stubGenerator_sparc.cpp 103.8 KB
Newer Older
D
duke 已提交
1
/*
2
 * Copyright 1997-2010 Sun Microsystems, Inc.  All Rights Reserved.
D
duke 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

#include "incls/_precompiled.incl"
#include "incls/_stubGenerator_sparc.cpp.incl"

// Declaration and definition of StubGenerator (no .hpp file).
// For a more detailed description of the stub routine structure
// see the comment in stubRoutines.hpp.

#define __ _masm->

#ifdef PRODUCT
#define BLOCK_COMMENT(str) /* nothing */
#else
#define BLOCK_COMMENT(str) __ block_comment(str)
#endif

#define BIND(label) bind(label); BLOCK_COMMENT(#label ":")

// Note:  The register L7 is used as L7_thread_cache, and may not be used
//        any other way within this module.


static const Register& Lstub_temp = L2;

// -------------------------------------------------------------------------------------------------------------------------
// Stub Code definitions

static address handle_unsafe_access() {
  JavaThread* thread = JavaThread::current();
  address pc  = thread->saved_exception_pc();
  address npc = thread->saved_exception_npc();
  // pc is the instruction which we must emulate
  // doing a no-op is fine:  return garbage from the load

  // request an async exception
  thread->set_pending_unsafe_access_error();

  // return address of next instruction to execute
  return npc;
}

class StubGenerator: public StubCodeGenerator {
 private:

#ifdef PRODUCT
#define inc_counter_np(a,b,c) (0)
#else
#define inc_counter_np(counter, t1, t2) \
  BLOCK_COMMENT("inc_counter " #counter); \
73
  __ inc_counter(&counter, t1, t2);
D
duke 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
#endif

  //----------------------------------------------------------------------------------------------------
  // Call stubs are used to call Java from C

  address generate_call_stub(address& return_pc) {
    StubCodeMark mark(this, "StubRoutines", "call_stub");
    address start = __ pc();

    // Incoming arguments:
    //
    // o0         : call wrapper address
    // o1         : result (address)
    // o2         : result type
    // o3         : method
    // o4         : (interpreter) entry point
    // o5         : parameters (address)
    // [sp + 0x5c]: parameter size (in words)
    // [sp + 0x60]: thread
    //
    // +---------------+ <--- sp + 0
    // |               |
    // . reg save area .
    // |               |
    // +---------------+ <--- sp + 0x40
    // |               |
    // . extra 7 slots .
    // |               |
    // +---------------+ <--- sp + 0x5c
    // |  param. size  |
    // +---------------+ <--- sp + 0x60
    // |    thread     |
    // +---------------+
    // |               |

    // note: if the link argument position changes, adjust
    //       the code in frame::entry_frame_call_wrapper()

    const Argument link           = Argument(0, false); // used only for GC
    const Argument result         = Argument(1, false);
    const Argument result_type    = Argument(2, false);
    const Argument method         = Argument(3, false);
    const Argument entry_point    = Argument(4, false);
    const Argument parameters     = Argument(5, false);
    const Argument parameter_size = Argument(6, false);
    const Argument thread         = Argument(7, false);

    // setup thread register
    __ ld_ptr(thread.as_address(), G2_thread);
123
    __ reinit_heapbase();
D
duke 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320

#ifdef ASSERT
    // make sure we have no pending exceptions
    { const Register t = G3_scratch;
      Label L;
      __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), t);
      __ br_null(t, false, Assembler::pt, L);
      __ delayed()->nop();
      __ stop("StubRoutines::call_stub: entered with pending exception");
      __ bind(L);
    }
#endif

    // create activation frame & allocate space for parameters
    { const Register t = G3_scratch;
      __ ld_ptr(parameter_size.as_address(), t);                // get parameter size (in words)
      __ add(t, frame::memory_parameter_word_sp_offset, t);     // add space for save area (in words)
      __ round_to(t, WordsPerLong);                             // make sure it is multiple of 2 (in words)
      __ sll(t, Interpreter::logStackElementSize(), t);                    // compute number of bytes
      __ neg(t);                                                // negate so it can be used with save
      __ save(SP, t, SP);                                       // setup new frame
    }

    // +---------------+ <--- sp + 0
    // |               |
    // . reg save area .
    // |               |
    // +---------------+ <--- sp + 0x40
    // |               |
    // . extra 7 slots .
    // |               |
    // +---------------+ <--- sp + 0x5c
    // |  empty slot   |      (only if parameter size is even)
    // +---------------+
    // |               |
    // .  parameters   .
    // |               |
    // +---------------+ <--- fp + 0
    // |               |
    // . reg save area .
    // |               |
    // +---------------+ <--- fp + 0x40
    // |               |
    // . extra 7 slots .
    // |               |
    // +---------------+ <--- fp + 0x5c
    // |  param. size  |
    // +---------------+ <--- fp + 0x60
    // |    thread     |
    // +---------------+
    // |               |

    // pass parameters if any
    BLOCK_COMMENT("pass parameters if any");
    { const Register src = parameters.as_in().as_register();
      const Register dst = Lentry_args;
      const Register tmp = G3_scratch;
      const Register cnt = G4_scratch;

      // test if any parameters & setup of Lentry_args
      Label exit;
      __ ld_ptr(parameter_size.as_in().as_address(), cnt);      // parameter counter
      __ add( FP, STACK_BIAS, dst );
      __ tst(cnt);
      __ br(Assembler::zero, false, Assembler::pn, exit);
      __ delayed()->sub(dst, BytesPerWord, dst);                 // setup Lentry_args

      // copy parameters if any
      Label loop;
      __ BIND(loop);
      // Store tag first.
      if (TaggedStackInterpreter) {
        __ ld_ptr(src, 0, tmp);
        __ add(src, BytesPerWord, src);  // get next
        __ st_ptr(tmp, dst, Interpreter::tag_offset_in_bytes());
      }
      // Store parameter value
      __ ld_ptr(src, 0, tmp);
      __ add(src, BytesPerWord, src);
      __ st_ptr(tmp, dst, Interpreter::value_offset_in_bytes());
      __ deccc(cnt);
      __ br(Assembler::greater, false, Assembler::pt, loop);
      __ delayed()->sub(dst, Interpreter::stackElementSize(), dst);

      // done
      __ BIND(exit);
    }

    // setup parameters, method & call Java function
#ifdef ASSERT
    // layout_activation_impl checks it's notion of saved SP against
    // this register, so if this changes update it as well.
    const Register saved_SP = Lscratch;
    __ mov(SP, saved_SP);                               // keep track of SP before call
#endif

    // setup parameters
    const Register t = G3_scratch;
    __ ld_ptr(parameter_size.as_in().as_address(), t); // get parameter size (in words)
    __ sll(t, Interpreter::logStackElementSize(), t);            // compute number of bytes
    __ sub(FP, t, Gargs);                              // setup parameter pointer
#ifdef _LP64
    __ add( Gargs, STACK_BIAS, Gargs );                // Account for LP64 stack bias
#endif
    __ mov(SP, O5_savedSP);


    // do the call
    //
    // the following register must be setup:
    //
    // G2_thread
    // G5_method
    // Gargs
    BLOCK_COMMENT("call Java function");
    __ jmpl(entry_point.as_in().as_register(), G0, O7);
    __ delayed()->mov(method.as_in().as_register(), G5_method);   // setup method

    BLOCK_COMMENT("call_stub_return_address:");
    return_pc = __ pc();

    // The callee, if it wasn't interpreted, can return with SP changed so
    // we can no longer assert of change of SP.

    // store result depending on type
    // (everything that is not T_OBJECT, T_LONG, T_FLOAT, or T_DOUBLE
    //  is treated as T_INT)
    { const Register addr = result     .as_in().as_register();
      const Register type = result_type.as_in().as_register();
      Label is_long, is_float, is_double, is_object, exit;
      __            cmp(type, T_OBJECT);  __ br(Assembler::equal, false, Assembler::pn, is_object);
      __ delayed()->cmp(type, T_FLOAT);   __ br(Assembler::equal, false, Assembler::pn, is_float);
      __ delayed()->cmp(type, T_DOUBLE);  __ br(Assembler::equal, false, Assembler::pn, is_double);
      __ delayed()->cmp(type, T_LONG);    __ br(Assembler::equal, false, Assembler::pn, is_long);
      __ delayed()->nop();

      // store int result
      __ st(O0, addr, G0);

      __ BIND(exit);
      __ ret();
      __ delayed()->restore();

      __ BIND(is_object);
      __ ba(false, exit);
      __ delayed()->st_ptr(O0, addr, G0);

      __ BIND(is_float);
      __ ba(false, exit);
      __ delayed()->stf(FloatRegisterImpl::S, F0, addr, G0);

      __ BIND(is_double);
      __ ba(false, exit);
      __ delayed()->stf(FloatRegisterImpl::D, F0, addr, G0);

      __ BIND(is_long);
#ifdef _LP64
      __ ba(false, exit);
      __ delayed()->st_long(O0, addr, G0);      // store entire long
#else
#if defined(COMPILER2)
  // All return values are where we want them, except for Longs.  C2 returns
  // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
  // Since the interpreter will return longs in G1 and O0/O1 in the 32bit
  // build we simply always use G1.
  // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
  // do this here. Unfortunately if we did a rethrow we'd see an machepilog node
  // first which would move g1 -> O0/O1 and destroy the exception we were throwing.

      __ ba(false, exit);
      __ delayed()->stx(G1, addr, G0);  // store entire long
#else
      __ st(O1, addr, BytesPerInt);
      __ ba(false, exit);
      __ delayed()->st(O0, addr, G0);
#endif /* COMPILER2 */
#endif /* _LP64 */
     }
     return start;
  }


  //----------------------------------------------------------------------------------------------------
  // Return point for a Java call if there's an exception thrown in Java code.
  // The exception is caught and transformed into a pending exception stored in
  // JavaThread that can be tested from within the VM.
  //
  // Oexception: exception oop

  address generate_catch_exception() {
    StubCodeMark mark(this, "StubRoutines", "catch_exception");

    address start = __ pc();
    // verify that thread corresponds
    __ verify_thread();

    const Register& temp_reg = Gtemp;
321 322 323
    Address pending_exception_addr    (G2_thread, Thread::pending_exception_offset());
    Address exception_file_offset_addr(G2_thread, Thread::exception_file_offset   ());
    Address exception_line_offset_addr(G2_thread, Thread::exception_line_offset   ());
D
duke 已提交
324 325 326 327 328 329 330 331 332 333 334 335

    // set pending exception
    __ verify_oop(Oexception);
    __ st_ptr(Oexception, pending_exception_addr);
    __ set((intptr_t)__FILE__, temp_reg);
    __ st_ptr(temp_reg, exception_file_offset_addr);
    __ set((intptr_t)__LINE__, temp_reg);
    __ st(temp_reg, exception_line_offset_addr);

    // complete return to VM
    assert(StubRoutines::_call_stub_return_address != NULL, "must have been generated before");

336 337
    AddressLiteral stub_ret(StubRoutines::_call_stub_return_address);
    __ jump_to(stub_ret, temp_reg);
D
duke 已提交
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
    __ delayed()->nop();

    return start;
  }


  //----------------------------------------------------------------------------------------------------
  // Continuation point for runtime calls returning with a pending exception
  // The pending exception check happened in the runtime or native call stub
  // The pending exception in Thread is converted into a Java-level exception
  //
  // Contract with Java-level exception handler: O0 = exception
  //                                             O1 = throwing pc

  address generate_forward_exception() {
    StubCodeMark mark(this, "StubRoutines", "forward_exception");
    address start = __ pc();

    // Upon entry, O7 has the return address returning into Java
    // (interpreted or compiled) code; i.e. the return address
    // becomes the throwing pc.

    const Register& handler_reg = Gtemp;

362
    Address exception_addr(G2_thread, Thread::pending_exception_offset());
D
duke 已提交
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451

#ifdef ASSERT
    // make sure that this code is only executed if there is a pending exception
    { Label L;
      __ ld_ptr(exception_addr, Gtemp);
      __ br_notnull(Gtemp, false, Assembler::pt, L);
      __ delayed()->nop();
      __ stop("StubRoutines::forward exception: no pending exception (1)");
      __ bind(L);
    }
#endif

    // compute exception handler into handler_reg
    __ get_thread();
    __ ld_ptr(exception_addr, Oexception);
    __ verify_oop(Oexception);
    __ save_frame(0);             // compensates for compiler weakness
    __ add(O7->after_save(), frame::pc_return_offset, Lscratch); // save the issuing PC
    BLOCK_COMMENT("call exception_handler_for_return_address");
    __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), Lscratch);
    __ mov(O0, handler_reg);
    __ restore();                 // compensates for compiler weakness

    __ ld_ptr(exception_addr, Oexception);
    __ add(O7, frame::pc_return_offset, Oissuing_pc); // save the issuing PC

#ifdef ASSERT
    // make sure exception is set
    { Label L;
      __ br_notnull(Oexception, false, Assembler::pt, L);
      __ delayed()->nop();
      __ stop("StubRoutines::forward exception: no pending exception (2)");
      __ bind(L);
    }
#endif
    // jump to exception handler
    __ jmp(handler_reg, 0);
    // clear pending exception
    __ delayed()->st_ptr(G0, exception_addr);

    return start;
  }


  //------------------------------------------------------------------------------------------------------------------------
  // Continuation point for throwing of implicit exceptions that are not handled in
  // the current activation. Fabricates an exception oop and initiates normal
  // exception dispatching in this frame. Only callee-saved registers are preserved
  // (through the normal register window / RegisterMap handling).
  // If the compiler needs all registers to be preserved between the fault
  // point and the exception handler then it must assume responsibility for that in
  // AbstractCompiler::continuation_for_implicit_null_exception or
  // continuation_for_implicit_division_by_zero_exception. All other implicit
  // exceptions (e.g., NullPointerException or AbstractMethodError on entry) are
  // either at call sites or otherwise assume that stack unwinding will be initiated,
  // so caller saved registers were assumed volatile in the compiler.

  // Note that we generate only this stub into a RuntimeStub, because it needs to be
  // properly traversed and ignored during GC, so we change the meaning of the "__"
  // macro within this method.
#undef __
#define __ masm->

  address generate_throw_exception(const char* name, address runtime_entry, bool restore_saved_exception_pc) {
#ifdef ASSERT
    int insts_size = VerifyThread ? 1 * K : 600;
#else
    int insts_size = VerifyThread ? 1 * K : 256;
#endif /* ASSERT */
    int locs_size  = 32;

    CodeBuffer      code(name, insts_size, locs_size);
    MacroAssembler* masm = new MacroAssembler(&code);

    __ verify_thread();

    // This is an inlined and slightly modified version of call_VM
    // which has the ability to fetch the return PC out of thread-local storage
    __ assert_not_delayed();

    // Note that we always push a frame because on the SPARC
    // architecture, for all of our implicit exception kinds at call
    // sites, the implicit exception is taken before the callee frame
    // is pushed.
    __ save_frame(0);

    int frame_complete = __ offset();

    if (restore_saved_exception_pc) {
452
      __ ld_ptr(G2_thread, JavaThread::saved_exception_pc_offset(), I7);
D
duke 已提交
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
      __ sub(I7, frame::pc_return_offset, I7);
    }

    // Note that we always have a runtime stub frame on the top of stack by this point
    Register last_java_sp = SP;
    // 64-bit last_java_sp is biased!
    __ set_last_Java_frame(last_java_sp, G0);
    if (VerifyThread)  __ mov(G2_thread, O0); // about to be smashed; pass early
    __ save_thread(noreg);
    // do the call
    BLOCK_COMMENT("call runtime_entry");
    __ call(runtime_entry, relocInfo::runtime_call_type);
    if (!VerifyThread)
      __ delayed()->mov(G2_thread, O0);  // pass thread as first argument
    else
      __ delayed()->nop();             // (thread already passed)
    __ restore_thread(noreg);
    __ reset_last_Java_frame();

    // check for pending exceptions. use Gtemp as scratch register.
#ifdef ASSERT
    Label L;

476
    Address exception_addr(G2_thread, Thread::pending_exception_offset());
D
duke 已提交
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
    Register scratch_reg = Gtemp;
    __ ld_ptr(exception_addr, scratch_reg);
    __ br_notnull(scratch_reg, false, Assembler::pt, L);
    __ delayed()->nop();
    __ should_not_reach_here();
    __ bind(L);
#endif // ASSERT
    BLOCK_COMMENT("call forward_exception_entry");
    __ call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
    // we use O7 linkage so that forward_exception_entry has the issuing PC
    __ delayed()->restore();

    RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, frame_complete, masm->total_frame_size_in_bytes(0), NULL, false);
    return stub->entry_point();
  }

#undef __
#define __ _masm->


  // Generate a routine that sets all the registers so we
  // can tell if the stop routine prints them correctly.
  address generate_test_stop() {
    StubCodeMark mark(this, "StubRoutines", "test_stop");
    address start = __ pc();

    int i;

    __ save_frame(0);

    static jfloat zero = 0.0, one = 1.0;

    // put addr in L0, then load through L0 to F0
    __ set((intptr_t)&zero, L0);  __ ldf( FloatRegisterImpl::S, L0, 0, F0);
    __ set((intptr_t)&one,  L0);  __ ldf( FloatRegisterImpl::S, L0, 0, F1); // 1.0 to F1

    // use add to put 2..18 in F2..F18
    for ( i = 2;  i <= 18;  ++i ) {
      __ fadd( FloatRegisterImpl::S, F1, as_FloatRegister(i-1),  as_FloatRegister(i));
    }

    // Now put double 2 in F16, double 18 in F18
    __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, F2, F16 );
    __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, F18, F18 );

    // use add to put 20..32 in F20..F32
    for (i = 20; i < 32; i += 2) {
      __ fadd( FloatRegisterImpl::D, F16, as_FloatRegister(i-2),  as_FloatRegister(i));
    }

    // put 0..7 in i's, 8..15 in l's, 16..23 in o's, 24..31 in g's
    for ( i = 0; i < 8; ++i ) {
      if (i < 6) {
        __ set(     i, as_iRegister(i));
        __ set(16 + i, as_oRegister(i));
        __ set(24 + i, as_gRegister(i));
      }
      __ set( 8 + i, as_lRegister(i));
    }

    __ stop("testing stop");


    __ ret();
    __ delayed()->restore();

    return start;
  }


  address generate_stop_subroutine() {
    StubCodeMark mark(this, "StubRoutines", "stop_subroutine");
    address start = __ pc();

    __ stop_subroutine();

    return start;
  }

  address generate_flush_callers_register_windows() {
    StubCodeMark mark(this, "StubRoutines", "flush_callers_register_windows");
    address start = __ pc();

    __ flush_windows();
    __ retl(false);
    __ delayed()->add( FP, STACK_BIAS, O0 );
    // The returned value must be a stack pointer whose register save area
    // is flushed, and will stay flushed while the caller executes.

    return start;
  }

  // Helper functions for v8 atomic operations.
  //
  void get_v8_oop_lock_ptr(Register lock_ptr_reg, Register mark_oop_reg, Register scratch_reg) {
    if (mark_oop_reg == noreg) {
      address lock_ptr = (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr();
      __ set((intptr_t)lock_ptr, lock_ptr_reg);
    } else {
      assert(scratch_reg != noreg, "just checking");
      address lock_ptr = (address)StubRoutines::Sparc::_v8_oop_lock_cache;
      __ set((intptr_t)lock_ptr, lock_ptr_reg);
      __ and3(mark_oop_reg, StubRoutines::Sparc::v8_oop_lock_mask_in_place, scratch_reg);
      __ add(lock_ptr_reg, scratch_reg, lock_ptr_reg);
    }
  }

  void generate_v8_lock_prologue(Register lock_reg, Register lock_ptr_reg, Register yield_reg, Label& retry, Label& dontyield, Register mark_oop_reg = noreg, Register scratch_reg = noreg) {

    get_v8_oop_lock_ptr(lock_ptr_reg, mark_oop_reg, scratch_reg);
    __ set(StubRoutines::Sparc::locked, lock_reg);
    // Initialize yield counter
    __ mov(G0,yield_reg);

    __ BIND(retry);
    __ cmp(yield_reg, V8AtomicOperationUnderLockSpinCount);
    __ br(Assembler::less, false, Assembler::pt, dontyield);
    __ delayed()->nop();

    // This code can only be called from inside the VM, this
    // stub is only invoked from Atomic::add().  We do not
    // want to use call_VM, because _last_java_sp and such
    // must already be set.
    //
    // Save the regs and make space for a C call
    __ save(SP, -96, SP);
    __ save_all_globals_into_locals();
    BLOCK_COMMENT("call os::naked_sleep");
    __ call(CAST_FROM_FN_PTR(address, os::naked_sleep));
    __ delayed()->nop();
    __ restore_globals_from_locals();
    __ restore();
    // reset the counter
    __ mov(G0,yield_reg);

    __ BIND(dontyield);

    // try to get lock
    __ swap(lock_ptr_reg, 0, lock_reg);

    // did we get the lock?
    __ cmp(lock_reg, StubRoutines::Sparc::unlocked);
    __ br(Assembler::notEqual, true, Assembler::pn, retry);
    __ delayed()->add(yield_reg,1,yield_reg);

    // yes, got lock. do the operation here.
  }

  void generate_v8_lock_epilogue(Register lock_reg, Register lock_ptr_reg, Register yield_reg, Label& retry, Label& dontyield, Register mark_oop_reg = noreg, Register scratch_reg = noreg) {
    __ st(lock_reg, lock_ptr_reg, 0); // unlock
  }

  // Support for jint Atomic::xchg(jint exchange_value, volatile jint* dest).
  //
  // Arguments :
  //
  //      exchange_value: O0
  //      dest:           O1
  //
  // Results:
  //
  //     O0: the value previously stored in dest
  //
  address generate_atomic_xchg() {
    StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
    address start = __ pc();

    if (UseCASForSwap) {
      // Use CAS instead of swap, just in case the MP hardware
      // prefers to work with just one kind of synch. instruction.
      Label retry;
      __ BIND(retry);
      __ mov(O0, O3);       // scratch copy of exchange value
      __ ld(O1, 0, O2);     // observe the previous value
      // try to replace O2 with O3
      __ cas_under_lock(O1, O2, O3,
      (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr(),false);
      __ cmp(O2, O3);
      __ br(Assembler::notEqual, false, Assembler::pn, retry);
      __ delayed()->nop();

      __ retl(false);
      __ delayed()->mov(O2, O0);  // report previous value to caller

    } else {
      if (VM_Version::v9_instructions_work()) {
        __ retl(false);
        __ delayed()->swap(O1, 0, O0);
      } else {
        const Register& lock_reg = O2;
        const Register& lock_ptr_reg = O3;
        const Register& yield_reg = O4;

        Label retry;
        Label dontyield;

        generate_v8_lock_prologue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
        // got the lock, do the swap
        __ swap(O1, 0, O0);

        generate_v8_lock_epilogue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
        __ retl(false);
        __ delayed()->nop();
      }
    }

    return start;
  }


  // Support for jint Atomic::cmpxchg(jint exchange_value, volatile jint* dest, jint compare_value)
  //
  // Arguments :
  //
  //      exchange_value: O0
  //      dest:           O1
  //      compare_value:  O2
  //
  // Results:
  //
  //     O0: the value previously stored in dest
  //
  // Overwrites (v8): O3,O4,O5
  //
  address generate_atomic_cmpxchg() {
    StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg");
    address start = __ pc();

    // cmpxchg(dest, compare_value, exchange_value)
    __ cas_under_lock(O1, O2, O0,
      (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr(),false);
    __ retl(false);
    __ delayed()->nop();

    return start;
  }

  // Support for jlong Atomic::cmpxchg(jlong exchange_value, volatile jlong *dest, jlong compare_value)
  //
  // Arguments :
  //
  //      exchange_value: O1:O0
  //      dest:           O2
  //      compare_value:  O4:O3
  //
  // Results:
  //
  //     O1:O0: the value previously stored in dest
  //
  // This only works on V9, on V8 we don't generate any
  // code and just return NULL.
  //
  // Overwrites: G1,G2,G3
  //
  address generate_atomic_cmpxchg_long() {
    StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg_long");
    address start = __ pc();

    if (!VM_Version::supports_cx8())
        return NULL;;
    __ sllx(O0, 32, O0);
    __ srl(O1, 0, O1);
    __ or3(O0,O1,O0);      // O0 holds 64-bit value from compare_value
    __ sllx(O3, 32, O3);
    __ srl(O4, 0, O4);
    __ or3(O3,O4,O3);     // O3 holds 64-bit value from exchange_value
    __ casx(O2, O3, O0);
    __ srl(O0, 0, O1);    // unpacked return value in O1:O0
    __ retl(false);
    __ delayed()->srlx(O0, 32, O0);

    return start;
  }


  // Support for jint Atomic::add(jint add_value, volatile jint* dest).
  //
  // Arguments :
  //
  //      add_value: O0   (e.g., +1 or -1)
  //      dest:      O1
  //
  // Results:
  //
  //     O0: the new value stored in dest
  //
  // Overwrites (v9): O3
  // Overwrites (v8): O3,O4,O5
  //
  address generate_atomic_add() {
    StubCodeMark mark(this, "StubRoutines", "atomic_add");
    address start = __ pc();
    __ BIND(_atomic_add_stub);

    if (VM_Version::v9_instructions_work()) {
      Label(retry);
      __ BIND(retry);

      __ lduw(O1, 0, O2);
      __ add(O0,   O2, O3);
      __ cas(O1,   O2, O3);
      __ cmp(      O2, O3);
      __ br(Assembler::notEqual, false, Assembler::pn, retry);
      __ delayed()->nop();
      __ retl(false);
      __ delayed()->add(O0, O2, O0); // note that cas made O2==O3
    } else {
      const Register& lock_reg = O2;
      const Register& lock_ptr_reg = O3;
      const Register& value_reg = O4;
      const Register& yield_reg = O5;

      Label(retry);
      Label(dontyield);

      generate_v8_lock_prologue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
      // got lock, do the increment
      __ ld(O1, 0, value_reg);
      __ add(O0, value_reg, value_reg);
      __ st(value_reg, O1, 0);

      // %%% only for RMO and PSO
      __ membar(Assembler::StoreStore);

      generate_v8_lock_epilogue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);

      __ retl(false);
      __ delayed()->mov(value_reg, O0);
    }

    return start;
  }
  Label _atomic_add_stub;  // called from other stubs


  //------------------------------------------------------------------------------------------------------------------------
  // The following routine generates a subroutine to throw an asynchronous
  // UnknownError when an unsafe access gets a fault that could not be
  // reasonably prevented by the programmer.  (Example: SIGBUS/OBJERR.)
  //
  // Arguments :
  //
  //      trapping PC:    O7
  //
  // Results:
  //     posts an asynchronous exception, skips the trapping instruction
  //

  address generate_handler_for_unsafe_access() {
    StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
    address start = __ pc();

    const int preserve_register_words = (64 * 2);
830
    Address preserve_addr(FP, (-preserve_register_words * wordSize) + STACK_BIAS);
D
duke 已提交
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876

    Register Lthread = L7_thread_cache;
    int i;

    __ save_frame(0);
    __ mov(G1, L1);
    __ mov(G2, L2);
    __ mov(G3, L3);
    __ mov(G4, L4);
    __ mov(G5, L5);
    for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
      __ stf(FloatRegisterImpl::D, as_FloatRegister(i), preserve_addr, i * wordSize);
    }

    address entry_point = CAST_FROM_FN_PTR(address, handle_unsafe_access);
    BLOCK_COMMENT("call handle_unsafe_access");
    __ call(entry_point, relocInfo::runtime_call_type);
    __ delayed()->nop();

    __ mov(L1, G1);
    __ mov(L2, G2);
    __ mov(L3, G3);
    __ mov(L4, G4);
    __ mov(L5, G5);
    for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
      __ ldf(FloatRegisterImpl::D, preserve_addr, as_FloatRegister(i), i * wordSize);
    }

    __ verify_thread();

    __ jmp(O0, 0);
    __ delayed()->restore();

    return start;
  }


  // Support for uint StubRoutine::Sparc::partial_subtype_check( Klass sub, Klass super );
  // Arguments :
  //
  //      ret  : O0, returned
  //      icc/xcc: set as O0 (depending on wordSize)
  //      sub  : O1, argument, not changed
  //      super: O2, argument, not changed
  //      raddr: O7, blown by call
  address generate_partial_subtype_check() {
877
    __ align(CodeEntryAlignment);
D
duke 已提交
878 879
    StubCodeMark mark(this, "StubRoutines", "partial_subtype_check");
    address start = __ pc();
880
    Label miss;
D
duke 已提交
881 882 883

#if defined(COMPILER2) && !defined(_LP64)
    // Do not use a 'save' because it blows the 64-bit O registers.
884
    __ add(SP,-4*wordSize,SP);  // Make space for 4 temps (stack must be 2 words aligned)
D
duke 已提交
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
    __ st_ptr(L0,SP,(frame::register_save_words+0)*wordSize);
    __ st_ptr(L1,SP,(frame::register_save_words+1)*wordSize);
    __ st_ptr(L2,SP,(frame::register_save_words+2)*wordSize);
    __ st_ptr(L3,SP,(frame::register_save_words+3)*wordSize);
    Register Rret   = O0;
    Register Rsub   = O1;
    Register Rsuper = O2;
#else
    __ save_frame(0);
    Register Rret   = I0;
    Register Rsub   = I1;
    Register Rsuper = I2;
#endif

    Register L0_ary_len = L0;
    Register L1_ary_ptr = L1;
    Register L2_super   = L2;
    Register L3_index   = L3;

904 905 906
    __ check_klass_subtype_slow_path(Rsub, Rsuper,
                                     L0, L1, L2, L3,
                                     NULL, &miss);
907

908 909
    // Match falls through here.
    __ addcc(G0,0,Rret);        // set Z flags, Z result
D
duke 已提交
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039

#if defined(COMPILER2) && !defined(_LP64)
    __ ld_ptr(SP,(frame::register_save_words+0)*wordSize,L0);
    __ ld_ptr(SP,(frame::register_save_words+1)*wordSize,L1);
    __ ld_ptr(SP,(frame::register_save_words+2)*wordSize,L2);
    __ ld_ptr(SP,(frame::register_save_words+3)*wordSize,L3);
    __ retl();                  // Result in Rret is zero; flags set to Z
    __ delayed()->add(SP,4*wordSize,SP);
#else
    __ ret();                   // Result in Rret is zero; flags set to Z
    __ delayed()->restore();
#endif

    __ BIND(miss);
    __ addcc(G0,1,Rret);        // set NZ flags, NZ result

#if defined(COMPILER2) && !defined(_LP64)
    __ ld_ptr(SP,(frame::register_save_words+0)*wordSize,L0);
    __ ld_ptr(SP,(frame::register_save_words+1)*wordSize,L1);
    __ ld_ptr(SP,(frame::register_save_words+2)*wordSize,L2);
    __ ld_ptr(SP,(frame::register_save_words+3)*wordSize,L3);
    __ retl();                  // Result in Rret is != 0; flags set to NZ
    __ delayed()->add(SP,4*wordSize,SP);
#else
    __ ret();                   // Result in Rret is != 0; flags set to NZ
    __ delayed()->restore();
#endif

    return start;
  }


  // Called from MacroAssembler::verify_oop
  //
  address generate_verify_oop_subroutine() {
    StubCodeMark mark(this, "StubRoutines", "verify_oop_stub");

    address start = __ pc();

    __ verify_oop_subroutine();

    return start;
  }

  static address disjoint_byte_copy_entry;
  static address disjoint_short_copy_entry;
  static address disjoint_int_copy_entry;
  static address disjoint_long_copy_entry;
  static address disjoint_oop_copy_entry;

  static address byte_copy_entry;
  static address short_copy_entry;
  static address int_copy_entry;
  static address long_copy_entry;
  static address oop_copy_entry;

  static address checkcast_copy_entry;

  //
  // Verify that a register contains clean 32-bits positive value
  // (high 32-bits are 0) so it could be used in 64-bits shifts (sllx, srax).
  //
  //  Input:
  //    Rint  -  32-bits value
  //    Rtmp  -  scratch
  //
  void assert_clean_int(Register Rint, Register Rtmp) {
#if defined(ASSERT) && defined(_LP64)
    __ signx(Rint, Rtmp);
    __ cmp(Rint, Rtmp);
    __ breakpoint_trap(Assembler::notEqual, Assembler::xcc);
#endif
  }

  //
  //  Generate overlap test for array copy stubs
  //
  //  Input:
  //    O0    -  array1
  //    O1    -  array2
  //    O2    -  element count
  //
  //  Kills temps:  O3, O4
  //
  void array_overlap_test(address no_overlap_target, int log2_elem_size) {
    assert(no_overlap_target != NULL, "must be generated");
    array_overlap_test(no_overlap_target, NULL, log2_elem_size);
  }
  void array_overlap_test(Label& L_no_overlap, int log2_elem_size) {
    array_overlap_test(NULL, &L_no_overlap, log2_elem_size);
  }
  void array_overlap_test(address no_overlap_target, Label* NOLp, int log2_elem_size) {
    const Register from       = O0;
    const Register to         = O1;
    const Register count      = O2;
    const Register to_from    = O3; // to - from
    const Register byte_count = O4; // count << log2_elem_size

      __ subcc(to, from, to_from);
      __ sll_ptr(count, log2_elem_size, byte_count);
      if (NOLp == NULL)
        __ brx(Assembler::lessEqualUnsigned, false, Assembler::pt, no_overlap_target);
      else
        __ brx(Assembler::lessEqualUnsigned, false, Assembler::pt, (*NOLp));
      __ delayed()->cmp(to_from, byte_count);
      if (NOLp == NULL)
        __ brx(Assembler::greaterEqual, false, Assembler::pt, no_overlap_target);
      else
        __ brx(Assembler::greaterEqual, false, Assembler::pt, (*NOLp));
      __ delayed()->nop();
  }

  //
  //  Generate pre-write barrier for array.
  //
  //  Input:
  //     addr     - register containing starting address
  //     count    - register containing element count
  //     tmp      - scratch register
  //
  //  The input registers are overwritten.
  //
  void gen_write_ref_array_pre_barrier(Register addr, Register count) {
    BarrierSet* bs = Universe::heap()->barrier_set();
    if (bs->has_write_ref_pre_barrier()) {
      assert(bs->has_write_ref_array_pre_opt(),
             "Else unsupported barrier set.");

      __ save_frame(0);
      // Save the necessary global regs... will be used after.
1040 1041 1042 1043 1044 1045 1046
      if (addr->is_global()) {
        __ mov(addr, L0);
      }
      if (count->is_global()) {
        __ mov(count, L1);
      }
      __ mov(addr->after_save(), O0);
D
duke 已提交
1047 1048
      // Get the count into O1
      __ call(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre));
1049 1050 1051 1052 1053 1054 1055
      __ delayed()->mov(count->after_save(), O1);
      if (addr->is_global()) {
        __ mov(L0, addr);
      }
      if (count->is_global()) {
        __ mov(L1, count);
      }
D
duke 已提交
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
      __ restore();
    }
  }
  //
  //  Generate post-write barrier for array.
  //
  //  Input:
  //     addr     - register containing starting address
  //     count    - register containing element count
  //     tmp      - scratch register
  //
  //  The input registers are overwritten.
  //
  void gen_write_ref_array_post_barrier(Register addr, Register count,
                                   Register tmp) {
    BarrierSet* bs = Universe::heap()->barrier_set();

    switch (bs->kind()) {
      case BarrierSet::G1SATBCT:
      case BarrierSet::G1SATBCTLogging:
        {
          // Get some new fresh output registers.
          __ save_frame(0);
1079
          __ mov(addr->after_save(), O0);
D
duke 已提交
1080
          __ call(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post));
1081
          __ delayed()->mov(count->after_save(), O1);
D
duke 已提交
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
          __ restore();
        }
        break;
      case BarrierSet::CardTableModRef:
      case BarrierSet::CardTableExtension:
        {
          CardTableModRefBS* ct = (CardTableModRefBS*)bs;
          assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
          assert_different_registers(addr, count, tmp);

          Label L_loop;

1094 1095
          __ sll_ptr(count, LogBytesPerHeapOop, count);
          __ sub(count, BytesPerHeapOop, count);
D
duke 已提交
1096 1097 1098 1099 1100
          __ add(count, addr, count);
          // Use two shifts to clear out those low order two bits! (Cannot opt. into 1.)
          __ srl_ptr(addr, CardTableModRefBS::card_shift, addr);
          __ srl_ptr(count, CardTableModRefBS::card_shift, count);
          __ sub(count, addr, count);
1101 1102
          AddressLiteral rs(ct->byte_map_base);
          __ set(rs, tmp);
D
duke 已提交
1103
        __ BIND(L_loop);
1104
          __ stb(G0, tmp, addr);
D
duke 已提交
1105 1106 1107
          __ subcc(count, 1, count);
          __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
          __ delayed()->add(addr, 1, addr);
1108
        }
D
duke 已提交
1109 1110 1111
        break;
      case BarrierSet::ModRef:
        break;
1112
      default:
D
duke 已提交
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
        ShouldNotReachHere();
    }
  }


  // Copy big chunks forward with shift
  //
  // Inputs:
  //   from      - source arrays
  //   to        - destination array aligned to 8-bytes
  //   count     - elements count to copy >= the count equivalent to 16 bytes
  //   count_dec - elements count's decrement equivalent to 16 bytes
  //   L_copy_bytes - copy exit label
  //
  void copy_16_bytes_forward_with_shift(Register from, Register to,
                     Register count, int count_dec, Label& L_copy_bytes) {
    Label L_loop, L_aligned_copy, L_copy_last_bytes;

    // if both arrays have the same alignment mod 8, do 8 bytes aligned copy
      __ andcc(from, 7, G1); // misaligned bytes
      __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
      __ delayed()->nop();

    const Register left_shift  = G1; // left  shift bit counter
    const Register right_shift = G5; // right shift bit counter

      __ sll(G1, LogBitsPerByte, left_shift);
      __ mov(64, right_shift);
      __ sub(right_shift, left_shift, right_shift);

    //
    // Load 2 aligned 8-bytes chunks and use one from previous iteration
    // to form 2 aligned 8-bytes chunks to store.
    //
      __ deccc(count, count_dec); // Pre-decrement 'count'
      __ andn(from, 7, from);     // Align address
      __ ldx(from, 0, O3);
      __ inc(from, 8);
      __ align(16);
    __ BIND(L_loop);
      __ ldx(from, 0, O4);
      __ deccc(count, count_dec); // Can we do next iteration after this one?
      __ ldx(from, 8, G4);
      __ inc(to, 16);
      __ inc(from, 16);
      __ sllx(O3, left_shift,  O3);
      __ srlx(O4, right_shift, G3);
      __ bset(G3, O3);
      __ stx(O3, to, -16);
      __ sllx(O4, left_shift,  O4);
      __ srlx(G4, right_shift, G3);
      __ bset(G3, O4);
      __ stx(O4, to, -8);
      __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
      __ delayed()->mov(G4, O3);

      __ inccc(count, count_dec>>1 ); // + 8 bytes
      __ brx(Assembler::negative, true, Assembler::pn, L_copy_last_bytes);
      __ delayed()->inc(count, count_dec>>1); // restore 'count'

      // copy 8 bytes, part of them already loaded in O3
      __ ldx(from, 0, O4);
      __ inc(to, 8);
      __ inc(from, 8);
      __ sllx(O3, left_shift,  O3);
      __ srlx(O4, right_shift, G3);
      __ bset(O3, G3);
      __ stx(G3, to, -8);

    __ BIND(L_copy_last_bytes);
      __ srl(right_shift, LogBitsPerByte, right_shift); // misaligned bytes
      __ br(Assembler::always, false, Assembler::pt, L_copy_bytes);
      __ delayed()->sub(from, right_shift, from);       // restore address

    __ BIND(L_aligned_copy);
  }

  // Copy big chunks backward with shift
  //
  // Inputs:
  //   end_from  - source arrays end address
  //   end_to    - destination array end address aligned to 8-bytes
  //   count     - elements count to copy >= the count equivalent to 16 bytes
  //   count_dec - elements count's decrement equivalent to 16 bytes
  //   L_aligned_copy - aligned copy exit label
  //   L_copy_bytes   - copy exit label
  //
  void copy_16_bytes_backward_with_shift(Register end_from, Register end_to,
                     Register count, int count_dec,
                     Label& L_aligned_copy, Label& L_copy_bytes) {
    Label L_loop, L_copy_last_bytes;

    // if both arrays have the same alignment mod 8, do 8 bytes aligned copy
      __ andcc(end_from, 7, G1); // misaligned bytes
      __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
      __ delayed()->deccc(count, count_dec); // Pre-decrement 'count'

    const Register left_shift  = G1; // left  shift bit counter
    const Register right_shift = G5; // right shift bit counter

      __ sll(G1, LogBitsPerByte, left_shift);
      __ mov(64, right_shift);
      __ sub(right_shift, left_shift, right_shift);

    //
    // Load 2 aligned 8-bytes chunks and use one from previous iteration
    // to form 2 aligned 8-bytes chunks to store.
    //
      __ andn(end_from, 7, end_from);     // Align address
      __ ldx(end_from, 0, O3);
      __ align(16);
    __ BIND(L_loop);
      __ ldx(end_from, -8, O4);
      __ deccc(count, count_dec); // Can we do next iteration after this one?
      __ ldx(end_from, -16, G4);
      __ dec(end_to, 16);
      __ dec(end_from, 16);
      __ srlx(O3, right_shift, O3);
      __ sllx(O4, left_shift,  G3);
      __ bset(G3, O3);
      __ stx(O3, end_to, 8);
      __ srlx(O4, right_shift, O4);
      __ sllx(G4, left_shift,  G3);
      __ bset(G3, O4);
      __ stx(O4, end_to, 0);
      __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
      __ delayed()->mov(G4, O3);

      __ inccc(count, count_dec>>1 ); // + 8 bytes
      __ brx(Assembler::negative, true, Assembler::pn, L_copy_last_bytes);
      __ delayed()->inc(count, count_dec>>1); // restore 'count'

      // copy 8 bytes, part of them already loaded in O3
      __ ldx(end_from, -8, O4);
      __ dec(end_to, 8);
      __ dec(end_from, 8);
      __ srlx(O3, right_shift, O3);
      __ sllx(O4, left_shift,  G3);
      __ bset(O3, G3);
      __ stx(G3, end_to, 0);

    __ BIND(L_copy_last_bytes);
      __ srl(left_shift, LogBitsPerByte, left_shift);    // misaligned bytes
      __ br(Assembler::always, false, Assembler::pt, L_copy_bytes);
      __ delayed()->add(end_from, left_shift, end_from); // restore address
  }

  //
  //  Generate stub for disjoint byte copy.  If "aligned" is true, the
  //  "from" and "to" addresses are assumed to be heapword aligned.
  //
  // Arguments for generated stub:
  //      from:  O0
  //      to:    O1
  //      count: O2 treated as signed
  //
  address generate_disjoint_byte_copy(bool aligned, const char * name) {
    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", name);
    address start = __ pc();

    Label L_skip_alignment, L_align;
    Label L_copy_byte, L_copy_byte_loop, L_exit;

    const Register from      = O0;   // source array address
    const Register to        = O1;   // destination array address
    const Register count     = O2;   // elements count
    const Register offset    = O5;   // offset from start of arrays
    // O3, O4, G3, G4 are used as temp registers

    assert_clean_int(count, O3);     // Make sure 'count' is clean int.

    if (!aligned)  disjoint_byte_copy_entry = __ pc();
    // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
    if (!aligned)  BLOCK_COMMENT("Entry:");

    // for short arrays, just do single element copy
    __ cmp(count, 23); // 16 + 7
    __ brx(Assembler::less, false, Assembler::pn, L_copy_byte);
    __ delayed()->mov(G0, offset);

    if (aligned) {
      // 'aligned' == true when it is known statically during compilation
      // of this arraycopy call site that both 'from' and 'to' addresses
      // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
      //
      // Aligned arrays have 4 bytes alignment in 32-bits VM
      // and 8 bytes - in 64-bits VM. So we do it only for 32-bits VM
      //
#ifndef _LP64
      // copy a 4-bytes word if necessary to align 'to' to 8 bytes
      __ andcc(to, 7, G0);
      __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment);
      __ delayed()->ld(from, 0, O3);
      __ inc(from, 4);
      __ inc(to, 4);
      __ dec(count, 4);
      __ st(O3, to, -4);
    __ BIND(L_skip_alignment);
#endif
    } else {
      // copy bytes to align 'to' on 8 byte boundary
      __ andcc(to, 7, G1); // misaligned bytes
      __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
      __ delayed()->neg(G1);
      __ inc(G1, 8);       // bytes need to copy to next 8-bytes alignment
      __ sub(count, G1, count);
    __ BIND(L_align);
      __ ldub(from, 0, O3);
      __ deccc(G1);
      __ inc(from);
      __ stb(O3, to, 0);
      __ br(Assembler::notZero, false, Assembler::pt, L_align);
      __ delayed()->inc(to);
    __ BIND(L_skip_alignment);
    }
#ifdef _LP64
    if (!aligned)
#endif
    {
      // Copy with shift 16 bytes per iteration if arrays do not have
      // the same alignment mod 8, otherwise fall through to the next
      // code for aligned copy.
      // The compare above (count >= 23) guarantes 'count' >= 16 bytes.
      // Also jump over aligned copy after the copy with shift completed.

      copy_16_bytes_forward_with_shift(from, to, count, 16, L_copy_byte);
    }

    // Both array are 8 bytes aligned, copy 16 bytes at a time
      __ and3(count, 7, G4); // Save count
      __ srl(count, 3, count);
     generate_disjoint_long_copy_core(aligned);
      __ mov(G4, count);     // Restore count

    // copy tailing bytes
    __ BIND(L_copy_byte);
      __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
      __ delayed()->nop();
      __ align(16);
    __ BIND(L_copy_byte_loop);
      __ ldub(from, offset, O3);
      __ deccc(count);
      __ stb(O3, to, offset);
      __ brx(Assembler::notZero, false, Assembler::pt, L_copy_byte_loop);
      __ delayed()->inc(offset);

    __ BIND(L_exit);
      // O3, O4 are used as temp registers
      inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr, O3, O4);
      __ retl();
      __ delayed()->mov(G0, O0); // return 0
    return start;
  }

  //
  //  Generate stub for conjoint byte copy.  If "aligned" is true, the
  //  "from" and "to" addresses are assumed to be heapword aligned.
  //
  // Arguments for generated stub:
  //      from:  O0
  //      to:    O1
  //      count: O2 treated as signed
  //
  address generate_conjoint_byte_copy(bool aligned, const char * name) {
    // Do reverse copy.

    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", name);
    address start = __ pc();
    address nooverlap_target = aligned ?
        StubRoutines::arrayof_jbyte_disjoint_arraycopy() :
        disjoint_byte_copy_entry;

    Label L_skip_alignment, L_align, L_aligned_copy;
    Label L_copy_byte, L_copy_byte_loop, L_exit;

    const Register from      = O0;   // source array address
    const Register to        = O1;   // destination array address
    const Register count     = O2;   // elements count
    const Register end_from  = from; // source array end address
    const Register end_to    = to;   // destination array end address

    assert_clean_int(count, O3);     // Make sure 'count' is clean int.

    if (!aligned)  byte_copy_entry = __ pc();
    // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
    if (!aligned)  BLOCK_COMMENT("Entry:");

    array_overlap_test(nooverlap_target, 0);

    __ add(to, count, end_to);       // offset after last copied element

    // for short arrays, just do single element copy
    __ cmp(count, 23); // 16 + 7
    __ brx(Assembler::less, false, Assembler::pn, L_copy_byte);
    __ delayed()->add(from, count, end_from);

    {
      // Align end of arrays since they could be not aligned even
      // when arrays itself are aligned.

      // copy bytes to align 'end_to' on 8 byte boundary
      __ andcc(end_to, 7, G1); // misaligned bytes
      __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
      __ delayed()->nop();
      __ sub(count, G1, count);
    __ BIND(L_align);
      __ dec(end_from);
      __ dec(end_to);
      __ ldub(end_from, 0, O3);
      __ deccc(G1);
      __ brx(Assembler::notZero, false, Assembler::pt, L_align);
      __ delayed()->stb(O3, end_to, 0);
    __ BIND(L_skip_alignment);
    }
#ifdef _LP64
    if (aligned) {
      // Both arrays are aligned to 8-bytes in 64-bits VM.
      // The 'count' is decremented in copy_16_bytes_backward_with_shift()
      // in unaligned case.
      __ dec(count, 16);
    } else
#endif
    {
      // Copy with shift 16 bytes per iteration if arrays do not have
      // the same alignment mod 8, otherwise jump to the next
      // code for aligned copy (and substracting 16 from 'count' before jump).
      // The compare above (count >= 11) guarantes 'count' >= 16 bytes.
      // Also jump over aligned copy after the copy with shift completed.

      copy_16_bytes_backward_with_shift(end_from, end_to, count, 16,
                                        L_aligned_copy, L_copy_byte);
    }
    // copy 4 elements (16 bytes) at a time
      __ align(16);
    __ BIND(L_aligned_copy);
      __ dec(end_from, 16);
      __ ldx(end_from, 8, O3);
      __ ldx(end_from, 0, O4);
      __ dec(end_to, 16);
      __ deccc(count, 16);
      __ stx(O3, end_to, 8);
      __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
      __ delayed()->stx(O4, end_to, 0);
      __ inc(count, 16);

    // copy 1 element (2 bytes) at a time
    __ BIND(L_copy_byte);
      __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
      __ delayed()->nop();
      __ align(16);
    __ BIND(L_copy_byte_loop);
      __ dec(end_from);
      __ dec(end_to);
      __ ldub(end_from, 0, O4);
      __ deccc(count);
      __ brx(Assembler::greater, false, Assembler::pt, L_copy_byte_loop);
      __ delayed()->stb(O4, end_to, 0);

    __ BIND(L_exit);
    // O3, O4 are used as temp registers
    inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr, O3, O4);
    __ retl();
    __ delayed()->mov(G0, O0); // return 0
    return start;
  }

  //
  //  Generate stub for disjoint short copy.  If "aligned" is true, the
  //  "from" and "to" addresses are assumed to be heapword aligned.
  //
  // Arguments for generated stub:
  //      from:  O0
  //      to:    O1
  //      count: O2 treated as signed
  //
  address generate_disjoint_short_copy(bool aligned, const char * name) {
    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", name);
    address start = __ pc();

    Label L_skip_alignment, L_skip_alignment2;
    Label L_copy_2_bytes, L_copy_2_bytes_loop, L_exit;

    const Register from      = O0;   // source array address
    const Register to        = O1;   // destination array address
    const Register count     = O2;   // elements count
    const Register offset    = O5;   // offset from start of arrays
    // O3, O4, G3, G4 are used as temp registers

    assert_clean_int(count, O3);     // Make sure 'count' is clean int.

    if (!aligned)  disjoint_short_copy_entry = __ pc();
    // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
    if (!aligned)  BLOCK_COMMENT("Entry:");

    // for short arrays, just do single element copy
    __ cmp(count, 11); // 8 + 3  (22 bytes)
    __ brx(Assembler::less, false, Assembler::pn, L_copy_2_bytes);
    __ delayed()->mov(G0, offset);

    if (aligned) {
      // 'aligned' == true when it is known statically during compilation
      // of this arraycopy call site that both 'from' and 'to' addresses
      // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
      //
      // Aligned arrays have 4 bytes alignment in 32-bits VM
      // and 8 bytes - in 64-bits VM.
      //
#ifndef _LP64
      // copy a 2-elements word if necessary to align 'to' to 8 bytes
      __ andcc(to, 7, G0);
      __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
      __ delayed()->ld(from, 0, O3);
      __ inc(from, 4);
      __ inc(to, 4);
      __ dec(count, 2);
      __ st(O3, to, -4);
    __ BIND(L_skip_alignment);
#endif
    } else {
      // copy 1 element if necessary to align 'to' on an 4 bytes
      __ andcc(to, 3, G0);
      __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
      __ delayed()->lduh(from, 0, O3);
      __ inc(from, 2);
      __ inc(to, 2);
      __ dec(count);
      __ sth(O3, to, -2);
    __ BIND(L_skip_alignment);

      // copy 2 elements to align 'to' on an 8 byte boundary
      __ andcc(to, 7, G0);
      __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment2);
      __ delayed()->lduh(from, 0, O3);
      __ dec(count, 2);
      __ lduh(from, 2, O4);
      __ inc(from, 4);
      __ inc(to, 4);
      __ sth(O3, to, -4);
      __ sth(O4, to, -2);
    __ BIND(L_skip_alignment2);
    }
#ifdef _LP64
    if (!aligned)
#endif
    {
      // Copy with shift 16 bytes per iteration if arrays do not have
      // the same alignment mod 8, otherwise fall through to the next
      // code for aligned copy.
      // The compare above (count >= 11) guarantes 'count' >= 16 bytes.
      // Also jump over aligned copy after the copy with shift completed.

      copy_16_bytes_forward_with_shift(from, to, count, 8, L_copy_2_bytes);
    }

    // Both array are 8 bytes aligned, copy 16 bytes at a time
      __ and3(count, 3, G4); // Save
      __ srl(count, 2, count);
     generate_disjoint_long_copy_core(aligned);
      __ mov(G4, count); // restore

    // copy 1 element at a time
    __ BIND(L_copy_2_bytes);
      __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
      __ delayed()->nop();
      __ align(16);
    __ BIND(L_copy_2_bytes_loop);
      __ lduh(from, offset, O3);
      __ deccc(count);
      __ sth(O3, to, offset);
      __ brx(Assembler::notZero, false, Assembler::pt, L_copy_2_bytes_loop);
      __ delayed()->inc(offset, 2);

    __ BIND(L_exit);
      // O3, O4 are used as temp registers
      inc_counter_np(SharedRuntime::_jshort_array_copy_ctr, O3, O4);
      __ retl();
      __ delayed()->mov(G0, O0); // return 0
    return start;
  }

  //
  //  Generate stub for conjoint short copy.  If "aligned" is true, the
  //  "from" and "to" addresses are assumed to be heapword aligned.
  //
  // Arguments for generated stub:
  //      from:  O0
  //      to:    O1
  //      count: O2 treated as signed
  //
  address generate_conjoint_short_copy(bool aligned, const char * name) {
    // Do reverse copy.

    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", name);
    address start = __ pc();
    address nooverlap_target = aligned ?
        StubRoutines::arrayof_jshort_disjoint_arraycopy() :
        disjoint_short_copy_entry;

    Label L_skip_alignment, L_skip_alignment2, L_aligned_copy;
    Label L_copy_2_bytes, L_copy_2_bytes_loop, L_exit;

    const Register from      = O0;   // source array address
    const Register to        = O1;   // destination array address
    const Register count     = O2;   // elements count
    const Register end_from  = from; // source array end address
    const Register end_to    = to;   // destination array end address

    const Register byte_count = O3;  // bytes count to copy

    assert_clean_int(count, O3);     // Make sure 'count' is clean int.

    if (!aligned)  short_copy_entry = __ pc();
    // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
    if (!aligned)  BLOCK_COMMENT("Entry:");

    array_overlap_test(nooverlap_target, 1);

    __ sllx(count, LogBytesPerShort, byte_count);
    __ add(to, byte_count, end_to);  // offset after last copied element

    // for short arrays, just do single element copy
    __ cmp(count, 11); // 8 + 3  (22 bytes)
    __ brx(Assembler::less, false, Assembler::pn, L_copy_2_bytes);
    __ delayed()->add(from, byte_count, end_from);

    {
      // Align end of arrays since they could be not aligned even
      // when arrays itself are aligned.

      // copy 1 element if necessary to align 'end_to' on an 4 bytes
      __ andcc(end_to, 3, G0);
      __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
      __ delayed()->lduh(end_from, -2, O3);
      __ dec(end_from, 2);
      __ dec(end_to, 2);
      __ dec(count);
      __ sth(O3, end_to, 0);
    __ BIND(L_skip_alignment);

      // copy 2 elements to align 'end_to' on an 8 byte boundary
      __ andcc(end_to, 7, G0);
      __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment2);
      __ delayed()->lduh(end_from, -2, O3);
      __ dec(count, 2);
      __ lduh(end_from, -4, O4);
      __ dec(end_from, 4);
      __ dec(end_to, 4);
      __ sth(O3, end_to, 2);
      __ sth(O4, end_to, 0);
    __ BIND(L_skip_alignment2);
    }
#ifdef _LP64
    if (aligned) {
      // Both arrays are aligned to 8-bytes in 64-bits VM.
      // The 'count' is decremented in copy_16_bytes_backward_with_shift()
      // in unaligned case.
      __ dec(count, 8);
    } else
#endif
    {
      // Copy with shift 16 bytes per iteration if arrays do not have
      // the same alignment mod 8, otherwise jump to the next
      // code for aligned copy (and substracting 8 from 'count' before jump).
      // The compare above (count >= 11) guarantes 'count' >= 16 bytes.
      // Also jump over aligned copy after the copy with shift completed.

      copy_16_bytes_backward_with_shift(end_from, end_to, count, 8,
                                        L_aligned_copy, L_copy_2_bytes);
    }
    // copy 4 elements (16 bytes) at a time
      __ align(16);
    __ BIND(L_aligned_copy);
      __ dec(end_from, 16);
      __ ldx(end_from, 8, O3);
      __ ldx(end_from, 0, O4);
      __ dec(end_to, 16);
      __ deccc(count, 8);
      __ stx(O3, end_to, 8);
      __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
      __ delayed()->stx(O4, end_to, 0);
      __ inc(count, 8);

    // copy 1 element (2 bytes) at a time
    __ BIND(L_copy_2_bytes);
      __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
      __ delayed()->nop();
    __ BIND(L_copy_2_bytes_loop);
      __ dec(end_from, 2);
      __ dec(end_to, 2);
      __ lduh(end_from, 0, O4);
      __ deccc(count);
      __ brx(Assembler::greater, false, Assembler::pt, L_copy_2_bytes_loop);
      __ delayed()->sth(O4, end_to, 0);

    __ BIND(L_exit);
    // O3, O4 are used as temp registers
    inc_counter_np(SharedRuntime::_jshort_array_copy_ctr, O3, O4);
    __ retl();
    __ delayed()->mov(G0, O0); // return 0
    return start;
  }

  //
  //  Generate core code for disjoint int copy (and oop copy on 32-bit).
  //  If "aligned" is true, the "from" and "to" addresses are assumed
  //  to be heapword aligned.
  //
  // Arguments:
  //      from:  O0
  //      to:    O1
  //      count: O2 treated as signed
  //
  void generate_disjoint_int_copy_core(bool aligned) {

    Label L_skip_alignment, L_aligned_copy;
    Label L_copy_16_bytes,  L_copy_4_bytes, L_copy_4_bytes_loop, L_exit;

    const Register from      = O0;   // source array address
    const Register to        = O1;   // destination array address
    const Register count     = O2;   // elements count
    const Register offset    = O5;   // offset from start of arrays
    // O3, O4, G3, G4 are used as temp registers

    // 'aligned' == true when it is known statically during compilation
    // of this arraycopy call site that both 'from' and 'to' addresses
    // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
    //
    // Aligned arrays have 4 bytes alignment in 32-bits VM
    // and 8 bytes - in 64-bits VM.
    //
#ifdef _LP64
    if (!aligned)
#endif
    {
      // The next check could be put under 'ifndef' since the code in
      // generate_disjoint_long_copy_core() has own checks and set 'offset'.

      // for short arrays, just do single element copy
      __ cmp(count, 5); // 4 + 1 (20 bytes)
      __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_4_bytes);
      __ delayed()->mov(G0, offset);

      // copy 1 element to align 'to' on an 8 byte boundary
      __ andcc(to, 7, G0);
      __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
      __ delayed()->ld(from, 0, O3);
      __ inc(from, 4);
      __ inc(to, 4);
      __ dec(count);
      __ st(O3, to, -4);
    __ BIND(L_skip_alignment);

    // if arrays have same alignment mod 8, do 4 elements copy
      __ andcc(from, 7, G0);
      __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
      __ delayed()->ld(from, 0, O3);

    //
    // Load 2 aligned 8-bytes chunks and use one from previous iteration
    // to form 2 aligned 8-bytes chunks to store.
    //
    // copy_16_bytes_forward_with_shift() is not used here since this
    // code is more optimal.

    // copy with shift 4 elements (16 bytes) at a time
      __ dec(count, 4);   // The cmp at the beginning guaranty count >= 4

      __ align(16);
    __ BIND(L_copy_16_bytes);
      __ ldx(from, 4, O4);
      __ deccc(count, 4); // Can we do next iteration after this one?
      __ ldx(from, 12, G4);
      __ inc(to, 16);
      __ inc(from, 16);
      __ sllx(O3, 32, O3);
      __ srlx(O4, 32, G3);
      __ bset(G3, O3);
      __ stx(O3, to, -16);
      __ sllx(O4, 32, O4);
      __ srlx(G4, 32, G3);
      __ bset(G3, O4);
      __ stx(O4, to, -8);
      __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes);
      __ delayed()->mov(G4, O3);

      __ br(Assembler::always, false, Assembler::pt, L_copy_4_bytes);
      __ delayed()->inc(count, 4); // restore 'count'

    __ BIND(L_aligned_copy);
    }
    // copy 4 elements (16 bytes) at a time
      __ and3(count, 1, G4); // Save
      __ srl(count, 1, count);
     generate_disjoint_long_copy_core(aligned);
      __ mov(G4, count);     // Restore

    // copy 1 element at a time
    __ BIND(L_copy_4_bytes);
      __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
      __ delayed()->nop();
    __ BIND(L_copy_4_bytes_loop);
      __ ld(from, offset, O3);
      __ deccc(count);
      __ st(O3, to, offset);
      __ brx(Assembler::notZero, false, Assembler::pt, L_copy_4_bytes_loop);
      __ delayed()->inc(offset, 4);
    __ BIND(L_exit);
  }

  //
  //  Generate stub for disjoint int copy.  If "aligned" is true, the
  //  "from" and "to" addresses are assumed to be heapword aligned.
  //
  // Arguments for generated stub:
  //      from:  O0
  //      to:    O1
  //      count: O2 treated as signed
  //
  address generate_disjoint_int_copy(bool aligned, const char * name) {
    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", name);
    address start = __ pc();

    const Register count = O2;
    assert_clean_int(count, O3);     // Make sure 'count' is clean int.

    if (!aligned)  disjoint_int_copy_entry = __ pc();
    // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
    if (!aligned)  BLOCK_COMMENT("Entry:");

    generate_disjoint_int_copy_core(aligned);

    // O3, O4 are used as temp registers
    inc_counter_np(SharedRuntime::_jint_array_copy_ctr, O3, O4);
    __ retl();
    __ delayed()->mov(G0, O0); // return 0
    return start;
  }

  //
  //  Generate core code for conjoint int copy (and oop copy on 32-bit).
  //  If "aligned" is true, the "from" and "to" addresses are assumed
  //  to be heapword aligned.
  //
  // Arguments:
  //      from:  O0
  //      to:    O1
  //      count: O2 treated as signed
  //
  void generate_conjoint_int_copy_core(bool aligned) {
    // Do reverse copy.

    Label L_skip_alignment, L_aligned_copy;
    Label L_copy_16_bytes,  L_copy_4_bytes, L_copy_4_bytes_loop, L_exit;

    const Register from      = O0;   // source array address
    const Register to        = O1;   // destination array address
    const Register count     = O2;   // elements count
    const Register end_from  = from; // source array end address
    const Register end_to    = to;   // destination array end address
    // O3, O4, O5, G3 are used as temp registers

    const Register byte_count = O3;  // bytes count to copy

      __ sllx(count, LogBytesPerInt, byte_count);
      __ add(to, byte_count, end_to); // offset after last copied element

      __ cmp(count, 5); // for short arrays, just do single element copy
      __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_4_bytes);
      __ delayed()->add(from, byte_count, end_from);

    // copy 1 element to align 'to' on an 8 byte boundary
      __ andcc(end_to, 7, G0);
      __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
      __ delayed()->nop();
      __ dec(count);
      __ dec(end_from, 4);
      __ dec(end_to,   4);
      __ ld(end_from, 0, O4);
      __ st(O4, end_to, 0);
    __ BIND(L_skip_alignment);

    // Check if 'end_from' and 'end_to' has the same alignment.
      __ andcc(end_from, 7, G0);
      __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
      __ delayed()->dec(count, 4); // The cmp at the start guaranty cnt >= 4

    // copy with shift 4 elements (16 bytes) at a time
    //
    // Load 2 aligned 8-bytes chunks and use one from previous iteration
    // to form 2 aligned 8-bytes chunks to store.
    //
      __ ldx(end_from, -4, O3);
      __ align(16);
    __ BIND(L_copy_16_bytes);
      __ ldx(end_from, -12, O4);
      __ deccc(count, 4);
      __ ldx(end_from, -20, O5);
      __ dec(end_to, 16);
      __ dec(end_from, 16);
      __ srlx(O3, 32, O3);
      __ sllx(O4, 32, G3);
      __ bset(G3, O3);
      __ stx(O3, end_to, 8);
      __ srlx(O4, 32, O4);
      __ sllx(O5, 32, G3);
      __ bset(O4, G3);
      __ stx(G3, end_to, 0);
      __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes);
      __ delayed()->mov(O5, O3);

      __ br(Assembler::always, false, Assembler::pt, L_copy_4_bytes);
      __ delayed()->inc(count, 4);

    // copy 4 elements (16 bytes) at a time
      __ align(16);
    __ BIND(L_aligned_copy);
      __ dec(end_from, 16);
      __ ldx(end_from, 8, O3);
      __ ldx(end_from, 0, O4);
      __ dec(end_to, 16);
      __ deccc(count, 4);
      __ stx(O3, end_to, 8);
      __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
      __ delayed()->stx(O4, end_to, 0);
      __ inc(count, 4);

    // copy 1 element (4 bytes) at a time
    __ BIND(L_copy_4_bytes);
      __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
      __ delayed()->nop();
    __ BIND(L_copy_4_bytes_loop);
      __ dec(end_from, 4);
      __ dec(end_to, 4);
      __ ld(end_from, 0, O4);
      __ deccc(count);
      __ brx(Assembler::greater, false, Assembler::pt, L_copy_4_bytes_loop);
      __ delayed()->st(O4, end_to, 0);
    __ BIND(L_exit);
  }

  //
  //  Generate stub for conjoint int copy.  If "aligned" is true, the
  //  "from" and "to" addresses are assumed to be heapword aligned.
  //
  // Arguments for generated stub:
  //      from:  O0
  //      to:    O1
  //      count: O2 treated as signed
  //
  address generate_conjoint_int_copy(bool aligned, const char * name) {
    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", name);
    address start = __ pc();

    address nooverlap_target = aligned ?
        StubRoutines::arrayof_jint_disjoint_arraycopy() :
        disjoint_int_copy_entry;

    assert_clean_int(O2, O3);     // Make sure 'count' is clean int.

    if (!aligned)  int_copy_entry = __ pc();
    // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
    if (!aligned)  BLOCK_COMMENT("Entry:");

    array_overlap_test(nooverlap_target, 2);

    generate_conjoint_int_copy_core(aligned);

    // O3, O4 are used as temp registers
    inc_counter_np(SharedRuntime::_jint_array_copy_ctr, O3, O4);
    __ retl();
    __ delayed()->mov(G0, O0); // return 0
    return start;
  }

  //
  //  Generate core code for disjoint long copy (and oop copy on 64-bit).
  //  "aligned" is ignored, because we must make the stronger
  //  assumption that both addresses are always 64-bit aligned.
  //
  // Arguments:
  //      from:  O0
  //      to:    O1
  //      count: O2 treated as signed
  //
  void generate_disjoint_long_copy_core(bool aligned) {
    Label L_copy_8_bytes, L_copy_16_bytes, L_exit;
    const Register from    = O0;  // source array address
    const Register to      = O1;  // destination array address
    const Register count   = O2;  // elements count
    const Register offset0 = O4;  // element offset
    const Register offset8 = O5;  // next element offset

      __ deccc(count, 2);
      __ mov(G0, offset0);   // offset from start of arrays (0)
      __ brx(Assembler::negative, false, Assembler::pn, L_copy_8_bytes );
      __ delayed()->add(offset0, 8, offset8);
      __ align(16);
    __ BIND(L_copy_16_bytes);
      __ ldx(from, offset0, O3);
      __ ldx(from, offset8, G3);
      __ deccc(count, 2);
      __ stx(O3, to, offset0);
      __ inc(offset0, 16);
      __ stx(G3, to, offset8);
      __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes);
      __ delayed()->inc(offset8, 16);

    __ BIND(L_copy_8_bytes);
      __ inccc(count, 2);
      __ brx(Assembler::zero, true, Assembler::pn, L_exit );
      __ delayed()->mov(offset0, offset8); // Set O5 used by other stubs
      __ ldx(from, offset0, O3);
      __ stx(O3, to, offset0);
    __ BIND(L_exit);
  }

  //
  //  Generate stub for disjoint long copy.
  //  "aligned" is ignored, because we must make the stronger
  //  assumption that both addresses are always 64-bit aligned.
  //
  // Arguments for generated stub:
  //      from:  O0
  //      to:    O1
  //      count: O2 treated as signed
  //
  address generate_disjoint_long_copy(bool aligned, const char * name) {
    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", name);
    address start = __ pc();

    assert_clean_int(O2, O3);     // Make sure 'count' is clean int.

    if (!aligned)  disjoint_long_copy_entry = __ pc();
    // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
    if (!aligned)  BLOCK_COMMENT("Entry:");

    generate_disjoint_long_copy_core(aligned);

    // O3, O4 are used as temp registers
    inc_counter_np(SharedRuntime::_jlong_array_copy_ctr, O3, O4);
    __ retl();
    __ delayed()->mov(G0, O0); // return 0
    return start;
  }

  //
  //  Generate core code for conjoint long copy (and oop copy on 64-bit).
  //  "aligned" is ignored, because we must make the stronger
  //  assumption that both addresses are always 64-bit aligned.
  //
  // Arguments:
  //      from:  O0
  //      to:    O1
  //      count: O2 treated as signed
  //
  void generate_conjoint_long_copy_core(bool aligned) {
    // Do reverse copy.
    Label L_copy_8_bytes, L_copy_16_bytes, L_exit;
    const Register from    = O0;  // source array address
    const Register to      = O1;  // destination array address
    const Register count   = O2;  // elements count
    const Register offset8 = O4;  // element offset
    const Register offset0 = O5;  // previous element offset

      __ subcc(count, 1, count);
      __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_8_bytes );
      __ delayed()->sllx(count, LogBytesPerLong, offset8);
      __ sub(offset8, 8, offset0);
      __ align(16);
    __ BIND(L_copy_16_bytes);
      __ ldx(from, offset8, O2);
      __ ldx(from, offset0, O3);
      __ stx(O2, to, offset8);
      __ deccc(offset8, 16);      // use offset8 as counter
      __ stx(O3, to, offset0);
      __ brx(Assembler::greater, false, Assembler::pt, L_copy_16_bytes);
      __ delayed()->dec(offset0, 16);

    __ BIND(L_copy_8_bytes);
      __ brx(Assembler::negative, false, Assembler::pn, L_exit );
      __ delayed()->nop();
      __ ldx(from, 0, O3);
      __ stx(O3, to, 0);
    __ BIND(L_exit);
  }

  //  Generate stub for conjoint long copy.
  //  "aligned" is ignored, because we must make the stronger
  //  assumption that both addresses are always 64-bit aligned.
  //
  // Arguments for generated stub:
  //      from:  O0
  //      to:    O1
  //      count: O2 treated as signed
  //
  address generate_conjoint_long_copy(bool aligned, const char * name) {
    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", name);
    address start = __ pc();

    assert(!aligned, "usage");
    address nooverlap_target = disjoint_long_copy_entry;

    assert_clean_int(O2, O3);     // Make sure 'count' is clean int.

    if (!aligned)  long_copy_entry = __ pc();
    // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
    if (!aligned)  BLOCK_COMMENT("Entry:");

    array_overlap_test(nooverlap_target, 3);

    generate_conjoint_long_copy_core(aligned);

    // O3, O4 are used as temp registers
    inc_counter_np(SharedRuntime::_jlong_array_copy_ctr, O3, O4);
    __ retl();
    __ delayed()->mov(G0, O0); // return 0
    return start;
  }

  //  Generate stub for disjoint oop copy.  If "aligned" is true, the
  //  "from" and "to" addresses are assumed to be heapword aligned.
  //
  // Arguments for generated stub:
  //      from:  O0
  //      to:    O1
  //      count: O2 treated as signed
  //
  address generate_disjoint_oop_copy(bool aligned, const char * name) {

    const Register from  = O0;  // source array address
    const Register to    = O1;  // destination array address
    const Register count = O2;  // elements count

    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", name);
    address start = __ pc();

    assert_clean_int(count, O3);     // Make sure 'count' is clean int.

    if (!aligned)  disjoint_oop_copy_entry = __ pc();
    // caller can pass a 64-bit byte count here
    if (!aligned)  BLOCK_COMMENT("Entry:");

    // save arguments for barrier generation
    __ mov(to, G1);
    __ mov(count, G5);
    gen_write_ref_array_pre_barrier(G1, G5);
  #ifdef _LP64
2169 2170 2171 2172 2173 2174
    assert_clean_int(count, O3);     // Make sure 'count' is clean int.
    if (UseCompressedOops) {
      generate_disjoint_int_copy_core(aligned);
    } else {
      generate_disjoint_long_copy_core(aligned);
    }
D
duke 已提交
2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
  #else
    generate_disjoint_int_copy_core(aligned);
  #endif
    // O0 is used as temp register
    gen_write_ref_array_post_barrier(G1, G5, O0);

    // O3, O4 are used as temp registers
    inc_counter_np(SharedRuntime::_oop_array_copy_ctr, O3, O4);
    __ retl();
    __ delayed()->mov(G0, O0); // return 0
    return start;
  }

  //  Generate stub for conjoint oop copy.  If "aligned" is true, the
  //  "from" and "to" addresses are assumed to be heapword aligned.
  //
  // Arguments for generated stub:
  //      from:  O0
  //      to:    O1
  //      count: O2 treated as signed
  //
  address generate_conjoint_oop_copy(bool aligned, const char * name) {

    const Register from  = O0;  // source array address
    const Register to    = O1;  // destination array address
    const Register count = O2;  // elements count

    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", name);
    address start = __ pc();

    assert_clean_int(count, O3);     // Make sure 'count' is clean int.

    if (!aligned)  oop_copy_entry = __ pc();
    // caller can pass a 64-bit byte count here
    if (!aligned)  BLOCK_COMMENT("Entry:");

    // save arguments for barrier generation
    __ mov(to, G1);
    __ mov(count, G5);

    gen_write_ref_array_pre_barrier(G1, G5);

    address nooverlap_target = aligned ?
        StubRoutines::arrayof_oop_disjoint_arraycopy() :
        disjoint_oop_copy_entry;

2222
    array_overlap_test(nooverlap_target, LogBytesPerHeapOop);
D
duke 已提交
2223 2224

  #ifdef _LP64
2225 2226 2227 2228 2229
    if (UseCompressedOops) {
      generate_conjoint_int_copy_core(aligned);
    } else {
      generate_conjoint_long_copy_core(aligned);
    }
D
duke 已提交
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
  #else
    generate_conjoint_int_copy_core(aligned);
  #endif

    // O0 is used as temp register
    gen_write_ref_array_post_barrier(G1, G5, O0);

    // O3, O4 are used as temp registers
    inc_counter_np(SharedRuntime::_oop_array_copy_ctr, O3, O4);
    __ retl();
    __ delayed()->mov(G0, O0); // return 0
    return start;
  }


  // Helper for generating a dynamic type check.
  // Smashes only the given temp registers.
  void generate_type_check(Register sub_klass,
                           Register super_check_offset,
                           Register super_klass,
                           Register temp,
2251
                           Label& L_success) {
D
duke 已提交
2252 2253 2254 2255
    assert_different_registers(sub_klass, super_check_offset, super_klass, temp);

    BLOCK_COMMENT("type_check:");

2256
    Label L_miss, L_pop_to_miss;
D
duke 已提交
2257 2258 2259

    assert_clean_int(super_check_offset, temp);

2260 2261 2262
    __ check_klass_subtype_fast_path(sub_klass, super_klass, temp, noreg,
                                     &L_success, &L_miss, NULL,
                                     super_check_offset);
D
duke 已提交
2263

2264
    BLOCK_COMMENT("type_check_slow_path:");
D
duke 已提交
2265
    __ save_frame(0);
2266 2267 2268 2269 2270 2271
    __ check_klass_subtype_slow_path(sub_klass->after_save(),
                                     super_klass->after_save(),
                                     L0, L1, L2, L4,
                                     NULL, &L_pop_to_miss);
    __ ba(false, L_success);
    __ delayed()->restore();
D
duke 已提交
2272

2273 2274
    __ bind(L_pop_to_miss);
    __ restore();
D
duke 已提交
2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308

    // Fall through on failure!
    __ BIND(L_miss);
  }


  //  Generate stub for checked oop copy.
  //
  // Arguments for generated stub:
  //      from:  O0
  //      to:    O1
  //      count: O2 treated as signed
  //      ckoff: O3 (super_check_offset)
  //      ckval: O4 (super_klass)
  //      ret:   O0 zero for success; (-1^K) where K is partial transfer count
  //
  address generate_checkcast_copy(const char* name) {

    const Register O0_from   = O0;      // source array address
    const Register O1_to     = O1;      // destination array address
    const Register O2_count  = O2;      // elements count
    const Register O3_ckoff  = O3;      // super_check_offset
    const Register O4_ckval  = O4;      // super_klass

    const Register O5_offset = O5;      // loop var, with stride wordSize
    const Register G1_remain = G1;      // loop var, with stride -1
    const Register G3_oop    = G3;      // actual oop copied
    const Register G4_klass  = G4;      // oop._klass
    const Register G5_super  = G5;      // oop._klass._primary_supers[ckval]

    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", name);
    address start = __ pc();

2309
    gen_write_ref_array_pre_barrier(O1, O2);
D
duke 已提交
2310 2311

#ifdef ASSERT
2312
    // We sometimes save a frame (see generate_type_check below).
D
duke 已提交
2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
    // If this will cause trouble, let's fail now instead of later.
    __ save_frame(0);
    __ restore();
#endif

#ifdef ASSERT
    // caller guarantees that the arrays really are different
    // otherwise, we would have to make conjoint checks
    { Label L;
      __ mov(O3, G1);           // spill: overlap test smashes O3
      __ mov(O4, G4);           // spill: overlap test smashes O4
2324
      array_overlap_test(L, LogBytesPerHeapOop);
D
duke 已提交
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
      __ stop("checkcast_copy within a single array");
      __ bind(L);
      __ mov(G1, O3);
      __ mov(G4, O4);
    }
#endif //ASSERT

    assert_clean_int(O2_count, G1);     // Make sure 'count' is clean int.

    checkcast_copy_entry = __ pc();
    // caller can pass a 64-bit byte count here (from generic stub)
    BLOCK_COMMENT("Entry:");

    Label load_element, store_element, do_card_marks, fail, done;
    __ addcc(O2_count, 0, G1_remain);   // initialize loop index, and test it
    __ brx(Assembler::notZero, false, Assembler::pt, load_element);
    __ delayed()->mov(G0, O5_offset);   // offset from start of arrays

    // Empty array:  Nothing to do.
    inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr, O3, O4);
    __ retl();
    __ delayed()->set(0, O0);           // return 0 on (trivial) success

    // ======== begin loop ========
    // (Loop is rotated; its entry is load_element.)
    // Loop variables:
    //   (O5 = 0; ; O5 += wordSize) --- offset from src, dest arrays
    //   (O2 = len; O2 != 0; O2--) --- number of oops *remaining*
    //   G3, G4, G5 --- current oop, oop.klass, oop.klass.super
    __ align(16);

2356 2357
    __ BIND(store_element);
    __ deccc(G1_remain);                // decrement the count
2358 2359
    __ store_heap_oop(G3_oop, O1_to, O5_offset); // store the oop
    __ inc(O5_offset, heapOopSize);     // step to next offset
D
duke 已提交
2360 2361 2362 2363
    __ brx(Assembler::zero, true, Assembler::pt, do_card_marks);
    __ delayed()->set(0, O0);           // return -1 on success

    // ======== loop entry is here ========
2364
    __ BIND(load_element);
2365
    __ load_heap_oop(O0_from, O5_offset, G3_oop);  // load the oop
D
duke 已提交
2366
    __ br_null(G3_oop, true, Assembler::pt, store_element);
2367
    __ delayed()->nop();
D
duke 已提交
2368

2369
    __ load_klass(G3_oop, G4_klass); // query the object klass
D
duke 已提交
2370 2371 2372

    generate_type_check(G4_klass, O3_ckoff, O4_ckval, G5_super,
                        // branch to this on success:
2373
                        store_element);
D
duke 已提交
2374 2375 2376 2377 2378 2379
    // ======== end loop ========

    // It was a real error; we must depend on the caller to finish the job.
    // Register G1 has number of *remaining* oops, O2 number of *total* oops.
    // Emit GC store barriers for the oops we have copied (O2 minus G1),
    // and report their number to the caller.
2380
    __ BIND(fail);
D
duke 已提交
2381 2382 2383 2384
    __ subcc(O2_count, G1_remain, O2_count);
    __ brx(Assembler::zero, false, Assembler::pt, done);
    __ delayed()->not1(O2_count, O0);   // report (-1^K) to caller

2385
    __ BIND(do_card_marks);
D
duke 已提交
2386 2387
    gen_write_ref_array_post_barrier(O1_to, O2_count, O3);   // store check on O1[0..O2]

2388
    __ BIND(done);
D
duke 已提交
2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568
    inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr, O3, O4);
    __ retl();
    __ delayed()->nop();             // return value in 00

    return start;
  }


  //  Generate 'unsafe' array copy stub
  //  Though just as safe as the other stubs, it takes an unscaled
  //  size_t argument instead of an element count.
  //
  // Arguments for generated stub:
  //      from:  O0
  //      to:    O1
  //      count: O2 byte count, treated as ssize_t, can be zero
  //
  // Examines the alignment of the operands and dispatches
  // to a long, int, short, or byte copy loop.
  //
  address generate_unsafe_copy(const char* name) {

    const Register O0_from   = O0;      // source array address
    const Register O1_to     = O1;      // destination array address
    const Register O2_count  = O2;      // elements count

    const Register G1_bits   = G1;      // test copy of low bits

    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", name);
    address start = __ pc();

    // bump this on entry, not on exit:
    inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr, G1, G3);

    __ or3(O0_from, O1_to, G1_bits);
    __ or3(O2_count,       G1_bits, G1_bits);

    __ btst(BytesPerLong-1, G1_bits);
    __ br(Assembler::zero, true, Assembler::pt,
          long_copy_entry, relocInfo::runtime_call_type);
    // scale the count on the way out:
    __ delayed()->srax(O2_count, LogBytesPerLong, O2_count);

    __ btst(BytesPerInt-1, G1_bits);
    __ br(Assembler::zero, true, Assembler::pt,
          int_copy_entry, relocInfo::runtime_call_type);
    // scale the count on the way out:
    __ delayed()->srax(O2_count, LogBytesPerInt, O2_count);

    __ btst(BytesPerShort-1, G1_bits);
    __ br(Assembler::zero, true, Assembler::pt,
          short_copy_entry, relocInfo::runtime_call_type);
    // scale the count on the way out:
    __ delayed()->srax(O2_count, LogBytesPerShort, O2_count);

    __ br(Assembler::always, false, Assembler::pt,
          byte_copy_entry, relocInfo::runtime_call_type);
    __ delayed()->nop();

    return start;
  }


  // Perform range checks on the proposed arraycopy.
  // Kills the two temps, but nothing else.
  // Also, clean the sign bits of src_pos and dst_pos.
  void arraycopy_range_checks(Register src,     // source array oop (O0)
                              Register src_pos, // source position (O1)
                              Register dst,     // destination array oo (O2)
                              Register dst_pos, // destination position (O3)
                              Register length,  // length of copy (O4)
                              Register temp1, Register temp2,
                              Label& L_failed) {
    BLOCK_COMMENT("arraycopy_range_checks:");

    //  if (src_pos + length > arrayOop(src)->length() ) FAIL;

    const Register array_length = temp1;  // scratch
    const Register end_pos      = temp2;  // scratch

    // Note:  This next instruction may be in the delay slot of a branch:
    __ add(length, src_pos, end_pos);  // src_pos + length
    __ lduw(src, arrayOopDesc::length_offset_in_bytes(), array_length);
    __ cmp(end_pos, array_length);
    __ br(Assembler::greater, false, Assembler::pn, L_failed);

    //  if (dst_pos + length > arrayOop(dst)->length() ) FAIL;
    __ delayed()->add(length, dst_pos, end_pos); // dst_pos + length
    __ lduw(dst, arrayOopDesc::length_offset_in_bytes(), array_length);
    __ cmp(end_pos, array_length);
    __ br(Assembler::greater, false, Assembler::pn, L_failed);

    // Have to clean up high 32-bits of 'src_pos' and 'dst_pos'.
    // Move with sign extension can be used since they are positive.
    __ delayed()->signx(src_pos, src_pos);
    __ signx(dst_pos, dst_pos);

    BLOCK_COMMENT("arraycopy_range_checks done");
  }


  //
  //  Generate generic array copy stubs
  //
  //  Input:
  //    O0    -  src oop
  //    O1    -  src_pos
  //    O2    -  dst oop
  //    O3    -  dst_pos
  //    O4    -  element count
  //
  //  Output:
  //    O0 ==  0  -  success
  //    O0 == -1  -  need to call System.arraycopy
  //
  address generate_generic_copy(const char *name) {

    Label L_failed, L_objArray;

    // Input registers
    const Register src      = O0;  // source array oop
    const Register src_pos  = O1;  // source position
    const Register dst      = O2;  // destination array oop
    const Register dst_pos  = O3;  // destination position
    const Register length   = O4;  // elements count

    // registers used as temp
    const Register G3_src_klass = G3; // source array klass
    const Register G4_dst_klass = G4; // destination array klass
    const Register G5_lh        = G5; // layout handler
    const Register O5_temp      = O5;

    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", name);
    address start = __ pc();

    // bump this on entry, not on exit:
    inc_counter_np(SharedRuntime::_generic_array_copy_ctr, G1, G3);

    // In principle, the int arguments could be dirty.
    //assert_clean_int(src_pos, G1);
    //assert_clean_int(dst_pos, G1);
    //assert_clean_int(length, G1);

    //-----------------------------------------------------------------------
    // Assembler stubs will be used for this call to arraycopy
    // if the following conditions are met:
    //
    // (1) src and dst must not be null.
    // (2) src_pos must not be negative.
    // (3) dst_pos must not be negative.
    // (4) length  must not be negative.
    // (5) src klass and dst klass should be the same and not NULL.
    // (6) src and dst should be arrays.
    // (7) src_pos + length must not exceed length of src.
    // (8) dst_pos + length must not exceed length of dst.
    BLOCK_COMMENT("arraycopy initial argument checks");

    //  if (src == NULL) return -1;
    __ br_null(src, false, Assembler::pn, L_failed);

    //  if (src_pos < 0) return -1;
    __ delayed()->tst(src_pos);
    __ br(Assembler::negative, false, Assembler::pn, L_failed);
    __ delayed()->nop();

    //  if (dst == NULL) return -1;
    __ br_null(dst, false, Assembler::pn, L_failed);

    //  if (dst_pos < 0) return -1;
    __ delayed()->tst(dst_pos);
    __ br(Assembler::negative, false, Assembler::pn, L_failed);

    //  if (length < 0) return -1;
    __ delayed()->tst(length);
    __ br(Assembler::negative, false, Assembler::pn, L_failed);

    BLOCK_COMMENT("arraycopy argument klass checks");
    //  get src->klass()
2569 2570 2571 2572 2573 2574
    if (UseCompressedOops) {
      __ delayed()->nop(); // ??? not good
      __ load_klass(src, G3_src_klass);
    } else {
      __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), G3_src_klass);
    }
D
duke 已提交
2575 2576 2577 2578 2579 2580

#ifdef ASSERT
    //  assert(src->klass() != NULL);
    BLOCK_COMMENT("assert klasses not null");
    { Label L_a, L_b;
      __ br_notnull(G3_src_klass, false, Assembler::pt, L_b); // it is broken if klass is NULL
2581
      __ delayed()->nop();
D
duke 已提交
2582 2583 2584
      __ bind(L_a);
      __ stop("broken null klass");
      __ bind(L_b);
2585
      __ load_klass(dst, G4_dst_klass);
D
duke 已提交
2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605
      __ br_null(G4_dst_klass, false, Assembler::pn, L_a); // this would be broken also
      __ delayed()->mov(G0, G4_dst_klass);      // scribble the temp
      BLOCK_COMMENT("assert done");
    }
#endif

    // Load layout helper
    //
    //  |array_tag|     | header_size | element_type |     |log2_element_size|
    // 32        30    24            16              8     2                 0
    //
    //   array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
    //

    int lh_offset = klassOopDesc::header_size() * HeapWordSize +
                    Klass::layout_helper_offset_in_bytes();

    // Load 32-bits signed value. Use br() instruction with it to check icc.
    __ lduw(G3_src_klass, lh_offset, G5_lh);

2606 2607 2608
    if (UseCompressedOops) {
      __ load_klass(dst, G4_dst_klass);
    }
D
duke 已提交
2609 2610 2611 2612 2613
    // Handle objArrays completely differently...
    juint objArray_lh = Klass::array_layout_helper(T_OBJECT);
    __ set(objArray_lh, O5_temp);
    __ cmp(G5_lh,       O5_temp);
    __ br(Assembler::equal, false, Assembler::pt, L_objArray);
2614 2615 2616 2617 2618
    if (UseCompressedOops) {
      __ delayed()->nop();
    } else {
      __ delayed()->ld_ptr(dst, oopDesc::klass_offset_in_bytes(), G4_dst_klass);
    }
D
duke 已提交
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716

    //  if (src->klass() != dst->klass()) return -1;
    __ cmp(G3_src_klass, G4_dst_klass);
    __ brx(Assembler::notEqual, false, Assembler::pn, L_failed);
    __ delayed()->nop();

    //  if (!src->is_Array()) return -1;
    __ cmp(G5_lh, Klass::_lh_neutral_value); // < 0
    __ br(Assembler::greaterEqual, false, Assembler::pn, L_failed);

    // At this point, it is known to be a typeArray (array_tag 0x3).
#ifdef ASSERT
    __ delayed()->nop();
    { Label L;
      jint lh_prim_tag_in_place = (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift);
      __ set(lh_prim_tag_in_place, O5_temp);
      __ cmp(G5_lh,                O5_temp);
      __ br(Assembler::greaterEqual, false, Assembler::pt, L);
      __ delayed()->nop();
      __ stop("must be a primitive array");
      __ bind(L);
    }
#else
    __ delayed();                               // match next insn to prev branch
#endif

    arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
                           O5_temp, G4_dst_klass, L_failed);

    // typeArrayKlass
    //
    // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
    // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
    //

    const Register G4_offset = G4_dst_klass;    // array offset
    const Register G3_elsize = G3_src_klass;    // log2 element size

    __ srl(G5_lh, Klass::_lh_header_size_shift, G4_offset);
    __ and3(G4_offset, Klass::_lh_header_size_mask, G4_offset); // array_offset
    __ add(src, G4_offset, src);       // src array offset
    __ add(dst, G4_offset, dst);       // dst array offset
    __ and3(G5_lh, Klass::_lh_log2_element_size_mask, G3_elsize); // log2 element size

    // next registers should be set before the jump to corresponding stub
    const Register from     = O0;  // source array address
    const Register to       = O1;  // destination array address
    const Register count    = O2;  // elements count

    // 'from', 'to', 'count' registers should be set in this order
    // since they are the same as 'src', 'src_pos', 'dst'.

    BLOCK_COMMENT("scale indexes to element size");
    __ sll_ptr(src_pos, G3_elsize, src_pos);
    __ sll_ptr(dst_pos, G3_elsize, dst_pos);
    __ add(src, src_pos, from);       // src_addr
    __ add(dst, dst_pos, to);         // dst_addr

    BLOCK_COMMENT("choose copy loop based on element size");
    __ cmp(G3_elsize, 0);
    __ br(Assembler::equal,true,Assembler::pt,StubRoutines::_jbyte_arraycopy);
    __ delayed()->signx(length, count); // length

    __ cmp(G3_elsize, LogBytesPerShort);
    __ br(Assembler::equal,true,Assembler::pt,StubRoutines::_jshort_arraycopy);
    __ delayed()->signx(length, count); // length

    __ cmp(G3_elsize, LogBytesPerInt);
    __ br(Assembler::equal,true,Assembler::pt,StubRoutines::_jint_arraycopy);
    __ delayed()->signx(length, count); // length
#ifdef ASSERT
    { Label L;
      __ cmp(G3_elsize, LogBytesPerLong);
      __ br(Assembler::equal, false, Assembler::pt, L);
      __ delayed()->nop();
      __ stop("must be long copy, but elsize is wrong");
      __ bind(L);
    }
#endif
    __ br(Assembler::always,false,Assembler::pt,StubRoutines::_jlong_arraycopy);
    __ delayed()->signx(length, count); // length

    // objArrayKlass
  __ BIND(L_objArray);
    // live at this point:  G3_src_klass, G4_dst_klass, src[_pos], dst[_pos], length

    Label L_plain_copy, L_checkcast_copy;
    //  test array classes for subtyping
    __ cmp(G3_src_klass, G4_dst_klass);         // usual case is exact equality
    __ brx(Assembler::notEqual, true, Assembler::pn, L_checkcast_copy);
    __ delayed()->lduw(G4_dst_klass, lh_offset, O5_temp); // hoisted from below

    // Identically typed arrays can be copied without element-wise checks.
    arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
                           O5_temp, G5_lh, L_failed);

    __ add(src, arrayOopDesc::base_offset_in_bytes(T_OBJECT), src); //src offset
    __ add(dst, arrayOopDesc::base_offset_in_bytes(T_OBJECT), dst); //dst offset
2717 2718
    __ sll_ptr(src_pos, LogBytesPerHeapOop, src_pos);
    __ sll_ptr(dst_pos, LogBytesPerHeapOop, dst_pos);
D
duke 已提交
2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740
    __ add(src, src_pos, from);       // src_addr
    __ add(dst, dst_pos, to);         // dst_addr
  __ BIND(L_plain_copy);
    __ br(Assembler::always, false, Assembler::pt,StubRoutines::_oop_arraycopy);
    __ delayed()->signx(length, count); // length

  __ BIND(L_checkcast_copy);
    // live at this point:  G3_src_klass, G4_dst_klass
    {
      // Before looking at dst.length, make sure dst is also an objArray.
      // lduw(G4_dst_klass, lh_offset, O5_temp); // hoisted to delay slot
      __ cmp(G5_lh,                    O5_temp);
      __ br(Assembler::notEqual, false, Assembler::pn, L_failed);

      // It is safe to examine both src.length and dst.length.
      __ delayed();                             // match next insn to prev branch
      arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
                             O5_temp, G5_lh, L_failed);

      // Marshal the base address arguments now, freeing registers.
      __ add(src, arrayOopDesc::base_offset_in_bytes(T_OBJECT), src); //src offset
      __ add(dst, arrayOopDesc::base_offset_in_bytes(T_OBJECT), dst); //dst offset
2741 2742
      __ sll_ptr(src_pos, LogBytesPerHeapOop, src_pos);
      __ sll_ptr(dst_pos, LogBytesPerHeapOop, dst_pos);
D
duke 已提交
2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845
      __ add(src, src_pos, from);               // src_addr
      __ add(dst, dst_pos, to);                 // dst_addr
      __ signx(length, count);                  // length (reloaded)

      Register sco_temp = O3;                   // this register is free now
      assert_different_registers(from, to, count, sco_temp,
                                 G4_dst_klass, G3_src_klass);

      // Generate the type check.
      int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
                        Klass::super_check_offset_offset_in_bytes());
      __ lduw(G4_dst_klass, sco_offset, sco_temp);
      generate_type_check(G3_src_klass, sco_temp, G4_dst_klass,
                          O5_temp, L_plain_copy);

      // Fetch destination element klass from the objArrayKlass header.
      int ek_offset = (klassOopDesc::header_size() * HeapWordSize +
                       objArrayKlass::element_klass_offset_in_bytes());

      // the checkcast_copy loop needs two extra arguments:
      __ ld_ptr(G4_dst_klass, ek_offset, O4);   // dest elem klass
      // lduw(O4, sco_offset, O3);              // sco of elem klass

      __ br(Assembler::always, false, Assembler::pt, checkcast_copy_entry);
      __ delayed()->lduw(O4, sco_offset, O3);
    }

  __ BIND(L_failed);
    __ retl();
    __ delayed()->sub(G0, 1, O0); // return -1
    return start;
  }

  void generate_arraycopy_stubs() {

    // Note:  the disjoint stubs must be generated first, some of
    //        the conjoint stubs use them.
    StubRoutines::_jbyte_disjoint_arraycopy  = generate_disjoint_byte_copy(false, "jbyte_disjoint_arraycopy");
    StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, "jshort_disjoint_arraycopy");
    StubRoutines::_jint_disjoint_arraycopy   = generate_disjoint_int_copy(false, "jint_disjoint_arraycopy");
    StubRoutines::_jlong_disjoint_arraycopy  = generate_disjoint_long_copy(false, "jlong_disjoint_arraycopy");
    StubRoutines::_oop_disjoint_arraycopy    = generate_disjoint_oop_copy(false, "oop_disjoint_arraycopy");
    StubRoutines::_arrayof_jbyte_disjoint_arraycopy  = generate_disjoint_byte_copy(true, "arrayof_jbyte_disjoint_arraycopy");
    StubRoutines::_arrayof_jshort_disjoint_arraycopy = generate_disjoint_short_copy(true, "arrayof_jshort_disjoint_arraycopy");
    StubRoutines::_arrayof_jint_disjoint_arraycopy   = generate_disjoint_int_copy(true, "arrayof_jint_disjoint_arraycopy");
    StubRoutines::_arrayof_jlong_disjoint_arraycopy  = generate_disjoint_long_copy(true, "arrayof_jlong_disjoint_arraycopy");
    StubRoutines::_arrayof_oop_disjoint_arraycopy    =  generate_disjoint_oop_copy(true, "arrayof_oop_disjoint_arraycopy");

    StubRoutines::_jbyte_arraycopy  = generate_conjoint_byte_copy(false, "jbyte_arraycopy");
    StubRoutines::_jshort_arraycopy = generate_conjoint_short_copy(false, "jshort_arraycopy");
    StubRoutines::_jint_arraycopy   = generate_conjoint_int_copy(false, "jint_arraycopy");
    StubRoutines::_jlong_arraycopy  = generate_conjoint_long_copy(false, "jlong_arraycopy");
    StubRoutines::_oop_arraycopy    = generate_conjoint_oop_copy(false, "oop_arraycopy");
    StubRoutines::_arrayof_jbyte_arraycopy    = generate_conjoint_byte_copy(true, "arrayof_jbyte_arraycopy");
    StubRoutines::_arrayof_jshort_arraycopy   = generate_conjoint_short_copy(true, "arrayof_jshort_arraycopy");
#ifdef _LP64
    // since sizeof(jint) < sizeof(HeapWord), there's a different flavor:
    StubRoutines::_arrayof_jint_arraycopy     = generate_conjoint_int_copy(true, "arrayof_jint_arraycopy");
  #else
    StubRoutines::_arrayof_jint_arraycopy     = StubRoutines::_jint_arraycopy;
#endif
    StubRoutines::_arrayof_jlong_arraycopy    = StubRoutines::_jlong_arraycopy;
    StubRoutines::_arrayof_oop_arraycopy      = StubRoutines::_oop_arraycopy;

    StubRoutines::_checkcast_arraycopy = generate_checkcast_copy("checkcast_arraycopy");
    StubRoutines::_unsafe_arraycopy    = generate_unsafe_copy("unsafe_arraycopy");
    StubRoutines::_generic_arraycopy   = generate_generic_copy("generic_arraycopy");
  }

  void generate_initial() {
    // Generates all stubs and initializes the entry points

    //------------------------------------------------------------------------------------------------------------------------
    // entry points that exist in all platforms
    // Note: This is code that could be shared among different platforms - however the benefit seems to be smaller than
    //       the disadvantage of having a much more complicated generator structure. See also comment in stubRoutines.hpp.
    StubRoutines::_forward_exception_entry                 = generate_forward_exception();

    StubRoutines::_call_stub_entry                         = generate_call_stub(StubRoutines::_call_stub_return_address);
    StubRoutines::_catch_exception_entry                   = generate_catch_exception();

    //------------------------------------------------------------------------------------------------------------------------
    // entry points that are platform specific
    StubRoutines::Sparc::_test_stop_entry                  = generate_test_stop();

    StubRoutines::Sparc::_stop_subroutine_entry            = generate_stop_subroutine();
    StubRoutines::Sparc::_flush_callers_register_windows_entry = generate_flush_callers_register_windows();

#if !defined(COMPILER2) && !defined(_LP64)
    StubRoutines::_atomic_xchg_entry         = generate_atomic_xchg();
    StubRoutines::_atomic_cmpxchg_entry      = generate_atomic_cmpxchg();
    StubRoutines::_atomic_add_entry          = generate_atomic_add();
    StubRoutines::_atomic_xchg_ptr_entry     = StubRoutines::_atomic_xchg_entry;
    StubRoutines::_atomic_cmpxchg_ptr_entry  = StubRoutines::_atomic_cmpxchg_entry;
    StubRoutines::_atomic_cmpxchg_long_entry = generate_atomic_cmpxchg_long();
    StubRoutines::_atomic_add_ptr_entry      = StubRoutines::_atomic_add_entry;
#endif  // COMPILER2 !=> _LP64
  }


  void generate_all() {
    // Generates all stubs and initializes the entry points

2846 2847 2848
    // Generate partial_subtype_check first here since its code depends on
    // UseZeroBaseCompressedOops which is defined after heap initialization.
    StubRoutines::Sparc::_partial_subtype_check                = generate_partial_subtype_check();
D
duke 已提交
2849 2850
    // These entry points require SharedInfo::stack0 to be set up in non-core builds
    StubRoutines::_throw_AbstractMethodError_entry         = generate_throw_exception("AbstractMethodError throw_exception",          CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError),  false);
2851
    StubRoutines::_throw_IncompatibleClassChangeError_entry= generate_throw_exception("IncompatibleClassChangeError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError),  false);
D
duke 已提交
2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864
    StubRoutines::_throw_ArithmeticException_entry         = generate_throw_exception("ArithmeticException throw_exception",          CAST_FROM_FN_PTR(address, SharedRuntime::throw_ArithmeticException),  true);
    StubRoutines::_throw_NullPointerException_entry        = generate_throw_exception("NullPointerException throw_exception",         CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException), true);
    StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call), false);
    StubRoutines::_throw_StackOverflowError_entry          = generate_throw_exception("StackOverflowError throw_exception",           CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError),   false);

    StubRoutines::_handler_for_unsafe_access_entry =
      generate_handler_for_unsafe_access();

    // support for verify_oop (must happen after universe_init)
    StubRoutines::_verify_oop_subroutine_entry     = generate_verify_oop_subroutine();

    // arraycopy stubs used by compilers
    generate_arraycopy_stubs();
2865 2866 2867

    // Don't initialize the platform math functions since sparc
    // doesn't have intrinsics for these operations.
D
duke 已提交
2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
  }


 public:
  StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
    // replace the standard masm with a special one:
    _masm = new MacroAssembler(code);

    _stub_count = !all ? 0x100 : 0x200;
    if (all) {
      generate_all();
    } else {
      generate_initial();
    }

    // make sure this stub is available for all local calls
    if (_atomic_add_stub.is_unbound()) {
      // generate a second time, if necessary
      (void) generate_atomic_add();
    }
  }


 private:
  int _stub_count;
  void stub_prolog(StubCodeDesc* cdesc) {
    # ifdef ASSERT
      // put extra information in the stub code, to make it more readable
#ifdef _LP64
// Write the high part of the address
// [RGV] Check if there is a dependency on the size of this prolog
      __ emit_data((intptr_t)cdesc >> 32,    relocInfo::none);
#endif
      __ emit_data((intptr_t)cdesc,    relocInfo::none);
      __ emit_data(++_stub_count, relocInfo::none);
    # endif
    align(true);
  }

  void align(bool at_header = false) {
    // %%%%% move this constant somewhere else
    // UltraSPARC cache line size is 8 instructions:
    const unsigned int icache_line_size = 32;
    const unsigned int icache_half_line_size = 16;

    if (at_header) {
      while ((intptr_t)(__ pc()) % icache_line_size != 0) {
        __ emit_data(0, relocInfo::none);
      }
    } else {
      while ((intptr_t)(__ pc()) % icache_half_line_size != 0) {
        __ nop();
      }
    }
  }

}; // end class declaration


address StubGenerator::disjoint_byte_copy_entry  = NULL;
address StubGenerator::disjoint_short_copy_entry = NULL;
address StubGenerator::disjoint_int_copy_entry   = NULL;
address StubGenerator::disjoint_long_copy_entry  = NULL;
address StubGenerator::disjoint_oop_copy_entry   = NULL;

address StubGenerator::byte_copy_entry  = NULL;
address StubGenerator::short_copy_entry = NULL;
address StubGenerator::int_copy_entry   = NULL;
address StubGenerator::long_copy_entry  = NULL;
address StubGenerator::oop_copy_entry   = NULL;

address StubGenerator::checkcast_copy_entry = NULL;

void StubGenerator_generate(CodeBuffer* code, bool all) {
  StubGenerator g(code, all);
}