assembler_x86.hpp 59.1 KB
Newer Older
D
duke 已提交
1
/*
2
 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
D
duke 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
D
duke 已提交
22 23 24
 *
 */

25 26 27
#ifndef CPU_X86_VM_ASSEMBLER_X86_HPP
#define CPU_X86_VM_ASSEMBLER_X86_HPP

28 29
#include "asm/register.hpp"

D
duke 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
class BiasedLockingCounters;

// Contains all the definitions needed for x86 assembly code generation.

// Calling convention
class Argument VALUE_OBJ_CLASS_SPEC {
 public:
  enum {
#ifdef _LP64
#ifdef _WIN64
    n_int_register_parameters_c   = 4, // rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
    n_float_register_parameters_c = 4,  // xmm0 - xmm3 (c_farg0, c_farg1, ... )
#else
    n_int_register_parameters_c   = 6, // rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
    n_float_register_parameters_c = 8,  // xmm0 - xmm7 (c_farg0, c_farg1, ... )
#endif // _WIN64
    n_int_register_parameters_j   = 6, // j_rarg0, j_rarg1, ...
    n_float_register_parameters_j = 8  // j_farg0, j_farg1, ...
#else
    n_register_parameters = 0   // 0 registers used to pass arguments
#endif // _LP64
  };
};


#ifdef _LP64
// Symbolically name the register arguments used by the c calling convention.
// Windows is different from linux/solaris. So much for standards...

#ifdef _WIN64

REGISTER_DECLARATION(Register, c_rarg0, rcx);
REGISTER_DECLARATION(Register, c_rarg1, rdx);
REGISTER_DECLARATION(Register, c_rarg2, r8);
REGISTER_DECLARATION(Register, c_rarg3, r9);

66 67 68 69
REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
D
duke 已提交
70 71 72 73 74 75 76 77 78 79

#else

REGISTER_DECLARATION(Register, c_rarg0, rdi);
REGISTER_DECLARATION(Register, c_rarg1, rsi);
REGISTER_DECLARATION(Register, c_rarg2, rdx);
REGISTER_DECLARATION(Register, c_rarg3, rcx);
REGISTER_DECLARATION(Register, c_rarg4, r8);
REGISTER_DECLARATION(Register, c_rarg5, r9);

80 81 82 83 84 85 86 87
REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
REGISTER_DECLARATION(XMMRegister, c_farg4, xmm4);
REGISTER_DECLARATION(XMMRegister, c_farg5, xmm5);
REGISTER_DECLARATION(XMMRegister, c_farg6, xmm6);
REGISTER_DECLARATION(XMMRegister, c_farg7, xmm7);
D
duke 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119

#endif // _WIN64

// Symbolically name the register arguments used by the Java calling convention.
// We have control over the convention for java so we can do what we please.
// What pleases us is to offset the java calling convention so that when
// we call a suitable jni method the arguments are lined up and we don't
// have to do little shuffling. A suitable jni method is non-static and a
// small number of arguments (two fewer args on windows)
//
//        |-------------------------------------------------------|
//        | c_rarg0   c_rarg1  c_rarg2 c_rarg3 c_rarg4 c_rarg5    |
//        |-------------------------------------------------------|
//        | rcx       rdx      r8      r9      rdi*    rsi*       | windows (* not a c_rarg)
//        | rdi       rsi      rdx     rcx     r8      r9         | solaris/linux
//        |-------------------------------------------------------|
//        | j_rarg5   j_rarg0  j_rarg1 j_rarg2 j_rarg3 j_rarg4    |
//        |-------------------------------------------------------|

REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
// Windows runs out of register args here
#ifdef _WIN64
REGISTER_DECLARATION(Register, j_rarg3, rdi);
REGISTER_DECLARATION(Register, j_rarg4, rsi);
#else
REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
#endif /* _WIN64 */
REGISTER_DECLARATION(Register, j_rarg5, c_rarg0);

120 121 122 123 124 125 126 127
REGISTER_DECLARATION(XMMRegister, j_farg0, xmm0);
REGISTER_DECLARATION(XMMRegister, j_farg1, xmm1);
REGISTER_DECLARATION(XMMRegister, j_farg2, xmm2);
REGISTER_DECLARATION(XMMRegister, j_farg3, xmm3);
REGISTER_DECLARATION(XMMRegister, j_farg4, xmm4);
REGISTER_DECLARATION(XMMRegister, j_farg5, xmm5);
REGISTER_DECLARATION(XMMRegister, j_farg6, xmm6);
REGISTER_DECLARATION(XMMRegister, j_farg7, xmm7);
D
duke 已提交
128 129 130 131

REGISTER_DECLARATION(Register, rscratch1, r10);  // volatile
REGISTER_DECLARATION(Register, rscratch2, r11);  // volatile

132
REGISTER_DECLARATION(Register, r12_heapbase, r12); // callee-saved
D
duke 已提交
133 134
REGISTER_DECLARATION(Register, r15_thread, r15); // callee-saved

135 136 137 138 139
#else
// rscratch1 will apear in 32bit code that is dead but of course must compile
// Using noreg ensures if the dead code is incorrectly live and executed it
// will cause an assertion failure
#define rscratch1 noreg
140
#define rscratch2 noreg
141

D
duke 已提交
142 143
#endif // _LP64

144 145 146
// JSR 292 fixed register usages:
REGISTER_DECLARATION(Register, rbp_mh_SP_save, rbp);

D
duke 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
// Address is an abstraction used to represent a memory location
// using any of the amd64 addressing modes with one object.
//
// Note: A register location is represented via a Register, not
//       via an address for efficiency & simplicity reasons.

class ArrayAddress;

class Address VALUE_OBJ_CLASS_SPEC {
 public:
  enum ScaleFactor {
    no_scale = -1,
    times_1  =  0,
    times_2  =  1,
    times_4  =  2,
162 163
    times_8  =  3,
    times_ptr = LP64_ONLY(times_8) NOT_LP64(times_4)
D
duke 已提交
164
  };
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
  static ScaleFactor times(int size) {
    assert(size >= 1 && size <= 8 && is_power_of_2(size), "bad scale size");
    if (size == 8)  return times_8;
    if (size == 4)  return times_4;
    if (size == 2)  return times_2;
    return times_1;
  }
  static int scale_size(ScaleFactor scale) {
    assert(scale != no_scale, "");
    assert(((1 << (int)times_1) == 1 &&
            (1 << (int)times_2) == 2 &&
            (1 << (int)times_4) == 4 &&
            (1 << (int)times_8) == 8), "");
    return (1 << (int)scale);
  }
D
duke 已提交
180 181 182 183 184 185 186 187

 private:
  Register         _base;
  Register         _index;
  ScaleFactor      _scale;
  int              _disp;
  RelocationHolder _rspec;

188 189 190 191 192
  // Easily misused constructors make them private
  // %%% can we make these go away?
  NOT_LP64(Address(address loc, RelocationHolder spec);)
  Address(int disp, address loc, relocInfo::relocType rtype);
  Address(int disp, address loc, RelocationHolder spec);
D
duke 已提交
193 194

 public:
195 196

 int disp() { return _disp; }
D
duke 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
  // creation
  Address()
    : _base(noreg),
      _index(noreg),
      _scale(no_scale),
      _disp(0) {
  }

  // No default displacement otherwise Register can be implicitly
  // converted to 0(Register) which is quite a different animal.

  Address(Register base, int disp)
    : _base(base),
      _index(noreg),
      _scale(no_scale),
      _disp(disp) {
  }

  Address(Register base, Register index, ScaleFactor scale, int disp = 0)
    : _base (base),
      _index(index),
      _scale(scale),
      _disp (disp) {
    assert(!index->is_valid() == (scale == Address::no_scale),
           "inconsistent address");
  }

224
  Address(Register base, RegisterOrConstant index, ScaleFactor scale = times_1, int disp = 0)
225 226 227 228 229 230 231 232 233 234 235 236 237 238
    : _base (base),
      _index(index.register_or_noreg()),
      _scale(scale),
      _disp (disp + (index.constant_or_zero() * scale_size(scale))) {
    if (!index.is_register())  scale = Address::no_scale;
    assert(!_index->is_valid() == (scale == Address::no_scale),
           "inconsistent address");
  }

  Address plus_disp(int disp) const {
    Address a = (*this);
    a._disp += disp;
    return a;
  }
239 240 241 242 243 244 245 246 247 248 249 250 251 252
  Address plus_disp(RegisterOrConstant disp, ScaleFactor scale = times_1) const {
    Address a = (*this);
    a._disp += disp.constant_or_zero() * scale_size(scale);
    if (disp.is_register()) {
      assert(!a.index()->is_valid(), "competing indexes");
      a._index = disp.as_register();
      a._scale = scale;
    }
    return a;
  }
  bool is_same_address(Address a) const {
    // disregard _rspec
    return _base == a._base && _disp == a._disp && _index == a._index && _scale == a._scale;
  }
253

D
duke 已提交
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
  // The following two overloads are used in connection with the
  // ByteSize type (see sizes.hpp).  They simplify the use of
  // ByteSize'd arguments in assembly code. Note that their equivalent
  // for the optimized build are the member functions with int disp
  // argument since ByteSize is mapped to an int type in that case.
  //
  // Note: DO NOT introduce similar overloaded functions for WordSize
  // arguments as in the optimized mode, both ByteSize and WordSize
  // are mapped to the same type and thus the compiler cannot make a
  // distinction anymore (=> compiler errors).

#ifdef ASSERT
  Address(Register base, ByteSize disp)
    : _base(base),
      _index(noreg),
      _scale(no_scale),
      _disp(in_bytes(disp)) {
  }

  Address(Register base, Register index, ScaleFactor scale, ByteSize disp)
    : _base(base),
      _index(index),
      _scale(scale),
      _disp(in_bytes(disp)) {
    assert(!index->is_valid() == (scale == Address::no_scale),
           "inconsistent address");
  }
281

282
  Address(Register base, RegisterOrConstant index, ScaleFactor scale, ByteSize disp)
283 284 285 286 287 288 289 290 291
    : _base (base),
      _index(index.register_or_noreg()),
      _scale(scale),
      _disp (in_bytes(disp) + (index.constant_or_zero() * scale_size(scale))) {
    if (!index.is_register())  scale = Address::no_scale;
    assert(!_index->is_valid() == (scale == Address::no_scale),
           "inconsistent address");
  }

D
duke 已提交
292 293 294
#endif // ASSERT

  // accessors
295 296 297 298 299
  bool        uses(Register reg) const { return _base == reg || _index == reg; }
  Register    base()             const { return _base;  }
  Register    index()            const { return _index; }
  ScaleFactor scale()            const { return _scale; }
  int         disp()             const { return _disp;  }
D
duke 已提交
300 301 302 303

  // Convert the raw encoding form into the form expected by the constructor for
  // Address.  An index of 4 (rsp) corresponds to having no index, so convert
  // that to noreg for the Address constructor.
304
  static Address make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc);
D
duke 已提交
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395

  static Address make_array(ArrayAddress);

 private:
  bool base_needs_rex() const {
    return _base != noreg && _base->encoding() >= 8;
  }

  bool index_needs_rex() const {
    return _index != noreg &&_index->encoding() >= 8;
  }

  relocInfo::relocType reloc() const { return _rspec.type(); }

  friend class Assembler;
  friend class MacroAssembler;
  friend class LIR_Assembler; // base/index/scale/disp
};

//
// AddressLiteral has been split out from Address because operands of this type
// need to be treated specially on 32bit vs. 64bit platforms. By splitting it out
// the few instructions that need to deal with address literals are unique and the
// MacroAssembler does not have to implement every instruction in the Assembler
// in order to search for address literals that may need special handling depending
// on the instruction and the platform. As small step on the way to merging i486/amd64
// directories.
//
class AddressLiteral VALUE_OBJ_CLASS_SPEC {
  friend class ArrayAddress;
  RelocationHolder _rspec;
  // Typically we use AddressLiterals we want to use their rval
  // However in some situations we want the lval (effect address) of the item.
  // We provide a special factory for making those lvals.
  bool _is_lval;

  // If the target is far we'll need to load the ea of this to
  // a register to reach it. Otherwise if near we can do rip
  // relative addressing.

  address          _target;

 protected:
  // creation
  AddressLiteral()
    : _is_lval(false),
      _target(NULL)
  {}

  public:


  AddressLiteral(address target, relocInfo::relocType rtype);

  AddressLiteral(address target, RelocationHolder const& rspec)
    : _rspec(rspec),
      _is_lval(false),
      _target(target)
  {}

  AddressLiteral addr() {
    AddressLiteral ret = *this;
    ret._is_lval = true;
    return ret;
  }


 private:

  address target() { return _target; }
  bool is_lval() { return _is_lval; }

  relocInfo::relocType reloc() const { return _rspec.type(); }
  const RelocationHolder& rspec() const { return _rspec; }

  friend class Assembler;
  friend class MacroAssembler;
  friend class Address;
  friend class LIR_Assembler;
};

// Convience classes
class RuntimeAddress: public AddressLiteral {

  public:

  RuntimeAddress(address target) : AddressLiteral(target, relocInfo::runtime_call_type) {}

};

class ExternalAddress: public AddressLiteral {
396 397 398 399 400 401 402 403
 private:
  static relocInfo::relocType reloc_for_target(address target) {
    // Sometimes ExternalAddress is used for values which aren't
    // exactly addresses, like the card table base.
    // external_word_type can't be used for values in the first page
    // so just skip the reloc in that case.
    return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none;
  }
D
duke 已提交
404

405
 public:
D
duke 已提交
406

407
  ExternalAddress(address target) : AddressLiteral(target, reloc_for_target(target)) {}
D
duke 已提交
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437

};

class InternalAddress: public AddressLiteral {

  public:

  InternalAddress(address target) : AddressLiteral(target, relocInfo::internal_word_type) {}

};

// x86 can do array addressing as a single operation since disp can be an absolute
// address amd64 can't. We create a class that expresses the concept but does extra
// magic on amd64 to get the final result

class ArrayAddress VALUE_OBJ_CLASS_SPEC {
  private:

  AddressLiteral _base;
  Address        _index;

  public:

  ArrayAddress() {};
  ArrayAddress(AddressLiteral base, Address index): _base(base), _index(index) {};
  AddressLiteral base() { return _base; }
  Address index() { return _index; }

};

438
const int FPUStateSizeInWords = NOT_LP64(27) LP64_ONLY( 512 / wordSize);
D
duke 已提交
439 440 441 442 443 444 445 446

// The Intel x86/Amd64 Assembler: Pure assembler doing NO optimizations on the instruction
// level (e.g. mov rax, 0 is not translated into xor rax, rax!); i.e., what you write
// is what you get. The Assembler is generating code into a CodeBuffer.

class Assembler : public AbstractAssembler  {
  friend class AbstractAssembler; // for the non-virtual hack
  friend class LIR_Assembler; // as_Address()
447
  friend class StubGenerator;
D
duke 已提交
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499

 public:
  enum Condition {                     // The x86 condition codes used for conditional jumps/moves.
    zero          = 0x4,
    notZero       = 0x5,
    equal         = 0x4,
    notEqual      = 0x5,
    less          = 0xc,
    lessEqual     = 0xe,
    greater       = 0xf,
    greaterEqual  = 0xd,
    below         = 0x2,
    belowEqual    = 0x6,
    above         = 0x7,
    aboveEqual    = 0x3,
    overflow      = 0x0,
    noOverflow    = 0x1,
    carrySet      = 0x2,
    carryClear    = 0x3,
    negative      = 0x8,
    positive      = 0x9,
    parity        = 0xa,
    noParity      = 0xb
  };

  enum Prefix {
    // segment overrides
    CS_segment = 0x2e,
    SS_segment = 0x36,
    DS_segment = 0x3e,
    ES_segment = 0x26,
    FS_segment = 0x64,
    GS_segment = 0x65,

    REX        = 0x40,

    REX_B      = 0x41,
    REX_X      = 0x42,
    REX_XB     = 0x43,
    REX_R      = 0x44,
    REX_RB     = 0x45,
    REX_RX     = 0x46,
    REX_RXB    = 0x47,

    REX_W      = 0x48,

    REX_WB     = 0x49,
    REX_WX     = 0x4A,
    REX_WXB    = 0x4B,
    REX_WR     = 0x4C,
    REX_WRB    = 0x4D,
    REX_WRX    = 0x4E,
K
kvn 已提交
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
    REX_WRXB   = 0x4F,

    VEX_3bytes = 0xC4,
    VEX_2bytes = 0xC5
  };

  enum VexPrefix {
    VEX_B = 0x20,
    VEX_X = 0x40,
    VEX_R = 0x80,
    VEX_W = 0x80
  };

  enum VexSimdPrefix {
    VEX_SIMD_NONE = 0x0,
    VEX_SIMD_66   = 0x1,
    VEX_SIMD_F3   = 0x2,
    VEX_SIMD_F2   = 0x3
  };

  enum VexOpcode {
    VEX_OPCODE_NONE  = 0x0,
    VEX_OPCODE_0F    = 0x1,
    VEX_OPCODE_0F_38 = 0x2,
    VEX_OPCODE_0F_3A = 0x3
D
duke 已提交
525 526 527 528
  };

  enum WhichOperand {
    // input to locate_operand, and format code for relocations
529
    imm_operand  = 0,            // embedded 32-bit|64-bit immediate operand
D
duke 已提交
530 531
    disp32_operand = 1,          // embedded 32-bit displacement or address
    call32_operand = 2,          // embedded 32-bit self-relative displacement
532
#ifndef _LP64
D
duke 已提交
533
    _WhichOperand_limit = 3
534 535 536 537
#else
     narrow_oop_operand = 3,     // embedded 32-bit immediate narrow oop
    _WhichOperand_limit = 4
#endif
D
duke 已提交
538 539 540 541
  };



542 543 544 545 546 547 548 549 550
  // NOTE: The general philopsophy of the declarations here is that 64bit versions
  // of instructions are freely declared without the need for wrapping them an ifdef.
  // (Some dangerous instructions are ifdef's out of inappropriate jvm's.)
  // In the .cpp file the implementations are wrapped so that they are dropped out
  // of the resulting jvm. This is done mostly to keep the footprint of KERNEL
  // to the size it was prior to merging up the 32bit and 64bit assemblers.
  //
  // This does mean you'll get a linker/runtime error if you use a 64bit only instruction
  // in a 32bit vm. This is somewhat unfortunate but keeps the ifdef noise down.
D
duke 已提交
551

552
private:
D
duke 已提交
553 554


555 556 557
  // 64bit prefixes
  int prefix_and_encode(int reg_enc, bool byteinst = false);
  int prefixq_and_encode(int reg_enc);
D
duke 已提交
558

559 560
  int prefix_and_encode(int dst_enc, int src_enc, bool byteinst = false);
  int prefixq_and_encode(int dst_enc, int src_enc);
D
duke 已提交
561

562 563 564
  void prefix(Register reg);
  void prefix(Address adr);
  void prefixq(Address adr);
D
duke 已提交
565

566 567
  void prefix(Address adr, Register reg,  bool byteinst = false);
  void prefix(Address adr, XMMRegister reg);
K
kvn 已提交
568 569
  void prefixq(Address adr, Register reg);
  void prefixq(Address adr, XMMRegister reg);
D
duke 已提交
570

571
  void prefetch_prefix(Address src);
D
duke 已提交
572

K
kvn 已提交
573 574 575 576 577 578 579 580 581 582 583 584 585
  void rex_prefix(Address adr, XMMRegister xreg,
                  VexSimdPrefix pre, VexOpcode opc, bool rex_w);
  int  rex_prefix_and_encode(int dst_enc, int src_enc,
                             VexSimdPrefix pre, VexOpcode opc, bool rex_w);

  void vex_prefix(bool vex_r, bool vex_b, bool vex_x, bool vex_w,
                  int nds_enc, VexSimdPrefix pre, VexOpcode opc,
                  bool vector256);

  void vex_prefix(Address adr, int nds_enc, int xreg_enc,
                  VexSimdPrefix pre, VexOpcode opc,
                  bool vex_w, bool vector256);

586 587
  void vex_prefix(XMMRegister dst, XMMRegister nds, Address src,
                  VexSimdPrefix pre, bool vector256 = false) {
588 589 590
    int dst_enc = dst->encoding();
    int nds_enc = nds->is_valid() ? nds->encoding() : 0;
    vex_prefix(src, nds_enc, dst_enc, pre, VEX_OPCODE_0F, false, vector256);
591 592
  }

K
kvn 已提交
593 594 595 596
  int  vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc,
                             VexSimdPrefix pre, VexOpcode opc,
                             bool vex_w, bool vector256);

597
  int  vex_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src,
598 599 600 601 602 603
                             VexSimdPrefix pre, bool vector256 = false,
                             VexOpcode opc = VEX_OPCODE_0F) {
    int src_enc = src->encoding();
    int dst_enc = dst->encoding();
    int nds_enc = nds->is_valid() ? nds->encoding() : 0;
    return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, false, vector256);
604
  }
K
kvn 已提交
605 606 607 608 609 610 611 612 613

  void simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr,
                   VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F,
                   bool rex_w = false, bool vector256 = false);

  void simd_prefix(XMMRegister dst, Address src,
                   VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F) {
    simd_prefix(dst, xnoreg, src, pre, opc);
  }
614

K
kvn 已提交
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
  void simd_prefix(Address dst, XMMRegister src, VexSimdPrefix pre) {
    simd_prefix(src, dst, pre);
  }
  void simd_prefix_q(XMMRegister dst, XMMRegister nds, Address src,
                     VexSimdPrefix pre) {
    bool rex_w = true;
    simd_prefix(dst, nds, src, pre, VEX_OPCODE_0F, rex_w);
  }

  int simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src,
                             VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F,
                             bool rex_w = false, bool vector256 = false);

  // Move/convert 32-bit integer value.
  int simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, Register src,
                             VexSimdPrefix pre) {
    // It is OK to cast from Register to XMMRegister to pass argument here
    // since only encoding is used in simd_prefix_and_encode() and number of
    // Gen and Xmm registers are the same.
    return simd_prefix_and_encode(dst, nds, as_XMMRegister(src->encoding()), pre);
  }
  int simd_prefix_and_encode(XMMRegister dst, Register src, VexSimdPrefix pre) {
    return simd_prefix_and_encode(dst, xnoreg, src, pre);
  }
  int simd_prefix_and_encode(Register dst, XMMRegister src,
                             VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F) {
    return simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, pre, opc);
  }

  // Move/convert 64-bit integer value.
  int simd_prefix_and_encode_q(XMMRegister dst, XMMRegister nds, Register src,
                               VexSimdPrefix pre) {
    bool rex_w = true;
    return simd_prefix_and_encode(dst, nds, as_XMMRegister(src->encoding()), pre, VEX_OPCODE_0F, rex_w);
  }
  int simd_prefix_and_encode_q(XMMRegister dst, Register src, VexSimdPrefix pre) {
    return simd_prefix_and_encode_q(dst, xnoreg, src, pre);
  }
  int simd_prefix_and_encode_q(Register dst, XMMRegister src,
                             VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F) {
    bool rex_w = true;
    return simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, pre, opc, rex_w);
  }

659 660
  // Helper functions for groups of instructions
  void emit_arith_b(int op1, int op2, Register dst, int imm8);
D
duke 已提交
661

662
  void emit_arith(int op1, int op2, Register dst, int32_t imm32);
663 664
  // Force generation of a 4 byte immediate value even if it fits into 8bit
  void emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32);
665
  void emit_arith(int op1, int op2, Register dst, Register src);
D
duke 已提交
666

667 668 669 670 671 672 673 674 675
  void emit_simd_arith(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre);
  void emit_simd_arith(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre);
  void emit_simd_arith_nonds(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre);
  void emit_simd_arith_nonds(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre);
  void emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds,
                      Address src, VexSimdPrefix pre, bool vector256);
  void emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds,
                      XMMRegister src, VexSimdPrefix pre, bool vector256);

676 677 678 679 680
  void emit_operand(Register reg,
                    Register base, Register index, Address::ScaleFactor scale,
                    int disp,
                    RelocationHolder const& rspec,
                    int rip_relative_correction = 0);
D
duke 已提交
681

682
  void emit_operand(Register reg, Address adr, int rip_relative_correction = 0);
D
duke 已提交
683

684 685
  // operands that only take the original 32bit registers
  void emit_operand32(Register reg, Address adr);
D
duke 已提交
686

687 688 689 690
  void emit_operand(XMMRegister reg,
                    Register base, Register index, Address::ScaleFactor scale,
                    int disp,
                    RelocationHolder const& rspec);
D
duke 已提交
691

692
  void emit_operand(XMMRegister reg, Address adr);
D
duke 已提交
693

694
  void emit_operand(MMXRegister reg, Address adr);
D
duke 已提交
695

696 697
  // workaround gcc (3.2.1-7) bug
  void emit_operand(Address adr, MMXRegister reg);
D
duke 已提交
698 699


700 701
  // Immediate-to-memory forms
  void emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32);
D
duke 已提交
702

703
  void emit_farith(int b1, int b2, int i);
D
duke 已提交
704 705 706


 protected:
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
  #ifdef ASSERT
  void check_relocation(RelocationHolder const& rspec, int format);
  #endif

  void emit_data(jint data, relocInfo::relocType    rtype, int format);
  void emit_data(jint data, RelocationHolder const& rspec, int format);
  void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
  void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);

  bool reachable(AddressLiteral adr) NOT_LP64({ return true;});

  // These are all easily abused and hence protected

  // 32BIT ONLY SECTION
#ifndef _LP64
  // Make these disappear in 64bit mode since they would never be correct
  void cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec);   // 32BIT ONLY
  void cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec);    // 32BIT ONLY

726
  void mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec);    // 32BIT ONLY
727 728 729 730 731 732
  void mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec);     // 32BIT ONLY

  void push_literal32(int32_t imm32, RelocationHolder const& rspec);                 // 32BIT ONLY
#else
  // 64BIT ONLY SECTION
  void mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec);   // 64BIT ONLY
733 734 735 736 737 738

  void cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec);
  void cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec);

  void mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec);
  void mov_narrow_oop(Address dst, int32_t imm32, RelocationHolder const& rspec);
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
#endif // _LP64

  // These are unique in that we are ensured by the caller that the 32bit
  // relative in these instructions will always be able to reach the potentially
  // 64bit address described by entry. Since they can take a 64bit address they
  // don't have the 32 suffix like the other instructions in this class.

  void call_literal(address entry, RelocationHolder const& rspec);
  void jmp_literal(address entry, RelocationHolder const& rspec);

  // Avoid using directly section
  // Instructions in this section are actually usable by anyone without danger
  // of failure but have performance issues that are addressed my enhanced
  // instructions which will do the proper thing base on the particular cpu.
  // We protect them because we don't trust you...

D
duke 已提交
755 756 757 758 759 760 761 762
  // Don't use next inc() and dec() methods directly. INC & DEC instructions
  // could cause a partial flag stall since they don't set CF flag.
  // Use MacroAssembler::decrement() & MacroAssembler::increment() methods
  // which call inc() & dec() or add() & sub() in accordance with
  // the product flag UseIncDec value.

  void decl(Register dst);
  void decl(Address dst);
763 764
  void decq(Register dst);
  void decq(Address dst);
D
duke 已提交
765 766 767

  void incl(Register dst);
  void incl(Address dst);
768 769
  void incq(Register dst);
  void incq(Address dst);
D
duke 已提交
770

771 772 773
  // New cpus require use of movsd and movss to avoid partial register stall
  // when loading from memory. But for old Opteron use movlpd instead of movsd.
  // The selection is done in MacroAssembler::movdbl() and movflt().
D
duke 已提交
774

775 776 777 778
  // Move Scalar Single-Precision Floating-Point Values
  void movss(XMMRegister dst, Address src);
  void movss(XMMRegister dst, XMMRegister src);
  void movss(Address dst, XMMRegister src);
D
duke 已提交
779

780 781 782 783 784
  // Move Scalar Double-Precision Floating-Point Values
  void movsd(XMMRegister dst, Address src);
  void movsd(XMMRegister dst, XMMRegister src);
  void movsd(Address dst, XMMRegister src);
  void movlpd(XMMRegister dst, Address src);
D
duke 已提交
785

786 787 788 789
  // New cpus require use of movaps and movapd to avoid partial register stall
  // when moving between registers.
  void movaps(XMMRegister dst, XMMRegister src);
  void movapd(XMMRegister dst, XMMRegister src);
D
duke 已提交
790

791
  // End avoid using directly
D
duke 已提交
792 793


794 795
  // Instruction prefixes
  void prefix(Prefix p);
D
duke 已提交
796

797
  public:
D
duke 已提交
798

799 800
  // Creation
  Assembler(CodeBuffer* code) : AbstractAssembler(code) {}
D
duke 已提交
801

802 803 804
  // Decoding
  static address locate_operand(address inst, WhichOperand which);
  static address locate_next_instruction(address inst);
D
duke 已提交
805

806
  // Utilities
807 808
  static bool is_polling_page_far() NOT_LP64({ return false;});

809 810 811
  // Generic instructions
  // Does 32bit or 64bit as needed for the platform. In some sense these
  // belong in macro assembler but there is no need for both varieties to exist
D
duke 已提交
812

813
  void lea(Register dst, Address src);
D
duke 已提交
814

815
  void mov(Register dst, Register src);
D
duke 已提交
816

817 818
  void pusha();
  void popa();
D
duke 已提交
819

820 821
  void pushf();
  void popf();
D
duke 已提交
822

823
  void push(int32_t imm32);
D
duke 已提交
824

825
  void push(Register src);
D
duke 已提交
826

827 828 829 830 831 832 833 834
  void pop(Register dst);

  // These are dummies to prevent surprise implicit conversions to Register
  void push(void* v);
  void pop(void* v);

  // These do register sized moves/scans
  void rep_mov();
835 836
  void rep_stos();
  void rep_stosb();
837 838 839 840 841 842 843
  void repne_scan();
#ifdef _LP64
  void repne_scanl();
#endif

  // Vanilla instructions in lexical order

844 845
  void adcl(Address dst, int32_t imm32);
  void adcl(Address dst, Register src);
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
  void adcl(Register dst, int32_t imm32);
  void adcl(Register dst, Address src);
  void adcl(Register dst, Register src);

  void adcq(Register dst, int32_t imm32);
  void adcq(Register dst, Address src);
  void adcq(Register dst, Register src);

  void addl(Address dst, int32_t imm32);
  void addl(Address dst, Register src);
  void addl(Register dst, int32_t imm32);
  void addl(Register dst, Address src);
  void addl(Register dst, Register src);

  void addq(Address dst, int32_t imm32);
  void addq(Address dst, Register src);
  void addq(Register dst, int32_t imm32);
  void addq(Register dst, Address src);
  void addq(Register dst, Register src);
D
duke 已提交
865 866 867 868 869 870

  void addr_nop_4();
  void addr_nop_5();
  void addr_nop_7();
  void addr_nop_8();

871 872 873
  // Add Scalar Double-Precision Floating-Point Values
  void addsd(XMMRegister dst, Address src);
  void addsd(XMMRegister dst, XMMRegister src);
D
duke 已提交
874

875 876 877 878
  // Add Scalar Single-Precision Floating-Point Values
  void addss(XMMRegister dst, Address src);
  void addss(XMMRegister dst, XMMRegister src);

879 880 881 882 883 884 885 886 887 888 889
  // AES instructions
  void aesdec(XMMRegister dst, Address src);
  void aesdec(XMMRegister dst, XMMRegister src);
  void aesdeclast(XMMRegister dst, Address src);
  void aesdeclast(XMMRegister dst, XMMRegister src);
  void aesenc(XMMRegister dst, Address src);
  void aesenc(XMMRegister dst, XMMRegister src);
  void aesenclast(XMMRegister dst, Address src);
  void aesenclast(XMMRegister dst, XMMRegister src);


K
kvn 已提交
890
  void andl(Address  dst, int32_t imm32);
891 892 893 894
  void andl(Register dst, int32_t imm32);
  void andl(Register dst, Address src);
  void andl(Register dst, Register src);

895
  void andq(Address  dst, int32_t imm32);
896 897 898 899
  void andq(Register dst, int32_t imm32);
  void andq(Register dst, Address src);
  void andq(Register dst, Register src);

900 901 902 903 904 905 906 907
  void bsfl(Register dst, Register src);
  void bsrl(Register dst, Register src);

#ifdef _LP64
  void bsfq(Register dst, Register src);
  void bsrq(Register dst, Register src);
#endif

908 909 910
  void bswapl(Register reg);

  void bswapq(Register reg);
D
duke 已提交
911 912 913 914 915

  void call(Label& L, relocInfo::relocType rtype);
  void call(Register reg);  // push pc; pc <- reg
  void call(Address adr);   // push pc; pc <- adr

916
  void cdql();
D
duke 已提交
917

918
  void cdqq();
D
duke 已提交
919

920
  void cld();
D
duke 已提交
921

922
  void clflush(Address adr);
D
duke 已提交
923

924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
  void cmovl(Condition cc, Register dst, Register src);
  void cmovl(Condition cc, Register dst, Address src);

  void cmovq(Condition cc, Register dst, Register src);
  void cmovq(Condition cc, Register dst, Address src);


  void cmpb(Address dst, int imm8);

  void cmpl(Address dst, int32_t imm32);

  void cmpl(Register dst, int32_t imm32);
  void cmpl(Register dst, Register src);
  void cmpl(Register dst, Address src);

  void cmpq(Address dst, int32_t imm32);
  void cmpq(Address dst, Register src);

  void cmpq(Register dst, int32_t imm32);
  void cmpq(Register dst, Register src);
  void cmpq(Register dst, Address src);

  // these are dummies used to catch attempting to convert NULL to Register
  void cmpl(Register dst, void* junk); // dummy
  void cmpq(Register dst, void* junk); // dummy

  void cmpw(Address dst, int imm16);

  void cmpxchg8 (Address adr);

  void cmpxchgl(Register reg, Address adr);

  void cmpxchgq(Register reg, Address adr);

  // Ordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
  void comisd(XMMRegister dst, Address src);
K
kvn 已提交
960
  void comisd(XMMRegister dst, XMMRegister src);
961 962 963

  // Ordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
  void comiss(XMMRegister dst, Address src);
K
kvn 已提交
964
  void comiss(XMMRegister dst, XMMRegister src);
965 966

  // Identify processor type and features
967
  void cpuid();
968 969 970

  // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
  void cvtsd2ss(XMMRegister dst, XMMRegister src);
K
kvn 已提交
971
  void cvtsd2ss(XMMRegister dst, Address src);
972 973 974

  // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
  void cvtsi2sdl(XMMRegister dst, Register src);
K
kvn 已提交
975
  void cvtsi2sdl(XMMRegister dst, Address src);
976
  void cvtsi2sdq(XMMRegister dst, Register src);
K
kvn 已提交
977
  void cvtsi2sdq(XMMRegister dst, Address src);
978 979 980

  // Convert Doubleword Integer to Scalar Single-Precision Floating-Point Value
  void cvtsi2ssl(XMMRegister dst, Register src);
K
kvn 已提交
981
  void cvtsi2ssl(XMMRegister dst, Address src);
982
  void cvtsi2ssq(XMMRegister dst, Register src);
K
kvn 已提交
983
  void cvtsi2ssq(XMMRegister dst, Address src);
984 985 986 987 988 989 990 991 992

  // Convert Packed Signed Doubleword Integers to Packed Double-Precision Floating-Point Value
  void cvtdq2pd(XMMRegister dst, XMMRegister src);

  // Convert Packed Signed Doubleword Integers to Packed Single-Precision Floating-Point Value
  void cvtdq2ps(XMMRegister dst, XMMRegister src);

  // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
  void cvtss2sd(XMMRegister dst, XMMRegister src);
K
kvn 已提交
993
  void cvtss2sd(XMMRegister dst, Address src);
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151

  // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
  void cvttsd2sil(Register dst, Address src);
  void cvttsd2sil(Register dst, XMMRegister src);
  void cvttsd2siq(Register dst, XMMRegister src);

  // Convert with Truncation Scalar Single-Precision Floating-Point Value to Doubleword Integer
  void cvttss2sil(Register dst, XMMRegister src);
  void cvttss2siq(Register dst, XMMRegister src);

  // Divide Scalar Double-Precision Floating-Point Values
  void divsd(XMMRegister dst, Address src);
  void divsd(XMMRegister dst, XMMRegister src);

  // Divide Scalar Single-Precision Floating-Point Values
  void divss(XMMRegister dst, Address src);
  void divss(XMMRegister dst, XMMRegister src);

  void emms();

  void fabs();

  void fadd(int i);

  void fadd_d(Address src);
  void fadd_s(Address src);

  // "Alternate" versions of x87 instructions place result down in FPU
  // stack instead of on TOS

  void fadda(int i); // "alternate" fadd
  void faddp(int i = 1);

  void fchs();

  void fcom(int i);

  void fcomp(int i = 1);
  void fcomp_d(Address src);
  void fcomp_s(Address src);

  void fcompp();

  void fcos();

  void fdecstp();

  void fdiv(int i);
  void fdiv_d(Address src);
  void fdivr_s(Address src);
  void fdiva(int i);  // "alternate" fdiv
  void fdivp(int i = 1);

  void fdivr(int i);
  void fdivr_d(Address src);
  void fdiv_s(Address src);

  void fdivra(int i); // "alternate" reversed fdiv

  void fdivrp(int i = 1);

  void ffree(int i = 0);

  void fild_d(Address adr);
  void fild_s(Address adr);

  void fincstp();

  void finit();

  void fist_s (Address adr);
  void fistp_d(Address adr);
  void fistp_s(Address adr);

  void fld1();

  void fld_d(Address adr);
  void fld_s(Address adr);
  void fld_s(int index);
  void fld_x(Address adr);  // extended-precision (80-bit) format

  void fldcw(Address src);

  void fldenv(Address src);

  void fldlg2();

  void fldln2();

  void fldz();

  void flog();
  void flog10();

  void fmul(int i);

  void fmul_d(Address src);
  void fmul_s(Address src);

  void fmula(int i);  // "alternate" fmul

  void fmulp(int i = 1);

  void fnsave(Address dst);

  void fnstcw(Address src);

  void fnstsw_ax();

  void fprem();
  void fprem1();

  void frstor(Address src);

  void fsin();

  void fsqrt();

  void fst_d(Address adr);
  void fst_s(Address adr);

  void fstp_d(Address adr);
  void fstp_d(int index);
  void fstp_s(Address adr);
  void fstp_x(Address adr); // extended-precision (80-bit) format

  void fsub(int i);
  void fsub_d(Address src);
  void fsub_s(Address src);

  void fsuba(int i);  // "alternate" fsub

  void fsubp(int i = 1);

  void fsubr(int i);
  void fsubr_d(Address src);
  void fsubr_s(Address src);

  void fsubra(int i); // "alternate" reversed fsub

  void fsubrp(int i = 1);

  void ftan();

  void ftst();

  void fucomi(int i = 1);
  void fucomip(int i = 1);

  void fwait();

  void fxch(int i = 1);

  void fxrstor(Address src);

  void fxsave(Address dst);

  void fyl2x();
1152 1153 1154
  void frndint();
  void f2xm1();
  void fldl2e();
1155 1156 1157 1158

  void hlt();

  void idivl(Register src);
1159
  void divl(Register src); // Unsigned division
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177

  void idivq(Register src);

  void imull(Register dst, Register src);
  void imull(Register dst, Register src, int value);

  void imulq(Register dst, Register src);
  void imulq(Register dst, Register src, int value);


  // jcc is the generic conditional branch generator to run-
  // time routines, jcc is used for branches to labels. jcc
  // takes a branch opcode (cc) and a label (L) and generates
  // either a backward branch or a forward branch and links it
  // to the label fixup chain. Usage:
  //
  // Label L;      // unbound label
  // jcc(cc, L);   // forward branch to unbound label
D
duke 已提交
1178 1179 1180 1181 1182 1183 1184
  // bind(L);      // bind label to the current pc
  // jcc(cc, L);   // backward branch to bound label
  // bind(L);      // illegal: a label may be bound only once
  //
  // Note: The same Label can be used for forward and backward branches
  // but it may be bound only once.

1185
  void jcc(Condition cc, Label& L, bool maybe_short = true);
D
duke 已提交
1186 1187 1188 1189 1190 1191 1192

  // Conditional jump to a 8-bit offset to L.
  // WARNING: be very careful using this for forward jumps.  If the label is
  // not bound within an 8-bit offset of this instruction, a run-time error
  // will occur.
  void jccb(Condition cc, Label& L);

1193
  void jmp(Address entry);    // pc <- entry
D
duke 已提交
1194

1195
  // Label operations & relative jumps (PPUM Appendix D)
1196
  void jmp(Label& L, bool maybe_short = true);   // unconditional jump to L
D
duke 已提交
1197

1198
  void jmp(Register entry); // pc <- entry
D
duke 已提交
1199

1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
  // Unconditional 8-bit offset jump to L.
  // WARNING: be very careful using this for forward jumps.  If the label is
  // not bound within an 8-bit offset of this instruction, a run-time error
  // will occur.
  void jmpb(Label& L);

  void ldmxcsr( Address src );

  void leal(Register dst, Address src);

  void leaq(Register dst, Address src);

1212
  void lfence();
1213 1214 1215

  void lock();

1216 1217 1218 1219 1220 1221
  void lzcntl(Register dst, Register src);

#ifdef _LP64
  void lzcntq(Register dst, Register src);
#endif

1222 1223 1224 1225 1226 1227 1228
  enum Membar_mask_bits {
    StoreStore = 1 << 3,
    LoadStore  = 1 << 2,
    StoreLoad  = 1 << 1,
    LoadLoad   = 1 << 0
  };

1229
  // Serializes memory and blows flags
1230
  void membar(Membar_mask_bits order_constraint) {
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
    if (os::is_MP()) {
      // We only have to handle StoreLoad
      if (order_constraint & StoreLoad) {
        // All usable chips support "locked" instructions which suffice
        // as barriers, and are much faster than the alternative of
        // using cpuid instruction. We use here a locked add [esp],0.
        // This is conveniently otherwise a no-op except for blowing
        // flags.
        // Any change to this code may need to revisit other places in
        // the code where this idiom is used, in particular the
        // orderAccess code.
        lock();
        addl(Address(rsp, 0), 0);// Assert the lock# signal here
      }
    }
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
  }

  void mfence();

  // Moves

  void mov64(Register dst, int64_t imm64);

  void movb(Address dst, Register src);
  void movb(Address dst, int imm8);
  void movb(Register dst, Address src);

  void movdl(XMMRegister dst, Register src);
  void movdl(Register dst, XMMRegister src);
1260
  void movdl(XMMRegister dst, Address src);
1261
  void movdl(Address dst, XMMRegister src);
1262 1263 1264 1265 1266 1267 1268 1269

  // Move Double Quadword
  void movdq(XMMRegister dst, Register src);
  void movdq(Register dst, XMMRegister src);

  // Move Aligned Double Quadword
  void movdqa(XMMRegister dst, XMMRegister src);

1270 1271 1272 1273 1274
  // Move Unaligned Double Quadword
  void movdqu(Address     dst, XMMRegister src);
  void movdqu(XMMRegister dst, Address src);
  void movdqu(XMMRegister dst, XMMRegister src);

1275 1276 1277 1278 1279 1280 1281 1282
  // Move Unaligned 256bit Vector
  void vmovdqu(Address dst, XMMRegister src);
  void vmovdqu(XMMRegister dst, Address src);
  void vmovdqu(XMMRegister dst, XMMRegister src);

  // Move lower 64bit to high 64bit in 128bit register
  void movlhps(XMMRegister dst, XMMRegister src);

1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
  void movl(Register dst, int32_t imm32);
  void movl(Address dst, int32_t imm32);
  void movl(Register dst, Register src);
  void movl(Register dst, Address src);
  void movl(Address dst, Register src);

  // These dummies prevent using movl from converting a zero (like NULL) into Register
  // by giving the compiler two choices it can't resolve

  void movl(Address  dst, void* junk);
  void movl(Register dst, void* junk);

#ifdef _LP64
  void movq(Register dst, Register src);
  void movq(Register dst, Address src);
1298
  void movq(Address  dst, Register src);
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
#endif

  void movq(Address     dst, MMXRegister src );
  void movq(MMXRegister dst, Address src );

#ifdef _LP64
  // These dummies prevent using movq from converting a zero (like NULL) into Register
  // by giving the compiler two choices it can't resolve

  void movq(Address  dst, void* dummy);
  void movq(Register dst, void* dummy);
#endif

  // Move Quadword
  void movq(Address     dst, XMMRegister src);
  void movq(XMMRegister dst, Address src);

  void movsbl(Register dst, Address src);
  void movsbl(Register dst, Register src);

#ifdef _LP64
1320 1321 1322
  void movsbq(Register dst, Address src);
  void movsbq(Register dst, Register src);

1323
  // Move signed 32bit immediate to 64bit extending sign
1324
  void movslq(Address  dst, int32_t imm64);
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
  void movslq(Register dst, int32_t imm64);

  void movslq(Register dst, Address src);
  void movslq(Register dst, Register src);
  void movslq(Register dst, void* src); // Dummy declaration to cause NULL to be ambiguous
#endif

  void movswl(Register dst, Address src);
  void movswl(Register dst, Register src);

1335 1336 1337 1338 1339
#ifdef _LP64
  void movswq(Register dst, Address src);
  void movswq(Register dst, Register src);
#endif

1340 1341 1342 1343 1344 1345 1346
  void movw(Address dst, int imm16);
  void movw(Register dst, Address src);
  void movw(Address dst, Register src);

  void movzbl(Register dst, Address src);
  void movzbl(Register dst, Register src);

1347 1348 1349 1350 1351
#ifdef _LP64
  void movzbq(Register dst, Address src);
  void movzbq(Register dst, Register src);
#endif

1352 1353 1354
  void movzwl(Register dst, Address src);
  void movzwl(Register dst, Register src);

1355 1356 1357 1358 1359
#ifdef _LP64
  void movzwq(Register dst, Address src);
  void movzwq(Register dst, Register src);
#endif

1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
  void mull(Address src);
  void mull(Register src);

  // Multiply Scalar Double-Precision Floating-Point Values
  void mulsd(XMMRegister dst, Address src);
  void mulsd(XMMRegister dst, XMMRegister src);

  // Multiply Scalar Single-Precision Floating-Point Values
  void mulss(XMMRegister dst, Address src);
  void mulss(XMMRegister dst, XMMRegister src);

  void negl(Register dst);

#ifdef _LP64
  void negq(Register dst);
#endif

  void nop(int i = 1);

  void notl(Register dst);

#ifdef _LP64
  void notq(Register dst);
#endif

  void orl(Address dst, int32_t imm32);
  void orl(Register dst, int32_t imm32);
  void orl(Register dst, Address src);
  void orl(Register dst, Register src);

  void orq(Address dst, int32_t imm32);
  void orq(Register dst, int32_t imm32);
  void orq(Register dst, Address src);
  void orq(Register dst, Register src);

K
kvn 已提交
1395 1396 1397
  // Pack with unsigned saturation
  void packuswb(XMMRegister dst, XMMRegister src);
  void packuswb(XMMRegister dst, Address src);
1398 1399 1400 1401
  void vpackuswb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);

  // Pemutation of 64bit words
  void vpermq(XMMRegister dst, XMMRegister src, int imm8, bool vector256);
K
kvn 已提交
1402

C
cfang 已提交
1403 1404 1405 1406
  // SSE4.2 string instructions
  void pcmpestri(XMMRegister xmm1, XMMRegister xmm2, int imm8);
  void pcmpestri(XMMRegister xmm1, Address src, int imm8);

K
kvn 已提交
1407 1408 1409 1410
  // SSE4.1 packed move
  void pmovzxbw(XMMRegister dst, XMMRegister src);
  void pmovzxbw(XMMRegister dst, Address src);

R
roland 已提交
1411
#ifndef _LP64 // no 32bit push/pop on amd64
1412
  void popl(Address dst);
R
roland 已提交
1413
#endif
1414 1415 1416 1417

#ifdef _LP64
  void popq(Address dst);
#endif
D
duke 已提交
1418

1419 1420 1421 1422 1423 1424 1425 1426
  void popcntl(Register dst, Address src);
  void popcntl(Register dst, Register src);

#ifdef _LP64
  void popcntq(Register dst, Address src);
  void popcntq(Register dst, Register src);
#endif

1427
  // Prefetches (SSE, SSE2, 3DNOW only)
D
duke 已提交
1428

1429 1430 1431 1432 1433 1434
  void prefetchnta(Address src);
  void prefetchr(Address src);
  void prefetcht0(Address src);
  void prefetcht1(Address src);
  void prefetcht2(Address src);
  void prefetchw(Address src);
D
duke 已提交
1435

1436 1437 1438 1439
  // Shuffle Bytes
  void pshufb(XMMRegister dst, XMMRegister src);
  void pshufb(XMMRegister dst, Address src);

1440 1441 1442
  // Shuffle Packed Doublewords
  void pshufd(XMMRegister dst, XMMRegister src, int mode);
  void pshufd(XMMRegister dst, Address src,     int mode);
D
duke 已提交
1443

1444 1445 1446
  // Shuffle Packed Low Words
  void pshuflw(XMMRegister dst, XMMRegister src, int mode);
  void pshuflw(XMMRegister dst, Address src,     int mode);
D
duke 已提交
1447

1448 1449 1450
  // Shift Right by bytes Logical DoubleQuadword Immediate
  void psrldq(XMMRegister dst, int shift);

1451
  // Logical Compare 128bit
C
cfang 已提交
1452 1453
  void ptest(XMMRegister dst, XMMRegister src);
  void ptest(XMMRegister dst, Address src);
1454 1455 1456
  // Logical Compare 256bit
  void vptest(XMMRegister dst, XMMRegister src);
  void vptest(XMMRegister dst, Address src);
C
cfang 已提交
1457

1458 1459
  // Interleave Low Bytes
  void punpcklbw(XMMRegister dst, XMMRegister src);
K
kvn 已提交
1460 1461 1462 1463 1464
  void punpcklbw(XMMRegister dst, Address src);

  // Interleave Low Doublewords
  void punpckldq(XMMRegister dst, XMMRegister src);
  void punpckldq(XMMRegister dst, Address src);
D
duke 已提交
1465

K
kvn 已提交
1466 1467 1468
  // Interleave Low Quadwords
  void punpcklqdq(XMMRegister dst, XMMRegister src);

R
roland 已提交
1469
#ifndef _LP64 // no 32bit push/pop on amd64
1470
  void pushl(Address src);
R
roland 已提交
1471
#endif
D
duke 已提交
1472

1473
  void pushq(Address src);
D
duke 已提交
1474

1475
  void rcll(Register dst, int imm8);
D
duke 已提交
1476

1477
  void rclq(Register dst, int imm8);
D
duke 已提交
1478

1479
  void ret(int imm16);
D
duke 已提交
1480

1481
  void sahf();
D
duke 已提交
1482

1483 1484
  void sarl(Register dst, int imm8);
  void sarl(Register dst);
D
duke 已提交
1485

1486 1487
  void sarq(Register dst, int imm8);
  void sarq(Register dst);
D
duke 已提交
1488

1489 1490 1491 1492
  void sbbl(Address dst, int32_t imm32);
  void sbbl(Register dst, int32_t imm32);
  void sbbl(Register dst, Address src);
  void sbbl(Register dst, Register src);
D
duke 已提交
1493

1494 1495 1496 1497
  void sbbq(Address dst, int32_t imm32);
  void sbbq(Register dst, int32_t imm32);
  void sbbq(Register dst, Address src);
  void sbbq(Register dst, Register src);
D
duke 已提交
1498

1499
  void setb(Condition cc, Register dst);
D
duke 已提交
1500

1501
  void shldl(Register dst, Register src);
D
duke 已提交
1502

1503 1504
  void shll(Register dst, int imm8);
  void shll(Register dst);
D
duke 已提交
1505

1506 1507
  void shlq(Register dst, int imm8);
  void shlq(Register dst);
D
duke 已提交
1508

1509
  void shrdl(Register dst, Register src);
D
duke 已提交
1510

1511 1512
  void shrl(Register dst, int imm8);
  void shrl(Register dst);
D
duke 已提交
1513

1514 1515
  void shrq(Register dst, int imm8);
  void shrq(Register dst);
D
duke 已提交
1516

1517
  void smovl(); // QQQ generic?
D
duke 已提交
1518

1519 1520
  // Compute Square Root of Scalar Double-Precision Floating-Point Value
  void sqrtsd(XMMRegister dst, Address src);
D
duke 已提交
1521 1522
  void sqrtsd(XMMRegister dst, XMMRegister src);

1523 1524 1525 1526
  // Compute Square Root of Scalar Single-Precision Floating-Point Value
  void sqrtss(XMMRegister dst, Address src);
  void sqrtss(XMMRegister dst, XMMRegister src);

1527
  void std();
D
duke 已提交
1528

1529
  void stmxcsr( Address dst );
D
duke 已提交
1530

1531 1532 1533 1534 1535
  void subl(Address dst, int32_t imm32);
  void subl(Address dst, Register src);
  void subl(Register dst, int32_t imm32);
  void subl(Register dst, Address src);
  void subl(Register dst, Register src);
D
duke 已提交
1536

1537 1538 1539 1540 1541
  void subq(Address dst, int32_t imm32);
  void subq(Address dst, Register src);
  void subq(Register dst, int32_t imm32);
  void subq(Register dst, Address src);
  void subq(Register dst, Register src);
D
duke 已提交
1542

1543 1544 1545
  // Force generation of a 4 byte immediate value even if it fits into 8bit
  void subl_imm32(Register dst, int32_t imm32);
  void subq_imm32(Register dst, int32_t imm32);
D
duke 已提交
1546

1547 1548 1549
  // Subtract Scalar Double-Precision Floating-Point Values
  void subsd(XMMRegister dst, Address src);
  void subsd(XMMRegister dst, XMMRegister src);
D
duke 已提交
1550

1551 1552 1553
  // Subtract Scalar Single-Precision Floating-Point Values
  void subss(XMMRegister dst, Address src);
  void subss(XMMRegister dst, XMMRegister src);
D
duke 已提交
1554

1555
  void testb(Register dst, int imm8);
D
duke 已提交
1556

1557 1558 1559
  void testl(Register dst, int32_t imm32);
  void testl(Register dst, Register src);
  void testl(Register dst, Address src);
D
duke 已提交
1560

1561 1562
  void testq(Register dst, int32_t imm32);
  void testq(Register dst, Register src);
D
duke 已提交
1563 1564


1565 1566 1567
  // Unordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
  void ucomisd(XMMRegister dst, Address src);
  void ucomisd(XMMRegister dst, XMMRegister src);
D
duke 已提交
1568

1569 1570 1571
  // Unordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
  void ucomiss(XMMRegister dst, Address src);
  void ucomiss(XMMRegister dst, XMMRegister src);
D
duke 已提交
1572

1573
  void xaddl(Address dst, Register src);
D
duke 已提交
1574

1575
  void xaddq(Address dst, Register src);
D
duke 已提交
1576

1577 1578 1579 1580 1581
  void xchgl(Register reg, Address adr);
  void xchgl(Register dst, Register src);

  void xchgq(Register reg, Address adr);
  void xchgq(Register dst, Register src);
D
duke 已提交
1582

K
kvn 已提交
1583
  // Get Value of Extended Control Register
1584
  void xgetbv();
K
kvn 已提交
1585

1586 1587 1588
  void xorl(Register dst, int32_t imm32);
  void xorl(Register dst, Address src);
  void xorl(Register dst, Register src);
D
duke 已提交
1589

1590 1591
  void xorq(Register dst, Address src);
  void xorq(Register dst, Register src);
D
duke 已提交
1592

1593
  void set_byte_if_not_zero(Register dst); // sets reg to 1 if not zero, otherwise 0
K
kvn 已提交
1594

K
kvn 已提交
1595
  // AVX 3-operands scalar instructions (encoded with VEX prefix)
1596

1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
  void vaddsd(XMMRegister dst, XMMRegister nds, Address src);
  void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
  void vaddss(XMMRegister dst, XMMRegister nds, Address src);
  void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src);
  void vdivsd(XMMRegister dst, XMMRegister nds, Address src);
  void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
  void vdivss(XMMRegister dst, XMMRegister nds, Address src);
  void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src);
  void vmulsd(XMMRegister dst, XMMRegister nds, Address src);
  void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
  void vmulss(XMMRegister dst, XMMRegister nds, Address src);
  void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src);
  void vsubsd(XMMRegister dst, XMMRegister nds, Address src);
  void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
  void vsubss(XMMRegister dst, XMMRegister nds, Address src);
  void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src);

1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659

  //====================VECTOR ARITHMETIC=====================================

  // Add Packed Floating-Point Values
  void addpd(XMMRegister dst, XMMRegister src);
  void addps(XMMRegister dst, XMMRegister src);
  void vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  void vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  void vaddpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  void vaddps(XMMRegister dst, XMMRegister nds, Address src, bool vector256);

  // Subtract Packed Floating-Point Values
  void subpd(XMMRegister dst, XMMRegister src);
  void subps(XMMRegister dst, XMMRegister src);
  void vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  void vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  void vsubpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  void vsubps(XMMRegister dst, XMMRegister nds, Address src, bool vector256);

  // Multiply Packed Floating-Point Values
  void mulpd(XMMRegister dst, XMMRegister src);
  void mulps(XMMRegister dst, XMMRegister src);
  void vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  void vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  void vmulpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  void vmulps(XMMRegister dst, XMMRegister nds, Address src, bool vector256);

  // Divide Packed Floating-Point Values
  void divpd(XMMRegister dst, XMMRegister src);
  void divps(XMMRegister dst, XMMRegister src);
  void vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  void vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  void vdivpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  void vdivps(XMMRegister dst, XMMRegister nds, Address src, bool vector256);

  // Bitwise Logical AND of Packed Floating-Point Values
  void andpd(XMMRegister dst, XMMRegister src);
  void andps(XMMRegister dst, XMMRegister src);
  void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  void vandpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  void vandps(XMMRegister dst, XMMRegister nds, Address src, bool vector256);

  // Bitwise Logical XOR of Packed Floating-Point Values
  void xorpd(XMMRegister dst, XMMRegister src);
  void xorps(XMMRegister dst, XMMRegister src);
1660 1661
  void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
  void vxorpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  void vxorps(XMMRegister dst, XMMRegister nds, Address src, bool vector256);

  // Add packed integers
  void paddb(XMMRegister dst, XMMRegister src);
  void paddw(XMMRegister dst, XMMRegister src);
  void paddd(XMMRegister dst, XMMRegister src);
  void paddq(XMMRegister dst, XMMRegister src);
  void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  void vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  void vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  void vpaddb(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  void vpaddw(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  void vpaddd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  void vpaddq(XMMRegister dst, XMMRegister nds, Address src, bool vector256);

  // Sub packed integers
  void psubb(XMMRegister dst, XMMRegister src);
  void psubw(XMMRegister dst, XMMRegister src);
  void psubd(XMMRegister dst, XMMRegister src);
  void psubq(XMMRegister dst, XMMRegister src);
  void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  void vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  void vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  void vpsubb(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  void vpsubw(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  void vpsubd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  void vpsubq(XMMRegister dst, XMMRegister nds, Address src, bool vector256);

  // Multiply packed integers (only shorts and ints)
  void pmullw(XMMRegister dst, XMMRegister src);
  void pmulld(XMMRegister dst, XMMRegister src);
  void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  void vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  void vpmullw(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  void vpmulld(XMMRegister dst, XMMRegister nds, Address src, bool vector256);

  // Shift left packed integers
  void psllw(XMMRegister dst, int shift);
  void pslld(XMMRegister dst, int shift);
  void psllq(XMMRegister dst, int shift);
  void psllw(XMMRegister dst, XMMRegister shift);
  void pslld(XMMRegister dst, XMMRegister shift);
  void psllq(XMMRegister dst, XMMRegister shift);
  void vpsllw(XMMRegister dst, XMMRegister src, int shift, bool vector256);
  void vpslld(XMMRegister dst, XMMRegister src, int shift, bool vector256);
  void vpsllq(XMMRegister dst, XMMRegister src, int shift, bool vector256);
  void vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
  void vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
  void vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);

  // Logical shift right packed integers
  void psrlw(XMMRegister dst, int shift);
  void psrld(XMMRegister dst, int shift);
  void psrlq(XMMRegister dst, int shift);
  void psrlw(XMMRegister dst, XMMRegister shift);
  void psrld(XMMRegister dst, XMMRegister shift);
  void psrlq(XMMRegister dst, XMMRegister shift);
  void vpsrlw(XMMRegister dst, XMMRegister src, int shift, bool vector256);
  void vpsrld(XMMRegister dst, XMMRegister src, int shift, bool vector256);
  void vpsrlq(XMMRegister dst, XMMRegister src, int shift, bool vector256);
  void vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
  void vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
  void vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);

  // Arithmetic shift right packed integers (only shorts and ints, no instructions for longs)
  void psraw(XMMRegister dst, int shift);
  void psrad(XMMRegister dst, int shift);
  void psraw(XMMRegister dst, XMMRegister shift);
  void psrad(XMMRegister dst, XMMRegister shift);
  void vpsraw(XMMRegister dst, XMMRegister src, int shift, bool vector256);
  void vpsrad(XMMRegister dst, XMMRegister src, int shift, bool vector256);
  void vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
  void vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);

  // And packed integers
  void pand(XMMRegister dst, XMMRegister src);
  void vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  void vpand(XMMRegister dst, XMMRegister nds, Address src, bool vector256);

  // Or packed integers
  void por(XMMRegister dst, XMMRegister src);
  void vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  void vpor(XMMRegister dst, XMMRegister nds, Address src, bool vector256);

  // Xor packed integers
  void pxor(XMMRegister dst, XMMRegister src);
K
kvn 已提交
1751
  void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1752 1753 1754
  void vpxor(XMMRegister dst, XMMRegister nds, Address src, bool vector256);

  // Copy low 128bit into high 128bit of YMM registers.
1755
  void vinsertf128h(XMMRegister dst, XMMRegister nds, XMMRegister src);
K
kvn 已提交
1756
  void vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src);
1757

1758 1759 1760 1761 1762 1763
  // Load/store high 128bit of YMM registers which does not destroy other half.
  void vinsertf128h(XMMRegister dst, Address src);
  void vinserti128h(XMMRegister dst, Address src);
  void vextractf128h(Address dst, XMMRegister src);
  void vextracti128h(Address dst, XMMRegister src);

1764 1765 1766
  // duplicate 4-bytes integer data from src into 8 locations in dest
  void vpbroadcastd(XMMRegister dst, XMMRegister src);

1767 1768 1769 1770 1771 1772
  // AVX instruction which is used to clear upper 128 bits of YMM registers and
  // to avoid transaction penalty between AVX and SSE states. There is no
  // penalty if legacy SSE instructions are encoded using VEX prefix because
  // they always clear upper 128 bits. It should be used before calling
  // runtime code and native libraries.
  void vzeroupper();
1773

K
kvn 已提交
1774 1775 1776 1777 1778 1779 1780 1781
 protected:
  // Next instructions require address alignment 16 bytes SSE mode.
  // They should be called only from corresponding MacroAssembler instructions.
  void andpd(XMMRegister dst, Address src);
  void andps(XMMRegister dst, Address src);
  void xorpd(XMMRegister dst, Address src);
  void xorps(XMMRegister dst, Address src);

D
duke 已提交
1782 1783
};

1784
#endif // CPU_X86_VM_ASSEMBLER_X86_HPP