interpreter_ppc.cpp 27.5 KB
Newer Older
1
/*
2 3
 * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
 * Copyright 2012, 2015 SAP AG. All rights reserved.
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "asm/macroAssembler.inline.hpp"
#include "interpreter/bytecodeHistogram.hpp"
#include "interpreter/interpreter.hpp"
#include "interpreter/interpreterGenerator.hpp"
#include "interpreter/interpreterRuntime.hpp"
#include "interpreter/templateTable.hpp"
#include "oops/arrayOop.hpp"
#include "oops/methodData.hpp"
#include "oops/method.hpp"
#include "oops/oop.inline.hpp"
#include "prims/jvmtiExport.hpp"
#include "prims/jvmtiThreadState.hpp"
#include "prims/methodHandles.hpp"
#include "runtime/arguments.hpp"
#include "runtime/deoptimization.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#include "runtime/synchronizer.hpp"
#include "runtime/timer.hpp"
#include "runtime/vframeArray.hpp"
#include "utilities/debug.hpp"
#ifdef COMPILER1
#include "c1/c1_Runtime1.hpp"
#endif

#define __ _masm->

#ifdef PRODUCT
#define BLOCK_COMMENT(str) // nothing
#else
#define BLOCK_COMMENT(str) __ block_comment(str)
#endif

#define BIND(label) bind(label); BLOCK_COMMENT(#label ":")

int AbstractInterpreter::BasicType_as_index(BasicType type) {
  int i = 0;
  switch (type) {
    case T_BOOLEAN: i = 0; break;
    case T_CHAR   : i = 1; break;
    case T_BYTE   : i = 2; break;
    case T_SHORT  : i = 3; break;
    case T_INT    : i = 4; break;
    case T_LONG   : i = 5; break;
    case T_VOID   : i = 6; break;
    case T_FLOAT  : i = 7; break;
    case T_DOUBLE : i = 8; break;
    case T_OBJECT : i = 9; break;
    case T_ARRAY  : i = 9; break;
    default       : ShouldNotReachHere();
  }
  assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers, "index out of bounds");
  return i;
}

address AbstractInterpreterGenerator::generate_slow_signature_handler() {
  // Slow_signature handler that respects the PPC C calling conventions.
  //
  // We get called by the native entry code with our output register
  // area == 8. First we call InterpreterRuntime::get_result_handler
  // to copy the pointer to the signature string temporarily to the
  // first C-argument and to return the result_handler in
  // R3_RET. Since native_entry will copy the jni-pointer to the
  // first C-argument slot later on, it is OK to occupy this slot
  // temporarilly. Then we copy the argument list on the java
  // expression stack into native varargs format on the native stack
  // and load arguments into argument registers. Integer arguments in
  // the varargs vector will be sign-extended to 8 bytes.
  //
  // On entry:
  //   R3_ARG1        - intptr_t*     Address of java argument list in memory.
  //   R15_prev_state - BytecodeInterpreter* Address of interpreter state for
  //     this method
  //   R19_method
  //
  // On exit (just before return instruction):
  //   R3_RET            - contains the address of the result_handler.
  //   R4_ARG2           - is not updated for static methods and contains "this" otherwise.
  //   R5_ARG3-R10_ARG8: - When the (i-2)th Java argument is not of type float or double,
  //                       ARGi contains this argument. Otherwise, ARGi is not updated.
  //   F1_ARG1-F13_ARG13 - contain the first 13 arguments of type float or double.

  const int LogSizeOfTwoInstructions = 3;

  // FIXME: use Argument:: GL: Argument names different numbers!
  const int max_fp_register_arguments  = 13;
  const int max_int_register_arguments = 6;  // first 2 are reserved

  const Register arg_java       = R21_tmp1;
  const Register arg_c          = R22_tmp2;
  const Register signature      = R23_tmp3;  // is string
  const Register sig_byte       = R24_tmp4;
  const Register fpcnt          = R25_tmp5;
  const Register argcnt         = R26_tmp6;
  const Register intSlot        = R27_tmp7;
  const Register target_sp      = R28_tmp8;
  const FloatRegister floatSlot = F0;

G
goetz 已提交
126
  address entry = __ function_entry();
127 128 129 130 131

  __ save_LR_CR(R0);
  __ save_nonvolatile_gprs(R1_SP, _spill_nonvolatiles_neg(r14));
  // We use target_sp for storing arguments in the C frame.
  __ mr(target_sp, R1_SP);
G
goetz 已提交
132
  __ push_frame_reg_args_nonvolatiles(0, R11_scratch1);
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149

  __ mr(arg_java, R3_ARG1);

  __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::get_signature), R16_thread, R19_method);

  // Signature is in R3_RET. Signature is callee saved.
  __ mr(signature, R3_RET);

  // Get the result handler.
  __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::get_result_handler), R16_thread, R19_method);

  {
    Label L;
    // test if static
    // _access_flags._flags must be at offset 0.
    // TODO PPC port: requires change in shared code.
    //assert(in_bytes(AccessFlags::flags_offset()) == 0,
150
    //       "MethodDesc._access_flags == MethodDesc._access_flags._flags");
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
    // _access_flags must be a 32 bit value.
    assert(sizeof(AccessFlags) == 4, "wrong size");
    __ lwa(R11_scratch1/*access_flags*/, method_(access_flags));
    // testbit with condition register.
    __ testbitdi(CCR0, R0, R11_scratch1/*access_flags*/, JVM_ACC_STATIC_BIT);
    __ btrue(CCR0, L);
    // For non-static functions, pass "this" in R4_ARG2 and copy it
    // to 2nd C-arg slot.
    // We need to box the Java object here, so we use arg_java
    // (address of current Java stack slot) as argument and don't
    // dereference it as in case of ints, floats, etc.
    __ mr(R4_ARG2, arg_java);
    __ addi(arg_java, arg_java, -BytesPerWord);
    __ std(R4_ARG2, _abi(carg_2), target_sp);
    __ bind(L);
  }

  // Will be incremented directly after loop_start. argcnt=0
  // corresponds to 3rd C argument.
  __ li(argcnt, -1);
  // arg_c points to 3rd C argument
  __ addi(arg_c, target_sp, _abi(carg_3));
  // no floating-point args parsed so far
  __ li(fpcnt, 0);

  Label move_intSlot_to_ARG, move_floatSlot_to_FARG;
  Label loop_start, loop_end;
  Label do_int, do_long, do_float, do_double, do_dontreachhere, do_object, do_array, do_boxed;

  // signature points to '(' at entry
#ifdef ASSERT
  __ lbz(sig_byte, 0, signature);
  __ cmplwi(CCR0, sig_byte, '(');
  __ bne(CCR0, do_dontreachhere);
#endif

  __ bind(loop_start);

  __ addi(argcnt, argcnt, 1);
  __ lbzu(sig_byte, 1, signature);

  __ cmplwi(CCR0, sig_byte, ')'); // end of signature
  __ beq(CCR0, loop_end);

  __ cmplwi(CCR0, sig_byte, 'B'); // byte
  __ beq(CCR0, do_int);

  __ cmplwi(CCR0, sig_byte, 'C'); // char
  __ beq(CCR0, do_int);

  __ cmplwi(CCR0, sig_byte, 'D'); // double
  __ beq(CCR0, do_double);

  __ cmplwi(CCR0, sig_byte, 'F'); // float
  __ beq(CCR0, do_float);

  __ cmplwi(CCR0, sig_byte, 'I'); // int
  __ beq(CCR0, do_int);

  __ cmplwi(CCR0, sig_byte, 'J'); // long
  __ beq(CCR0, do_long);

  __ cmplwi(CCR0, sig_byte, 'S'); // short
  __ beq(CCR0, do_int);

  __ cmplwi(CCR0, sig_byte, 'Z'); // boolean
  __ beq(CCR0, do_int);

  __ cmplwi(CCR0, sig_byte, 'L'); // object
  __ beq(CCR0, do_object);

  __ cmplwi(CCR0, sig_byte, '['); // array
  __ beq(CCR0, do_array);

  //  __ cmplwi(CCR0, sig_byte, 'V'); // void cannot appear since we do not parse the return type
  //  __ beq(CCR0, do_void);

  __ bind(do_dontreachhere);

  __ unimplemented("ShouldNotReachHere in slow_signature_handler", 120);

  __ bind(do_array);

  {
    Label start_skip, end_skip;

    __ bind(start_skip);
    __ lbzu(sig_byte, 1, signature);
    __ cmplwi(CCR0, sig_byte, '[');
    __ beq(CCR0, start_skip); // skip further brackets
    __ cmplwi(CCR0, sig_byte, '9');
    __ bgt(CCR0, end_skip);   // no optional size
    __ cmplwi(CCR0, sig_byte, '0');
    __ bge(CCR0, start_skip); // skip optional size
    __ bind(end_skip);

    __ cmplwi(CCR0, sig_byte, 'L');
    __ beq(CCR0, do_object);  // for arrays of objects, the name of the object must be skipped
    __ b(do_boxed);          // otherwise, go directly to do_boxed
  }

  __ bind(do_object);
  {
    Label L;
    __ bind(L);
    __ lbzu(sig_byte, 1, signature);
    __ cmplwi(CCR0, sig_byte, ';');
    __ bne(CCR0, L);
   }
  // Need to box the Java object here, so we use arg_java (address of
  // current Java stack slot) as argument and don't dereference it as
  // in case of ints, floats, etc.
  Label do_null;
  __ bind(do_boxed);
  __ ld(R0,0, arg_java);
  __ cmpdi(CCR0, R0, 0);
  __ li(intSlot,0);
  __ beq(CCR0, do_null);
  __ mr(intSlot, arg_java);
  __ bind(do_null);
  __ std(intSlot, 0, arg_c);
  __ addi(arg_java, arg_java, -BytesPerWord);
  __ addi(arg_c, arg_c, BytesPerWord);
  __ cmplwi(CCR0, argcnt, max_int_register_arguments);
  __ blt(CCR0, move_intSlot_to_ARG);
  __ b(loop_start);

  __ bind(do_int);
  __ lwa(intSlot, 0, arg_java);
  __ std(intSlot, 0, arg_c);
  __ addi(arg_java, arg_java, -BytesPerWord);
  __ addi(arg_c, arg_c, BytesPerWord);
  __ cmplwi(CCR0, argcnt, max_int_register_arguments);
  __ blt(CCR0, move_intSlot_to_ARG);
  __ b(loop_start);

  __ bind(do_long);
  __ ld(intSlot, -BytesPerWord, arg_java);
  __ std(intSlot, 0, arg_c);
  __ addi(arg_java, arg_java, - 2 * BytesPerWord);
  __ addi(arg_c, arg_c, BytesPerWord);
  __ cmplwi(CCR0, argcnt, max_int_register_arguments);
  __ blt(CCR0, move_intSlot_to_ARG);
  __ b(loop_start);

  __ bind(do_float);
  __ lfs(floatSlot, 0, arg_java);
#if defined(LINUX)
299 300 301 302 303
  // Linux uses ELF ABI. Both original ELF and ELFv2 ABIs have float
  // in the least significant word of an argument slot.
#if defined(VM_LITTLE_ENDIAN)
  __ stfs(floatSlot, 0, arg_c);
#else
304
  __ stfs(floatSlot, 4, arg_c);
305
#endif
306
#elif defined(AIX)
307 308
  // Although AIX runs on big endian CPU, float is in most significant
  // word of an argument slot.
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
  __ stfs(floatSlot, 0, arg_c);
#else
#error "unknown OS"
#endif
  __ addi(arg_java, arg_java, -BytesPerWord);
  __ addi(arg_c, arg_c, BytesPerWord);
  __ cmplwi(CCR0, fpcnt, max_fp_register_arguments);
  __ blt(CCR0, move_floatSlot_to_FARG);
  __ b(loop_start);

  __ bind(do_double);
  __ lfd(floatSlot, - BytesPerWord, arg_java);
  __ stfd(floatSlot, 0, arg_c);
  __ addi(arg_java, arg_java, - 2 * BytesPerWord);
  __ addi(arg_c, arg_c, BytesPerWord);
  __ cmplwi(CCR0, fpcnt, max_fp_register_arguments);
  __ blt(CCR0, move_floatSlot_to_FARG);
  __ b(loop_start);

  __ bind(loop_end);

  __ pop_frame();
  __ restore_nonvolatile_gprs(R1_SP, _spill_nonvolatiles_neg(r14));
  __ restore_LR_CR(R0);

  __ blr();

  Label move_int_arg, move_float_arg;
  __ bind(move_int_arg); // each case must consist of 2 instructions (otherwise adapt LogSizeOfTwoInstructions)
  __ mr(R5_ARG3, intSlot);  __ b(loop_start);
  __ mr(R6_ARG4, intSlot);  __ b(loop_start);
  __ mr(R7_ARG5, intSlot);  __ b(loop_start);
  __ mr(R8_ARG6, intSlot);  __ b(loop_start);
  __ mr(R9_ARG7, intSlot);  __ b(loop_start);
  __ mr(R10_ARG8, intSlot); __ b(loop_start);

  __ bind(move_float_arg); // each case must consist of 2 instructions (otherwise adapt LogSizeOfTwoInstructions)
  __ fmr(F1_ARG1, floatSlot);   __ b(loop_start);
  __ fmr(F2_ARG2, floatSlot);   __ b(loop_start);
  __ fmr(F3_ARG3, floatSlot);   __ b(loop_start);
  __ fmr(F4_ARG4, floatSlot);   __ b(loop_start);
  __ fmr(F5_ARG5, floatSlot);   __ b(loop_start);
  __ fmr(F6_ARG6, floatSlot);   __ b(loop_start);
  __ fmr(F7_ARG7, floatSlot);   __ b(loop_start);
  __ fmr(F8_ARG8, floatSlot);   __ b(loop_start);
  __ fmr(F9_ARG9, floatSlot);   __ b(loop_start);
  __ fmr(F10_ARG10, floatSlot); __ b(loop_start);
  __ fmr(F11_ARG11, floatSlot); __ b(loop_start);
  __ fmr(F12_ARG12, floatSlot); __ b(loop_start);
  __ fmr(F13_ARG13, floatSlot); __ b(loop_start);

  __ bind(move_intSlot_to_ARG);
  __ sldi(R0, argcnt, LogSizeOfTwoInstructions);
  __ load_const(R11_scratch1, move_int_arg); // Label must be bound here.
  __ add(R11_scratch1, R0, R11_scratch1);
  __ mtctr(R11_scratch1/*branch_target*/);
  __ bctr();
  __ bind(move_floatSlot_to_FARG);
  __ sldi(R0, fpcnt, LogSizeOfTwoInstructions);
  __ addi(fpcnt, fpcnt, 1);
  __ load_const(R11_scratch1, move_float_arg); // Label must be bound here.
  __ add(R11_scratch1, R0, R11_scratch1);
  __ mtctr(R11_scratch1/*branch_target*/);
  __ bctr();

  return entry;
}

address AbstractInterpreterGenerator::generate_result_handler_for(BasicType type) {
  //
  // Registers alive
  //   R3_RET
  //   LR
  //
  // Registers updated
  //   R3_RET
  //

  Label done;
  address entry = __ pc();

  switch (type) {
  case T_BOOLEAN:
392 393 394 395
    // convert !=0 to 1
    __ neg(R0, R3_RET);
    __ orr(R0, R3_RET, R0);
    __ srwi(R3_RET, R0, 31);
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
    break;
  case T_BYTE:
     // sign extend 8 bits
     __ extsb(R3_RET, R3_RET);
     break;
  case T_CHAR:
     // zero extend 16 bits
     __ clrldi(R3_RET, R3_RET, 48);
     break;
  case T_SHORT:
     // sign extend 16 bits
     __ extsh(R3_RET, R3_RET);
     break;
  case T_INT:
     // sign extend 32 bits
     __ extsw(R3_RET, R3_RET);
     break;
  case T_LONG:
     break;
  case T_OBJECT:
    // unbox result if not null
    __ cmpdi(CCR0, R3_RET, 0);
    __ beq(CCR0, done);
    __ ld(R3_RET, 0, R3_RET);
    __ verify_oop(R3_RET);
    break;
  case T_FLOAT:
     break;
  case T_DOUBLE:
     break;
  case T_VOID:
     break;
  default: ShouldNotReachHere();
  }

  __ BIND(done);
  __ blr();

  return entry;
}

// Abstract method entry.
//
address InterpreterGenerator::generate_abstract_entry(void) {
  address entry = __ pc();

  //
  // Registers alive
  //   R16_thread     - JavaThread*
445
  //   R19_method     - callee's method (method to be invoked)
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
  //   R1_SP          - SP prepared such that caller's outgoing args are near top
  //   LR             - return address to caller
  //
  // Stack layout at this point:
  //
  //   0       [TOP_IJAVA_FRAME_ABI]         <-- R1_SP
  //           alignment (optional)
  //           [outgoing Java arguments]
  //           ...
  //   PARENT  [PARENT_IJAVA_FRAME_ABI]
  //            ...
  //

  // Can't use call_VM here because we have not set up a new
  // interpreter state. Make the call to the vm and make it look like
  // our caller set up the JavaFrameAnchor.
  __ set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R12_scratch2/*tmp*/);

  // Push a new C frame and save LR.
  __ save_LR_CR(R0);
G
goetz 已提交
466
  __ push_frame_reg_args(0, R11_scratch1);
467 468 469

  // This is not a leaf but we have a JavaFrameAnchor now and we will
  // check (create) exceptions afterward so this is ok.
470 471
  __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError),
                  R16_thread);
472 473 474 475 476 477 478 479

  // Pop the C frame and restore LR.
  __ pop_frame();
  __ restore_LR_CR(R0);

  // Reset JavaFrameAnchor from call_VM_leaf above.
  __ reset_last_Java_frame();

480
#ifdef CC_INTERP
481 482
  // Return to frame manager, it will handle the pending exception.
  __ blr();
483
#else
484 485 486 487 488 489
  // We don't know our caller, so jump to the general forward exception stub,
  // which will also pop our full frame off. Satisfy the interface of
  // SharedRuntime::generate_forward_exception()
  __ load_const_optimized(R11_scratch1, StubRoutines::forward_exception_entry(), R0);
  __ mtctr(R11_scratch1);
  __ bctr();
490
#endif
491 492 493 494 495 496 497

  return entry;
}

// Call an accessor method (assuming it is resolved, otherwise drop into
// vanilla (slow path) entry.
address InterpreterGenerator::generate_accessor_entry(void) {
498
  if (!UseFastAccessorMethods && (!FLAG_IS_ERGO(UseFastAccessorMethods))) {
499
    return NULL;
500
  }
501

502
  Label Lslow_path, Lacquire;
503

504 505
  const Register
         Rclass_or_obj = R3_ARG1,
506 507 508 509 510 511
         Rconst_method = R4_ARG2,
         Rcodes        = Rconst_method,
         Rcpool_cache  = R5_ARG3,
         Rscratch      = R11_scratch1,
         Rjvmti_mode   = Rscratch,
         Roffset       = R12_scratch2,
512 513 514 515
         Rflags        = R6_ARG4,
         Rbtable       = R7_ARG5;

  static address branch_table[number_of_states];
516 517 518 519 520 521 522 523

  address entry = __ pc();

  // Check for safepoint:
  // Ditch this, real man don't need safepoint checks.

  // Also check for JVMTI mode
  // Check for null obj, take slow path if so.
524
  __ ld(Rclass_or_obj, Interpreter::stackElementSize, CC_INTERP_ONLY(R17_tos) NOT_CC_INTERP(R15_esp));
525
  __ lwz(Rjvmti_mode, thread_(interp_only_mode));
526
  __ cmpdi(CCR1, Rclass_or_obj, 0);
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
  __ cmpwi(CCR0, Rjvmti_mode, 0);
  __ crorc(/*CCR0 eq*/2, /*CCR1 eq*/4+2, /*CCR0 eq*/2);
  __ beq(CCR0, Lslow_path); // this==null or jvmti_mode!=0

  // Do 2 things in parallel:
  // 1. Load the index out of the first instruction word, which looks like this:
  //    <0x2a><0xb4><index (2 byte, native endianess)>.
  // 2. Load constant pool cache base.
  __ ld(Rconst_method, in_bytes(Method::const_offset()), R19_method);
  __ ld(Rcpool_cache, in_bytes(ConstMethod::constants_offset()), Rconst_method);

  __ lhz(Rcodes, in_bytes(ConstMethod::codes_offset()) + 2, Rconst_method); // Lower half of 32 bit field.
  __ ld(Rcpool_cache, ConstantPool::cache_offset_in_bytes(), Rcpool_cache);

  // Get the const pool entry by means of <index>.
  const int codes_shift = exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord);
  __ slwi(Rscratch, Rcodes, codes_shift); // (codes&0xFFFF)<<codes_shift
  __ add(Rcpool_cache, Rscratch, Rcpool_cache);

  // Check if cpool cache entry is resolved.
  // We are resolved if the indices offset contains the current bytecode.
  ByteSize cp_base_offset = ConstantPoolCache::base_offset();
  // Big Endian:
  __ lbz(Rscratch, in_bytes(cp_base_offset) + in_bytes(ConstantPoolCacheEntry::indices_offset()) + 7 - 2, Rcpool_cache);
  __ cmpwi(CCR0, Rscratch, Bytecodes::_getfield);
  __ bne(CCR0, Lslow_path);
  __ isync(); // Order succeeding loads wrt. load of _indices field from cpool_cache.

  // Finally, start loading the value: Get cp cache entry into regs.
  __ ld(Rflags, in_bytes(cp_base_offset) + in_bytes(ConstantPoolCacheEntry::flags_offset()), Rcpool_cache);
  __ ld(Roffset, in_bytes(cp_base_offset) + in_bytes(ConstantPoolCacheEntry::f2_offset()), Rcpool_cache);

559 560 561 562 563 564 565 566 567
  // Following code is from templateTable::getfield_or_static
  // Load pointer to branch table
  __ load_const_optimized(Rbtable, (address)branch_table, Rscratch);

  // Get volatile flag
  __ rldicl(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // extract volatile bit
  // note: sync is needed before volatile load on PPC64

  // Check field type
568 569 570
  __ rldicl(Rflags, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);

#ifdef ASSERT
571 572 573 574 575 576 577 578
  Label LFlagInvalid;
  __ cmpldi(CCR0, Rflags, number_of_states);
  __ bge(CCR0, LFlagInvalid);

  __ ld(R9_ARG7, 0, R1_SP);
  __ ld(R10_ARG8, 0, R21_sender_SP);
  __ cmpd(CCR0, R9_ARG7, R10_ARG8);
  __ asm_assert_eq("backlink", 0x543);
579 580 581
#endif // ASSERT
  __ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.

582 583 584
  // Load from branch table and dispatch (volatile case: one instruction ahead)
  __ sldi(Rflags, Rflags, LogBytesPerWord);
  __ cmpwi(CCR6, Rscratch, 1); // volatile?
585 586 587
  if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
    __ sldi(Rscratch, Rscratch, exact_log2(BytesPerInstWord)); // volatile ? size of 1 instruction : 0
  }
588 589
  __ ldx(Rbtable, Rbtable, Rflags);

590 591 592
  if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
    __ subf(Rbtable, Rscratch, Rbtable); // point to volatile/non-volatile entry point
  }
593 594 595
  __ mtctr(Rbtable);
  __ bctr();

596
#ifdef ASSERT
597 598 599 600 601 602 603 604 605 606 607
  __ bind(LFlagInvalid);
  __ stop("got invalid flag", 0x6541);

  bool all_uninitialized = true,
       all_initialized   = true;
  for (int i = 0; i<number_of_states; ++i) {
    all_uninitialized = all_uninitialized && (branch_table[i] == NULL);
    all_initialized   = all_initialized   && (branch_table[i] != NULL);
  }
  assert(all_uninitialized != all_initialized, "consistency"); // either or

608
  __ fence(); // volatile entry point (one instruction before non-volatile_entry point)
609 610 611 612
  if (branch_table[vtos] == 0) branch_table[vtos] = __ pc(); // non-volatile_entry point
  if (branch_table[dtos] == 0) branch_table[dtos] = __ pc(); // non-volatile_entry point
  if (branch_table[ftos] == 0) branch_table[ftos] = __ pc(); // non-volatile_entry point
  __ stop("unexpected type", 0x6551);
613 614
#endif

615 616
  if (branch_table[itos] == 0) { // generate only once
    __ align(32, 28, 28); // align load
617
    __ fence(); // volatile entry point (one instruction before non-volatile_entry point)
618 619 620 621 622
    branch_table[itos] = __ pc(); // non-volatile_entry point
    __ lwax(R3_RET, Rclass_or_obj, Roffset);
    __ beq(CCR6, Lacquire);
    __ blr();
  }
623

624 625
  if (branch_table[ltos] == 0) { // generate only once
    __ align(32, 28, 28); // align load
626
    __ fence(); // volatile entry point (one instruction before non-volatile_entry point)
627 628 629 630 631
    branch_table[ltos] = __ pc(); // non-volatile_entry point
    __ ldx(R3_RET, Rclass_or_obj, Roffset);
    __ beq(CCR6, Lacquire);
    __ blr();
  }
632

633 634
  if (branch_table[btos] == 0) { // generate only once
    __ align(32, 28, 28); // align load
635
    __ fence(); // volatile entry point (one instruction before non-volatile_entry point)
636 637 638 639 640 641
    branch_table[btos] = __ pc(); // non-volatile_entry point
    __ lbzx(R3_RET, Rclass_or_obj, Roffset);
    __ extsb(R3_RET, R3_RET);
    __ beq(CCR6, Lacquire);
    __ blr();
  }
642

643 644
  if (branch_table[ctos] == 0) { // generate only once
    __ align(32, 28, 28); // align load
645
    __ fence(); // volatile entry point (one instruction before non-volatile_entry point)
646 647 648 649 650 651 652 653
    branch_table[ctos] = __ pc(); // non-volatile_entry point
    __ lhzx(R3_RET, Rclass_or_obj, Roffset);
    __ beq(CCR6, Lacquire);
    __ blr();
  }

  if (branch_table[stos] == 0) { // generate only once
    __ align(32, 28, 28); // align load
654
    __ fence(); // volatile entry point (one instruction before non-volatile_entry point)
655 656 657 658 659 660 661 662
    branch_table[stos] = __ pc(); // non-volatile_entry point
    __ lhax(R3_RET, Rclass_or_obj, Roffset);
    __ beq(CCR6, Lacquire);
    __ blr();
  }

  if (branch_table[atos] == 0) { // generate only once
    __ align(32, 28, 28); // align load
663
    __ fence(); // volatile entry point (one instruction before non-volatile_entry point)
664 665 666 667 668 669 670
    branch_table[atos] = __ pc(); // non-volatile_entry point
    __ load_heap_oop(R3_RET, (RegisterOrConstant)Roffset, Rclass_or_obj);
    __ verify_oop(R3_RET);
    //__ dcbt(R3_RET); // prefetch
    __ beq(CCR6, Lacquire);
    __ blr();
  }
671

672 673 674 675
  __ align(32, 12);
  __ bind(Lacquire);
  __ twi_0(R3_RET);
  __ isync(); // acquire
676 677
  __ blr();

678 679 680 681 682 683 684
#ifdef ASSERT
  for (int i = 0; i<number_of_states; ++i) {
    assert(branch_table[i], "accessor_entry initialization");
    //tty->print_cr("accessor_entry: branch_table[%d] = 0x%llx (opcode 0x%llx)", i, branch_table[i], *((unsigned int*)branch_table[i]));
  }
#endif

685
  __ bind(Lslow_path);
686
  __ branch_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals), Rscratch);
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
  __ flush();

  return entry;
}

// Interpreter intrinsic for WeakReference.get().
// 1. Don't push a full blown frame and go on dispatching, but fetch the value
//    into R8 and return quickly
// 2. If G1 is active we *must* execute this intrinsic for corrrectness:
//    It contains a GC barrier which puts the reference into the satb buffer
//    to indicate that someone holds a strong reference to the object the
//    weak ref points to!
address InterpreterGenerator::generate_Reference_get_entry(void) {
  // Code: _aload_0, _getfield, _areturn
  // parameter size = 1
  //
  // The code that gets generated by this routine is split into 2 parts:
  //    1. the "intrinsified" code for G1 (or any SATB based GC),
  //    2. the slow path - which is an expansion of the regular method entry.
  //
  // Notes:
  // * In the G1 code we do not check whether we need to block for
  //   a safepoint. If G1 is enabled then we must execute the specialized
  //   code for Reference.get (except when the Reference object is null)
  //   so that we can log the value in the referent field with an SATB
  //   update buffer.
  //   If the code for the getfield template is modified so that the
  //   G1 pre-barrier code is executed when the current method is
  //   Reference.get() then going through the normal method entry
  //   will be fine.
  // * The G1 code can, however, check the receiver object (the instance
  //   of java.lang.Reference) and jump to the slow path if null. If the
  //   Reference object is null then we obviously cannot fetch the referent
  //   and so we don't need to call the G1 pre-barrier. Thus we can use the
  //   regular method entry code to generate the NPE.
  //
  // This code is based on generate_accessor_enty.

  address entry = __ pc();

  const int referent_offset = java_lang_ref_Reference::referent_offset;
  guarantee(referent_offset > 0, "referent offset not initialized");

  if (UseG1GC) {
     Label slow_path;

    // Debugging not possible, so can't use __ skip_if_jvmti_mode(slow_path, GR31_SCRATCH);

    // In the G1 code we don't check if we need to reach a safepoint. We
    // continue and the thread will safepoint at the next bytecode dispatch.

    // If the receiver is null then it is OK to jump to the slow path.
739
    __ ld(R3_RET, Interpreter::stackElementSize, CC_INTERP_ONLY(R17_tos) NOT_CC_INTERP(R15_esp)); // get receiver
740 741 742 743 744 745

    // Check if receiver == NULL and go the slow path.
    __ cmpdi(CCR0, R3_RET, 0);
    __ beq(CCR0, slow_path);

    // Load the value of the referent field.
746
    __ load_heap_oop(R3_RET, referent_offset, R3_RET);
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772

    // Generate the G1 pre-barrier code to log the value of
    // the referent field in an SATB buffer. Note with
    // these parameters the pre-barrier does not generate
    // the load of the previous value.

    // Restore caller sp for c2i case.
#ifdef ASSERT
      __ ld(R9_ARG7, 0, R1_SP);
      __ ld(R10_ARG8, 0, R21_sender_SP);
      __ cmpd(CCR0, R9_ARG7, R10_ARG8);
      __ asm_assert_eq("backlink", 0x544);
#endif // ASSERT
    __ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.

    __ g1_write_barrier_pre(noreg,         // obj
                            noreg,         // offset
                            R3_RET,        // pre_val
                            R11_scratch1,  // tmp
                            R12_scratch2,  // tmp
                            true);         // needs_frame

    __ blr();

    // Generate regular method entry.
    __ bind(slow_path);
773
    __ branch_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals), R11_scratch1);
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
    __ flush();

    return entry;
  } else {
    return generate_accessor_entry();
  }
}

void Deoptimization::unwind_callee_save_values(frame* f, vframeArray* vframe_array) {
  // This code is sort of the equivalent of C2IAdapter::setup_stack_frame back in
  // the days we had adapter frames. When we deoptimize a situation where a
  // compiled caller calls a compiled caller will have registers it expects
  // to survive the call to the callee. If we deoptimize the callee the only
  // way we can restore these registers is to have the oldest interpreter
  // frame that we create restore these values. That is what this routine
  // will accomplish.

  // At the moment we have modified c2 to not have any callee save registers
  // so this problem does not exist and this routine is just a place holder.

  assert(f->is_interpreted_frame(), "must be interpreted");
}