g1CollectedHeap.cpp 189.8 KB
Newer Older
1
/*
2
 * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
22 23 24
 *
 */

25 26 27 28 29 30
#include "precompiled.hpp"
#include "code/icBuffer.hpp"
#include "gc_implementation/g1/bufferingOopClosure.hpp"
#include "gc_implementation/g1/concurrentG1Refine.hpp"
#include "gc_implementation/g1/concurrentG1RefineThread.hpp"
#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
31
#include "gc_implementation/g1/g1AllocRegion.inline.hpp"
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
#include "gc_implementation/g1/g1MarkSweep.hpp"
#include "gc_implementation/g1/g1OopClosures.inline.hpp"
#include "gc_implementation/g1/g1RemSet.inline.hpp"
#include "gc_implementation/g1/heapRegionRemSet.hpp"
#include "gc_implementation/g1/heapRegionSeq.inline.hpp"
#include "gc_implementation/g1/vm_operations_g1.hpp"
#include "gc_implementation/shared/isGCActiveMark.hpp"
#include "memory/gcLocker.inline.hpp"
#include "memory/genOopClosures.inline.hpp"
#include "memory/generationSpec.hpp"
#include "oops/oop.inline.hpp"
#include "oops/oop.pcgc.inline.hpp"
#include "runtime/aprofiler.hpp"
#include "runtime/vmThread.hpp"
48

49 50
size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;

51 52 53
// turn it on so that the contents of the young list (scan-only /
// to-be-collected) are printed at "strategic" points before / during
// / after the collection --- this is useful for debugging
54
#define YOUNG_LIST_VERBOSE 0
55 56 57 58 59 60
// CURRENT STATUS
// This file is under construction.  Search for "FIXME".

// INVARIANTS/NOTES
//
// All allocation activity covered by the G1CollectedHeap interface is
61 62 63 64 65
// serialized by acquiring the HeapLock.  This happens in mem_allocate
// and allocate_new_tlab, which are the "entry" points to the
// allocation code from the rest of the JVM.  (Note that this does not
// apply to TLAB allocation, which is not part of this interface: it
// is done by clients of this interface.)
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

// Local to this file.

class RefineCardTableEntryClosure: public CardTableEntryClosure {
  SuspendibleThreadSet* _sts;
  G1RemSet* _g1rs;
  ConcurrentG1Refine* _cg1r;
  bool _concurrent;
public:
  RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
                              G1RemSet* g1rs,
                              ConcurrentG1Refine* cg1r) :
    _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
  {}
  bool do_card_ptr(jbyte* card_ptr, int worker_i) {
J
johnc 已提交
81 82 83 84 85 86
    bool oops_into_cset = _g1rs->concurrentRefineOneCard(card_ptr, worker_i, false);
    // This path is executed by the concurrent refine or mutator threads,
    // concurrently, and so we do not care if card_ptr contains references
    // that point into the collection set.
    assert(!oops_into_cset, "should be");

87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
    if (_concurrent && _sts->should_yield()) {
      // Caller will actually yield.
      return false;
    }
    // Otherwise, we finished successfully; return true.
    return true;
  }
  void set_concurrent(bool b) { _concurrent = b; }
};


class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
  int _calls;
  G1CollectedHeap* _g1h;
  CardTableModRefBS* _ctbs;
  int _histo[256];
public:
  ClearLoggedCardTableEntryClosure() :
    _calls(0)
  {
    _g1h = G1CollectedHeap::heap();
    _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
    for (int i = 0; i < 256; i++) _histo[i] = 0;
  }
  bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
      _calls++;
      unsigned char* ujb = (unsigned char*)card_ptr;
      int ind = (int)(*ujb);
      _histo[ind]++;
      *card_ptr = -1;
    }
    return true;
  }
  int calls() { return _calls; }
  void print_histo() {
    gclog_or_tty->print_cr("Card table value histogram:");
    for (int i = 0; i < 256; i++) {
      if (_histo[i] != 0) {
        gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
      }
    }
  }
};

class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
  int _calls;
  G1CollectedHeap* _g1h;
  CardTableModRefBS* _ctbs;
public:
  RedirtyLoggedCardTableEntryClosure() :
    _calls(0)
  {
    _g1h = G1CollectedHeap::heap();
    _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
  }
  bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
      _calls++;
      *card_ptr = 0;
    }
    return true;
  }
  int calls() { return _calls; }
};

153 154 155 156 157 158 159 160
class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
public:
  bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    *card_ptr = CardTableModRefBS::dirty_card_val();
    return true;
  }
};

161 162
YoungList::YoungList(G1CollectedHeap* g1h)
  : _g1h(g1h), _head(NULL),
163
    _length(0),
164
    _last_sampled_rs_lengths(0),
165
    _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0)
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
{
  guarantee( check_list_empty(false), "just making sure..." );
}

void YoungList::push_region(HeapRegion *hr) {
  assert(!hr->is_young(), "should not already be young");
  assert(hr->get_next_young_region() == NULL, "cause it should!");

  hr->set_next_young_region(_head);
  _head = hr;

  hr->set_young();
  double yg_surv_rate = _g1h->g1_policy()->predict_yg_surv_rate((int)_length);
  ++_length;
}

void YoungList::add_survivor_region(HeapRegion* hr) {
183
  assert(hr->is_survivor(), "should be flagged as survivor region");
184 185 186 187
  assert(hr->get_next_young_region() == NULL, "cause it should!");

  hr->set_next_young_region(_survivor_head);
  if (_survivor_head == NULL) {
188
    _survivor_tail = hr;
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
  }
  _survivor_head = hr;

  ++_survivor_length;
}

void YoungList::empty_list(HeapRegion* list) {
  while (list != NULL) {
    HeapRegion* next = list->get_next_young_region();
    list->set_next_young_region(NULL);
    list->uninstall_surv_rate_group();
    list->set_not_young();
    list = next;
  }
}

void YoungList::empty_list() {
  assert(check_list_well_formed(), "young list should be well formed");

  empty_list(_head);
  _head = NULL;
  _length = 0;

  empty_list(_survivor_head);
  _survivor_head = NULL;
214
  _survivor_tail = NULL;
215 216 217 218 219 220 221 222 223 224 225 226 227 228
  _survivor_length = 0;

  _last_sampled_rs_lengths = 0;

  assert(check_list_empty(false), "just making sure...");
}

bool YoungList::check_list_well_formed() {
  bool ret = true;

  size_t length = 0;
  HeapRegion* curr = _head;
  HeapRegion* last = NULL;
  while (curr != NULL) {
229
    if (!curr->is_young()) {
230
      gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
231
                             "incorrectly tagged (y: %d, surv: %d)",
232
                             curr->bottom(), curr->end(),
233
                             curr->is_young(), curr->is_survivor());
234 235 236 237 238 239 240 241 242 243 244 245 246 247
      ret = false;
    }
    ++length;
    last = curr;
    curr = curr->get_next_young_region();
  }
  ret = ret && (length == _length);

  if (!ret) {
    gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
    gclog_or_tty->print_cr("###   list has %d entries, _length is %d",
                           length, _length);
  }

248
  return ret;
249 250
}

251
bool YoungList::check_list_empty(bool check_sample) {
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
  bool ret = true;

  if (_length != 0) {
    gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %d",
                  _length);
    ret = false;
  }
  if (check_sample && _last_sampled_rs_lengths != 0) {
    gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
    ret = false;
  }
  if (_head != NULL) {
    gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
    ret = false;
  }
  if (!ret) {
    gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
  }

271
  return ret;
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
}

void
YoungList::rs_length_sampling_init() {
  _sampled_rs_lengths = 0;
  _curr               = _head;
}

bool
YoungList::rs_length_sampling_more() {
  return _curr != NULL;
}

void
YoungList::rs_length_sampling_next() {
  assert( _curr != NULL, "invariant" );
288 289 290 291 292 293 294 295 296 297 298 299
  size_t rs_length = _curr->rem_set()->occupied();

  _sampled_rs_lengths += rs_length;

  // The current region may not yet have been added to the
  // incremental collection set (it gets added when it is
  // retired as the current allocation region).
  if (_curr->in_collection_set()) {
    // Update the collection set policy information for this region
    _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
  }

300 301 302 303 304 305 306 307 308 309 310 311 312 313
  _curr = _curr->get_next_young_region();
  if (_curr == NULL) {
    _last_sampled_rs_lengths = _sampled_rs_lengths;
    // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
  }
}

void
YoungList::reset_auxilary_lists() {
  guarantee( is_empty(), "young list should be empty" );
  assert(check_list_well_formed(), "young list should be well formed");

  // Add survivor regions to SurvRateGroup.
  _g1h->g1_policy()->note_start_adding_survivor_regions();
314
  _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
315

316 317 318 319
  for (HeapRegion* curr = _survivor_head;
       curr != NULL;
       curr = curr->get_next_young_region()) {
    _g1h->g1_policy()->set_region_survivors(curr);
320 321 322 323 324

    // The region is a non-empty survivor so let's add it to
    // the incremental collection set for the next evacuation
    // pause.
    _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
325 326 327
  }
  _g1h->g1_policy()->note_stop_adding_survivor_regions();

328 329
  _head   = _survivor_head;
  _length = _survivor_length;
330
  if (_survivor_head != NULL) {
331 332 333
    assert(_survivor_tail != NULL, "cause it shouldn't be");
    assert(_survivor_length > 0, "invariant");
    _survivor_tail->set_next_young_region(NULL);
334 335
  }

336 337 338 339
  // Don't clear the survivor list handles until the start of
  // the next evacuation pause - we need it in order to re-tag
  // the survivor regions from this evacuation pause as 'young'
  // at the start of the next.
340

341
  _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
342 343 344 345 346

  assert(check_list_well_formed(), "young list should be well formed");
}

void YoungList::print() {
347 348
  HeapRegion* lists[] = {_head,   _survivor_head};
  const char* names[] = {"YOUNG", "SURVIVOR"};
349 350 351 352 353 354 355 356

  for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
    gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
    HeapRegion *curr = lists[list];
    if (curr == NULL)
      gclog_or_tty->print_cr("  empty");
    while (curr != NULL) {
      gclog_or_tty->print_cr("  [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, "
357
                             "age: %4d, y: %d, surv: %d",
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
                             curr->bottom(), curr->end(),
                             curr->top(),
                             curr->prev_top_at_mark_start(),
                             curr->next_top_at_mark_start(),
                             curr->top_at_conc_mark_count(),
                             curr->age_in_surv_rate_group_cond(),
                             curr->is_young(),
                             curr->is_survivor());
      curr = curr->get_next_young_region();
    }
  }

  gclog_or_tty->print_cr("");
}

373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
{
  // Claim the right to put the region on the dirty cards region list
  // by installing a self pointer.
  HeapRegion* next = hr->get_next_dirty_cards_region();
  if (next == NULL) {
    HeapRegion* res = (HeapRegion*)
      Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
                          NULL);
    if (res == NULL) {
      HeapRegion* head;
      do {
        // Put the region to the dirty cards region list.
        head = _dirty_cards_region_list;
        next = (HeapRegion*)
          Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
        if (next == head) {
          assert(hr->get_next_dirty_cards_region() == hr,
                 "hr->get_next_dirty_cards_region() != hr");
          if (next == NULL) {
            // The last region in the list points to itself.
            hr->set_next_dirty_cards_region(hr);
          } else {
            hr->set_next_dirty_cards_region(next);
          }
        }
      } while (next != head);
    }
  }
}

HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
{
  HeapRegion* head;
  HeapRegion* hr;
  do {
    head = _dirty_cards_region_list;
    if (head == NULL) {
      return NULL;
    }
    HeapRegion* new_head = head->get_next_dirty_cards_region();
    if (head == new_head) {
      // The last region.
      new_head = NULL;
    }
    hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
                                          head);
  } while (hr != head);
  assert(hr != NULL, "invariant");
  hr->set_next_dirty_cards_region(NULL);
  return hr;
}

426
void G1CollectedHeap::stop_conc_gc_threads() {
427
  _cg1r->stop();
428 429 430
  _cmThread->stop();
}

431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
#ifdef ASSERT
// A region is added to the collection set as it is retired
// so an address p can point to a region which will be in the
// collection set but has not yet been retired.  This method
// therefore is only accurate during a GC pause after all
// regions have been retired.  It is used for debugging
// to check if an nmethod has references to objects that can
// be move during a partial collection.  Though it can be
// inaccurate, it is sufficient for G1 because the conservative
// implementation of is_scavengable() for G1 will indicate that
// all nmethods must be scanned during a partial collection.
bool G1CollectedHeap::is_in_partial_collection(const void* p) {
  HeapRegion* hr = heap_region_containing(p);
  return hr != NULL && hr->in_collection_set();
}
#endif

// Returns true if the reference points to an object that
// can move in an incremental collecction.
bool G1CollectedHeap::is_scavengable(const void* p) {
  G1CollectedHeap* g1h = G1CollectedHeap::heap();
  G1CollectorPolicy* g1p = g1h->g1_policy();
  HeapRegion* hr = heap_region_containing(p);
  if (hr == NULL) {
     // perm gen (or null)
     return false;
  } else {
    return !hr->isHumongous();
  }
}

462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
void G1CollectedHeap::check_ct_logs_at_safepoint() {
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();

  // Count the dirty cards at the start.
  CountNonCleanMemRegionClosure count1(this);
  ct_bs->mod_card_iterate(&count1);
  int orig_count = count1.n();

  // First clear the logged cards.
  ClearLoggedCardTableEntryClosure clear;
  dcqs.set_closure(&clear);
  dcqs.apply_closure_to_all_completed_buffers();
  dcqs.iterate_closure_all_threads(false);
  clear.print_histo();

  // Now ensure that there's no dirty cards.
  CountNonCleanMemRegionClosure count2(this);
  ct_bs->mod_card_iterate(&count2);
  if (count2.n() != 0) {
    gclog_or_tty->print_cr("Card table has %d entries; %d originally",
                           count2.n(), orig_count);
  }
  guarantee(count2.n() == 0, "Card table should be clean.");

  RedirtyLoggedCardTableEntryClosure redirty;
  JavaThread::dirty_card_queue_set().set_closure(&redirty);
  dcqs.apply_closure_to_all_completed_buffers();
  dcqs.iterate_closure_all_threads(false);
  gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
                         clear.calls(), orig_count);
  guarantee(redirty.calls() == clear.calls(),
            "Or else mechanism is broken.");

  CountNonCleanMemRegionClosure count3(this);
  ct_bs->mod_card_iterate(&count3);
  if (count3.n() != orig_count) {
    gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
                           orig_count, count3.n());
    guarantee(count3.n() >= orig_count, "Should have restored them all.");
  }

  JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
}

// Private class members.

G1CollectedHeap* G1CollectedHeap::_g1h;

// Private methods.

513
HeapRegion*
T
tonyp 已提交
514
G1CollectedHeap::new_region_try_secondary_free_list() {
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
  MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  while (!_secondary_free_list.is_empty() || free_regions_coming()) {
    if (!_secondary_free_list.is_empty()) {
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                               "secondary_free_list has "SIZE_FORMAT" entries",
                               _secondary_free_list.length());
      }
      // It looks as if there are free regions available on the
      // secondary_free_list. Let's move them to the free_list and try
      // again to allocate from it.
      append_secondary_free_list();

      assert(!_free_list.is_empty(), "if the secondary_free_list was not "
             "empty we should have moved at least one entry to the free_list");
      HeapRegion* res = _free_list.remove_head();
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                               "allocated "HR_FORMAT" from secondary_free_list",
                               HR_FORMAT_PARAMS(res));
      }
      return res;
    }

    // Wait here until we get notifed either when (a) there are no
    // more free regions coming or (b) some regions have been moved on
    // the secondary_free_list.
    SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
  }

  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                           "could not allocate from secondary_free_list");
  }
  return NULL;
}
551

552
HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool do_expand) {
553 554 555 556
  assert(!isHumongous(word_size) ||
                                  word_size <= (size_t) HeapRegion::GrainWords,
         "the only time we use this to allocate a humongous region is "
         "when we are allocating a single humongous region");
557

558 559 560 561 562 563 564
  HeapRegion* res;
  if (G1StressConcRegionFreeing) {
    if (!_secondary_free_list.is_empty()) {
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                               "forced to look at the secondary_free_list");
      }
T
tonyp 已提交
565
      res = new_region_try_secondary_free_list();
566 567 568 569 570 571 572 573 574 575 576
      if (res != NULL) {
        return res;
      }
    }
  }
  res = _free_list.remove_head_or_null();
  if (res == NULL) {
    if (G1ConcRegionFreeingVerbose) {
      gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                             "res == NULL, trying the secondary_free_list");
    }
T
tonyp 已提交
577
    res = new_region_try_secondary_free_list();
578
  }
579
  if (res == NULL && do_expand) {
580
    if (expand(word_size * HeapWordSize)) {
581 582 583 584
      // Even though the heap was expanded, it might not have reached
      // the desired size. So, we cannot assume that the allocation
      // will succeed.
      res = _free_list.remove_head_or_null();
585
    }
586 587 588 589
  }
  return res;
}

590 591
size_t G1CollectedHeap::humongous_obj_allocate_find_first(size_t num_regions,
                                                          size_t word_size) {
T
tonyp 已提交
592 593 594
  assert(isHumongous(word_size), "word_size should be humongous");
  assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");

595
  size_t first = G1_NULL_HRS_INDEX;
596 597 598 599
  if (num_regions == 1) {
    // Only one region to allocate, no need to go through the slower
    // path. The caller will attempt the expasion if this fails, so
    // let's not try to expand here too.
600
    HeapRegion* hr = new_region(word_size, false /* do_expand */);
601 602 603
    if (hr != NULL) {
      first = hr->hrs_index();
    } else {
604
      first = G1_NULL_HRS_INDEX;
605 606 607 608 609 610 611 612 613 614 615
    }
  } else {
    // We can't allocate humongous regions while cleanupComplete() is
    // running, since some of the regions we find to be empty might not
    // yet be added to the free list and it is not straightforward to
    // know which list they are on so that we can remove them. Note
    // that we only need to do this if we need to allocate more than
    // one region to satisfy the current humongous allocation
    // request. If we are only allocating one region we use the common
    // region allocation code (see above).
    wait_while_free_regions_coming();
T
tonyp 已提交
616
    append_secondary_free_list_if_not_empty_with_lock();
617 618

    if (free_regions() >= num_regions) {
619 620 621 622
      first = _hrs.find_contiguous(num_regions);
      if (first != G1_NULL_HRS_INDEX) {
        for (size_t i = first; i < first + num_regions; ++i) {
          HeapRegion* hr = region_at(i);
623
          assert(hr->is_empty(), "sanity");
T
tonyp 已提交
624
          assert(is_on_master_free_list(hr), "sanity");
625 626 627 628 629 630 631 632 633
          hr->set_pending_removal(true);
        }
        _free_list.remove_all_pending(num_regions);
      }
    }
  }
  return first;
}

T
tonyp 已提交
634
HeapWord*
635
G1CollectedHeap::humongous_obj_allocate_initialize_regions(size_t first,
T
tonyp 已提交
636 637
                                                           size_t num_regions,
                                                           size_t word_size) {
638
  assert(first != G1_NULL_HRS_INDEX, "pre-condition");
T
tonyp 已提交
639 640 641 642
  assert(isHumongous(word_size), "word_size should be humongous");
  assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");

  // Index of last region in the series + 1.
643
  size_t last = first + num_regions;
T
tonyp 已提交
644 645 646 647 648 649 650 651 652 653 654 655 656 657

  // We need to initialize the region(s) we just discovered. This is
  // a bit tricky given that it can happen concurrently with
  // refinement threads refining cards on these regions and
  // potentially wanting to refine the BOT as they are scanning
  // those cards (this can happen shortly after a cleanup; see CR
  // 6991377). So we have to set up the region(s) carefully and in
  // a specific order.

  // The word size sum of all the regions we will allocate.
  size_t word_size_sum = num_regions * HeapRegion::GrainWords;
  assert(word_size <= word_size_sum, "sanity");

  // This will be the "starts humongous" region.
658
  HeapRegion* first_hr = region_at(first);
T
tonyp 已提交
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
  // The header of the new object will be placed at the bottom of
  // the first region.
  HeapWord* new_obj = first_hr->bottom();
  // This will be the new end of the first region in the series that
  // should also match the end of the last region in the seriers.
  HeapWord* new_end = new_obj + word_size_sum;
  // This will be the new top of the first region that will reflect
  // this allocation.
  HeapWord* new_top = new_obj + word_size;

  // First, we need to zero the header of the space that we will be
  // allocating. When we update top further down, some refinement
  // threads might try to scan the region. By zeroing the header we
  // ensure that any thread that will try to scan the region will
  // come across the zero klass word and bail out.
  //
  // NOTE: It would not have been correct to have used
  // CollectedHeap::fill_with_object() and make the space look like
  // an int array. The thread that is doing the allocation will
  // later update the object header to a potentially different array
  // type and, for a very short period of time, the klass and length
  // fields will be inconsistent. This could cause a refinement
  // thread to calculate the object size incorrectly.
  Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);

  // We will set up the first region as "starts humongous". This
  // will also update the BOT covering all the regions to reflect
  // that there is a single object that starts at the bottom of the
  // first region.
  first_hr->set_startsHumongous(new_top, new_end);

  // Then, if there are any, we will set up the "continues
  // humongous" regions.
  HeapRegion* hr = NULL;
693 694
  for (size_t i = first + 1; i < last; ++i) {
    hr = region_at(i);
T
tonyp 已提交
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
    hr->set_continuesHumongous(first_hr);
  }
  // If we have "continues humongous" regions (hr != NULL), then the
  // end of the last one should match new_end.
  assert(hr == NULL || hr->end() == new_end, "sanity");

  // Up to this point no concurrent thread would have been able to
  // do any scanning on any region in this series. All the top
  // fields still point to bottom, so the intersection between
  // [bottom,top] and [card_start,card_end] will be empty. Before we
  // update the top fields, we'll do a storestore to make sure that
  // no thread sees the update to top before the zeroing of the
  // object header and the BOT initialization.
  OrderAccess::storestore();

  // Now that the BOT and the object header have been initialized,
  // we can update top of the "starts humongous" region.
  assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
         "new_top should be in this region");
  first_hr->set_top(new_top);
715 716 717 718 719 720 721 722 723 724 725
  if (_hr_printer.is_active()) {
    HeapWord* bottom = first_hr->bottom();
    HeapWord* end = first_hr->orig_end();
    if ((first + 1) == last) {
      // the series has a single humongous region
      _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
    } else {
      // the series has more than one humongous regions
      _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
    }
  }
T
tonyp 已提交
726 727 728 729 730 731 732 733 734 735 736 737 738

  // Now, we will update the top fields of the "continues humongous"
  // regions. The reason we need to do this is that, otherwise,
  // these regions would look empty and this will confuse parts of
  // G1. For example, the code that looks for a consecutive number
  // of empty regions will consider them empty and try to
  // re-allocate them. We can extend is_empty() to also include
  // !continuesHumongous(), but it is easier to just update the top
  // fields here. The way we set top for all regions (i.e., top ==
  // end for all regions but the last one, top == new_top for the
  // last one) is actually used when we will free up the humongous
  // region in free_humongous_region().
  hr = NULL;
739 740
  for (size_t i = first + 1; i < last; ++i) {
    hr = region_at(i);
T
tonyp 已提交
741 742 743 744 745
    if ((i + 1) == last) {
      // last continues humongous region
      assert(hr->bottom() < new_top && new_top <= hr->end(),
             "new_top should fall on this region");
      hr->set_top(new_top);
746
      _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
T
tonyp 已提交
747 748 749 750
    } else {
      // not last one
      assert(new_top > hr->end(), "new_top should be above this region");
      hr->set_top(hr->end());
751
      _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
T
tonyp 已提交
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
    }
  }
  // If we have continues humongous regions (hr != NULL), then the
  // end of the last one should match new_end and its top should
  // match new_top.
  assert(hr == NULL ||
         (hr->end() == new_end && hr->top() == new_top), "sanity");

  assert(first_hr->used() == word_size * HeapWordSize, "invariant");
  _summary_bytes_used += first_hr->used();
  _humongous_set.add(first_hr);

  return new_obj;
}

767 768 769
// If could fit into free regions w/o expansion, try.
// Otherwise, if can expand, do so.
// Otherwise, if using ex regions might help, try with ex given back.
770
HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
771
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
772

773
  verify_region_sets_optional();
774 775

  size_t num_regions =
776
         round_to(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
777
  size_t x_size = expansion_regions();
778 779 780
  size_t fs = _hrs.free_suffix();
  size_t first = humongous_obj_allocate_find_first(num_regions, word_size);
  if (first == G1_NULL_HRS_INDEX) {
781
    // The only thing we can do now is attempt expansion.
782
    if (fs + x_size >= num_regions) {
783 784 785 786 787 788 789 790 791 792 793
      // If the number of regions we're trying to allocate for this
      // object is at most the number of regions in the free suffix,
      // then the call to humongous_obj_allocate_find_first() above
      // should have succeeded and we wouldn't be here.
      //
      // We should only be trying to expand when the free suffix is
      // not sufficient for the object _and_ we have some expansion
      // room available.
      assert(num_regions > fs, "earlier allocation should have succeeded");

      if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
794 795 796
        // Even though the heap was expanded, it might not have
        // reached the desired size. So, we cannot assume that the
        // allocation will succeed.
797 798
        first = humongous_obj_allocate_find_first(num_regions, word_size);
      }
799 800
    }
  }
801

T
tonyp 已提交
802
  HeapWord* result = NULL;
803
  if (first != G1_NULL_HRS_INDEX) {
T
tonyp 已提交
804 805 806
    result =
      humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
    assert(result != NULL, "it should always return a valid result");
807
  }
808 809

  verify_region_sets_optional();
T
tonyp 已提交
810 811

  return result;
812 813
}

814 815 816
HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
  assert_heap_not_locked_and_not_at_safepoint();
  assert(!isHumongous(word_size), "we do not allow humongous TLABs");
817

818 819
  unsigned int dummy_gc_count_before;
  return attempt_allocation(word_size, &dummy_gc_count_before);
820 821 822
}

HeapWord*
823 824 825
G1CollectedHeap::mem_allocate(size_t word_size,
                              bool*  gc_overhead_limit_was_exceeded) {
  assert_heap_not_locked_and_not_at_safepoint();
826

827 828 829
  // Loop until the allocation is satisified, or unsatisfied after GC.
  for (int try_count = 1; /* we'll return */; try_count += 1) {
    unsigned int gc_count_before;
830

831 832 833
    HeapWord* result = NULL;
    if (!isHumongous(word_size)) {
      result = attempt_allocation(word_size, &gc_count_before);
834
    } else {
835 836 837 838 839
      result = attempt_allocation_humongous(word_size, &gc_count_before);
    }
    if (result != NULL) {
      return result;
    }
840

841 842 843 844
    // Create the garbage collection operation...
    VM_G1CollectForAllocation op(gc_count_before, word_size);
    // ...and get the VM thread to execute it.
    VMThread::execute(&op);
845

846 847 848 849 850 851
    if (op.prologue_succeeded() && op.pause_succeeded()) {
      // If the operation was successful we'll return the result even
      // if it is NULL. If the allocation attempt failed immediately
      // after a Full GC, it's unlikely we'll be able to allocate now.
      HeapWord* result = op.result();
      if (result != NULL && !isHumongous(word_size)) {
852
        // Allocations that take place on VM operations do not do any
853 854
        // card dirtying and we have to do it here. We only have to do
        // this for non-humongous allocations, though.
855 856 857
        dirty_young_block(result, word_size);
      }
      return result;
858 859 860
    } else {
      assert(op.result() == NULL,
             "the result should be NULL if the VM op did not succeed");
861 862 863 864 865
    }

    // Give a warning if we seem to be looping forever.
    if ((QueuedAllocationWarningCount > 0) &&
        (try_count % QueuedAllocationWarningCount == 0)) {
866
      warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
867 868 869
    }
  }

870
  ShouldNotReachHere();
871 872 873
  return NULL;
}

874 875 876 877 878 879 880
HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
                                           unsigned int *gc_count_before_ret) {
  // Make sure you read the note in attempt_allocation_humongous().

  assert_heap_not_locked_and_not_at_safepoint();
  assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
         "be called for humongous allocation requests");
881

882 883 884 885 886 887 888
  // We should only get here after the first-level allocation attempt
  // (attempt_allocation()) failed to allocate.

  // We will loop until a) we manage to successfully perform the
  // allocation or b) we successfully schedule a collection which
  // fails to perform the allocation. b) is the only case when we'll
  // return NULL.
889
  HeapWord* result = NULL;
890 891 892
  for (int try_count = 1; /* we'll return */; try_count += 1) {
    bool should_try_gc;
    unsigned int gc_count_before;
893

894 895 896 897 898 899 900
    {
      MutexLockerEx x(Heap_lock);

      result = _mutator_alloc_region.attempt_allocation_locked(word_size,
                                                      false /* bot_updates */);
      if (result != NULL) {
        return result;
901
      }
902

903 904 905
      // If we reach here, attempt_allocation_locked() above failed to
      // allocate a new region. So the mutator alloc region should be NULL.
      assert(_mutator_alloc_region.get() == NULL, "only way to get here");
906

907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
      if (GC_locker::is_active_and_needs_gc()) {
        if (g1_policy()->can_expand_young_list()) {
          result = _mutator_alloc_region.attempt_allocation_force(word_size,
                                                      false /* bot_updates */);
          if (result != NULL) {
            return result;
          }
        }
        should_try_gc = false;
      } else {
        // Read the GC count while still holding the Heap_lock.
        gc_count_before = SharedHeap::heap()->total_collections();
        should_try_gc = true;
      }
    }
922

923 924
    if (should_try_gc) {
      bool succeeded;
925 926
      result = do_collection_pause(word_size, gc_count_before, &succeeded);
      if (result != NULL) {
927
        assert(succeeded, "only way to get back a non-NULL result");
928 929 930
        return result;
      }

931 932 933 934 935 936 937 938 939 940
      if (succeeded) {
        // If we get here we successfully scheduled a collection which
        // failed to allocate. No point in trying to allocate
        // further. We'll just return NULL.
        MutexLockerEx x(Heap_lock);
        *gc_count_before_ret = SharedHeap::heap()->total_collections();
        return NULL;
      }
    } else {
      GC_locker::stall_until_clear();
941 942
    }

943 944 945 946 947 948 949 950 951 952 953 954
    // We can reach here if we were unsuccessul in scheduling a
    // collection (because another thread beat us to it) or if we were
    // stalled due to the GC locker. In either can we should retry the
    // allocation attempt in case another thread successfully
    // performed a collection and reclaimed enough space. We do the
    // first attempt (without holding the Heap_lock) here and the
    // follow-on attempt will be at the start of the next loop
    // iteration (after taking the Heap_lock).
    result = _mutator_alloc_region.attempt_allocation(word_size,
                                                      false /* bot_updates */);
    if (result != NULL ){
      return result;
955 956
    }

957 958 959
    // Give a warning if we seem to be looping forever.
    if ((QueuedAllocationWarningCount > 0) &&
        (try_count % QueuedAllocationWarningCount == 0)) {
960
      warning("G1CollectedHeap::attempt_allocation_slow() "
961
              "retries %d times", try_count);
962 963 964
    }
  }

965 966
  ShouldNotReachHere();
  return NULL;
967 968
}

969 970 971 972 973 974 975 976 977 978 979 980 981
HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
                                          unsigned int * gc_count_before_ret) {
  // The structure of this method has a lot of similarities to
  // attempt_allocation_slow(). The reason these two were not merged
  // into a single one is that such a method would require several "if
  // allocation is not humongous do this, otherwise do that"
  // conditional paths which would obscure its flow. In fact, an early
  // version of this code did use a unified method which was harder to
  // follow and, as a result, it had subtle bugs that were hard to
  // track down. So keeping these two methods separate allows each to
  // be more readable. It will be good to keep these two in sync as
  // much as possible.

982
  assert_heap_not_locked_and_not_at_safepoint();
983 984
  assert(isHumongous(word_size), "attempt_allocation_humongous() "
         "should only be called for humongous allocations");
985

986 987 988 989 990
  // We will loop until a) we manage to successfully perform the
  // allocation or b) we successfully schedule a collection which
  // fails to perform the allocation. b) is the only case when we'll
  // return NULL.
  HeapWord* result = NULL;
991
  for (int try_count = 1; /* we'll return */; try_count += 1) {
992
    bool should_try_gc;
993
    unsigned int gc_count_before;
994

995
    {
996
      MutexLockerEx x(Heap_lock);
997

998 999 1000 1001 1002 1003 1004
      // Given that humongous objects are not allocated in young
      // regions, we'll first try to do the allocation without doing a
      // collection hoping that there's enough space in the heap.
      result = humongous_obj_allocate(word_size);
      if (result != NULL) {
        return result;
      }
1005

1006 1007
      if (GC_locker::is_active_and_needs_gc()) {
        should_try_gc = false;
1008
      } else {
1009 1010 1011
        // Read the GC count while still holding the Heap_lock.
        gc_count_before = SharedHeap::heap()->total_collections();
        should_try_gc = true;
1012 1013 1014
      }
    }

1015 1016 1017 1018
    if (should_try_gc) {
      // If we failed to allocate the humongous object, we should try to
      // do a collection pause (if we're allowed) in case it reclaims
      // enough space for the allocation to succeed after the pause.
1019

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
      bool succeeded;
      result = do_collection_pause(word_size, gc_count_before, &succeeded);
      if (result != NULL) {
        assert(succeeded, "only way to get back a non-NULL result");
        return result;
      }

      if (succeeded) {
        // If we get here we successfully scheduled a collection which
        // failed to allocate. No point in trying to allocate
        // further. We'll just return NULL.
        MutexLockerEx x(Heap_lock);
        *gc_count_before_ret = SharedHeap::heap()->total_collections();
        return NULL;
1034 1035
      }
    } else {
1036
      GC_locker::stall_until_clear();
1037 1038
    }

1039 1040 1041 1042 1043 1044 1045
    // We can reach here if we were unsuccessul in scheduling a
    // collection (because another thread beat us to it) or if we were
    // stalled due to the GC locker. In either can we should retry the
    // allocation attempt in case another thread successfully
    // performed a collection and reclaimed enough space.  Give a
    // warning if we seem to be looping forever.

1046 1047
    if ((QueuedAllocationWarningCount > 0) &&
        (try_count % QueuedAllocationWarningCount == 0)) {
1048 1049
      warning("G1CollectedHeap::attempt_allocation_humongous() "
              "retries %d times", try_count);
1050 1051
    }
  }
1052 1053

  ShouldNotReachHere();
1054
  return NULL;
1055 1056
}

1057 1058
HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
                                       bool expect_null_mutator_alloc_region) {
1059
  assert_at_safepoint(true /* should_be_vm_thread */);
1060 1061 1062
  assert(_mutator_alloc_region.get() == NULL ||
                                             !expect_null_mutator_alloc_region,
         "the current alloc region was unexpectedly found to be non-NULL");
1063

1064 1065 1066 1067 1068
  if (!isHumongous(word_size)) {
    return _mutator_alloc_region.attempt_allocation_locked(word_size,
                                                      false /* bot_updates */);
  } else {
    return humongous_obj_allocate(word_size);
1069
  }
1070 1071

  ShouldNotReachHere();
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
}

class PostMCRemSetClearClosure: public HeapRegionClosure {
  ModRefBarrierSet* _mr_bs;
public:
  PostMCRemSetClearClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
  bool doHeapRegion(HeapRegion* r) {
    r->reset_gc_time_stamp();
    if (r->continuesHumongous())
      return false;
    HeapRegionRemSet* hrrs = r->rem_set();
    if (hrrs != NULL) hrrs->clear();
    // You might think here that we could clear just the cards
    // corresponding to the used region.  But no: if we leave a dirty card
    // in a region we might allocate into, then it would prevent that card
    // from being enqueued, and cause it to be missed.
    // Re: the performance cost: we shouldn't be doing full GC anyway!
    _mr_bs->clear(MemRegion(r->bottom(), r->end()));
    return false;
  }
};


class PostMCRemSetInvalidateClosure: public HeapRegionClosure {
  ModRefBarrierSet* _mr_bs;
public:
  PostMCRemSetInvalidateClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
  bool doHeapRegion(HeapRegion* r) {
    if (r->continuesHumongous()) return false;
    if (r->used_region().word_size() != 0) {
      _mr_bs->invalidate(r->used_region(), true /*whole heap*/);
    }
    return false;
  }
};

1108 1109 1110 1111 1112 1113
class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
  G1CollectedHeap*   _g1h;
  UpdateRSOopClosure _cl;
  int                _worker_i;
public:
  RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1114
    _cl(g1->g1_rem_set(), worker_i),
1115 1116 1117
    _worker_i(worker_i),
    _g1h(g1)
  { }
1118

1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
  bool doHeapRegion(HeapRegion* r) {
    if (!r->continuesHumongous()) {
      _cl.set_from(r);
      r->oop_iterate(&_cl);
    }
    return false;
  }
};

class ParRebuildRSTask: public AbstractGangTask {
  G1CollectedHeap* _g1;
public:
  ParRebuildRSTask(G1CollectedHeap* g1)
    : AbstractGangTask("ParRebuildRSTask"),
      _g1(g1)
  { }

  void work(int i) {
    RebuildRSOutOfRegionClosure rebuild_rs(_g1, i);
    _g1->heap_region_par_iterate_chunked(&rebuild_rs, i,
                                         HeapRegion::RebuildRSClaimValue);
  }
};

1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
class PostCompactionPrinterClosure: public HeapRegionClosure {
private:
  G1HRPrinter* _hr_printer;
public:
  bool doHeapRegion(HeapRegion* hr) {
    assert(!hr->is_young(), "not expecting to find young regions");
    // We only generate output for non-empty regions.
    if (!hr->is_empty()) {
      if (!hr->isHumongous()) {
        _hr_printer->post_compaction(hr, G1HRPrinter::Old);
      } else if (hr->startsHumongous()) {
        if (hr->capacity() == (size_t) HeapRegion::GrainBytes) {
          // single humongous region
          _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
        } else {
          _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
        }
      } else {
        assert(hr->continuesHumongous(), "only way to get here");
        _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
      }
    }
    return false;
  }

  PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
    : _hr_printer(hr_printer) { }
};

1172
bool G1CollectedHeap::do_collection(bool explicit_gc,
1173
                                    bool clear_all_soft_refs,
1174
                                    size_t word_size) {
1175 1176
  assert_at_safepoint(true /* should_be_vm_thread */);

1177
  if (GC_locker::check_active_before_gc()) {
1178
    return false;
1179 1180
  }

1181
  SvcGCMarker sgcm(SvcGCMarker::FULL);
1182 1183
  ResourceMark rm;

1184 1185 1186 1187
  if (PrintHeapAtGC) {
    Universe::print_heap_before_gc();
  }

1188
  verify_region_sets_optional();
1189

1190 1191 1192 1193 1194
  const bool do_clear_all_soft_refs = clear_all_soft_refs ||
                           collector_policy()->should_clear_all_soft_refs();

  ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());

1195 1196 1197 1198
  {
    IsGCActiveMark x;

    // Timing
1199 1200
    bool system_gc = (gc_cause() == GCCause::_java_lang_system_gc);
    assert(!system_gc || explicit_gc, "invariant");
1201 1202
    gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
    TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
1203
    TraceTime t(system_gc ? "Full GC (System.gc())" : "Full GC",
1204
                PrintGC, true, gclog_or_tty);
1205

1206
    TraceCollectorStats tcs(g1mm()->full_collection_counters());
1207
    TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1208

1209 1210 1211
    double start = os::elapsedTime();
    g1_policy()->record_full_collection_start();

1212
    wait_while_free_regions_coming();
T
tonyp 已提交
1213
    append_secondary_free_list_if_not_empty_with_lock();
1214

1215
    gc_prologue(true);
1216
    increment_total_collections(true /* full gc */);
1217 1218 1219 1220 1221 1222 1223

    size_t g1h_prev_used = used();
    assert(used() == recalculate_used(), "Should be equal");

    if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
      HandleMark hm;  // Discard invalid handles created during verification
      gclog_or_tty->print(" VerifyBeforeGC:");
1224
      prepare_for_verify();
1225 1226 1227 1228
      Universe::verify(/* allow dirty */ true,
                       /* silent      */ false,
                       /* option      */ VerifyOption_G1UsePrevMarking);

1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
    }

    COMPILER2_PRESENT(DerivedPointerTable::clear());

    // We want to discover references, but not process them yet.
    // This mode is disabled in
    // instanceRefKlass::process_discovered_references if the
    // generation does some collection work, or
    // instanceRefKlass::enqueue_discovered_references if the
    // generation returns without doing any work.
    ref_processor()->disable_discovery();
    ref_processor()->abandon_partial_discovery();
    ref_processor()->verify_no_references_recorded();

    // Abandon current iterations of concurrent marking and concurrent
    // refinement, if any are in progress.
    concurrent_mark()->abort();

    // Make sure we'll choose a new allocation region afterwards.
1248
    release_mutator_alloc_region();
1249
    abandon_gc_alloc_regions();
1250
    g1_rem_set()->cleanupHRRS();
1251
    tear_down_region_lists();
1252

1253 1254 1255 1256 1257
    // We should call this after we retire any currently active alloc
    // regions so that all the ALLOC / RETIRE events are generated
    // before the start GC event.
    _hr_printer.start_gc(true /* full */, (size_t) total_collections());

1258 1259 1260 1261 1262 1263 1264 1265
    // We may have added regions to the current incremental collection
    // set between the last GC or pause and now. We need to clear the
    // incremental collection set and then start rebuilding it afresh
    // after this full GC.
    abandon_collection_set(g1_policy()->inc_cset_head());
    g1_policy()->clear_incremental_cset();
    g1_policy()->stop_incremental_cset_building();

1266 1267 1268 1269 1270
    if (g1_policy()->in_young_gc_mode()) {
      empty_young_list();
      g1_policy()->set_full_young_gcs(true);
    }

1271 1272 1273
    // See the comment in G1CollectedHeap::ref_processing_init() about
    // how reference processing currently works in G1.

1274
    // Temporarily make reference _discovery_ single threaded (non-MT).
1275
    ReferenceProcessorMTDiscoveryMutator rp_disc_ser(ref_processor(), false);
1276 1277 1278 1279 1280 1281 1282 1283

    // Temporarily make refs discovery atomic
    ReferenceProcessorAtomicMutator rp_disc_atomic(ref_processor(), true);

    // Temporarily clear _is_alive_non_header
    ReferenceProcessorIsAliveMutator rp_is_alive_null(ref_processor(), NULL);

    ref_processor()->enable_discovery();
1284
    ref_processor()->setup_policy(do_clear_all_soft_refs);
1285 1286 1287
    // Do collection work
    {
      HandleMark hm;  // Discard invalid handles created during gc
1288
      G1MarkSweep::invoke_at_safepoint(ref_processor(), do_clear_all_soft_refs);
1289
    }
1290
    assert(free_regions() == 0, "we should not have added any free regions");
1291 1292 1293 1294 1295 1296 1297 1298
    rebuild_region_lists();

    _summary_bytes_used = recalculate_used();

    ref_processor()->enqueue_discovered_references();

    COMPILER2_PRESENT(DerivedPointerTable::update_pointers());

1299 1300
    MemoryService::track_memory_usage();

1301 1302 1303
    if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
      HandleMark hm;  // Discard invalid handles created during verification
      gclog_or_tty->print(" VerifyAfterGC:");
1304
      prepare_for_verify();
1305 1306 1307 1308
      Universe::verify(/* allow dirty */ false,
                       /* silent      */ false,
                       /* option      */ VerifyOption_G1UsePrevMarking);

1309 1310 1311 1312 1313
    }
    NOT_PRODUCT(ref_processor()->verify_no_references_recorded());

    reset_gc_time_stamp();
    // Since everything potentially moved, we will clear all remembered
1314 1315
    // sets, and clear all cards.  Later we will rebuild remebered
    // sets. We will also reset the GC time stamps of the regions.
1316 1317 1318 1319
    PostMCRemSetClearClosure rs_clear(mr_bs());
    heap_region_iterate(&rs_clear);

    // Resize the heap if necessary.
1320
    resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1321

1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
    if (_hr_printer.is_active()) {
      // We should do this after we potentially resize the heap so
      // that all the COMMIT / UNCOMMIT events are generated before
      // the end GC event.

      PostCompactionPrinterClosure cl(hr_printer());
      heap_region_iterate(&cl);

      _hr_printer.end_gc(true /* full */, (size_t) total_collections());
    }

1333 1334 1335 1336 1337
    if (_cg1r->use_cache()) {
      _cg1r->clear_and_record_card_counts();
      _cg1r->clear_hot_cache();
    }

1338
    // Rebuild remembered sets of all regions.
1339 1340

    if (G1CollectedHeap::use_parallel_gc_threads()) {
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
      ParRebuildRSTask rebuild_rs_task(this);
      assert(check_heap_region_claim_values(
             HeapRegion::InitialClaimValue), "sanity check");
      set_par_threads(workers()->total_workers());
      workers()->run_task(&rebuild_rs_task);
      set_par_threads(0);
      assert(check_heap_region_claim_values(
             HeapRegion::RebuildRSClaimValue), "sanity check");
      reset_heap_region_claim_values();
    } else {
      RebuildRSOutOfRegionClosure rebuild_rs(this);
      heap_region_iterate(&rebuild_rs);
    }

1355 1356 1357 1358 1359 1360 1361 1362 1363
    if (PrintGC) {
      print_size_transition(gclog_or_tty, g1h_prev_used, used(), capacity());
    }

    if (true) { // FIXME
      // Ask the permanent generation to adjust size for full collections
      perm()->compute_new_size();
    }

1364 1365 1366 1367 1368 1369 1370 1371 1372
    // Start a new incremental collection set for the next pause
    assert(g1_policy()->collection_set() == NULL, "must be");
    g1_policy()->start_incremental_cset_building();

    // Clear the _cset_fast_test bitmap in anticipation of adding
    // regions to the incremental collection set for the next
    // evacuation pause.
    clear_cset_fast_test();

1373 1374
    init_mutator_alloc_region();

1375 1376 1377
    double end = os::elapsedTime();
    g1_policy()->record_full_collection_end();

1378 1379 1380 1381
#ifdef TRACESPINNING
    ParallelTaskTerminator::print_termination_counts();
#endif

1382 1383
    gc_epilogue(true);

1384 1385
    // Discard all rset updates
    JavaThread::dirty_card_queue_set().abandon_logs();
1386 1387
    assert(!G1DeferredRSUpdate
           || (G1DeferredRSUpdate && (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
1388 1389 1390 1391
  }

  if (g1_policy()->in_young_gc_mode()) {
    _young_list->reset_sampled_info();
1392 1393 1394
    // At this point there should be no regions in the
    // entire heap tagged as young.
    assert( check_young_list_empty(true /* check_heap */),
1395 1396
            "young list should be empty at this point");
  }
1397

1398
  // Update the number of full collections that have been completed.
1399
  increment_full_collections_completed(false /* concurrent */);
1400

1401
  _hrs.verify_optional();
1402 1403
  verify_region_sets_optional();

1404 1405 1406
  if (PrintHeapAtGC) {
    Universe::print_heap_after_gc();
  }
1407
  g1mm()->update_counters();
1408 1409

  return true;
1410 1411 1412
}

void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1413 1414 1415 1416 1417 1418 1419 1420
  // do_collection() will return whether it succeeded in performing
  // the GC. Currently, there is no facility on the
  // do_full_collection() API to notify the caller than the collection
  // did not succeed (e.g., because it was locked out by the GC
  // locker). So, right now, we'll ignore the return value.
  bool dummy = do_collection(true,                /* explicit_gc */
                             clear_all_soft_refs,
                             0                    /* word_size */);
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
}

// This code is mostly copied from TenuredGeneration.
void
G1CollectedHeap::
resize_if_necessary_after_full_collection(size_t word_size) {
  assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");

  // Include the current allocation, if any, and bytes that will be
  // pre-allocated to support collections, as "used".
  const size_t used_after_gc = used();
  const size_t capacity_after_gc = capacity();
  const size_t free_after_gc = capacity_after_gc - used_after_gc;

1435 1436 1437 1438
  // This is enforced in arguments.cpp.
  assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
         "otherwise the code below doesn't make sense");

1439
  // We don't have floating point command-line arguments
1440
  const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1441
  const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1442
  const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1443 1444
  const double minimum_used_percentage = 1.0 - maximum_free_percentage;

1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
  const size_t min_heap_size = collector_policy()->min_heap_byte_size();
  const size_t max_heap_size = collector_policy()->max_heap_byte_size();

  // We have to be careful here as these two calculations can overflow
  // 32-bit size_t's.
  double used_after_gc_d = (double) used_after_gc;
  double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
  double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;

  // Let's make sure that they are both under the max heap size, which
  // by default will make them fit into a size_t.
  double desired_capacity_upper_bound = (double) max_heap_size;
  minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
                                    desired_capacity_upper_bound);
  maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
                                    desired_capacity_upper_bound);

  // We can now safely turn them into size_t's.
  size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
  size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;

  // This assert only makes sense here, before we adjust them
  // with respect to the min and max heap size.
  assert(minimum_desired_capacity <= maximum_desired_capacity,
         err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
                 "maximum_desired_capacity = "SIZE_FORMAT,
                 minimum_desired_capacity, maximum_desired_capacity));

  // Should not be greater than the heap max size. No need to adjust
  // it with respect to the heap min size as it's a lower bound (i.e.,
  // we'll try to make the capacity larger than it, not smaller).
  minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
  // Should not be less than the heap min size. No need to adjust it
  // with respect to the heap max size as it's an upper bound (i.e.,
  // we'll try to make the capacity smaller than it, not greater).
  maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1481 1482

  if (PrintGC && Verbose) {
1483 1484
    const double free_percentage =
      (double) free_after_gc / (double) capacity_after_gc;
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
    gclog_or_tty->print_cr("Computing new size after full GC ");
    gclog_or_tty->print_cr("  "
                           "  minimum_free_percentage: %6.2f",
                           minimum_free_percentage);
    gclog_or_tty->print_cr("  "
                           "  maximum_free_percentage: %6.2f",
                           maximum_free_percentage);
    gclog_or_tty->print_cr("  "
                           "  capacity: %6.1fK"
                           "  minimum_desired_capacity: %6.1fK"
                           "  maximum_desired_capacity: %6.1fK",
1496 1497 1498
                           (double) capacity_after_gc / (double) K,
                           (double) minimum_desired_capacity / (double) K,
                           (double) maximum_desired_capacity / (double) K);
1499
    gclog_or_tty->print_cr("  "
1500 1501 1502 1503
                           "  free_after_gc: %6.1fK"
                           "  used_after_gc: %6.1fK",
                           (double) free_after_gc / (double) K,
                           (double) used_after_gc / (double) K);
1504 1505 1506 1507
    gclog_or_tty->print_cr("  "
                           "   free_percentage: %6.2f",
                           free_percentage);
  }
1508
  if (capacity_after_gc < minimum_desired_capacity) {
1509 1510
    // Don't expand unless it's significant
    size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
    if (expand(expand_bytes)) {
      if (PrintGC && Verbose) {
        gclog_or_tty->print_cr("  "
                               "  expanding:"
                               "  max_heap_size: %6.1fK"
                               "  minimum_desired_capacity: %6.1fK"
                               "  expand_bytes: %6.1fK",
                               (double) max_heap_size / (double) K,
                               (double) minimum_desired_capacity / (double) K,
                               (double) expand_bytes / (double) K);
      }
1522 1523 1524
    }

    // No expansion, now see if we want to shrink
1525
  } else if (capacity_after_gc > maximum_desired_capacity) {
1526 1527 1528 1529 1530 1531
    // Capacity too large, compute shrinking size
    size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
    shrink(shrink_bytes);
    if (PrintGC && Verbose) {
      gclog_or_tty->print_cr("  "
                             "  shrinking:"
1532 1533 1534 1535 1536 1537
                             "  min_heap_size: %6.1fK"
                             "  maximum_desired_capacity: %6.1fK"
                             "  shrink_bytes: %6.1fK",
                             (double) min_heap_size / (double) K,
                             (double) maximum_desired_capacity / (double) K,
                             (double) shrink_bytes / (double) K);
1538 1539 1540 1541 1542 1543
    }
  }
}


HeapWord*
1544 1545
G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
                                           bool* succeeded) {
1546
  assert_at_safepoint(true /* should_be_vm_thread */);
1547 1548 1549

  *succeeded = true;
  // Let's attempt the allocation first.
1550 1551 1552
  HeapWord* result =
    attempt_allocation_at_safepoint(word_size,
                                 false /* expect_null_mutator_alloc_region */);
1553 1554 1555 1556
  if (result != NULL) {
    assert(*succeeded, "sanity");
    return result;
  }
1557 1558 1559 1560 1561 1562 1563

  // In a G1 heap, we're supposed to keep allocation from failing by
  // incremental pauses.  Therefore, at least for now, we'll favor
  // expansion over collection.  (This might change in the future if we can
  // do something smarter than full collection to satisfy a failed alloc.)
  result = expand_and_allocate(word_size);
  if (result != NULL) {
1564
    assert(*succeeded, "sanity");
1565 1566 1567
    return result;
  }

1568 1569 1570 1571 1572 1573 1574 1575
  // Expansion didn't work, we'll try to do a Full GC.
  bool gc_succeeded = do_collection(false, /* explicit_gc */
                                    false, /* clear_all_soft_refs */
                                    word_size);
  if (!gc_succeeded) {
    *succeeded = false;
    return NULL;
  }
1576

1577 1578
  // Retry the allocation
  result = attempt_allocation_at_safepoint(word_size,
1579
                                  true /* expect_null_mutator_alloc_region */);
1580
  if (result != NULL) {
1581
    assert(*succeeded, "sanity");
1582 1583 1584
    return result;
  }

1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
  // Then, try a Full GC that will collect all soft references.
  gc_succeeded = do_collection(false, /* explicit_gc */
                               true,  /* clear_all_soft_refs */
                               word_size);
  if (!gc_succeeded) {
    *succeeded = false;
    return NULL;
  }

  // Retry the allocation once more
  result = attempt_allocation_at_safepoint(word_size,
1596
                                  true /* expect_null_mutator_alloc_region */);
1597
  if (result != NULL) {
1598
    assert(*succeeded, "sanity");
1599 1600 1601
    return result;
  }

1602
  assert(!collector_policy()->should_clear_all_soft_refs(),
1603
         "Flag should have been handled and cleared prior to this point");
1604

1605 1606 1607 1608
  // What else?  We might try synchronous finalization later.  If the total
  // space available is large enough for the allocation, then a more
  // complete compaction phase than we've tried so far might be
  // appropriate.
1609
  assert(*succeeded, "sanity");
1610 1611 1612 1613 1614 1615 1616 1617 1618
  return NULL;
}

// Attempting to expand the heap sufficiently
// to support an allocation of the given "word_size".  If
// successful, perform the allocation and return the address of the
// allocated block, or else "NULL".

HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1619 1620 1621
  assert_at_safepoint(true /* should_be_vm_thread */);

  verify_region_sets_optional();
1622

1623 1624
  size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
  if (expand(expand_bytes)) {
1625
    _hrs.verify_optional();
1626 1627
    verify_region_sets_optional();
    return attempt_allocation_at_safepoint(word_size,
1628
                                 false /* expect_null_mutator_alloc_region */);
1629
  }
1630
  return NULL;
1631 1632
}

1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
void G1CollectedHeap::update_committed_space(HeapWord* old_end,
                                             HeapWord* new_end) {
  assert(old_end != new_end, "don't call this otherwise");
  assert((HeapWord*) _g1_storage.high() == new_end, "invariant");

  // Update the committed mem region.
  _g1_committed.set_end(new_end);
  // Tell the card table about the update.
  Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
  // Tell the BOT about the update.
  _bot_shared->resize(_g1_committed.word_size());
}

1646
bool G1CollectedHeap::expand(size_t expand_bytes) {
1647
  size_t old_mem_size = _g1_storage.committed_size();
1648
  size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1649 1650
  aligned_expand_bytes = align_size_up(aligned_expand_bytes,
                                       HeapRegion::GrainBytes);
1651 1652 1653 1654 1655 1656

  if (Verbose && PrintGC) {
    gclog_or_tty->print("Expanding garbage-first heap from %ldK by %ldK",
                           old_mem_size/K, aligned_expand_bytes/K);
  }

1657 1658
  // First commit the memory.
  HeapWord* old_end = (HeapWord*) _g1_storage.high();
1659 1660
  bool successful = _g1_storage.expand_by(aligned_expand_bytes);
  if (successful) {
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
    // Then propagate this update to the necessary data structures.
    HeapWord* new_end = (HeapWord*) _g1_storage.high();
    update_committed_space(old_end, new_end);

    FreeRegionList expansion_list("Local Expansion List");
    MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list);
    assert(mr.start() == old_end, "post-condition");
    // mr might be a smaller region than what was requested if
    // expand_by() was unable to allocate the HeapRegion instances
    assert(mr.end() <= new_end, "post-condition");

    size_t actual_expand_bytes = mr.byte_size();
    assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
    assert(actual_expand_bytes == expansion_list.total_capacity_bytes(),
           "post-condition");
    if (actual_expand_bytes < aligned_expand_bytes) {
      // We could not expand _hrs to the desired size. In this case we
      // need to shrink the committed space accordingly.
      assert(mr.end() < new_end, "invariant");

      size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes;
      // First uncommit the memory.
      _g1_storage.shrink_by(diff_bytes);
      // Then propagate this update to the necessary data structures.
      update_committed_space(new_end, mr.end());
1686
    }
1687
    _free_list.add_as_tail(&expansion_list);
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697

    if (_hr_printer.is_active()) {
      HeapWord* curr = mr.start();
      while (curr < mr.end()) {
        HeapWord* curr_end = curr + HeapRegion::GrainWords;
        _hr_printer.commit(curr, curr_end);
        curr = curr_end;
      }
      assert(curr == mr.end(), "post-condition");
    }
1698 1699 1700 1701 1702 1703 1704
  } else {
    // The expansion of the virtual storage space was unsuccessful.
    // Let's see if it was because we ran out of swap.
    if (G1ExitOnExpansionFailure &&
        _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
      // We had head room...
      vm_exit_out_of_memory(aligned_expand_bytes, "G1 heap expansion");
1705 1706
    }
  }
1707

1708 1709
  if (Verbose && PrintGC) {
    size_t new_mem_size = _g1_storage.committed_size();
1710 1711
    gclog_or_tty->print_cr("...%s, expanded to %ldK",
                           (successful ? "Successful" : "Failed"),
1712 1713
                           new_mem_size/K);
  }
1714
  return successful;
1715 1716
}

1717
void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1718 1719 1720 1721 1722 1723
  size_t old_mem_size = _g1_storage.committed_size();
  size_t aligned_shrink_bytes =
    ReservedSpace::page_align_size_down(shrink_bytes);
  aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
                                         HeapRegion::GrainBytes);
  size_t num_regions_deleted = 0;
1724 1725 1726 1727
  MemRegion mr = _hrs.shrink_by(aligned_shrink_bytes, &num_regions_deleted);
  HeapWord* old_end = (HeapWord*) _g1_storage.high();
  assert(mr.end() == old_end, "post-condition");
  if (mr.byte_size() > 0) {
1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
    if (_hr_printer.is_active()) {
      HeapWord* curr = mr.end();
      while (curr > mr.start()) {
        HeapWord* curr_end = curr;
        curr -= HeapRegion::GrainWords;
        _hr_printer.uncommit(curr, curr_end);
      }
      assert(curr == mr.start(), "post-condition");
    }

1738
    _g1_storage.shrink_by(mr.byte_size());
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
    HeapWord* new_end = (HeapWord*) _g1_storage.high();
    assert(mr.start() == new_end, "post-condition");

    _expansion_regions += num_regions_deleted;
    update_committed_space(old_end, new_end);
    HeapRegionRemSet::shrink_heap(n_regions());

    if (Verbose && PrintGC) {
      size_t new_mem_size = _g1_storage.committed_size();
      gclog_or_tty->print_cr("Shrinking garbage-first heap from %ldK by %ldK to %ldK",
                             old_mem_size/K, aligned_shrink_bytes/K,
                             new_mem_size/K);
    }
1752 1753 1754 1755
  }
}

void G1CollectedHeap::shrink(size_t shrink_bytes) {
1756 1757
  verify_region_sets_optional();

1758 1759 1760 1761 1762
  // We should only reach here at the end of a Full GC which means we
  // should not not be holding to any GC alloc regions. The method
  // below will make sure of that and do any remaining clean up.
  abandon_gc_alloc_regions();

1763 1764 1765
  // Instead of tearing down / rebuilding the free lists here, we
  // could instead use the remove_all_pending() method on free_list to
  // remove only the ones that we need to remove.
1766 1767 1768
  tear_down_region_lists();  // We will rebuild them in a moment.
  shrink_helper(shrink_bytes);
  rebuild_region_lists();
1769

1770
  _hrs.verify_optional();
1771
  verify_region_sets_optional();
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
}

// Public methods.

#ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
#endif // _MSC_VER


G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
  SharedHeap(policy_),
  _g1_policy(policy_),
1784
  _dirty_card_queue_set(false),
J
johnc 已提交
1785
  _into_cset_dirty_card_queue_set(false),
1786
  _is_alive_closure(this),
1787 1788 1789 1790 1791 1792
  _ref_processor(NULL),
  _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
  _bot_shared(NULL),
  _objs_with_preserved_marks(NULL), _preserved_marks_of_objs(NULL),
  _evac_failure_scan_stack(NULL) ,
  _mark_in_progress(false),
1793
  _cg1r(NULL), _summary_bytes_used(0),
1794 1795
  _refine_cte_cl(NULL),
  _full_collection(false),
1796 1797 1798 1799
  _free_list("Master Free List"),
  _secondary_free_list("Secondary Free List"),
  _humongous_set("Master Humongous Set"),
  _free_regions_coming(false),
1800 1801
  _young_list(new YoungList(this)),
  _gc_time_stamp(0),
1802
  _retained_old_gc_alloc_region(NULL),
1803
  _surviving_young_words(NULL),
1804
  _full_collections_completed(0),
1805
  _in_cset_fast_test(NULL),
1806 1807
  _in_cset_fast_test_base(NULL),
  _dirty_cards_region_list(NULL) {
1808 1809 1810 1811
  _g1h = this; // To catch bugs.
  if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
    vm_exit_during_initialization("Failed necessary allocation.");
  }
1812 1813 1814

  _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;

1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
  int n_queues = MAX2((int)ParallelGCThreads, 1);
  _task_queues = new RefToScanQueueSet(n_queues);

  int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
  assert(n_rem_sets > 0, "Invariant.");

  HeapRegionRemSetIterator** iter_arr =
    NEW_C_HEAP_ARRAY(HeapRegionRemSetIterator*, n_queues);
  for (int i = 0; i < n_queues; i++) {
    iter_arr[i] = new HeapRegionRemSetIterator();
  }
  _rem_set_iterator = iter_arr;

  for (int i = 0; i < n_queues; i++) {
    RefToScanQueue* q = new RefToScanQueue();
    q->initialize();
    _task_queues->register_queue(i, q);
  }

  guarantee(_task_queues != NULL, "task_queues allocation failure.");
}

jint G1CollectedHeap::initialize() {
1838
  CollectedHeap::pre_initialize();
1839 1840 1841 1842 1843 1844
  os::enable_vtime();

  // Necessary to satisfy locking discipline assertions.

  MutexLocker x(Heap_lock);

1845 1846 1847 1848
  // We have to initialize the printer before committing the heap, as
  // it will be used then.
  _hr_printer.set_active(G1PrintHeapRegions);

1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
  // While there are no constraints in the GC code that HeapWordSize
  // be any particular value, there are multiple other areas in the
  // system which believe this to be true (e.g. oop->object_size in some
  // cases incorrectly returns the size in wordSize units rather than
  // HeapWordSize).
  guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");

  size_t init_byte_size = collector_policy()->initial_heap_byte_size();
  size_t max_byte_size = collector_policy()->max_heap_byte_size();

  // Ensure that the sizes are properly aligned.
  Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
  Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");

  _cg1r = new ConcurrentG1Refine();

  // Reserve the maximum.
  PermanentGenerationSpec* pgs = collector_policy()->permanent_generation();
  // Includes the perm-gen.
1868

1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
  // When compressed oops are enabled, the preferred heap base
  // is calculated by subtracting the requested size from the
  // 32Gb boundary and using the result as the base address for
  // heap reservation. If the requested size is not aligned to
  // HeapRegion::GrainBytes (i.e. the alignment that is passed
  // into the ReservedHeapSpace constructor) then the actual
  // base of the reserved heap may end up differing from the
  // address that was requested (i.e. the preferred heap base).
  // If this happens then we could end up using a non-optimal
  // compressed oops mode.

  // Since max_byte_size is aligned to the size of a heap region (checked
  // above), we also need to align the perm gen size as it might not be.
  const size_t total_reserved = max_byte_size +
                                align_size_up(pgs->max_size(), HeapRegion::GrainBytes);
  Universe::check_alignment(total_reserved, HeapRegion::GrainBytes, "g1 heap and perm");

1886 1887
  char* addr = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);

1888 1889
  ReservedHeapSpace heap_rs(total_reserved, HeapRegion::GrainBytes,
                            UseLargePages, addr);
1890 1891 1892 1893 1894 1895 1896

  if (UseCompressedOops) {
    if (addr != NULL && !heap_rs.is_reserved()) {
      // Failed to reserve at specified address - the requested memory
      // region is taken already, for example, by 'java' launcher.
      // Try again to reserver heap higher.
      addr = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
1897 1898 1899 1900

      ReservedHeapSpace heap_rs0(total_reserved, HeapRegion::GrainBytes,
                                 UseLargePages, addr);

1901 1902 1903 1904
      if (addr != NULL && !heap_rs0.is_reserved()) {
        // Failed to reserve at specified address again - give up.
        addr = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
        assert(addr == NULL, "");
1905 1906 1907

        ReservedHeapSpace heap_rs1(total_reserved, HeapRegion::GrainBytes,
                                   UseLargePages, addr);
1908 1909 1910 1911 1912 1913
        heap_rs = heap_rs1;
      } else {
        heap_rs = heap_rs0;
      }
    }
  }
1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939

  if (!heap_rs.is_reserved()) {
    vm_exit_during_initialization("Could not reserve enough space for object heap");
    return JNI_ENOMEM;
  }

  // It is important to do this in a way such that concurrent readers can't
  // temporarily think somethings in the heap.  (I've actually seen this
  // happen in asserts: DLD.)
  _reserved.set_word_size(0);
  _reserved.set_start((HeapWord*)heap_rs.base());
  _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));

  _expansion_regions = max_byte_size/HeapRegion::GrainBytes;

  // Create the gen rem set (and barrier set) for the entire reserved region.
  _rem_set = collector_policy()->create_rem_set(_reserved, 2);
  set_barrier_set(rem_set()->bs());
  if (barrier_set()->is_a(BarrierSet::ModRef)) {
    _mr_bs = (ModRefBarrierSet*)_barrier_set;
  } else {
    vm_exit_during_initialization("G1 requires a mod ref bs.");
    return JNI_ENOMEM;
  }

  // Also create a G1 rem set.
1940 1941
  if (mr_bs()->is_a(BarrierSet::CardTableModRef)) {
    _g1_rem_set = new G1RemSet(this, (CardTableModRefBS*)mr_bs());
1942
  } else {
1943 1944
    vm_exit_during_initialization("G1 requires a cardtable mod ref bs.");
    return JNI_ENOMEM;
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
  }

  // Carve out the G1 part of the heap.

  ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
  _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
                           g1_rs.size()/HeapWordSize);
  ReservedSpace perm_gen_rs = heap_rs.last_part(max_byte_size);

  _perm_gen = pgs->init(perm_gen_rs, pgs->init_size(), rem_set());

  _g1_storage.initialize(g1_rs, 0);
  _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
1958 1959 1960
  _hrs.initialize((HeapWord*) _g1_reserved.start(),
                  (HeapWord*) _g1_reserved.end(),
                  _expansion_regions);
1961

1962 1963 1964 1965 1966 1967
  // 6843694 - ensure that the maximum region index can fit
  // in the remembered set structures.
  const size_t max_region_idx = ((size_t)1 << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
  guarantee((max_regions() - 1) <= max_region_idx, "too many regions");

  size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1968 1969 1970
  guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
  guarantee((size_t) HeapRegion::CardsPerRegion < max_cards_per_region,
            "too many cards per region");
1971

1972 1973
  HeapRegionSet::set_unrealistically_long_length(max_regions() + 1);

1974 1975 1976 1977 1978
  _bot_shared = new G1BlockOffsetSharedArray(_reserved,
                                             heap_word_size(init_byte_size));

  _g1h = this;

1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
   _in_cset_fast_test_length = max_regions();
   _in_cset_fast_test_base = NEW_C_HEAP_ARRAY(bool, _in_cset_fast_test_length);

   // We're biasing _in_cset_fast_test to avoid subtracting the
   // beginning of the heap every time we want to index; basically
   // it's the same with what we do with the card table.
   _in_cset_fast_test = _in_cset_fast_test_base -
                ((size_t) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);

   // Clear the _cset_fast_test bitmap in anticipation of adding
   // regions to the incremental collection set for the first
   // evacuation pause.
   clear_cset_fast_test();

1993 1994 1995 1996 1997 1998 1999 2000
  // Create the ConcurrentMark data structure and thread.
  // (Must do this late, so that "max_regions" is defined.)
  _cm       = new ConcurrentMark(heap_rs, (int) max_regions());
  _cmThread = _cm->cmThread();

  // Initialize the from_card cache structure of HeapRegionRemSet.
  HeapRegionRemSet::init_heap(max_regions());

2001
  // Now expand into the initial heap size.
2002 2003 2004 2005
  if (!expand(init_byte_size)) {
    vm_exit_during_initialization("Failed to allocate initial heap.");
    return JNI_ENOMEM;
  }
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

  // Perform any initialization actions delegated to the policy.
  g1_policy()->init();

  g1_policy()->note_start_of_mark_thread();

  _refine_cte_cl =
    new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
                                    g1_rem_set(),
                                    concurrent_g1_refine());
  JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);

  JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
                                               SATB_Q_FL_lock,
2020
                                               G1SATBProcessCompletedThreshold,
2021
                                               Shared_SATB_Q_lock);
2022 2023 2024

  JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
                                                DirtyCardQ_FL_lock,
2025 2026
                                                concurrent_g1_refine()->yellow_zone(),
                                                concurrent_g1_refine()->red_zone(),
2027 2028
                                                Shared_DirtyCardQ_lock);

2029 2030 2031
  if (G1DeferredRSUpdate) {
    dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
                                      DirtyCardQ_FL_lock,
2032 2033
                                      -1, // never trigger processing
                                      -1, // no limit on length
2034 2035 2036
                                      Shared_DirtyCardQ_lock,
                                      &JavaThread::dirty_card_queue_set());
  }
J
johnc 已提交
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046

  // Initialize the card queue set used to hold cards containing
  // references into the collection set.
  _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon,
                                             DirtyCardQ_FL_lock,
                                             -1, // never trigger processing
                                             -1, // no limit on length
                                             Shared_DirtyCardQ_lock,
                                             &JavaThread::dirty_card_queue_set());

2047 2048 2049 2050 2051 2052 2053
  // In case we're keeping closure specialization stats, initialize those
  // counts and that mechanism.
  SpecializationStats::clear();

  // Do later initialization work for concurrent refinement.
  _cg1r->init();

2054 2055 2056
  // Here we allocate the dummy full region that is required by the
  // G1AllocRegion class. If we don't pass an address in the reserved
  // space here, lots of asserts fire.
2057 2058 2059

  HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */,
                                             _g1_reserved.start());
2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
  // We'll re-use the same region whether the alloc region will
  // require BOT updates or not and, if it doesn't, then a non-young
  // region will complain that it cannot support allocations without
  // BOT updates. So we'll tag the dummy region as young to avoid that.
  dummy_region->set_young();
  // Make sure it's full.
  dummy_region->set_top(dummy_region->end());
  G1AllocRegion::setup(this, dummy_region);

  init_mutator_alloc_region();

2071 2072 2073 2074
  // Do create of the monitoring and management support so that
  // values in the heap have been properly initialized.
  _g1mm = new G1MonitoringSupport(this, &_g1_storage);

2075 2076 2077 2078
  return JNI_OK;
}

void G1CollectedHeap::ref_processing_init() {
2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
  // Reference processing in G1 currently works as follows:
  //
  // * There is only one reference processor instance that
  //   'spans' the entire heap. It is created by the code
  //   below.
  // * Reference discovery is not enabled during an incremental
  //   pause (see 6484982).
  // * Discoverered refs are not enqueued nor are they processed
  //   during an incremental pause (see 6484982).
  // * Reference discovery is enabled at initial marking.
  // * Reference discovery is disabled and the discovered
  //   references processed etc during remarking.
  // * Reference discovery is MT (see below).
  // * Reference discovery requires a barrier (see below).
  // * Reference processing is currently not MT (see 6608385).
  // * A full GC enables (non-MT) reference discovery and
  //   processes any discovered references.

2097 2098
  SharedHeap::ref_processing_init();
  MemRegion mr = reserved_region();
2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
  _ref_processor =
    new ReferenceProcessor(mr,    // span
                           ParallelRefProcEnabled && (ParallelGCThreads > 1),    // mt processing
                           (int) ParallelGCThreads,   // degree of mt processing
                           ParallelGCThreads > 1 || ConcGCThreads > 1,  // mt discovery
                           (int) MAX2(ParallelGCThreads, ConcGCThreads), // degree of mt discovery
                           false,                     // Reference discovery is not atomic
                           &_is_alive_closure,        // is alive closure for efficiency
                           true);                     // Setting next fields of discovered
                                                      // lists requires a barrier.
2109 2110 2111 2112 2113 2114
}

size_t G1CollectedHeap::capacity() const {
  return _g1_committed.byte_size();
}

J
johnc 已提交
2115 2116 2117
void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
                                                 DirtyCardQueue* into_cset_dcq,
                                                 bool concurrent,
2118
                                                 int worker_i) {
2119
  // Clean cards in the hot card cache
J
johnc 已提交
2120
  concurrent_g1_refine()->clean_up_cache(worker_i, g1_rem_set(), into_cset_dcq);
2121

2122 2123
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  int n_completed_buffers = 0;
J
johnc 已提交
2124
  while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
    n_completed_buffers++;
  }
  g1_policy()->record_update_rs_processed_buffers(worker_i,
                                                  (double) n_completed_buffers);
  dcqs.clear_n_completed_buffers();
  assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
}


// Computes the sum of the storage used by the various regions.

size_t G1CollectedHeap::used() const {
2137 2138
  assert(Heap_lock->owner() != NULL,
         "Should be owned on this thread's behalf.");
2139
  size_t result = _summary_bytes_used;
2140
  // Read only once in case it is set to NULL concurrently
2141
  HeapRegion* hr = _mutator_alloc_region.get();
2142 2143
  if (hr != NULL)
    result += hr->used();
2144 2145 2146
  return result;
}

2147 2148 2149 2150 2151
size_t G1CollectedHeap::used_unlocked() const {
  size_t result = _summary_bytes_used;
  return result;
}

2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
class SumUsedClosure: public HeapRegionClosure {
  size_t _used;
public:
  SumUsedClosure() : _used(0) {}
  bool doHeapRegion(HeapRegion* r) {
    if (!r->continuesHumongous()) {
      _used += r->used();
    }
    return false;
  }
  size_t result() { return _used; }
};

size_t G1CollectedHeap::recalculate_used() const {
  SumUsedClosure blk;
2167
  heap_region_iterate(&blk);
2168 2169 2170 2171
  return blk.result();
}

size_t G1CollectedHeap::unsafe_max_alloc() {
2172
  if (free_regions() > 0) return HeapRegion::GrainBytes;
2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
  // otherwise, is there space in the current allocation region?

  // We need to store the current allocation region in a local variable
  // here. The problem is that this method doesn't take any locks and
  // there may be other threads which overwrite the current allocation
  // region field. attempt_allocation(), for example, sets it to NULL
  // and this can happen *after* the NULL check here but before the call
  // to free(), resulting in a SIGSEGV. Note that this doesn't appear
  // to be a problem in the optimized build, since the two loads of the
  // current allocation region field are optimized away.
2183 2184
  HeapRegion* hr = _mutator_alloc_region.get();
  if (hr == NULL) {
2185 2186
    return 0;
  }
2187
  return hr->free();
2188 2189
}

2190 2191 2192 2193 2194 2195
bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
  return
    ((cause == GCCause::_gc_locker           && GCLockerInvokesConcurrent) ||
     (cause == GCCause::_java_lang_system_gc && ExplicitGCInvokesConcurrent));
}

2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
#ifndef PRODUCT
void G1CollectedHeap::allocate_dummy_regions() {
  // Let's fill up most of the region
  size_t word_size = HeapRegion::GrainWords - 1024;
  // And as a result the region we'll allocate will be humongous.
  guarantee(isHumongous(word_size), "sanity");

  for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
    // Let's use the existing mechanism for the allocation
    HeapWord* dummy_obj = humongous_obj_allocate(word_size);
    if (dummy_obj != NULL) {
      MemRegion mr(dummy_obj, word_size);
      CollectedHeap::fill_with_object(mr);
    } else {
      // If we can't allocate once, we probably cannot allocate
      // again. Let's get out of the loop.
      break;
    }
  }
}
#endif // !PRODUCT

2218
void G1CollectedHeap::increment_full_collections_completed(bool concurrent) {
2219 2220
  MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);

2221 2222 2223 2224 2225
  // We assume that if concurrent == true, then the caller is a
  // concurrent thread that was joined the Suspendible Thread
  // Set. If there's ever a cheap way to check this, we should add an
  // assert here.

2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238
  // We have already incremented _total_full_collections at the start
  // of the GC, so total_full_collections() represents how many full
  // collections have been started.
  unsigned int full_collections_started = total_full_collections();

  // Given that this method is called at the end of a Full GC or of a
  // concurrent cycle, and those can be nested (i.e., a Full GC can
  // interrupt a concurrent cycle), the number of full collections
  // completed should be either one (in the case where there was no
  // nesting) or two (when a Full GC interrupted a concurrent cycle)
  // behind the number of full collections started.

  // This is the case for the inner caller, i.e. a Full GC.
2239
  assert(concurrent ||
2240 2241
         (full_collections_started == _full_collections_completed + 1) ||
         (full_collections_started == _full_collections_completed + 2),
2242
         err_msg("for inner caller (Full GC): full_collections_started = %u "
2243 2244 2245 2246
                 "is inconsistent with _full_collections_completed = %u",
                 full_collections_started, _full_collections_completed));

  // This is the case for the outer caller, i.e. the concurrent cycle.
2247
  assert(!concurrent ||
2248
         (full_collections_started == _full_collections_completed + 1),
2249 2250
         err_msg("for outer caller (concurrent cycle): "
                 "full_collections_started = %u "
2251 2252 2253 2254 2255
                 "is inconsistent with _full_collections_completed = %u",
                 full_collections_started, _full_collections_completed));

  _full_collections_completed += 1;

2256 2257 2258 2259
  // We need to clear the "in_progress" flag in the CM thread before
  // we wake up any waiters (especially when ExplicitInvokesConcurrent
  // is set) so that if a waiter requests another System.gc() it doesn't
  // incorrectly see that a marking cyle is still in progress.
2260
  if (concurrent) {
2261 2262 2263
    _cmThread->clear_in_progress();
  }

2264 2265 2266 2267 2268 2269 2270
  // This notify_all() will ensure that a thread that called
  // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
  // and it's waiting for a full GC to finish will be woken up. It is
  // waiting in VM_G1IncCollectionPause::doit_epilogue().
  FullGCCount_lock->notify_all();
}

2271
void G1CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
2272
  assert_at_safepoint(true /* should_be_vm_thread */);
2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285
  GCCauseSetter gcs(this, cause);
  switch (cause) {
    case GCCause::_heap_inspection:
    case GCCause::_heap_dump: {
      HandleMark hm;
      do_full_collection(false);         // don't clear all soft refs
      break;
    }
    default: // XXX FIX ME
      ShouldNotReachHere(); // Unexpected use of this function
  }
}

2286 2287 2288
void G1CollectedHeap::collect(GCCause::Cause cause) {
  // The caller doesn't have the Heap_lock
  assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
2289

2290 2291
  unsigned int gc_count_before;
  unsigned int full_gc_count_before;
2292
  {
2293 2294
    MutexLocker ml(Heap_lock);

2295 2296 2297
    // Read the GC count while holding the Heap_lock
    gc_count_before = SharedHeap::heap()->total_collections();
    full_gc_count_before = SharedHeap::heap()->total_full_collections();
2298 2299 2300 2301
  }

  if (should_do_concurrent_full_gc(cause)) {
    // Schedule an initial-mark evacuation pause that will start a
2302 2303
    // concurrent cycle. We're setting word_size to 0 which means that
    // we are not requesting a post-GC allocation.
2304
    VM_G1IncCollectionPause op(gc_count_before,
2305 2306
                               0,     /* word_size */
                               true,  /* should_initiate_conc_mark */
2307 2308 2309 2310 2311 2312 2313
                               g1_policy()->max_pause_time_ms(),
                               cause);
    VMThread::execute(&op);
  } else {
    if (cause == GCCause::_gc_locker
        DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {

2314 2315
      // Schedule a standard evacuation pause. We're setting word_size
      // to 0 which means that we are not requesting a post-GC allocation.
2316
      VM_G1IncCollectionPause op(gc_count_before,
2317
                                 0,     /* word_size */
2318 2319 2320
                                 false, /* should_initiate_conc_mark */
                                 g1_policy()->max_pause_time_ms(),
                                 cause);
2321
      VMThread::execute(&op);
2322 2323 2324
    } else {
      // Schedule a Full GC.
      VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2325 2326
      VMThread::execute(&op);
    }
2327 2328 2329 2330
  }
}

bool G1CollectedHeap::is_in(const void* p) const {
2331 2332
  HeapRegion* hr = _hrs.addr_to_region((HeapWord*) p);
  if (hr != NULL) {
2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357
    return hr->is_in(p);
  } else {
    return _perm_gen->as_gen()->is_in(p);
  }
}

// Iteration functions.

// Iterates an OopClosure over all ref-containing fields of objects
// within a HeapRegion.

class IterateOopClosureRegionClosure: public HeapRegionClosure {
  MemRegion _mr;
  OopClosure* _cl;
public:
  IterateOopClosureRegionClosure(MemRegion mr, OopClosure* cl)
    : _mr(mr), _cl(cl) {}
  bool doHeapRegion(HeapRegion* r) {
    if (! r->continuesHumongous()) {
      r->oop_iterate(_cl);
    }
    return false;
  }
};

2358
void G1CollectedHeap::oop_iterate(OopClosure* cl, bool do_perm) {
2359
  IterateOopClosureRegionClosure blk(_g1_committed, cl);
2360
  heap_region_iterate(&blk);
2361 2362 2363
  if (do_perm) {
    perm_gen()->oop_iterate(cl);
  }
2364 2365
}

2366
void G1CollectedHeap::oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm) {
2367
  IterateOopClosureRegionClosure blk(mr, cl);
2368
  heap_region_iterate(&blk);
2369 2370 2371
  if (do_perm) {
    perm_gen()->oop_iterate(cl);
  }
2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
}

// Iterates an ObjectClosure over all objects within a HeapRegion.

class IterateObjectClosureRegionClosure: public HeapRegionClosure {
  ObjectClosure* _cl;
public:
  IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
  bool doHeapRegion(HeapRegion* r) {
    if (! r->continuesHumongous()) {
      r->object_iterate(_cl);
    }
    return false;
  }
};

2388
void G1CollectedHeap::object_iterate(ObjectClosure* cl, bool do_perm) {
2389
  IterateObjectClosureRegionClosure blk(cl);
2390
  heap_region_iterate(&blk);
2391 2392 2393
  if (do_perm) {
    perm_gen()->object_iterate(cl);
  }
2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
}

void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
  // FIXME: is this right?
  guarantee(false, "object_iterate_since_last_GC not supported by G1 heap");
}

// Calls a SpaceClosure on a HeapRegion.

class SpaceClosureRegionClosure: public HeapRegionClosure {
  SpaceClosure* _cl;
public:
  SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
  bool doHeapRegion(HeapRegion* r) {
    _cl->do_space(r);
    return false;
  }
};

void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
  SpaceClosureRegionClosure blk(cl);
2415
  heap_region_iterate(&blk);
2416 2417
}

2418 2419
void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
  _hrs.iterate(cl);
2420 2421 2422
}

void G1CollectedHeap::heap_region_iterate_from(HeapRegion* r,
2423 2424
                                               HeapRegionClosure* cl) const {
  _hrs.iterate_from(r, cl);
2425 2426 2427 2428 2429 2430
}

void
G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
                                                 int worker,
                                                 jint claim_value) {
2431
  const size_t regions = n_regions();
2432
  const size_t worker_num = (G1CollectedHeap::use_parallel_gc_threads() ? ParallelGCThreads : 1);
2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
  // try to spread out the starting points of the workers
  const size_t start_index = regions / worker_num * (size_t) worker;

  // each worker will actually look at all regions
  for (size_t count = 0; count < regions; ++count) {
    const size_t index = (start_index + count) % regions;
    assert(0 <= index && index < regions, "sanity");
    HeapRegion* r = region_at(index);
    // we'll ignore "continues humongous" regions (we'll process them
    // when we come across their corresponding "start humongous"
    // region) and regions already claimed
    if (r->claim_value() == claim_value || r->continuesHumongous()) {
      continue;
    }
    // OK, try to claim it
2448
    if (r->claimHeapRegion(claim_value)) {
2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491
      // success!
      assert(!r->continuesHumongous(), "sanity");
      if (r->startsHumongous()) {
        // If the region is "starts humongous" we'll iterate over its
        // "continues humongous" first; in fact we'll do them
        // first. The order is important. In on case, calling the
        // closure on the "starts humongous" region might de-allocate
        // and clear all its "continues humongous" regions and, as a
        // result, we might end up processing them twice. So, we'll do
        // them first (notice: most closures will ignore them anyway) and
        // then we'll do the "starts humongous" region.
        for (size_t ch_index = index + 1; ch_index < regions; ++ch_index) {
          HeapRegion* chr = region_at(ch_index);

          // if the region has already been claimed or it's not
          // "continues humongous" we're done
          if (chr->claim_value() == claim_value ||
              !chr->continuesHumongous()) {
            break;
          }

          // Noone should have claimed it directly. We can given
          // that we claimed its "starts humongous" region.
          assert(chr->claim_value() != claim_value, "sanity");
          assert(chr->humongous_start_region() == r, "sanity");

          if (chr->claimHeapRegion(claim_value)) {
            // we should always be able to claim it; noone else should
            // be trying to claim this region

            bool res2 = cl->doHeapRegion(chr);
            assert(!res2, "Should not abort");

            // Right now, this holds (i.e., no closure that actually
            // does something with "continues humongous" regions
            // clears them). We might have to weaken it in the future,
            // but let's leave these two asserts here for extra safety.
            assert(chr->continuesHumongous(), "should still be the case");
            assert(chr->humongous_start_region() == r, "sanity");
          } else {
            guarantee(false, "we should not reach here");
          }
        }
2492
      }
2493 2494 2495 2496

      assert(!r->continuesHumongous(), "sanity");
      bool res = cl->doHeapRegion(r);
      assert(!res, "Should not abort");
2497 2498 2499 2500
    }
  }
}

2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514
class ResetClaimValuesClosure: public HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion* r) {
    r->set_claim_value(HeapRegion::InitialClaimValue);
    return false;
  }
};

void
G1CollectedHeap::reset_heap_region_claim_values() {
  ResetClaimValuesClosure blk;
  heap_region_iterate(&blk);
}

2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564
#ifdef ASSERT
// This checks whether all regions in the heap have the correct claim
// value. I also piggy-backed on this a check to ensure that the
// humongous_start_region() information on "continues humongous"
// regions is correct.

class CheckClaimValuesClosure : public HeapRegionClosure {
private:
  jint _claim_value;
  size_t _failures;
  HeapRegion* _sh_region;
public:
  CheckClaimValuesClosure(jint claim_value) :
    _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
  bool doHeapRegion(HeapRegion* r) {
    if (r->claim_value() != _claim_value) {
      gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), "
                             "claim value = %d, should be %d",
                             r->bottom(), r->end(), r->claim_value(),
                             _claim_value);
      ++_failures;
    }
    if (!r->isHumongous()) {
      _sh_region = NULL;
    } else if (r->startsHumongous()) {
      _sh_region = r;
    } else if (r->continuesHumongous()) {
      if (r->humongous_start_region() != _sh_region) {
        gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), "
                               "HS = "PTR_FORMAT", should be "PTR_FORMAT,
                               r->bottom(), r->end(),
                               r->humongous_start_region(),
                               _sh_region);
        ++_failures;
      }
    }
    return false;
  }
  size_t failures() {
    return _failures;
  }
};

bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
  CheckClaimValuesClosure cl(claim_value);
  heap_region_iterate(&cl);
  return cl.failures() == 0;
}
#endif // ASSERT

2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578
void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
  HeapRegion* r = g1_policy()->collection_set();
  while (r != NULL) {
    HeapRegion* next = r->next_in_collection_set();
    if (cl->doHeapRegion(r)) {
      cl->incomplete();
      return;
    }
    r = next;
  }
}

void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
                                                  HeapRegionClosure *cl) {
2579 2580 2581 2582 2583
  if (r == NULL) {
    // The CSet is empty so there's nothing to do.
    return;
  }

2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606
  assert(r->in_collection_set(),
         "Start region must be a member of the collection set.");
  HeapRegion* cur = r;
  while (cur != NULL) {
    HeapRegion* next = cur->next_in_collection_set();
    if (cl->doHeapRegion(cur) && false) {
      cl->incomplete();
      return;
    }
    cur = next;
  }
  cur = g1_policy()->collection_set();
  while (cur != r) {
    HeapRegion* next = cur->next_in_collection_set();
    if (cl->doHeapRegion(cur) && false) {
      cl->incomplete();
      return;
    }
    cur = next;
  }
}

CompactibleSpace* G1CollectedHeap::first_compactible_space() {
2607
  return n_regions() > 0 ? region_at(0) : NULL;
2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648
}


Space* G1CollectedHeap::space_containing(const void* addr) const {
  Space* res = heap_region_containing(addr);
  if (res == NULL)
    res = perm_gen()->space_containing(addr);
  return res;
}

HeapWord* G1CollectedHeap::block_start(const void* addr) const {
  Space* sp = space_containing(addr);
  if (sp != NULL) {
    return sp->block_start(addr);
  }
  return NULL;
}

size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
  Space* sp = space_containing(addr);
  assert(sp != NULL, "block_size of address outside of heap");
  return sp->block_size(addr);
}

bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
  Space* sp = space_containing(addr);
  return sp->block_is_obj(addr);
}

bool G1CollectedHeap::supports_tlab_allocation() const {
  return true;
}

size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
  return HeapRegion::GrainBytes;
}

size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
  // Return the remaining space in the cur alloc region, but not less than
  // the min TLAB size.

2649 2650 2651 2652
  // Also, this value can be at most the humongous object threshold,
  // since we can't allow tlabs to grow big enough to accomodate
  // humongous objects.

2653
  HeapRegion* hr = _mutator_alloc_region.get();
2654
  size_t max_tlab_size = _humongous_object_threshold_in_words * wordSize;
2655
  if (hr == NULL) {
2656
    return max_tlab_size;
2657
  } else {
2658
    return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab_size);
2659 2660 2661 2662
  }
}

size_t G1CollectedHeap::max_capacity() const {
2663
  return _g1_reserved.byte_size();
2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678
}

jlong G1CollectedHeap::millis_since_last_gc() {
  // assert(false, "NYI");
  return 0;
}

void G1CollectedHeap::prepare_for_verify() {
  if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
    ensure_parsability(false);
  }
  g1_rem_set()->prepare_for_verify();
}

class VerifyLivenessOopClosure: public OopClosure {
2679 2680
  G1CollectedHeap* _g1h;
  VerifyOption _vo;
2681
public:
2682 2683 2684
  VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
    _g1h(g1h), _vo(vo)
  { }
2685 2686 2687 2688 2689
  void do_oop(narrowOop *p) { do_oop_work(p); }
  void do_oop(      oop *p) { do_oop_work(p); }

  template <class T> void do_oop_work(T *p) {
    oop obj = oopDesc::load_decode_heap_oop(p);
2690
    guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
2691
              "Dead object referenced by a not dead object");
2692 2693 2694 2695
  }
};

class VerifyObjsInRegionClosure: public ObjectClosure {
2696
private:
2697 2698 2699
  G1CollectedHeap* _g1h;
  size_t _live_bytes;
  HeapRegion *_hr;
2700
  VerifyOption _vo;
2701
public:
2702 2703 2704 2705 2706
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
  VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
    : _live_bytes(0), _hr(hr), _vo(vo) {
2707 2708 2709
    _g1h = G1CollectedHeap::heap();
  }
  void do_object(oop o) {
2710
    VerifyLivenessOopClosure isLive(_g1h, _vo);
2711
    assert(o != NULL, "Huh?");
2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723
    if (!_g1h->is_obj_dead_cond(o, _vo)) {
      // If the object is alive according to the mark word,
      // then verify that the marking information agrees.
      // Note we can't verify the contra-positive of the
      // above: if the object is dead (according to the mark
      // word), it may not be marked, or may have been marked
      // but has since became dead, or may have been allocated
      // since the last marking.
      if (_vo == VerifyOption_G1UseMarkWord) {
        guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
      }

2724
      o->oop_iterate(&isLive);
2725 2726 2727 2728
      if (!_hr->obj_allocated_since_prev_marking(o)) {
        size_t obj_size = o->size();    // Make sure we don't overflow
        _live_bytes += (obj_size * HeapWordSize);
      }
2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763
    }
  }
  size_t live_bytes() { return _live_bytes; }
};

class PrintObjsInRegionClosure : public ObjectClosure {
  HeapRegion *_hr;
  G1CollectedHeap *_g1;
public:
  PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
    _g1 = G1CollectedHeap::heap();
  };

  void do_object(oop o) {
    if (o != NULL) {
      HeapWord *start = (HeapWord *) o;
      size_t word_sz = o->size();
      gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
                          " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
                          (void*) o, word_sz,
                          _g1->isMarkedPrev(o),
                          _g1->isMarkedNext(o),
                          _hr->obj_allocated_since_prev_marking(o));
      HeapWord *end = start + word_sz;
      HeapWord *cur;
      int *val;
      for (cur = start; cur < end; cur++) {
        val = (int *) cur;
        gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
      }
    }
  }
};

class VerifyRegionClosure: public HeapRegionClosure {
2764
private:
2765 2766 2767 2768
  bool         _allow_dirty;
  bool         _par;
  VerifyOption _vo;
  bool         _failures;
2769
public:
2770 2771 2772 2773
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
  VerifyRegionClosure(bool allow_dirty, bool par, VerifyOption vo)
2774 2775
    : _allow_dirty(allow_dirty),
      _par(par),
2776
      _vo(vo),
2777 2778 2779 2780 2781
      _failures(false) {}

  bool failures() {
    return _failures;
  }
2782

2783
  bool doHeapRegion(HeapRegion* r) {
2784 2785
    guarantee(_par || r->claim_value() == HeapRegion::InitialClaimValue,
              "Should be unclaimed at verify points.");
2786
    if (!r->continuesHumongous()) {
2787
      bool failures = false;
2788
      r->verify(_allow_dirty, _vo, &failures);
2789 2790 2791
      if (failures) {
        _failures = true;
      } else {
2792
        VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
        r->object_iterate(&not_dead_yet_cl);
        if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
          gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
                                 "max_live_bytes "SIZE_FORMAT" "
                                 "< calculated "SIZE_FORMAT,
                                 r->bottom(), r->end(),
                                 r->max_live_bytes(),
                                 not_dead_yet_cl.live_bytes());
          _failures = true;
        }
      }
2804
    }
2805
    return false; // stop the region iteration if we hit a failure
2806 2807 2808 2809 2810 2811
  }
};

class VerifyRootsClosure: public OopsInGenClosure {
private:
  G1CollectedHeap* _g1h;
2812
  VerifyOption     _vo;
2813
  bool             _failures;
2814
public:
2815 2816 2817 2818
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
  VerifyRootsClosure(VerifyOption vo) :
2819
    _g1h(G1CollectedHeap::heap()),
2820
    _vo(vo),
2821
    _failures(false) { }
2822 2823 2824

  bool failures() { return _failures; }

2825 2826 2827 2828
  template <class T> void do_oop_nv(T* p) {
    T heap_oop = oopDesc::load_heap_oop(p);
    if (!oopDesc::is_null(heap_oop)) {
      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2829
      if (_g1h->is_obj_dead_cond(obj, _vo)) {
2830
        gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
2831
                              "points to dead obj "PTR_FORMAT, p, (void*) obj);
2832 2833 2834
        if (_vo == VerifyOption_G1UseMarkWord) {
          gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
        }
2835 2836 2837 2838 2839
        obj->print_on(gclog_or_tty);
        _failures = true;
      }
    }
  }
2840 2841 2842

  void do_oop(oop* p)       { do_oop_nv(p); }
  void do_oop(narrowOop* p) { do_oop_nv(p); }
2843 2844
};

2845 2846 2847 2848 2849
// This is the task used for parallel heap verification.

class G1ParVerifyTask: public AbstractGangTask {
private:
  G1CollectedHeap* _g1h;
2850 2851 2852
  bool             _allow_dirty;
  VerifyOption     _vo;
  bool             _failures;
2853 2854

public:
2855 2856 2857 2858
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
  G1ParVerifyTask(G1CollectedHeap* g1h, bool allow_dirty, VerifyOption vo) :
2859
    AbstractGangTask("Parallel verify task"),
2860 2861
    _g1h(g1h),
    _allow_dirty(allow_dirty),
2862
    _vo(vo),
2863 2864 2865 2866 2867
    _failures(false) { }

  bool failures() {
    return _failures;
  }
2868 2869

  void work(int worker_i) {
2870
    HandleMark hm;
2871
    VerifyRegionClosure blk(_allow_dirty, true, _vo);
2872 2873
    _g1h->heap_region_par_iterate_chunked(&blk, worker_i,
                                          HeapRegion::ParVerifyClaimValue);
2874 2875 2876
    if (blk.failures()) {
      _failures = true;
    }
2877 2878 2879
  }
};

2880
void G1CollectedHeap::verify(bool allow_dirty, bool silent) {
2881
  verify(allow_dirty, silent, VerifyOption_G1UsePrevMarking);
2882 2883 2884 2885
}

void G1CollectedHeap::verify(bool allow_dirty,
                             bool silent,
2886
                             VerifyOption vo) {
2887
  if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2888
    if (!silent) { gclog_or_tty->print("Roots (excluding permgen) "); }
2889
    VerifyRootsClosure rootsCl(vo);
2890
    CodeBlobToOopClosure blobsCl(&rootsCl, /*do_marking=*/ false);
2891

2892 2893 2894
    // We apply the relevant closures to all the oops in the
    // system dictionary, the string table and the code cache.
    const int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings | SharedHeap::SO_CodeCache;
2895

2896 2897 2898 2899
    process_strong_roots(true,      // activate StrongRootsScope
                         true,      // we set "collecting perm gen" to true,
                                    // so we don't reset the dirty cards in the perm gen.
                         SharedHeap::ScanningOption(so),  // roots scanning options
2900
                         &rootsCl,
2901
                         &blobsCl,
2902
                         &rootsCl);
2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916

    // If we're verifying after the marking phase of a Full GC then we can't
    // treat the perm gen as roots into the G1 heap. Some of the objects in
    // the perm gen may be dead and hence not marked. If one of these dead
    // objects is considered to be a root then we may end up with a false
    // "Root location <x> points to dead ob <y>" failure.
    if (vo != VerifyOption_G1UseMarkWord) {
      // Since we used "collecting_perm_gen" == true above, we will not have
      // checked the refs from perm into the G1-collected heap. We check those
      // references explicitly below. Whether the relevant cards are dirty
      // is checked further below in the rem set verification.
      if (!silent) { gclog_or_tty->print("Permgen roots "); }
      perm_gen()->oop_iterate(&rootsCl);
    }
2917
    bool failures = rootsCl.failures();
2918 2919 2920 2921 2922 2923 2924 2925 2926 2927

    if (vo != VerifyOption_G1UseMarkWord) {
      // If we're verifying during a full GC then the region sets
      // will have been torn down at the start of the GC. Therefore
      // verifying the region sets will fail. So we only verify
      // the region sets when not in a full GC.
      if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
      verify_region_sets();
    }

2928
    if (!silent) { gclog_or_tty->print("HeapRegions "); }
2929 2930 2931 2932
    if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
      assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
             "sanity check");

2933
      G1ParVerifyTask task(this, allow_dirty, vo);
2934 2935 2936 2937
      int n_workers = workers()->total_workers();
      set_par_threads(n_workers);
      workers()->run_task(&task);
      set_par_threads(0);
2938 2939 2940
      if (task.failures()) {
        failures = true;
      }
2941 2942 2943 2944 2945 2946 2947 2948 2949

      assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
             "sanity check");

      reset_heap_region_claim_values();

      assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
             "sanity check");
    } else {
2950
      VerifyRegionClosure blk(allow_dirty, false, vo);
2951
      heap_region_iterate(&blk);
2952 2953 2954
      if (blk.failures()) {
        failures = true;
      }
2955
    }
2956
    if (!silent) gclog_or_tty->print("RemSet ");
2957
    rem_set()->verify();
2958 2959 2960 2961 2962

    if (failures) {
      gclog_or_tty->print_cr("Heap:");
      print_on(gclog_or_tty, true /* extended */);
      gclog_or_tty->print_cr("");
2963
#ifndef PRODUCT
2964
      if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
2965
        concurrent_mark()->print_reachable("at-verification-failure",
2966
                                           vo, false /* all */);
2967
      }
2968
#endif
2969 2970 2971
      gclog_or_tty->flush();
    }
    guarantee(!failures, "there should not have been any failures");
2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986
  } else {
    if (!silent) gclog_or_tty->print("(SKIPPING roots, heapRegions, remset) ");
  }
}

class PrintRegionClosure: public HeapRegionClosure {
  outputStream* _st;
public:
  PrintRegionClosure(outputStream* st) : _st(st) {}
  bool doHeapRegion(HeapRegion* r) {
    r->print_on(_st);
    return false;
  }
};

2987
void G1CollectedHeap::print() const { print_on(tty); }
2988 2989

void G1CollectedHeap::print_on(outputStream* st) const {
2990 2991 2992 2993 2994 2995
  print_on(st, PrintHeapAtGCExtended);
}

void G1CollectedHeap::print_on(outputStream* st, bool extended) const {
  st->print(" %-20s", "garbage-first heap");
  st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2996
            capacity()/K, used_unlocked()/K);
2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012
  st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
            _g1_storage.low_boundary(),
            _g1_storage.high(),
            _g1_storage.high_boundary());
  st->cr();
  st->print("  region size " SIZE_FORMAT "K, ",
            HeapRegion::GrainBytes/K);
  size_t young_regions = _young_list->length();
  st->print(SIZE_FORMAT " young (" SIZE_FORMAT "K), ",
            young_regions, young_regions * HeapRegion::GrainBytes / K);
  size_t survivor_regions = g1_policy()->recorded_survivor_regions();
  st->print(SIZE_FORMAT " survivors (" SIZE_FORMAT "K)",
            survivor_regions, survivor_regions * HeapRegion::GrainBytes / K);
  st->cr();
  perm()->as_gen()->print_on(st);
  if (extended) {
3013
    st->cr();
3014 3015 3016 3017 3018
    print_on_extended(st);
  }
}

void G1CollectedHeap::print_on_extended(outputStream* st) const {
3019
  PrintRegionClosure blk(st);
3020
  heap_region_iterate(&blk);
3021 3022 3023
}

void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3024
  if (G1CollectedHeap::use_parallel_gc_threads()) {
T
tonyp 已提交
3025
    workers()->print_worker_threads_on(st);
3026
  }
T
tonyp 已提交
3027
  _cmThread->print_on(st);
3028
  st->cr();
T
tonyp 已提交
3029 3030
  _cm->print_worker_threads_on(st);
  _cg1r->print_worker_threads_on(st);
3031 3032 3033 3034
  st->cr();
}

void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3035
  if (G1CollectedHeap::use_parallel_gc_threads()) {
3036 3037 3038
    workers()->threads_do(tc);
  }
  tc->do_thread(_cmThread);
3039
  _cg1r->threads_do(tc);
3040 3041 3042 3043 3044 3045 3046 3047 3048
}

void G1CollectedHeap::print_tracing_info() const {
  // We'll overload this to mean "trace GC pause statistics."
  if (TraceGen0Time || TraceGen1Time) {
    // The "G1CollectorPolicy" is keeping track of these stats, so delegate
    // to that.
    g1_policy()->print_tracing_info();
  }
J
johnc 已提交
3049
  if (G1SummarizeRSetStats) {
3050 3051
    g1_rem_set()->print_summary_info();
  }
3052
  if (G1SummarizeConcMark) {
3053 3054 3055 3056 3057 3058
    concurrent_mark()->print_summary_info();
  }
  g1_policy()->print_yg_surv_rate_info();
  SpecializationStats::print();
}

3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108
#ifndef PRODUCT
// Helpful for debugging RSet issues.

class PrintRSetsClosure : public HeapRegionClosure {
private:
  const char* _msg;
  size_t _occupied_sum;

public:
  bool doHeapRegion(HeapRegion* r) {
    HeapRegionRemSet* hrrs = r->rem_set();
    size_t occupied = hrrs->occupied();
    _occupied_sum += occupied;

    gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
                           HR_FORMAT_PARAMS(r));
    if (occupied == 0) {
      gclog_or_tty->print_cr("  RSet is empty");
    } else {
      hrrs->print();
    }
    gclog_or_tty->print_cr("----------");
    return false;
  }

  PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
    gclog_or_tty->cr();
    gclog_or_tty->print_cr("========================================");
    gclog_or_tty->print_cr(msg);
    gclog_or_tty->cr();
  }

  ~PrintRSetsClosure() {
    gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
    gclog_or_tty->print_cr("========================================");
    gclog_or_tty->cr();
  }
};

void G1CollectedHeap::print_cset_rsets() {
  PrintRSetsClosure cl("Printing CSet RSets");
  collection_set_iterate(&cl);
}

void G1CollectedHeap::print_all_rsets() {
  PrintRSetsClosure cl("Printing All RSets");;
  heap_region_iterate(&cl);
}
#endif // PRODUCT

3109 3110 3111 3112 3113 3114 3115
G1CollectedHeap* G1CollectedHeap::heap() {
  assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
         "not a garbage-first heap");
  return _g1h;
}

void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3116
  // always_do_update_barrier = false;
3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129
  assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  // Call allocation profiler
  AllocationProfiler::iterate_since_last_gc();
  // Fill TLAB's and such
  ensure_parsability(true);
}

void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
  // FIXME: what is this about?
  // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
  // is set.
  COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
                        "derived pointer present"));
3130
  // always_do_update_barrier = true;
3131 3132
}

3133 3134 3135 3136
HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
                                               unsigned int gc_count_before,
                                               bool* succeeded) {
  assert_heap_not_locked_and_not_at_safepoint();
3137
  g1_policy()->record_stop_world_start();
3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152
  VM_G1IncCollectionPause op(gc_count_before,
                             word_size,
                             false, /* should_initiate_conc_mark */
                             g1_policy()->max_pause_time_ms(),
                             GCCause::_g1_inc_collection_pause);
  VMThread::execute(&op);

  HeapWord* result = op.result();
  bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
  assert(result == NULL || ret_succeeded,
         "the result should be NULL if the VM did not succeed");
  *succeeded = ret_succeeded;

  assert_heap_not_locked();
  return result;
3153 3154 3155 3156
}

void
G1CollectedHeap::doConcurrentMark() {
3157 3158 3159 3160
  MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  if (!_cmThread->in_progress()) {
    _cmThread->set_started();
    CGC_lock->notify();
3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204
  }
}

void G1CollectedHeap::do_sync_mark() {
  _cm->checkpointRootsInitial();
  _cm->markFromRoots();
  _cm->checkpointRootsFinal(false);
}

// <NEW PREDICTION>

double G1CollectedHeap::predict_region_elapsed_time_ms(HeapRegion *hr,
                                                       bool young) {
  return _g1_policy->predict_region_elapsed_time_ms(hr, young);
}

void G1CollectedHeap::check_if_region_is_too_expensive(double
                                                           predicted_time_ms) {
  _g1_policy->check_if_region_is_too_expensive(predicted_time_ms);
}

size_t G1CollectedHeap::pending_card_num() {
  size_t extra_cards = 0;
  JavaThread *curr = Threads::first();
  while (curr != NULL) {
    DirtyCardQueue& dcq = curr->dirty_card_queue();
    extra_cards += dcq.size();
    curr = curr->next();
  }
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  size_t buffer_size = dcqs.buffer_size();
  size_t buffer_num = dcqs.completed_buffers_num();
  return buffer_size * buffer_num + extra_cards;
}

size_t G1CollectedHeap::max_pending_card_num() {
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  size_t buffer_size = dcqs.buffer_size();
  size_t buffer_num  = dcqs.completed_buffers_num();
  int thread_num  = Threads::number_of_threads();
  return (buffer_num + thread_num) * buffer_size;
}

size_t G1CollectedHeap::cards_scanned() {
3205
  return g1_rem_set()->cardsScanned();
3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217
}

void
G1CollectedHeap::setup_surviving_young_words() {
  guarantee( _surviving_young_words == NULL, "pre-condition" );
  size_t array_length = g1_policy()->young_cset_length();
  _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, array_length);
  if (_surviving_young_words == NULL) {
    vm_exit_out_of_memory(sizeof(size_t) * array_length,
                          "Not enough space for young surv words summary.");
  }
  memset(_surviving_young_words, 0, array_length * sizeof(size_t));
3218
#ifdef ASSERT
3219
  for (size_t i = 0;  i < array_length; ++i) {
3220
    assert( _surviving_young_words[i] == 0, "memset above" );
3221
  }
3222
#endif // !ASSERT
3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241
}

void
G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
  MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  size_t array_length = g1_policy()->young_cset_length();
  for (size_t i = 0; i < array_length; ++i)
    _surviving_young_words[i] += surv_young_words[i];
}

void
G1CollectedHeap::cleanup_surviving_young_words() {
  guarantee( _surviving_young_words != NULL, "pre-condition" );
  FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
  _surviving_young_words = NULL;
}

// </NEW PREDICTION>

3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258
#ifdef ASSERT
class VerifyCSetClosure: public HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion* hr) {
    // Here we check that the CSet region's RSet is ready for parallel
    // iteration. The fields that we'll verify are only manipulated
    // when the region is part of a CSet and is collected. Afterwards,
    // we reset these fields when we clear the region's RSet (when the
    // region is freed) so they are ready when the region is
    // re-allocated. The only exception to this is if there's an
    // evacuation failure and instead of freeing the region we leave
    // it in the heap. In that case, we reset these fields during
    // evacuation failure handling.
    guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");

    // Here's a good place to add any other checks we'd like to
    // perform on CSet regions.
3259 3260 3261
    return false;
  }
};
3262
#endif // ASSERT
3263

3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274
#if TASKQUEUE_STATS
void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
  st->print_raw_cr("GC Task Stats");
  st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
  st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
}

void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
  print_taskqueue_stats_hdr(st);

  TaskQueueStats totals;
3275
  const int n = workers() != NULL ? workers()->total_workers() : 1;
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285
  for (int i = 0; i < n; ++i) {
    st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
    totals += task_queue(i)->stats;
  }
  st->print_raw("tot "); totals.print(st); st->cr();

  DEBUG_ONLY(totals.verify());
}

void G1CollectedHeap::reset_taskqueue_stats() {
3286
  const int n = workers() != NULL ? workers()->total_workers() : 1;
3287 3288 3289 3290 3291 3292
  for (int i = 0; i < n; ++i) {
    task_queue(i)->stats.reset();
  }
}
#endif // TASKQUEUE_STATS

3293
bool
3294
G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3295 3296 3297
  assert_at_safepoint(true /* should_be_vm_thread */);
  guarantee(!is_gc_active(), "collection is not reentrant");

3298
  if (GC_locker::check_active_before_gc()) {
3299
    return false;
3300 3301
  }

3302
  SvcGCMarker sgcm(SvcGCMarker::MINOR);
3303 3304
  ResourceMark rm;

3305 3306
  if (PrintHeapAtGC) {
    Universe::print_heap_before_gc();
3307 3308
  }

3309
  verify_region_sets_optional();
3310
  verify_dirty_young_regions();
3311

3312
  {
3313 3314 3315 3316 3317
    // This call will decide whether this pause is an initial-mark
    // pause. If it is, during_initial_mark_pause() will return true
    // for the duration of this pause.
    g1_policy()->decide_on_conc_mark_initiation();

3318 3319 3320 3321 3322 3323 3324 3325
    char verbose_str[128];
    sprintf(verbose_str, "GC pause ");
    if (g1_policy()->in_young_gc_mode()) {
      if (g1_policy()->full_young_gcs())
        strcat(verbose_str, "(young)");
      else
        strcat(verbose_str, "(partial)");
    }
3326
    if (g1_policy()->during_initial_mark_pause()) {
3327
      strcat(verbose_str, " (initial-mark)");
3328 3329 3330 3331
      // We are about to start a marking cycle, so we increment the
      // full collection counter.
      increment_total_full_collections();
    }
3332

3333 3334 3335 3336 3337 3338
    // if PrintGCDetails is on, we'll print long statistics information
    // in the collector policy code, so let's not print this as the output
    // is messy if we do.
    gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
    TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
    TraceTime t(verbose_str, PrintGC && !PrintGCDetails, true, gclog_or_tty);
3339

3340
    TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3341
    TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3342

T
tonyp 已提交
3343 3344 3345 3346 3347 3348
    // If the secondary_free_list is not empty, append it to the
    // free_list. No need to wait for the cleanup operation to finish;
    // the region allocation code will check the secondary_free_list
    // and wait if necessary. If the G1StressConcRegionFreeing flag is
    // set, skip this step so that the region allocation code has to
    // get entries from the secondary_free_list.
3349
    if (!G1StressConcRegionFreeing) {
T
tonyp 已提交
3350
      append_secondary_free_list_if_not_empty_with_lock();
3351
    }
3352

3353 3354 3355 3356
    if (g1_policy()->in_young_gc_mode()) {
      assert(check_young_list_well_formed(),
             "young list should be well formed");
    }
3357

3358 3359 3360 3361 3362
    { // Call to jvmpi::post_class_unload_events must occur outside of active GC
      IsGCActiveMark x;

      gc_prologue(false);
      increment_total_collections(false /* full gc */);
3363
      increment_gc_time_stamp();
3364

3365 3366 3367
      if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
        HandleMark hm;  // Discard invalid handles created during verification
        gclog_or_tty->print(" VerifyBeforeGC:");
3368
        prepare_for_verify();
3369 3370 3371 3372
        Universe::verify(/* allow dirty */ false,
                         /* silent      */ false,
                         /* option      */ VerifyOption_G1UsePrevMarking);

3373
      }
3374

3375
      COMPILER2_PRESENT(DerivedPointerTable::clear());
3376

3377 3378 3379
      // Please see comment in G1CollectedHeap::ref_processing_init()
      // to see how reference processing currently works in G1.
      //
3380
      // We want to turn off ref discovery, if necessary, and turn it back on
3381
      // on again later if we do. XXX Dubious: why is discovery disabled?
3382 3383
      bool was_enabled = ref_processor()->discovery_enabled();
      if (was_enabled) ref_processor()->disable_discovery();
3384

3385 3386
      // Forget the current alloc region (we might even choose it to be part
      // of the collection set!).
3387
      release_mutator_alloc_region();
3388

3389 3390 3391 3392 3393
      // We should call this after we retire the mutator alloc
      // region(s) so that all the ALLOC / RETIRE events are generated
      // before the start GC event.
      _hr_printer.start_gc(false /* full */, (size_t) total_collections());

3394 3395 3396 3397
      // The elapsed time induced by the start time below deliberately elides
      // the possible verification above.
      double start_time_sec = os::elapsedTime();
      size_t start_used_bytes = used();
3398

3399 3400 3401 3402 3403 3404
#if YOUNG_LIST_VERBOSE
      gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
      _young_list->print();
      g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
#endif // YOUNG_LIST_VERBOSE

3405 3406
      g1_policy()->record_collection_pause_start(start_time_sec,
                                                 start_used_bytes);
3407

3408 3409
#if YOUNG_LIST_VERBOSE
      gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
3410
      _young_list->print();
3411
#endif // YOUNG_LIST_VERBOSE
3412

3413
      if (g1_policy()->during_initial_mark_pause()) {
3414 3415
        concurrent_mark()->checkpointRootsInitialPre();
      }
3416
      perm_gen()->save_marks();
3417

3418 3419 3420 3421
      // We must do this before any possible evacuation that should propagate
      // marks.
      if (mark_in_progress()) {
        double start_time_sec = os::elapsedTime();
3422

3423 3424 3425 3426 3427 3428 3429 3430 3431
        _cm->drainAllSATBBuffers();
        double finish_mark_ms = (os::elapsedTime() - start_time_sec) * 1000.0;
        g1_policy()->record_satb_drain_time(finish_mark_ms);
      }
      // Record the number of elements currently on the mark stack, so we
      // only iterate over these.  (Since evacuation may add to the mark
      // stack, doing more exposes race conditions.)  If no mark is in
      // progress, this will be zero.
      _cm->set_oops_do_bound();
3432

3433
      if (mark_in_progress()) {
3434
        concurrent_mark()->newCSet();
3435
      }
3436

3437 3438 3439 3440 3441
#if YOUNG_LIST_VERBOSE
      gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
      _young_list->print();
      g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
#endif // YOUNG_LIST_VERBOSE
3442

3443
      g1_policy()->choose_collection_set(target_pause_time_ms);
3444

3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460
      if (_hr_printer.is_active()) {
        HeapRegion* hr = g1_policy()->collection_set();
        while (hr != NULL) {
          G1HRPrinter::RegionType type;
          if (!hr->is_young()) {
            type = G1HRPrinter::Old;
          } else if (hr->is_survivor()) {
            type = G1HRPrinter::Survivor;
          } else {
            type = G1HRPrinter::Eden;
          }
          _hr_printer.cset(hr);
          hr = hr->next_in_collection_set();
        }
      }

3461 3462 3463 3464 3465 3466 3467 3468 3469 3470
      // We have chosen the complete collection set. If marking is
      // active then, we clear the region fields of any of the
      // concurrent marking tasks whose region fields point into
      // the collection set as these values will become stale. This
      // will cause the owning marking threads to claim a new region
      // when marking restarts.
      if (mark_in_progress()) {
        concurrent_mark()->reset_active_task_region_fields_in_cset();
      }

3471 3472 3473 3474
#ifdef ASSERT
      VerifyCSetClosure cl;
      collection_set_iterate(&cl);
#endif // ASSERT
3475

3476
      setup_surviving_young_words();
3477

3478 3479
      // Initialize the GC alloc regions.
      init_gc_alloc_regions();
3480

3481 3482
      // Actually do the work...
      evacuate_collection_set();
3483

3484 3485
      free_collection_set(g1_policy()->collection_set());
      g1_policy()->clear_collection_set();
3486

3487
      cleanup_surviving_young_words();
3488

3489 3490
      // Start a new incremental collection set for the next pause.
      g1_policy()->start_incremental_cset_building();
3491

3492 3493 3494 3495
      // Clear the _cset_fast_test bitmap in anticipation of adding
      // regions to the incremental collection set for the next
      // evacuation pause.
      clear_cset_fast_test();
3496

3497 3498
      if (g1_policy()->in_young_gc_mode()) {
        _young_list->reset_sampled_info();
3499

3500 3501 3502 3503 3504 3505
        // Don't check the whole heap at this point as the
        // GC alloc regions from this pause have been tagged
        // as survivors and moved on to the survivor list.
        // Survivor regions will fail the !is_young() check.
        assert(check_young_list_empty(false /* check_heap */),
               "young list should be empty");
3506 3507

#if YOUNG_LIST_VERBOSE
3508 3509
        gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
        _young_list->print();
3510
#endif // YOUNG_LIST_VERBOSE
3511

3512
        g1_policy()->record_survivor_regions(_young_list->survivor_length(),
3513 3514
                                          _young_list->first_survivor_region(),
                                          _young_list->last_survivor_region());
3515

3516
        _young_list->reset_auxilary_lists();
3517 3518
      }

3519 3520 3521 3522 3523
      if (evacuation_failed()) {
        _summary_bytes_used = recalculate_used();
      } else {
        // The "used" of the the collection set have already been subtracted
        // when they were freed.  Add in the bytes evacuated.
3524
        _summary_bytes_used += g1_policy()->bytes_copied_during_gc();
3525
      }
3526

3527
      if (g1_policy()->in_young_gc_mode() &&
3528
          g1_policy()->during_initial_mark_pause()) {
3529 3530
        concurrent_mark()->checkpointRootsInitialPost();
        set_marking_started();
3531 3532 3533 3534 3535 3536 3537
        // CAUTION: after the doConcurrentMark() call below,
        // the concurrent marking thread(s) could be running
        // concurrently with us. Make sure that anything after
        // this point does not assume that we are the only GC thread
        // running. Note: of course, the actual marking work will
        // not start until the safepoint itself is released in
        // ConcurrentGCThread::safepoint_desynchronize().
3538 3539
        doConcurrentMark();
      }
3540

3541 3542
      allocate_dummy_regions();

3543 3544
#if YOUNG_LIST_VERBOSE
      gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
3545
      _young_list->print();
3546 3547
      g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
#endif // YOUNG_LIST_VERBOSE
3548

3549 3550
      init_mutator_alloc_region();

3551 3552 3553
      double end_time_sec = os::elapsedTime();
      double pause_time_ms = (end_time_sec - start_time_sec) * MILLIUNITS;
      g1_policy()->record_pause_time_ms(pause_time_ms);
3554
      g1_policy()->record_collection_pause_end();
3555

3556 3557
      MemoryService::track_memory_usage();

3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580
      // In prepare_for_verify() below we'll need to scan the deferred
      // update buffers to bring the RSets up-to-date if
      // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
      // the update buffers we'll probably need to scan cards on the
      // regions we just allocated to (i.e., the GC alloc
      // regions). However, during the last GC we called
      // set_saved_mark() on all the GC alloc regions, so card
      // scanning might skip the [saved_mark_word()...top()] area of
      // those regions (i.e., the area we allocated objects into
      // during the last GC). But it shouldn't. Given that
      // saved_mark_word() is conditional on whether the GC time stamp
      // on the region is current or not, by incrementing the GC time
      // stamp here we invalidate all the GC time stamps on all the
      // regions and saved_mark_word() will simply return top() for
      // all the regions. This is a nicer way of ensuring this rather
      // than iterating over the regions and fixing them. In fact, the
      // GC time stamp increment here also ensures that
      // saved_mark_word() will return top() between pauses, i.e.,
      // during concurrent refinement. So we don't need the
      // is_gc_active() check to decided which top to use when
      // scanning cards (see CR 7039627).
      increment_gc_time_stamp();

3581 3582 3583 3584
      if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
        HandleMark hm;  // Discard invalid handles created during verification
        gclog_or_tty->print(" VerifyAfterGC:");
        prepare_for_verify();
3585 3586 3587
        Universe::verify(/* allow dirty */ true,
                         /* silent      */ false,
                         /* option      */ VerifyOption_G1UsePrevMarking);
3588
      }
3589

3590
      if (was_enabled) ref_processor()->enable_discovery();
3591

3592 3593 3594 3595
      {
        size_t expand_bytes = g1_policy()->expansion_amount();
        if (expand_bytes > 0) {
          size_t bytes_before = capacity();
3596 3597 3598 3599 3600 3601
          if (!expand(expand_bytes)) {
            // We failed to expand the heap so let's verify that
            // committed/uncommitted amount match the backing store
            assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
            assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
          }
3602
        }
3603
      }
3604 3605 3606 3607 3608 3609 3610

      // We should do this after we potentially expand the heap so
      // that all the COMMIT events are generated before the end GC
      // event, and after we retire the GC alloc regions so that all
      // RETIRE events are generated before the end GC event.
      _hr_printer.end_gc(false /* full */, (size_t) total_collections());

3611 3612
      // We have to do this after we decide whether to expand the heap or not.
      g1_policy()->print_heap_transition();
3613

3614 3615 3616
      if (mark_in_progress()) {
        concurrent_mark()->update_g1_committed();
      }
3617 3618

#ifdef TRACESPINNING
3619
      ParallelTaskTerminator::print_termination_counts();
3620
#endif
3621

3622 3623 3624 3625 3626 3627 3628 3629 3630
      gc_epilogue(false);
    }

    if (ExitAfterGCNum > 0 && total_collections() == ExitAfterGCNum) {
      gclog_or_tty->print_cr("Stopping after GC #%d", ExitAfterGCNum);
      print_tracing_info();
      vm_exit(-1);
    }
  }
3631

3632
  _hrs.verify_optional();
3633 3634
  verify_region_sets_optional();

3635 3636 3637
  TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
  TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());

3638 3639
  if (PrintHeapAtGC) {
    Universe::print_heap_after_gc();
3640
  }
3641 3642
  g1mm()->update_counters();

3643 3644 3645 3646 3647
  if (G1SummarizeRSetStats &&
      (G1SummarizeRSetStatsPeriod > 0) &&
      (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
    g1_rem_set()->print_summary_info();
  }
3648 3649

  return true;
3650 3651
}

3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669
size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
{
  size_t gclab_word_size;
  switch (purpose) {
    case GCAllocForSurvived:
      gclab_word_size = YoungPLABSize;
      break;
    case GCAllocForTenured:
      gclab_word_size = OldPLABSize;
      break;
    default:
      assert(false, "unknown GCAllocPurpose");
      gclab_word_size = OldPLABSize;
      break;
  }
  return gclab_word_size;
}

3670 3671 3672 3673 3674 3675 3676 3677 3678
void G1CollectedHeap::init_mutator_alloc_region() {
  assert(_mutator_alloc_region.get() == NULL, "pre-condition");
  _mutator_alloc_region.init();
}

void G1CollectedHeap::release_mutator_alloc_region() {
  _mutator_alloc_region.release();
  assert(_mutator_alloc_region.get() == NULL, "post-condition");
}
3679

3680
void G1CollectedHeap::init_gc_alloc_regions() {
3681
  assert_at_safepoint(true /* should_be_vm_thread */);
3682

3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715
  _survivor_gc_alloc_region.init();
  _old_gc_alloc_region.init();
  HeapRegion* retained_region = _retained_old_gc_alloc_region;
  _retained_old_gc_alloc_region = NULL;

  // We will discard the current GC alloc region if:
  // a) it's in the collection set (it can happen!),
  // b) it's already full (no point in using it),
  // c) it's empty (this means that it was emptied during
  // a cleanup and it should be on the free list now), or
  // d) it's humongous (this means that it was emptied
  // during a cleanup and was added to the free list, but
  // has been subseqently used to allocate a humongous
  // object that may be less than the region size).
  if (retained_region != NULL &&
      !retained_region->in_collection_set() &&
      !(retained_region->top() == retained_region->end()) &&
      !retained_region->is_empty() &&
      !retained_region->isHumongous()) {
    retained_region->set_saved_mark();
    _old_gc_alloc_region.set(retained_region);
    _hr_printer.reuse(retained_region);
  }
}

void G1CollectedHeap::release_gc_alloc_regions() {
  _survivor_gc_alloc_region.release();
  // If we have an old GC alloc region to release, we'll save it in
  // _retained_old_gc_alloc_region. If we don't
  // _retained_old_gc_alloc_region will become NULL. This is what we
  // want either way so no reason to check explicitly for either
  // condition.
  _retained_old_gc_alloc_region = _old_gc_alloc_region.release();
3716 3717
}

3718 3719 3720 3721
void G1CollectedHeap::abandon_gc_alloc_regions() {
  assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
  assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
  _retained_old_gc_alloc_region = NULL;
3722 3723
}

3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734
void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
  _drain_in_progress = false;
  set_evac_failure_closure(cl);
  _evac_failure_scan_stack = new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
}

void G1CollectedHeap::finalize_for_evac_failure() {
  assert(_evac_failure_scan_stack != NULL &&
         _evac_failure_scan_stack->length() == 0,
         "Postcondition");
  assert(!_drain_in_progress, "Postcondition");
A
apetrusenko 已提交
3735
  delete _evac_failure_scan_stack;
3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763
  _evac_failure_scan_stack = NULL;
}

// *** Sequential G1 Evacuation

class G1IsAliveClosure: public BoolObjectClosure {
  G1CollectedHeap* _g1;
public:
  G1IsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  void do_object(oop p) { assert(false, "Do not call."); }
  bool do_object_b(oop p) {
    // It is reachable if it is outside the collection set, or is inside
    // and forwarded.

#ifdef G1_DEBUG
    gclog_or_tty->print_cr("is alive "PTR_FORMAT" in CS %d forwarded %d overall %d",
                           (void*) p, _g1->obj_in_cs(p), p->is_forwarded(),
                           !_g1->obj_in_cs(p) || p->is_forwarded());
#endif // G1_DEBUG

    return !_g1->obj_in_cs(p) || p->is_forwarded();
  }
};

class G1KeepAliveClosure: public OopClosure {
  G1CollectedHeap* _g1;
public:
  G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3764 3765
  void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
  void do_oop(      oop* p) {
3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784
    oop obj = *p;
#ifdef G1_DEBUG
    if (PrintGC && Verbose) {
      gclog_or_tty->print_cr("keep alive *"PTR_FORMAT" = "PTR_FORMAT" "PTR_FORMAT,
                             p, (void*) obj, (void*) *p);
    }
#endif // G1_DEBUG

    if (_g1->obj_in_cs(obj)) {
      assert( obj->is_forwarded(), "invariant" );
      *p = obj->forwardee();
#ifdef G1_DEBUG
      gclog_or_tty->print_cr("     in CSet: moved "PTR_FORMAT" -> "PTR_FORMAT,
                             (void*) obj, (void*) *p);
#endif // G1_DEBUG
    }
  }
};

3785 3786 3787 3788 3789 3790 3791 3792 3793
class UpdateRSetDeferred : public OopsInHeapRegionClosure {
private:
  G1CollectedHeap* _g1;
  DirtyCardQueue *_dcq;
  CardTableModRefBS* _ct_bs;

public:
  UpdateRSetDeferred(G1CollectedHeap* g1, DirtyCardQueue* dcq) :
    _g1(g1), _ct_bs((CardTableModRefBS*)_g1->barrier_set()), _dcq(dcq) {}
3794

3795 3796 3797
  virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  virtual void do_oop(      oop* p) { do_oop_work(p); }
  template <class T> void do_oop_work(T* p) {
3798
    assert(_from->is_in_reserved(p), "paranoia");
3799 3800
    if (!_from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) &&
        !_from->is_survivor()) {
3801 3802 3803 3804
      size_t card_index = _ct_bs->index_for(p);
      if (_ct_bs->mark_card_deferred(card_index)) {
        _dcq->enqueue((jbyte*)_ct_bs->byte_for_index(card_index));
      }
3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815
    }
  }
};

class RemoveSelfPointerClosure: public ObjectClosure {
private:
  G1CollectedHeap* _g1;
  ConcurrentMark* _cm;
  HeapRegion* _hr;
  size_t _prev_marked_bytes;
  size_t _next_marked_bytes;
3816
  OopsInHeapRegionClosure *_cl;
3817
public:
3818 3819 3820
  RemoveSelfPointerClosure(G1CollectedHeap* g1, HeapRegion* hr,
                           OopsInHeapRegionClosure* cl) :
    _g1(g1), _hr(hr), _cm(_g1->concurrent_mark()),  _prev_marked_bytes(0),
3821
    _next_marked_bytes(0), _cl(cl) {}
3822 3823 3824 3825

  size_t prev_marked_bytes() { return _prev_marked_bytes; }
  size_t next_marked_bytes() { return _next_marked_bytes; }

3826
  // <original comment>
3827 3828 3829 3830 3831 3832 3833 3834 3835
  // The original idea here was to coalesce evacuated and dead objects.
  // However that caused complications with the block offset table (BOT).
  // In particular if there were two TLABs, one of them partially refined.
  // |----- TLAB_1--------|----TLAB_2-~~~(partially refined part)~~~|
  // The BOT entries of the unrefined part of TLAB_2 point to the start
  // of TLAB_2. If the last object of the TLAB_1 and the first object
  // of TLAB_2 are coalesced, then the cards of the unrefined part
  // would point into middle of the filler object.
  // The current approach is to not coalesce and leave the BOT contents intact.
3836 3837 3838 3839 3840 3841
  // </original comment>
  //
  // We now reset the BOT when we start the object iteration over the
  // region and refine its entries for every object we come across. So
  // the above comment is not really relevant and we should be able
  // to coalesce dead objects if we want to.
3842
  void do_object(oop obj) {
3843 3844 3845 3846
    HeapWord* obj_addr = (HeapWord*) obj;
    assert(_hr->is_in(obj_addr), "sanity");
    size_t obj_size = obj->size();
    _hr->update_bot_for_object(obj_addr, obj_size);
3847 3848 3849 3850 3851
    if (obj->is_forwarded() && obj->forwardee() == obj) {
      // The object failed to move.
      assert(!_g1->is_obj_dead(obj), "We should not be preserving dead objs.");
      _cm->markPrev(obj);
      assert(_cm->isPrevMarked(obj), "Should be marked!");
3852
      _prev_marked_bytes += (obj_size * HeapWordSize);
3853 3854
      if (_g1->mark_in_progress() && !_g1->is_obj_ill(obj)) {
        _cm->markAndGrayObjectIfNecessary(obj);
3855
      }
3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868
      obj->set_mark(markOopDesc::prototype());
      // While we were processing RSet buffers during the
      // collection, we actually didn't scan any cards on the
      // collection set, since we didn't want to update remebered
      // sets with entries that point into the collection set, given
      // that live objects fromthe collection set are about to move
      // and such entries will be stale very soon. This change also
      // dealt with a reliability issue which involved scanning a
      // card in the collection set and coming across an array that
      // was being chunked and looking malformed. The problem is
      // that, if evacuation fails, we might have remembered set
      // entries missing given that we skipped cards on the
      // collection set. So, we'll recreate such entries now.
3869
      obj->oop_iterate(_cl);
3870 3871 3872 3873
      assert(_cm->isPrevMarked(obj), "Should be marked!");
    } else {
      // The object has been either evacuated or is dead. Fill it with a
      // dummy object.
3874
      MemRegion mr((HeapWord*)obj, obj_size);
3875
      CollectedHeap::fill_with_object(mr);
3876
      _cm->clearRangeBothMaps(mr);
3877 3878 3879 3880 3881
    }
  }
};

void G1CollectedHeap::remove_self_forwarding_pointers() {
J
johnc 已提交
3882
  UpdateRSetImmediate immediate_update(_g1h->g1_rem_set());
3883 3884 3885 3886 3887 3888 3889 3890
  DirtyCardQueue dcq(&_g1h->dirty_card_queue_set());
  UpdateRSetDeferred deferred_update(_g1h, &dcq);
  OopsInHeapRegionClosure *cl;
  if (G1DeferredRSUpdate) {
    cl = &deferred_update;
  } else {
    cl = &immediate_update;
  }
3891 3892 3893
  HeapRegion* cur = g1_policy()->collection_set();
  while (cur != NULL) {
    assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");
3894
    assert(!cur->isHumongous(), "sanity");
3895 3896 3897

    if (cur->evacuation_failed()) {
      assert(cur->in_collection_set(), "bad CS");
3898 3899
      RemoveSelfPointerClosure rspc(_g1h, cur, cl);

3900 3901 3902 3903 3904 3905 3906 3907
      // In the common case we make sure that this is done when the
      // region is freed so that it is "ready-to-go" when it's
      // re-allocated. However, when evacuation failure happens, a
      // region will remain in the heap and might ultimately be added
      // to a CSet in the future. So we have to be careful here and
      // make sure the region's RSet is ready for parallel iteration
      // whenever this might be required in the future.
      cur->rem_set()->reset_for_par_iteration();
3908
      cur->reset_bot();
3909
      cl->set_region(cur);
3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975
      cur->object_iterate(&rspc);

      // A number of manipulations to make the TAMS be the current top,
      // and the marked bytes be the ones observed in the iteration.
      if (_g1h->concurrent_mark()->at_least_one_mark_complete()) {
        // The comments below are the postconditions achieved by the
        // calls.  Note especially the last such condition, which says that
        // the count of marked bytes has been properly restored.
        cur->note_start_of_marking(false);
        // _next_top_at_mark_start == top, _next_marked_bytes == 0
        cur->add_to_marked_bytes(rspc.prev_marked_bytes());
        // _next_marked_bytes == prev_marked_bytes.
        cur->note_end_of_marking();
        // _prev_top_at_mark_start == top(),
        // _prev_marked_bytes == prev_marked_bytes
      }
      // If there is no mark in progress, we modified the _next variables
      // above needlessly, but harmlessly.
      if (_g1h->mark_in_progress()) {
        cur->note_start_of_marking(false);
        // _next_top_at_mark_start == top, _next_marked_bytes == 0
        // _next_marked_bytes == next_marked_bytes.
      }

      // Now make sure the region has the right index in the sorted array.
      g1_policy()->note_change_in_marked_bytes(cur);
    }
    cur = cur->next_in_collection_set();
  }
  assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");

  // Now restore saved marks, if any.
  if (_objs_with_preserved_marks != NULL) {
    assert(_preserved_marks_of_objs != NULL, "Both or none.");
    guarantee(_objs_with_preserved_marks->length() ==
              _preserved_marks_of_objs->length(), "Both or none.");
    for (int i = 0; i < _objs_with_preserved_marks->length(); i++) {
      oop obj   = _objs_with_preserved_marks->at(i);
      markOop m = _preserved_marks_of_objs->at(i);
      obj->set_mark(m);
    }
    // Delete the preserved marks growable arrays (allocated on the C heap).
    delete _objs_with_preserved_marks;
    delete _preserved_marks_of_objs;
    _objs_with_preserved_marks = NULL;
    _preserved_marks_of_objs = NULL;
  }
}

void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
  _evac_failure_scan_stack->push(obj);
}

void G1CollectedHeap::drain_evac_failure_scan_stack() {
  assert(_evac_failure_scan_stack != NULL, "precondition");

  while (_evac_failure_scan_stack->length() > 0) {
     oop obj = _evac_failure_scan_stack->pop();
     _evac_failure_closure->set_region(heap_region_containing(obj));
     obj->oop_iterate_backwards(_evac_failure_closure);
  }
}

oop
G1CollectedHeap::handle_evacuation_failure_par(OopsInHeapRegionClosure* cl,
                                               oop old) {
3976 3977 3978
  assert(obj_in_cs(old),
         err_msg("obj: "PTR_FORMAT" should still be in the CSet",
                 (HeapWord*) old));
3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000
  markOop m = old->mark();
  oop forward_ptr = old->forward_to_atomic(old);
  if (forward_ptr == NULL) {
    // Forward-to-self succeeded.
    if (_evac_failure_closure != cl) {
      MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
      assert(!_drain_in_progress,
             "Should only be true while someone holds the lock.");
      // Set the global evac-failure closure to the current thread's.
      assert(_evac_failure_closure == NULL, "Or locking has failed.");
      set_evac_failure_closure(cl);
      // Now do the common part.
      handle_evacuation_failure_common(old, m);
      // Reset to NULL.
      set_evac_failure_closure(NULL);
    } else {
      // The lock is already held, and this is recursive.
      assert(_drain_in_progress, "This should only be the recursive case.");
      handle_evacuation_failure_common(old, m);
    }
    return old;
  } else {
4001 4002 4003 4004 4005 4006 4007
    // Forward-to-self failed. Either someone else managed to allocate
    // space for this object (old != forward_ptr) or they beat us in
    // self-forwarding it (old == forward_ptr).
    assert(old == forward_ptr || !obj_in_cs(forward_ptr),
           err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
                   "should not be in the CSet",
                   (HeapWord*) old, (HeapWord*) forward_ptr));
4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019
    return forward_ptr;
  }
}

void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
  set_evacuation_failed(true);

  preserve_mark_if_necessary(old, m);

  HeapRegion* r = heap_region_containing(old);
  if (!r->evacuation_failed()) {
    r->set_evacuation_failed(true);
4020
    _hr_printer.evac_failure(r);
4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033
  }

  push_on_evac_failure_scan_stack(old);

  if (!_drain_in_progress) {
    // prevent recursion in copy_to_survivor_space()
    _drain_in_progress = true;
    drain_evac_failure_scan_stack();
    _drain_in_progress = false;
  }
}

void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4034 4035 4036 4037
  assert(evacuation_failed(), "Oversaving!");
  // We want to call the "for_promotion_failure" version only in the
  // case of a promotion failure.
  if (m->must_be_preserved_for_promotion_failure(obj)) {
4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051
    if (_objs_with_preserved_marks == NULL) {
      assert(_preserved_marks_of_objs == NULL, "Both or none.");
      _objs_with_preserved_marks =
        new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
      _preserved_marks_of_objs =
        new (ResourceObj::C_HEAP) GrowableArray<markOop>(40, true);
    }
    _objs_with_preserved_marks->push(obj);
    _preserved_marks_of_objs->push(m);
  }
}

HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
                                                  size_t word_size) {
4052 4053 4054 4055
  if (purpose == GCAllocForSurvived) {
    HeapWord* result = survivor_attempt_allocation(word_size);
    if (result != NULL) {
      return result;
4056
    } else {
4057 4058 4059
      // Let's try to allocate in the old gen in case we can fit the
      // object there.
      return old_attempt_allocation(word_size);
4060
    }
4061 4062 4063 4064 4065
  } else {
    assert(purpose ==  GCAllocForTenured, "sanity");
    HeapWord* result = old_attempt_allocation(word_size);
    if (result != NULL) {
      return result;
4066
    } else {
4067 4068 4069
      // Let's try to allocate in the survivors in case we can fit the
      // object there.
      return survivor_attempt_allocation(word_size);
4070 4071 4072
    }
  }

4073 4074 4075
  ShouldNotReachHere();
  // Trying to keep some compilers happy.
  return NULL;
4076 4077 4078 4079 4080 4081 4082 4083 4084 4085
}

#ifndef PRODUCT
bool GCLabBitMapClosure::do_bit(size_t offset) {
  HeapWord* addr = _bitmap->offsetToHeapWord(offset);
  guarantee(_cm->isMarked(oop(addr)), "it should be!");
  return true;
}
#endif // PRODUCT

4086 4087 4088 4089 4090 4091 4092 4093
G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num)
  : _g1h(g1h),
    _refs(g1h->task_queue(queue_num)),
    _dcq(&g1h->dirty_card_queue_set()),
    _ct_bs((CardTableModRefBS*)_g1h->barrier_set()),
    _g1_rem(g1h->g1_rem_set()),
    _hash_seed(17), _queue_num(queue_num),
    _term_attempts(0),
4094 4095
    _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
    _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115
    _age_table(false),
    _strong_roots_time(0), _term_time(0),
    _alloc_buffer_waste(0), _undo_waste(0)
{
  // we allocate G1YoungSurvRateNumRegions plus one entries, since
  // we "sacrifice" entry 0 to keep track of surviving bytes for
  // non-young regions (where the age is -1)
  // We also add a few elements at the beginning and at the end in
  // an attempt to eliminate cache contention
  size_t real_length = 1 + _g1h->g1_policy()->young_cset_length();
  size_t array_length = PADDING_ELEM_NUM +
                        real_length +
                        PADDING_ELEM_NUM;
  _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length);
  if (_surviving_young_words_base == NULL)
    vm_exit_out_of_memory(array_length * sizeof(size_t),
                          "Not enough space for young surv histo.");
  _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
  memset(_surviving_young_words, 0, real_length * sizeof(size_t));

4116 4117 4118
  _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
  _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;

4119 4120
  _start = os::elapsedTime();
}
4121

4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150
void
G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
{
  st->print_raw_cr("GC Termination Stats");
  st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
                   " ------waste (KiB)------");
  st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
                   "  total   alloc    undo");
  st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
                   " ------- ------- -------");
}

void
G1ParScanThreadState::print_termination_stats(int i,
                                              outputStream* const st) const
{
  const double elapsed_ms = elapsed_time() * 1000.0;
  const double s_roots_ms = strong_roots_time() * 1000.0;
  const double term_ms    = term_time() * 1000.0;
  st->print_cr("%3d %9.2f %9.2f %6.2f "
               "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
               SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
               i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
               term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
               (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
               alloc_buffer_waste() * HeapWordSize / K,
               undo_waste() * HeapWordSize / K);
}

4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198
#ifdef ASSERT
bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
  assert(ref != NULL, "invariant");
  assert(UseCompressedOops, "sanity");
  assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
  oop p = oopDesc::load_decode_heap_oop(ref);
  assert(_g1h->is_in_g1_reserved(p),
         err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  return true;
}

bool G1ParScanThreadState::verify_ref(oop* ref) const {
  assert(ref != NULL, "invariant");
  if (has_partial_array_mask(ref)) {
    // Must be in the collection set--it's already been copied.
    oop p = clear_partial_array_mask(ref);
    assert(_g1h->obj_in_cs(p),
           err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  } else {
    oop p = oopDesc::load_decode_heap_oop(ref);
    assert(_g1h->is_in_g1_reserved(p),
           err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  }
  return true;
}

bool G1ParScanThreadState::verify_task(StarTask ref) const {
  if (ref.is_narrow()) {
    return verify_ref((narrowOop*) ref);
  } else {
    return verify_ref((oop*) ref);
  }
}
#endif // ASSERT

void G1ParScanThreadState::trim_queue() {
  StarTask ref;
  do {
    // Drain the overflow stack first, so other threads can steal.
    while (refs()->pop_overflow(ref)) {
      deal_with_reference(ref);
    }
    while (refs()->pop_local(ref)) {
      deal_with_reference(ref);
    }
  } while (!refs()->is_empty());
}

4199 4200 4201 4202
G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1, G1ParScanThreadState* par_scan_state) :
  _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
  _par_scan_state(par_scan_state) { }

4203
template <class T> void G1ParCopyHelper::mark_forwardee(T* p) {
4204 4205 4206 4207
  // This is called _after_ do_oop_work has been called, hence after
  // the object has been relocated to its new location and *p points
  // to its new location.

4208 4209 4210 4211
  T heap_oop = oopDesc::load_heap_oop(p);
  if (!oopDesc::is_null(heap_oop)) {
    oop obj = oopDesc::decode_heap_oop(heap_oop);
    HeapWord* addr = (HeapWord*)obj;
4212
    if (_g1->is_in_g1_reserved(addr)) {
4213
      _cm->grayRoot(oop(addr));
4214
    }
4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226
  }
}

oop G1ParCopyHelper::copy_to_survivor_space(oop old) {
  size_t    word_sz = old->size();
  HeapRegion* from_region = _g1->heap_region_containing_raw(old);
  // +1 to make the -1 indexes valid...
  int       young_index = from_region->young_index_in_cset()+1;
  assert( (from_region->is_young() && young_index > 0) ||
          (!from_region->is_young() && young_index == 0), "invariant" );
  G1CollectorPolicy* g1p = _g1->g1_policy();
  markOop m = old->mark();
4227 4228 4229
  int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
                                           : m->age();
  GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240
                                                             word_sz);
  HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
  oop       obj     = oop(obj_ptr);

  if (obj_ptr == NULL) {
    // This will either forward-to-self, or detect that someone else has
    // installed a forwarding pointer.
    OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
    return _g1->handle_evacuation_failure_par(cl, old);
  }

4241 4242 4243
  // We're going to allocate linearly, so might as well prefetch ahead.
  Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);

4244 4245 4246 4247
  oop forward_ptr = old->forward_to_atomic(obj);
  if (forward_ptr == NULL) {
    Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
    if (g1p->track_object_age(alloc_purpose)) {
4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266
      // We could simply do obj->incr_age(). However, this causes a
      // performance issue. obj->incr_age() will first check whether
      // the object has a displaced mark by checking its mark word;
      // getting the mark word from the new location of the object
      // stalls. So, given that we already have the mark word and we
      // are about to install it anyway, it's better to increase the
      // age on the mark word, when the object does not have a
      // displaced mark word. We're not expecting many objects to have
      // a displaced marked word, so that case is not optimized
      // further (it could be...) and we simply call obj->incr_age().

      if (m->has_displaced_mark_helper()) {
        // in this case, we have to install the mark word first,
        // otherwise obj looks to be forwarded (the old mark word,
        // which contains the forward pointer, was copied)
        obj->set_mark(m);
        obj->incr_age();
      } else {
        m = m->incr_age();
4267
        obj->set_mark(m);
4268
      }
4269 4270 4271
      _par_scan_state->age_table()->add(obj, word_sz);
    } else {
      obj->set_mark(m);
4272
    }
4273

4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294
    // preserve "next" mark bit
    if (_g1->mark_in_progress() && !_g1->is_obj_ill(old)) {
      if (!use_local_bitmaps ||
          !_par_scan_state->alloc_buffer(alloc_purpose)->mark(obj_ptr)) {
        // if we couldn't mark it on the local bitmap (this happens when
        // the object was not allocated in the GCLab), we have to bite
        // the bullet and do the standard parallel mark
        _cm->markAndGrayObjectIfNecessary(obj);
      }
#if 1
      if (_g1->isMarkedNext(old)) {
        _cm->nextMarkBitMap()->parClear((HeapWord*)old);
      }
#endif
    }

    size_t* surv_young_words = _par_scan_state->surviving_young_words();
    surv_young_words[young_index] += word_sz;

    if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
      arrayOop(old)->set_length(0);
4295 4296
      oop* old_p = set_partial_array_mask(old);
      _par_scan_state->push_on_queue(old_p);
4297
    } else {
4298 4299 4300
      // No point in using the slower heap_region_containing() method,
      // given that we know obj is in the heap.
      _scanner->set_region(_g1->heap_region_containing_raw(obj));
4301 4302 4303 4304 4305 4306 4307 4308 4309
      obj->oop_iterate_backwards(_scanner);
    }
  } else {
    _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
    obj = forward_ptr;
  }
  return obj;
}

4310
template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_forwardee>
4311
template <class T>
4312
void G1ParCopyClosure <do_gen_barrier, barrier, do_mark_forwardee>
4313 4314
::do_oop_work(T* p) {
  oop obj = oopDesc::load_decode_heap_oop(p);
4315 4316 4317
  assert(barrier != G1BarrierRS || obj != NULL,
         "Precondition: G1BarrierRS implies obj is nonNull");

4318
  // here the null check is implicit in the cset_fast_test() test
4319
  if (_g1->in_cset_fast_test(obj)) {
4320
    if (obj->is_forwarded()) {
4321
      oopDesc::encode_store_heap_oop(p, obj->forwardee());
4322
    } else {
4323 4324
      oop copy_oop = copy_to_survivor_space(obj);
      oopDesc::encode_store_heap_oop(p, copy_oop);
4325
    }
4326 4327
    // When scanning the RS, we only care about objs in CS.
    if (barrier == G1BarrierRS) {
4328
      _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
4329
    }
4330
  }
4331

4332
  if (barrier == G1BarrierEvac && obj != NULL) {
4333
    _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
4334 4335 4336 4337
  }

  if (do_gen_barrier && obj != NULL) {
    par_do_barrier(p);
4338 4339 4340
  }
}

4341 4342
template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(oop* p);
template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(narrowOop* p);
4343

4344
template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) {
4345 4346
  assert(has_partial_array_mask(p), "invariant");
  oop old = clear_partial_array_mask(p);
4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363
  assert(old->is_objArray(), "must be obj array");
  assert(old->is_forwarded(), "must be forwarded");
  assert(Universe::heap()->is_in_reserved(old), "must be in heap.");

  objArrayOop obj = objArrayOop(old->forwardee());
  assert((void*)old != (void*)old->forwardee(), "self forwarding here?");
  // Process ParGCArrayScanChunk elements now
  // and push the remainder back onto queue
  int start     = arrayOop(old)->length();
  int end       = obj->length();
  int remainder = end - start;
  assert(start <= end, "just checking");
  if (remainder > 2 * ParGCArrayScanChunk) {
    // Test above combines last partial chunk with a full chunk
    end = start + ParGCArrayScanChunk;
    arrayOop(old)->set_length(end);
    // Push remainder.
4364 4365 4366
    oop* old_p = set_partial_array_mask(old);
    assert(arrayOop(old)->length() < obj->length(), "Empty push?");
    _par_scan_state->push_on_queue(old_p);
4367 4368 4369 4370 4371
  } else {
    // Restore length so that the heap remains parsable in
    // case of evacuation failure.
    arrayOop(old)->set_length(end);
  }
4372
  _scanner.set_region(_g1->heap_region_containing_raw(obj));
4373
  // process our set of indices (include header in first chunk)
4374
  obj->oop_iterate_range(&_scanner, start, end);
4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395
}

class G1ParEvacuateFollowersClosure : public VoidClosure {
protected:
  G1CollectedHeap*              _g1h;
  G1ParScanThreadState*         _par_scan_state;
  RefToScanQueueSet*            _queues;
  ParallelTaskTerminator*       _terminator;

  G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  RefToScanQueueSet*      queues()         { return _queues; }
  ParallelTaskTerminator* terminator()     { return _terminator; }

public:
  G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
                                G1ParScanThreadState* par_scan_state,
                                RefToScanQueueSet* queues,
                                ParallelTaskTerminator* terminator)
    : _g1h(g1h), _par_scan_state(par_scan_state),
      _queues(queues), _terminator(terminator) {}

4396
  void do_void();
4397

4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418
private:
  inline bool offer_termination();
};

bool G1ParEvacuateFollowersClosure::offer_termination() {
  G1ParScanThreadState* const pss = par_scan_state();
  pss->start_term_time();
  const bool res = terminator()->offer_termination();
  pss->end_term_time();
  return res;
}

void G1ParEvacuateFollowersClosure::do_void() {
  StarTask stolen_task;
  G1ParScanThreadState* const pss = par_scan_state();
  pss->trim_queue();

  do {
    while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
      assert(pss->verify_task(stolen_task), "sanity");
      if (stolen_task.is_narrow()) {
4419
        pss->deal_with_reference((narrowOop*) stolen_task);
4420
      } else {
4421
        pss->deal_with_reference((oop*) stolen_task);
4422
      }
4423 4424 4425 4426

      // We've just processed a reference and we might have made
      // available new entries on the queues. So we have to make sure
      // we drain the queues as necessary.
4427
      pss->trim_queue();
4428
    }
4429 4430 4431 4432
  } while (!offer_termination());

  pss->retire_alloc_buffers();
}
4433 4434 4435 4436 4437 4438

class G1ParTask : public AbstractGangTask {
protected:
  G1CollectedHeap*       _g1h;
  RefToScanQueueSet      *_queues;
  ParallelTaskTerminator _terminator;
4439
  int _n_workers;
4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454

  Mutex _stats_lock;
  Mutex* stats_lock() { return &_stats_lock; }

  size_t getNCards() {
    return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
      / G1BlockOffsetSharedArray::N_bytes;
  }

public:
  G1ParTask(G1CollectedHeap* g1h, int workers, RefToScanQueueSet *task_queues)
    : AbstractGangTask("G1 collection"),
      _g1h(g1h),
      _queues(task_queues),
      _terminator(workers, _queues),
4455 4456
      _stats_lock(Mutex::leaf, "parallel G1 stats lock", true),
      _n_workers(workers)
4457 4458 4459 4460 4461 4462 4463 4464 4465
  {}

  RefToScanQueueSet* queues() { return _queues; }

  RefToScanQueue *work_queue(int i) {
    return queues()->queue(i);
  }

  void work(int i) {
4466
    if (i >= _n_workers) return;  // no work needed this round
4467 4468 4469 4470

    double start_time_ms = os::elapsedTime() * 1000.0;
    _g1h->g1_policy()->record_gc_worker_start_time(i, start_time_ms);

4471 4472 4473
    ResourceMark rm;
    HandleMark   hm;

4474 4475 4476 4477
    G1ParScanThreadState            pss(_g1h, i);
    G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss);
    G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss);
    G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss);
4478 4479 4480 4481 4482 4483 4484 4485

    pss.set_evac_closure(&scan_evac_cl);
    pss.set_evac_failure_closure(&evac_failure_cl);
    pss.set_partial_scan_closure(&partial_scan_cl);

    G1ParScanExtRootClosure         only_scan_root_cl(_g1h, &pss);
    G1ParScanPermClosure            only_scan_perm_cl(_g1h, &pss);
    G1ParScanHeapRSClosure          only_scan_heap_rs_cl(_g1h, &pss);
4486
    G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
4487

4488 4489 4490 4491 4492 4493 4494
    G1ParScanAndMarkExtRootClosure  scan_mark_root_cl(_g1h, &pss);
    G1ParScanAndMarkPermClosure     scan_mark_perm_cl(_g1h, &pss);
    G1ParScanAndMarkHeapRSClosure   scan_mark_heap_rs_cl(_g1h, &pss);

    OopsInHeapRegionClosure        *scan_root_cl;
    OopsInHeapRegionClosure        *scan_perm_cl;

4495
    if (_g1h->g1_policy()->during_initial_mark_pause()) {
4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506
      scan_root_cl = &scan_mark_root_cl;
      scan_perm_cl = &scan_mark_perm_cl;
    } else {
      scan_root_cl = &only_scan_root_cl;
      scan_perm_cl = &only_scan_perm_cl;
    }

    pss.start_strong_roots();
    _g1h->g1_process_strong_roots(/* not collecting perm */ false,
                                  SharedHeap::SO_AllClasses,
                                  scan_root_cl,
4507
                                  &push_heap_rs_cl,
4508 4509 4510
                                  scan_perm_cl,
                                  i);
    pss.end_strong_roots();
4511

4512 4513 4514 4515 4516 4517 4518
    {
      double start = os::elapsedTime();
      G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
      evac.do_void();
      double elapsed_ms = (os::elapsedTime()-start)*1000.0;
      double term_ms = pss.term_time()*1000.0;
      _g1h->g1_policy()->record_obj_copy_time(i, elapsed_ms-term_ms);
4519
      _g1h->g1_policy()->record_termination(i, term_ms, pss.term_attempts());
4520
    }
4521
    _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4522 4523 4524 4525 4526 4527
    _g1h->update_surviving_young_words(pss.surviving_young_words()+1);

    // Clean up any par-expanded rem sets.
    HeapRegionRemSet::par_cleanup();

    if (ParallelGCVerbose) {
4528 4529
      MutexLocker x(stats_lock());
      pss.print_termination_stats(i);
4530 4531
    }

4532
    assert(pss.refs()->is_empty(), "should be empty");
4533 4534
    double end_time_ms = os::elapsedTime() * 1000.0;
    _g1h->g1_policy()->record_gc_worker_end_time(i, end_time_ms);
4535 4536 4537 4538 4539
  }
};

// *** Common G1 Evacuation Stuff

4540 4541
// This method is run in a GC worker.

4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557
void
G1CollectedHeap::
g1_process_strong_roots(bool collecting_perm_gen,
                        SharedHeap::ScanningOption so,
                        OopClosure* scan_non_heap_roots,
                        OopsInHeapRegionClosure* scan_rs,
                        OopsInGenClosure* scan_perm,
                        int worker_i) {
  // First scan the strong roots, including the perm gen.
  double ext_roots_start = os::elapsedTime();
  double closure_app_time_sec = 0.0;

  BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
  BufferingOopsInGenClosure buf_scan_perm(scan_perm);
  buf_scan_perm.set_generation(perm_gen());

4558 4559 4560 4561 4562 4563
  // Walk the code cache w/o buffering, because StarTask cannot handle
  // unaligned oop locations.
  CodeBlobToOopClosure eager_scan_code_roots(scan_non_heap_roots, /*do_marking=*/ true);

  process_strong_roots(false, // no scoping; this is parallel code
                       collecting_perm_gen, so,
4564
                       &buf_scan_non_heap_roots,
4565
                       &eager_scan_code_roots,
4566
                       &buf_scan_perm);
4567

4568 4569 4570 4571 4572 4573 4574 4575 4576 4577
  // Now the ref_processor roots.
  if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
    // We need to treat the discovered reference lists as roots and
    // keep entries (which are added by the marking threads) on them
    // live until they can be processed at the end of marking.
    ref_processor()->weak_oops_do(&buf_scan_non_heap_roots);
    ref_processor()->oops_do(&buf_scan_non_heap_roots);
  }

  // Finish up any enqueued closure apps (attributed as object copy time).
4578 4579
  buf_scan_non_heap_roots.done();
  buf_scan_perm.done();
4580

4581
  double ext_roots_end = os::elapsedTime();
4582

4583
  g1_policy()->reset_obj_copy_time(worker_i);
4584 4585
  double obj_copy_time_sec = buf_scan_perm.closure_app_seconds() +
                                buf_scan_non_heap_roots.closure_app_seconds();
4586
  g1_policy()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
4587

4588 4589
  double ext_root_time_ms =
    ((ext_roots_end - ext_roots_start) - obj_copy_time_sec) * 1000.0;
4590

4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603
  g1_policy()->record_ext_root_scan_time(worker_i, ext_root_time_ms);

  // Scan strong roots in mark stack.
  if (!_process_strong_tasks->is_task_claimed(G1H_PS_mark_stack_oops_do)) {
    concurrent_mark()->oops_do(scan_non_heap_roots);
  }
  double mark_stack_scan_ms = (os::elapsedTime() - ext_roots_end) * 1000.0;
  g1_policy()->record_mark_stack_scan_time(worker_i, mark_stack_scan_ms);

  // Now scan the complement of the collection set.
  if (scan_rs != NULL) {
    g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i);
  }
4604

4605 4606 4607 4608 4609 4610
  _process_strong_tasks->all_tasks_completed();
}

void
G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure,
                                       OopClosure* non_root_closure) {
4611 4612
  CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
  SharedHeap::process_weak_roots(root_closure, &roots_in_blobs, non_root_closure);
4613 4614 4615 4616 4617 4618 4619
}

void G1CollectedHeap::evacuate_collection_set() {
  set_evacuation_failed(false);

  g1_rem_set()->prepare_for_oops_into_collection_set_do();
  concurrent_g1_refine()->set_use_cache(false);
4620 4621
  concurrent_g1_refine()->clear_hot_cache_claimed_index();

4622 4623 4624 4625 4626 4627 4628 4629
  int n_workers = (ParallelGCThreads > 0 ? workers()->total_workers() : 1);
  set_par_threads(n_workers);
  G1ParTask g1_par_task(this, n_workers, _task_queues);

  init_for_evac_failure(NULL);

  rem_set()->prepare_for_younger_refs_iterate(true);

4630 4631
  assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
  double start_par = os::elapsedTime();
4632
  if (G1CollectedHeap::use_parallel_gc_threads()) {
4633
    // The individual threads will set their evac-failure closures.
4634
    StrongRootsScope srs(this);
4635
    if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
4636 4637
    workers()->run_task(&g1_par_task);
  } else {
4638
    StrongRootsScope srs(this);
4639 4640 4641 4642 4643 4644
    g1_par_task.work(0);
  }

  double par_time = (os::elapsedTime() - start_par) * 1000.0;
  g1_policy()->record_par_time(par_time);
  set_par_threads(0);
4645 4646 4647 4648 4649

  // Weak root processing.
  // Note: when JSR 292 is enabled and code blobs can contain
  // non-perm oops then we will need to process the code blobs
  // here too.
4650 4651 4652 4653 4654
  {
    G1IsAliveClosure is_alive(this);
    G1KeepAliveClosure keep_alive(this);
    JNIHandles::weak_oops_do(&is_alive, &keep_alive);
  }
4655
  release_gc_alloc_regions();
4656
  g1_rem_set()->cleanup_after_oops_into_collection_set_do();
4657

4658
  concurrent_g1_refine()->clear_hot_cache();
4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669
  concurrent_g1_refine()->set_use_cache(true);

  finalize_for_evac_failure();

  // Must do this before removing self-forwarding pointers, which clears
  // the per-region evac-failure flags.
  concurrent_mark()->complete_marking_in_collection_set();

  if (evacuation_failed()) {
    remove_self_forwarding_pointers();
    if (PrintGCDetails) {
4670
      gclog_or_tty->print(" (to-space overflow)");
4671 4672 4673 4674 4675
    } else if (PrintGC) {
      gclog_or_tty->print("--");
    }
  }

4676 4677 4678 4679
  if (G1DeferredRSUpdate) {
    RedirtyLoggedCardTableEntryFastClosure redirty;
    dirty_card_queue_set().set_closure(&redirty);
    dirty_card_queue_set().apply_closure_to_all_completed_buffers();
4680 4681 4682

    DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
    dcq.merge_bufferlists(&dirty_card_queue_set());
4683 4684
    assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
  }
4685 4686 4687
  COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
}

T
tonyp 已提交
4688
void G1CollectedHeap::free_region_if_empty(HeapRegion* hr,
4689 4690 4691
                                     size_t* pre_used,
                                     FreeRegionList* free_list,
                                     HumongousRegionSet* humongous_proxy_set,
T
tonyp 已提交
4692
                                     HRRSCleanupTask* hrrs_cleanup_task,
4693 4694 4695 4696 4697 4698 4699 4700
                                     bool par) {
  if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
    if (hr->isHumongous()) {
      assert(hr->startsHumongous(), "we should only see starts humongous");
      free_humongous_region(hr, pre_used, free_list, humongous_proxy_set, par);
    } else {
      free_region(hr, pre_used, free_list, par);
    }
T
tonyp 已提交
4701 4702
  } else {
    hr->rem_set()->do_cleanup_work(hrrs_cleanup_task);
4703 4704 4705
  }
}

4706 4707 4708
void G1CollectedHeap::free_region(HeapRegion* hr,
                                  size_t* pre_used,
                                  FreeRegionList* free_list,
4709
                                  bool par) {
4710 4711 4712 4713 4714 4715
  assert(!hr->isHumongous(), "this is only for non-humongous regions");
  assert(!hr->is_empty(), "the region should not be empty");
  assert(free_list != NULL, "pre-condition");

  *pre_used += hr->used();
  hr->hr_clear(par, true /* clear_space */);
4716
  free_list->add_as_head(hr);
4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734
}

void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
                                     size_t* pre_used,
                                     FreeRegionList* free_list,
                                     HumongousRegionSet* humongous_proxy_set,
                                     bool par) {
  assert(hr->startsHumongous(), "this is only for starts humongous regions");
  assert(free_list != NULL, "pre-condition");
  assert(humongous_proxy_set != NULL, "pre-condition");

  size_t hr_used = hr->used();
  size_t hr_capacity = hr->capacity();
  size_t hr_pre_used = 0;
  _humongous_set.remove_with_proxy(hr, humongous_proxy_set);
  hr->set_notHumongous();
  free_region(hr, &hr_pre_used, free_list, par);

4735
  size_t i = hr->hrs_index() + 1;
4736
  size_t num = 1;
4737 4738
  while (i < n_regions()) {
    HeapRegion* curr_hr = region_at(i);
4739 4740
    if (!curr_hr->continuesHumongous()) {
      break;
4741
    }
4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758
    curr_hr->set_notHumongous();
    free_region(curr_hr, &hr_pre_used, free_list, par);
    num += 1;
    i += 1;
  }
  assert(hr_pre_used == hr_used,
         err_msg("hr_pre_used: "SIZE_FORMAT" and hr_used: "SIZE_FORMAT" "
                 "should be the same", hr_pre_used, hr_used));
  *pre_used += hr_pre_used;
}

void G1CollectedHeap::update_sets_after_freeing_regions(size_t pre_used,
                                       FreeRegionList* free_list,
                                       HumongousRegionSet* humongous_proxy_set,
                                       bool par) {
  if (pre_used > 0) {
    Mutex* lock = (par) ? ParGCRareEvent_lock : NULL;
4759
    MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
4760 4761 4762 4763
    assert(_summary_bytes_used >= pre_used,
           err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" "
                   "should be >= pre_used: "SIZE_FORMAT,
                   _summary_bytes_used, pre_used));
4764
    _summary_bytes_used -= pre_used;
4765 4766 4767
  }
  if (free_list != NULL && !free_list->is_empty()) {
    MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
4768
    _free_list.add_as_head(free_list);
4769 4770 4771 4772
  }
  if (humongous_proxy_set != NULL && !humongous_proxy_set->is_empty()) {
    MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
    _humongous_set.update_from_proxy(humongous_proxy_set);
4773 4774 4775
  }
}

4776 4777 4778
class G1ParCleanupCTTask : public AbstractGangTask {
  CardTableModRefBS* _ct_bs;
  G1CollectedHeap* _g1h;
4779
  HeapRegion* volatile _su_head;
4780 4781
public:
  G1ParCleanupCTTask(CardTableModRefBS* ct_bs,
4782
                     G1CollectedHeap* g1h) :
4783
    AbstractGangTask("G1 Par Cleanup CT Task"),
4784
    _ct_bs(ct_bs), _g1h(g1h) { }
4785 4786 4787 4788 4789 4790 4791

  void work(int i) {
    HeapRegion* r;
    while (r = _g1h->pop_dirty_cards_region()) {
      clear_cards(r);
    }
  }
4792

4793
  void clear_cards(HeapRegion* r) {
4794
    // Cards of the survivors should have already been dirtied.
4795
    if (!r->is_survivor()) {
4796 4797 4798 4799 4800
      _ct_bs->clear(MemRegion(r->bottom(), r->end()));
    }
  }
};

4801 4802
#ifndef PRODUCT
class G1VerifyCardTableCleanup: public HeapRegionClosure {
4803
  G1CollectedHeap* _g1h;
4804 4805
  CardTableModRefBS* _ct_bs;
public:
4806 4807
  G1VerifyCardTableCleanup(G1CollectedHeap* g1h, CardTableModRefBS* ct_bs)
    : _g1h(g1h), _ct_bs(ct_bs) { }
4808
  virtual bool doHeapRegion(HeapRegion* r) {
4809
    if (r->is_survivor()) {
4810
      _g1h->verify_dirty_region(r);
4811
    } else {
4812
      _g1h->verify_not_dirty_region(r);
4813 4814 4815 4816
    }
    return false;
  }
};
4817

4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837
void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
  // All of the region should be clean.
  CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
  MemRegion mr(hr->bottom(), hr->end());
  ct_bs->verify_not_dirty_region(mr);
}

void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
  // We cannot guarantee that [bottom(),end()] is dirty.  Threads
  // dirty allocated blocks as they allocate them. The thread that
  // retires each region and replaces it with a new one will do a
  // maximal allocation to fill in [pre_dummy_top(),end()] but will
  // not dirty that area (one less thing to have to do while holding
  // a lock). So we can only verify that [bottom(),pre_dummy_top()]
  // is dirty.
  CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
  MemRegion mr(hr->bottom(), hr->pre_dummy_top());
  ct_bs->verify_dirty_region(mr);
}

4838
void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
4839
  CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
4840
  for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
4841
    verify_dirty_region(hr);
4842 4843 4844 4845 4846 4847 4848
  }
}

void G1CollectedHeap::verify_dirty_young_regions() {
  verify_dirty_young_list(_young_list->first_region());
  verify_dirty_young_list(_young_list->first_survivor_region());
}
4849 4850
#endif

4851 4852 4853 4854
void G1CollectedHeap::cleanUpCardTable() {
  CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
  double start = os::elapsedTime();

4855
  // Iterate over the dirty cards region list.
4856
  G1ParCleanupCTTask cleanup_task(ct_bs, this);
4857

4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873
  if (ParallelGCThreads > 0) {
    set_par_threads(workers()->total_workers());
    workers()->run_task(&cleanup_task);
    set_par_threads(0);
  } else {
    while (_dirty_cards_region_list) {
      HeapRegion* r = _dirty_cards_region_list;
      cleanup_task.clear_cards(r);
      _dirty_cards_region_list = r->get_next_dirty_cards_region();
      if (_dirty_cards_region_list == r) {
        // The last region.
        _dirty_cards_region_list = NULL;
      }
      r->set_next_dirty_cards_region(NULL);
    }
  }
4874

4875 4876
  double elapsed = os::elapsedTime() - start;
  g1_policy()->record_clear_ct_time( elapsed * 1000.0);
4877 4878
#ifndef PRODUCT
  if (G1VerifyCTCleanup || VerifyAfterGC) {
4879
    G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
4880 4881 4882
    heap_region_iterate(&cleanup_verifier);
  }
#endif
4883 4884 4885
}

void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
4886 4887 4888
  size_t pre_used = 0;
  FreeRegionList local_free_list("Local List for CSet Freeing");

4889 4890 4891
  double young_time_ms     = 0.0;
  double non_young_time_ms = 0.0;

4892 4893 4894 4895 4896
  // Since the collection set is a superset of the the young list,
  // all we need to do to clear the young list is clear its
  // head and length, and unlink any young regions in the code below
  _young_list->clear();

4897 4898 4899 4900 4901 4902 4903 4904 4905 4906
  G1CollectorPolicy* policy = g1_policy();

  double start_sec = os::elapsedTime();
  bool non_young = true;

  HeapRegion* cur = cs_head;
  int age_bound = -1;
  size_t rs_lengths = 0;

  while (cur != NULL) {
T
tonyp 已提交
4907
    assert(!is_on_master_free_list(cur), "sanity");
4908

4909 4910 4911 4912 4913 4914 4915 4916 4917 4918
    if (non_young) {
      if (cur->is_young()) {
        double end_sec = os::elapsedTime();
        double elapsed_ms = (end_sec - start_sec) * 1000.0;
        non_young_time_ms += elapsed_ms;

        start_sec = os::elapsedTime();
        non_young = false;
      }
    } else {
4919 4920 4921
      double end_sec = os::elapsedTime();
      double elapsed_ms = (end_sec - start_sec) * 1000.0;
      young_time_ms += elapsed_ms;
4922

4923 4924
      start_sec = os::elapsedTime();
      non_young = true;
4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939
    }

    rs_lengths += cur->rem_set()->occupied();

    HeapRegion* next = cur->next_in_collection_set();
    assert(cur->in_collection_set(), "bad CS");
    cur->set_next_in_collection_set(NULL);
    cur->set_in_collection_set(false);

    if (cur->is_young()) {
      int index = cur->young_index_in_cset();
      guarantee( index != -1, "invariant" );
      guarantee( (size_t)index < policy->young_cset_length(), "invariant" );
      size_t words_survived = _surviving_young_words[index];
      cur->record_surv_words_in_group(words_survived);
4940 4941 4942 4943 4944 4945

      // At this point the we have 'popped' cur from the collection set
      // (linked via next_in_collection_set()) but it is still in the
      // young list (linked via next_young_region()). Clear the
      // _next_young_region field.
      cur->set_next_young_region(NULL);
4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956
    } else {
      int index = cur->young_index_in_cset();
      guarantee( index == -1, "invariant" );
    }

    assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
            (!cur->is_young() && cur->young_index_in_cset() == -1),
            "invariant" );

    if (!cur->evacuation_failed()) {
      // And the region is empty.
4957 4958
      assert(!cur->is_empty(), "Should not have empty regions in a CS.");
      free_region(cur, &pre_used, &local_free_list, false /* par */);
4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978
    } else {
      cur->uninstall_surv_rate_group();
      if (cur->is_young())
        cur->set_young_index_in_cset(-1);
      cur->set_not_young();
      cur->set_evacuation_failed(false);
    }
    cur = next;
  }

  policy->record_max_rs_lengths(rs_lengths);
  policy->cset_regions_freed();

  double end_sec = os::elapsedTime();
  double elapsed_ms = (end_sec - start_sec) * 1000.0;
  if (non_young)
    non_young_time_ms += elapsed_ms;
  else
    young_time_ms += elapsed_ms;

4979 4980 4981
  update_sets_after_freeing_regions(pre_used, &local_free_list,
                                    NULL /* humongous_proxy_set */,
                                    false /* par */);
4982 4983 4984 4985
  policy->record_young_free_cset_time_ms(young_time_ms);
  policy->record_non_young_free_cset_time_ms(non_young_time_ms);
}

4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006
// This routine is similar to the above but does not record
// any policy statistics or update free lists; we are abandoning
// the current incremental collection set in preparation of a
// full collection. After the full GC we will start to build up
// the incremental collection set again.
// This is only called when we're doing a full collection
// and is immediately followed by the tearing down of the young list.

void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
  HeapRegion* cur = cs_head;

  while (cur != NULL) {
    HeapRegion* next = cur->next_in_collection_set();
    assert(cur->in_collection_set(), "bad CS");
    cur->set_next_in_collection_set(NULL);
    cur->set_in_collection_set(false);
    cur->set_young_index_in_cset(-1);
    cur = next;
  }
}

5007 5008 5009 5010
void G1CollectedHeap::set_free_regions_coming() {
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
                           "setting free regions coming");
5011 5012
  }

5013 5014
  assert(!free_regions_coming(), "pre-condition");
  _free_regions_coming = true;
5015 5016
}

5017 5018 5019 5020 5021 5022
void G1CollectedHeap::reset_free_regions_coming() {
  {
    assert(free_regions_coming(), "pre-condition");
    MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
    _free_regions_coming = false;
    SecondaryFreeList_lock->notify_all();
5023 5024
  }

5025 5026 5027
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
                           "reset free regions coming");
5028 5029 5030
  }
}

5031 5032 5033 5034 5035
void G1CollectedHeap::wait_while_free_regions_coming() {
  // Most of the time we won't have to wait, so let's do a quick test
  // first before we take the lock.
  if (!free_regions_coming()) {
    return;
5036 5037
  }

5038 5039 5040
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
                           "waiting for free regions");
5041 5042 5043
  }

  {
5044 5045 5046
    MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
    while (free_regions_coming()) {
      SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
5047 5048 5049
    }
  }

5050 5051 5052
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
                           "done waiting for free regions");
5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078
  }
}

void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
  assert(heap_lock_held_for_gc(),
              "the heap lock should already be held by or for this thread");
  _young_list->push_region(hr);
  g1_policy()->set_region_short_lived(hr);
}

class NoYoungRegionsClosure: public HeapRegionClosure {
private:
  bool _success;
public:
  NoYoungRegionsClosure() : _success(true) { }
  bool doHeapRegion(HeapRegion* r) {
    if (r->is_young()) {
      gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
                             r->bottom(), r->end());
      _success = false;
    }
    return false;
  }
  bool success() { return _success; }
};

5079 5080
bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
  bool ret = _young_list->check_list_empty(check_sample);
5081

5082
  if (check_heap) {
5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100
    NoYoungRegionsClosure closure;
    heap_region_iterate(&closure);
    ret = ret && closure.success();
  }

  return ret;
}

void G1CollectedHeap::empty_young_list() {
  assert(heap_lock_held_for_gc(),
              "the heap lock should already be held by or for this thread");
  assert(g1_policy()->in_young_gc_mode(), "should be in young GC mode");

  _young_list->empty_list();
}

// Done at the start of full GC.
void G1CollectedHeap::tear_down_region_lists() {
5101
  _free_list.remove_all();
5102 5103 5104
}

class RegionResetter: public HeapRegionClosure {
5105 5106 5107
  G1CollectedHeap* _g1h;
  FreeRegionList _local_free_list;

5108
public:
5109 5110 5111
  RegionResetter() : _g1h(G1CollectedHeap::heap()),
                     _local_free_list("Local Free List for RegionResetter") { }

5112 5113 5114 5115 5116 5117 5118 5119 5120
  bool doHeapRegion(HeapRegion* r) {
    if (r->continuesHumongous()) return false;
    if (r->top() > r->bottom()) {
      if (r->top() < r->end()) {
        Copy::fill_to_words(r->top(),
                          pointer_delta(r->end(), r->top()));
      }
    } else {
      assert(r->is_empty(), "tautology");
5121
      _local_free_list.add_as_tail(r);
5122 5123 5124 5125
    }
    return false;
  }

5126 5127 5128 5129
  void update_free_lists() {
    _g1h->update_sets_after_freeing_regions(0, &_local_free_list, NULL,
                                            false /* par */);
  }
5130 5131 5132 5133 5134 5135 5136
};

// Done at the end of full GC.
void G1CollectedHeap::rebuild_region_lists() {
  // This needs to go at the end of the full GC.
  RegionResetter rs;
  heap_region_iterate(&rs);
5137
  rs.update_free_lists();
5138 5139 5140 5141 5142 5143
}

void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
  _refine_cte_cl->set_concurrent(concurrent);
}

5144 5145 5146 5147 5148 5149
bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
  HeapRegion* hr = heap_region_containing(p);
  if (hr == NULL) {
    return is_in_permanent(p);
  } else {
    return hr->is_in(p);
5150
  }
5151 5152
}

5153 5154
// Methods for the mutator alloc region

5155 5156 5157 5158 5159
HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
                                                      bool force) {
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  assert(!force || g1_policy()->can_expand_young_list(),
         "if force is true we should be able to expand the young list");
5160 5161
  bool young_list_full = g1_policy()->is_young_list_full();
  if (force || !young_list_full) {
5162 5163 5164 5165 5166
    HeapRegion* new_alloc_region = new_region(word_size,
                                              false /* do_expand */);
    if (new_alloc_region != NULL) {
      g1_policy()->update_region_num(true /* next_is_young */);
      set_region_short_lived_locked(new_alloc_region);
5167
      _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
5168
      g1mm()->update_eden_counters();
5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181
      return new_alloc_region;
    }
  }
  return NULL;
}

void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
                                                  size_t allocated_bytes) {
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  assert(alloc_region->is_young(), "all mutator alloc regions should be young");

  g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
  _summary_bytes_used += allocated_bytes;
5182
  _hr_printer.retire(alloc_region);
5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194
}

HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
                                                    bool force) {
  return _g1h->new_mutator_alloc_region(word_size, force);
}

void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
                                       size_t allocated_bytes) {
  _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
}

5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257
// Methods for the GC alloc regions

HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
                                                 size_t count,
                                                 GCAllocPurpose ap) {
  assert(FreeList_lock->owned_by_self(), "pre-condition");

  if (count < g1_policy()->max_regions(ap)) {
    HeapRegion* new_alloc_region = new_region(word_size,
                                              true /* do_expand */);
    if (new_alloc_region != NULL) {
      // We really only need to do this for old regions given that we
      // should never scan survivors. But it doesn't hurt to do it
      // for survivors too.
      new_alloc_region->set_saved_mark();
      if (ap == GCAllocForSurvived) {
        new_alloc_region->set_survivor();
        _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
      } else {
        _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
      }
      return new_alloc_region;
    } else {
      g1_policy()->note_alloc_region_limit_reached(ap);
    }
  }
  return NULL;
}

void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
                                             size_t allocated_bytes,
                                             GCAllocPurpose ap) {
  alloc_region->note_end_of_copying();
  g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
  if (ap == GCAllocForSurvived) {
    young_list()->add_survivor_region(alloc_region);
  }
  _hr_printer.retire(alloc_region);
}

HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
                                                       bool force) {
  assert(!force, "not supported for GC alloc regions");
  return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
}

void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
                                          size_t allocated_bytes) {
  _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
                               GCAllocForSurvived);
}

HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
                                                  bool force) {
  assert(!force, "not supported for GC alloc regions");
  return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
}

void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
                                     size_t allocated_bytes) {
  _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
                               GCAllocForTenured);
}
5258 5259
// Heap region set verification

5260 5261 5262 5263 5264
class VerifyRegionListsClosure : public HeapRegionClosure {
private:
  HumongousRegionSet* _humongous_set;
  FreeRegionList*     _free_list;
  size_t              _region_count;
5265 5266

public:
5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287
  VerifyRegionListsClosure(HumongousRegionSet* humongous_set,
                           FreeRegionList* free_list) :
    _humongous_set(humongous_set), _free_list(free_list),
    _region_count(0) { }

  size_t region_count()      { return _region_count;      }

  bool doHeapRegion(HeapRegion* hr) {
    _region_count += 1;

    if (hr->continuesHumongous()) {
      return false;
    }

    if (hr->is_young()) {
      // TODO
    } else if (hr->startsHumongous()) {
      _humongous_set->verify_next_region(hr);
    } else if (hr->is_empty()) {
      _free_list->verify_next_region(hr);
    }
5288 5289 5290 5291
    return false;
  }
};

5292 5293 5294 5295 5296 5297 5298 5299 5300
HeapRegion* G1CollectedHeap::new_heap_region(size_t hrs_index,
                                             HeapWord* bottom) {
  HeapWord* end = bottom + HeapRegion::GrainWords;
  MemRegion mr(bottom, end);
  assert(_g1_reserved.contains(mr), "invariant");
  // This might return NULL if the allocation fails
  return new HeapRegion(hrs_index, _bot_shared, mr, true /* is_zeroed */);
}

5301 5302
void G1CollectedHeap::verify_region_sets() {
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5303

5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327
  // First, check the explicit lists.
  _free_list.verify();
  {
    // Given that a concurrent operation might be adding regions to
    // the secondary free list we have to take the lock before
    // verifying it.
    MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
    _secondary_free_list.verify();
  }
  _humongous_set.verify();

  // If a concurrent region freeing operation is in progress it will
  // be difficult to correctly attributed any free regions we come
  // across to the correct free list given that they might belong to
  // one of several (free_list, secondary_free_list, any local lists,
  // etc.). So, if that's the case we will skip the rest of the
  // verification operation. Alternatively, waiting for the concurrent
  // operation to complete will have a non-trivial effect on the GC's
  // operation (no concurrent operation will last longer than the
  // interval between two calls to verification) and it might hide
  // any issues that we would like to catch during testing.
  if (free_regions_coming()) {
    return;
  }
5328

T
tonyp 已提交
5329 5330 5331 5332
  // Make sure we append the secondary_free_list on the free_list so
  // that all free regions we will come across can be safely
  // attributed to the free_list.
  append_secondary_free_list_if_not_empty_with_lock();
5333

5334 5335 5336 5337
  // Finally, make sure that the region accounting in the lists is
  // consistent with what we see in the heap.
  _humongous_set.verify_start();
  _free_list.verify_start();
5338

5339 5340
  VerifyRegionListsClosure cl(&_humongous_set, &_free_list);
  heap_region_iterate(&cl);
5341

5342 5343
  _humongous_set.verify_end();
  _free_list.verify_end();
5344
}