_sp, frame_is_interpreted);
D
duke 已提交
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
}


void frame::patch_pc(Thread* thread, address pc) {
  if(thread == Thread::current()) {
   StubRoutines::Sparc::flush_callers_register_windows_func()();
  }
  if (TracePcPatching) {
    // QQQ this assert is invalid (or too strong anyway) sice _pc could
    // be original pc and frame could have the deopt pc.
    // assert(_pc == *O7_addr() + pc_return_offset, "frame has wrong pc");
    tty->print_cr("patch_pc at address  0x%x [0x%x -> 0x%x] ", O7_addr(), _pc, pc);
  }
  _cb = CodeCache::find_blob(pc);
  *O7_addr() = pc - pc_return_offset;
  _cb = CodeCache::find_blob(_pc);
560 561 562
  address original_pc = nmethod::get_deopt_original_pc(this);
  if (original_pc != NULL) {
    assert(original_pc == _pc, "expected original to be stored before patching");
D
duke 已提交
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
    _deopt_state = is_deoptimized;
  } else {
    _deopt_state = not_deoptimized;
  }
}


static bool sp_is_valid(intptr_t* old_sp, intptr_t* young_sp, intptr_t* sp) {
  return (((intptr_t)sp & (2*wordSize-1)) == 0 &&
          sp <= old_sp &&
          sp >= young_sp);
}


/*
  Find the (biased) sp that is just younger than old_sp starting at sp.
  If not found return NULL. Register windows are assumed to be flushed.
*/
intptr_t* frame::next_younger_sp_or_null(intptr_t* old_sp, intptr_t* sp) {

  intptr_t* previous_sp = NULL;
  intptr_t* orig_sp = sp;

  int max_frames = (old_sp - sp) / 16; // Minimum frame size is 16
  int max_frame2 = max_frames;
  while(sp != old_sp && sp_is_valid(old_sp, orig_sp, sp)) {
    if (max_frames-- <= 0)
      // too many frames have gone by; invalid parameters given to this function
      break;
    previous_sp = sp;
    sp = (intptr_t*)sp[FP->sp_offset_in_saved_window()];
    sp = (intptr_t*)((intptr_t)sp + STACK_BIAS);
  }

  return (sp == old_sp ? previous_sp : NULL);
}

/*
  Determine if "sp" is a valid stack pointer. "sp" is assumed to be younger than
  "valid_sp". So if "sp" is valid itself then it should be possible to walk frames
  from "sp" to "valid_sp". The assumption is that the registers windows for the
  thread stack in question are flushed.
*/
bool frame::is_valid_stack_pointer(intptr_t* valid_sp, intptr_t* sp) {
  return next_younger_sp_or_null(valid_sp, sp) != NULL;
}


bool frame::interpreter_frame_equals_unpacked_fp(intptr_t* fp) {
  assert(is_interpreted_frame(), "must be interpreter frame");
  return this->fp() == fp;
}


void frame::pd_gc_epilog() {
  if (is_interpreted_frame()) {
    // set constant pool cache entry for interpreter
620
    Method* m = interpreter_frame_method();
D
duke 已提交
621 622 623 624 625 626

    *interpreter_frame_cpoolcache_addr() = m->constants()->cache();
  }
}


627
bool frame::is_interpreted_frame_valid(JavaThread* thread) const {
D
duke 已提交
628 629 630 631 632 633 634 635 636 637 638
#ifdef CC_INTERP
  // Is there anything to do?
#else
  assert(is_interpreted_frame(), "Not an interpreted frame");
  // These are reasonable sanity checks
  if (fp() == 0 || (intptr_t(fp()) & (2*wordSize-1)) != 0) {
    return false;
  }
  if (sp() == 0 || (intptr_t(sp()) & (2*wordSize-1)) != 0) {
    return false;
  }
639

D
duke 已提交
640 641 642 643 644 645 646 647 648
  const intptr_t interpreter_frame_initial_sp_offset = interpreter_frame_vm_local_words;
  if (fp() + interpreter_frame_initial_sp_offset < sp()) {
    return false;
  }
  // These are hacks to keep us out of trouble.
  // The problem with these is that they mask other problems
  if (fp() <= sp()) {        // this attempts to deal with unsigned comparison above
    return false;
  }
649 650 651 652
  // do some validation of frame elements

  // first the method

653
  Method* m = *interpreter_frame_method_addr();
654 655

  // validate the method we'd find in this potential sender
656
  if (!m->is_valid_method()) return false;
657 658 659

  // stack frames shouldn't be much larger than max_stack elements

660
  if (fp() - sp() > 1024 + m->max_stack()*Interpreter::stackElementSize) {
661 662 663 664 665 666 667
    return false;
  }

  // validate bci/bcx

  intptr_t  bcx    = interpreter_frame_bcx();
  if (m->validate_bci_from_bcx(bcx) < 0) {
D
duke 已提交
668 669
    return false;
  }
670

671 672 673
  // validate ConstantPoolCache*
  ConstantPoolCache* cp = *interpreter_frame_cache_addr();
  if (cp == NULL || !cp->is_metadata()) return false;
674 675 676 677 678 679 680 681

  // validate locals

  address locals =  (address) *interpreter_frame_locals_addr();

  if (locals > thread->stack_base() || locals < (address) fp()) return false;

  // We'd have to be pretty unlucky to be mislead at this point
D
duke 已提交
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
#endif /* CC_INTERP */
  return true;
}


// Windows have been flushed on entry (but not marked). Capture the pc that
// is the return address to the frame that contains "sp" as its stack pointer.
// This pc resides in the called of the frame corresponding to "sp".
// As a side effect we mark this JavaFrameAnchor as having flushed the windows.
// This side effect lets us mark stacked JavaFrameAnchors (stacked in the
// call_helper) as flushed when we have flushed the windows for the most
// recent (i.e. current) JavaFrameAnchor. This saves useless flushing calls
// and lets us find the pc just once rather than multiple times as it did
// in the bad old _post_Java_state days.
//
void JavaFrameAnchor::capture_last_Java_pc(intptr_t* sp) {
  if (last_Java_sp() != NULL && last_Java_pc() == NULL) {
    // try and find the sp just younger than _last_Java_sp
    intptr_t* _post_Java_sp = frame::next_younger_sp_or_null(last_Java_sp(), sp);
    // Really this should never fail otherwise VM call must have non-standard
    // frame linkage (bad) or stack is not properly flushed (worse).
    guarantee(_post_Java_sp != NULL, "bad stack!");
    _last_Java_pc = (address) _post_Java_sp[ I7->sp_offset_in_saved_window()] + frame::pc_return_offset;

  }
  set_window_flushed();
}

void JavaFrameAnchor::make_walkable(JavaThread* thread) {
  if (walkable()) return;
  // Eventually make an assert
  guarantee(Thread::current() == (Thread*)thread, "only current thread can flush its registers");
  // We always flush in case the profiler wants it but we won't mark
  // the windows as flushed unless we have a last_Java_frame
  intptr_t* sp = StubRoutines::Sparc::flush_callers_register_windows_func()();
  if (last_Java_sp() != NULL ) {
    capture_last_Java_pc(sp);
  }
}

intptr_t* frame::entry_frame_argument_at(int offset) const {
  // convert offset to index to deal with tsi
  int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize);

  intptr_t* LSP = (intptr_t*) sp()[Lentry_args->sp_offset_in_saved_window()];
  return &LSP[index+1];
}


BasicType frame::interpreter_frame_result(oop* oop_result, jvalue* value_result) {
  assert(is_interpreted_frame(), "interpreted frame expected");
733
  Method* method = interpreter_frame_method();
D
duke 已提交
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
  BasicType type = method->result_type();

  if (method->is_native()) {
    // Prior to notifying the runtime of the method_exit the possible result
    // value is saved to l_scratch and d_scratch.

#ifdef CC_INTERP
    interpreterState istate = get_interpreterState();
    intptr_t* l_scratch = (intptr_t*) &istate->_native_lresult;
    intptr_t* d_scratch = (intptr_t*) &istate->_native_fresult;
#else /* CC_INTERP */
    intptr_t* l_scratch = fp() + interpreter_frame_l_scratch_fp_offset;
    intptr_t* d_scratch = fp() + interpreter_frame_d_scratch_fp_offset;
#endif /* CC_INTERP */

    address l_addr = (address)l_scratch;
#ifdef _LP64
    // On 64-bit the result for 1/8/16/32-bit result types is in the other
    // word half
    l_addr += wordSize/2;
#endif

    switch (type) {
      case T_OBJECT:
      case T_ARRAY: {
#ifdef CC_INTERP
        *oop_result = istate->_oop_temp;
#else
        oop obj = (oop) at(interpreter_frame_oop_temp_offset);
        assert(obj == NULL || Universe::heap()->is_in(obj), "sanity check");
        *oop_result = obj;
#endif // CC_INTERP
        break;
      }

      case T_BOOLEAN : { jint* p = (jint*)l_addr; value_result->z = (jboolean)((*p) & 0x1); break; }
      case T_BYTE    : { jint* p = (jint*)l_addr; value_result->b = (jbyte)((*p) & 0xff); break; }
      case T_CHAR    : { jint* p = (jint*)l_addr; value_result->c = (jchar)((*p) & 0xffff); break; }
      case T_SHORT   : { jint* p = (jint*)l_addr; value_result->s = (jshort)((*p) & 0xffff); break; }
      case T_INT     : value_result->i = *(jint*)l_addr; break;
      case T_LONG    : value_result->j = *(jlong*)l_scratch; break;
      case T_FLOAT   : value_result->f = *(jfloat*)d_scratch; break;
      case T_DOUBLE  : value_result->d = *(jdouble*)d_scratch; break;
      case T_VOID    : /* Nothing to do */ break;
      default        : ShouldNotReachHere();
    }
  } else {
    intptr_t* tos_addr = interpreter_frame_tos_address();

    switch(type) {
      case T_OBJECT:
      case T_ARRAY: {
        oop obj = (oop)*tos_addr;
        assert(obj == NULL || Universe::heap()->is_in(obj), "sanity check");
        *oop_result = obj;
        break;
      }
      case T_BOOLEAN : { jint* p = (jint*)tos_addr; value_result->z = (jboolean)((*p) & 0x1); break; }
      case T_BYTE    : { jint* p = (jint*)tos_addr; value_result->b = (jbyte)((*p) & 0xff); break; }
      case T_CHAR    : { jint* p = (jint*)tos_addr; value_result->c = (jchar)((*p) & 0xffff); break; }
      case T_SHORT   : { jint* p = (jint*)tos_addr; value_result->s = (jshort)((*p) & 0xffff); break; }
      case T_INT     : value_result->i = *(jint*)tos_addr; break;
      case T_LONG    : value_result->j = *(jlong*)tos_addr; break;
      case T_FLOAT   : value_result->f = *(jfloat*)tos_addr; break;
      case T_DOUBLE  : value_result->d = *(jdouble*)tos_addr; break;
      case T_VOID    : /* Nothing to do */ break;
      default        : ShouldNotReachHere();
    }
  };

  return type;
}

// Lesp pointer is one word lower than the top item on the stack.
intptr_t* frame::interpreter_frame_tos_at(jint offset) const {
  int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize) - 1;
  return &interpreter_frame_tos_address()[index];
}
812 813


814
#ifndef PRODUCT
815 816

#define DESCRIBE_FP_OFFSET(name) \
817
  values.describe(frame_no, fp() + frame::name##_offset, #name)
818 819 820 821 822 823

void frame::describe_pd(FrameValues& values, int frame_no) {
  for (int w = 0; w < frame::register_save_words; w++) {
    values.describe(frame_no, sp() + w, err_msg("register save area word %d", w), 1);
  }

824
  if (is_interpreted_frame()) {
825 826 827 828
    DESCRIBE_FP_OFFSET(interpreter_frame_d_scratch_fp);
    DESCRIBE_FP_OFFSET(interpreter_frame_l_scratch_fp);
    DESCRIBE_FP_OFFSET(interpreter_frame_padding);
    DESCRIBE_FP_OFFSET(interpreter_frame_oop_temp);
829 830 831 832 833 834

    // esp, according to Lesp (e.g. not depending on bci), if seems valid
    intptr_t* esp = *interpreter_frame_esp_addr();
    if ((esp >= sp()) && (esp < fp())) {
      values.describe(-1, esp, "*Lesp");
    }
835 836 837 838 839 840 841 842 843 844 845 846 847 848
  }

  if (!is_compiled_frame()) {
    if (frame::callee_aggregate_return_pointer_words != 0) {
      values.describe(frame_no, sp() + frame::callee_aggregate_return_pointer_sp_offset, "callee_aggregate_return_pointer_word");
    }
    for (int w = 0; w < frame::callee_register_argument_save_area_words; w++) {
      values.describe(frame_no, sp() + frame::callee_register_argument_save_area_sp_offset + w,
                      err_msg("callee_register_argument_save_area_words %d", w));
    }
  }
}

#endif
849 850 851 852 853

intptr_t *frame::initial_deoptimization_info() {
  // unused... but returns fp() to minimize changes introduced by 7087445
  return fp();
}