cppInterpreter_sparc.cpp 87.7 KB
Newer Older
D
duke 已提交
1
/*
2
 * Copyright (c) 2007, 2013, Oracle and/or its affiliates. All rights reserved.
D
duke 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
D
duke 已提交
22 23 24
 *
 */

25 26 27 28 29 30 31 32
#include "precompiled.hpp"
#include "asm/assembler.hpp"
#include "interpreter/bytecodeHistogram.hpp"
#include "interpreter/cppInterpreter.hpp"
#include "interpreter/interpreter.hpp"
#include "interpreter/interpreterGenerator.hpp"
#include "interpreter/interpreterRuntime.hpp"
#include "oops/arrayOop.hpp"
33 34
#include "oops/methodData.hpp"
#include "oops/method.hpp"
35 36 37 38 39 40 41 42 43 44 45 46 47
#include "oops/oop.inline.hpp"
#include "prims/jvmtiExport.hpp"
#include "prims/jvmtiThreadState.hpp"
#include "runtime/arguments.hpp"
#include "runtime/deoptimization.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/interfaceSupport.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#include "runtime/synchronizer.hpp"
#include "runtime/timer.hpp"
#include "runtime/vframeArray.hpp"
#include "utilities/debug.hpp"
48
#include "utilities/macros.hpp"
49 50 51
#ifdef SHARK
#include "shark/shark_globals.hpp"
#endif
D
duke 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140

#ifdef CC_INTERP

// Routine exists to make tracebacks look decent in debugger
// while "shadow" interpreter frames are on stack. It is also
// used to distinguish interpreter frames.

extern "C" void RecursiveInterpreterActivation(interpreterState istate) {
  ShouldNotReachHere();
}

bool CppInterpreter::contains(address pc) {
  return ( _code->contains(pc) ||
         ( pc == (CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation) + frame::pc_return_offset)));
}

#define STATE(field_name) Lstate, in_bytes(byte_offset_of(BytecodeInterpreter, field_name))
#define __ _masm->

Label frame_manager_entry;
Label fast_accessor_slow_entry_path;  // fast accessor methods need to be able to jmp to unsynchronized
                                      // c++ interpreter entry point this holds that entry point label.

static address unctrap_frame_manager_entry  = NULL;

static address interpreter_return_address  = NULL;
static address deopt_frame_manager_return_atos  = NULL;
static address deopt_frame_manager_return_btos  = NULL;
static address deopt_frame_manager_return_itos  = NULL;
static address deopt_frame_manager_return_ltos  = NULL;
static address deopt_frame_manager_return_ftos  = NULL;
static address deopt_frame_manager_return_dtos  = NULL;
static address deopt_frame_manager_return_vtos  = NULL;

const Register prevState = G1_scratch;

void InterpreterGenerator::save_native_result(void) {
  // result potentially in O0/O1: save it across calls
  __ stf(FloatRegisterImpl::D, F0, STATE(_native_fresult));
#ifdef _LP64
  __ stx(O0, STATE(_native_lresult));
#else
  __ std(O0, STATE(_native_lresult));
#endif
}

void InterpreterGenerator::restore_native_result(void) {

  // Restore any method result value
  __ ldf(FloatRegisterImpl::D, STATE(_native_fresult), F0);
#ifdef _LP64
  __ ldx(STATE(_native_lresult), O0);
#else
  __ ldd(STATE(_native_lresult), O0);
#endif
}

// A result handler converts/unboxes a native call result into
// a java interpreter/compiler result. The current frame is an
// interpreter frame. The activation frame unwind code must be
// consistent with that of TemplateTable::_return(...). In the
// case of native methods, the caller's SP was not modified.
address CppInterpreterGenerator::generate_result_handler_for(BasicType type) {
  address entry = __ pc();
  Register Itos_i  = Otos_i ->after_save();
  Register Itos_l  = Otos_l ->after_save();
  Register Itos_l1 = Otos_l1->after_save();
  Register Itos_l2 = Otos_l2->after_save();
  switch (type) {
    case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, Itos_i); break; // !0 => true; 0 => false
    case T_CHAR   : __ sll(O0, 16, O0); __ srl(O0, 16, Itos_i);   break; // cannot use and3, 0xFFFF too big as immediate value!
    case T_BYTE   : __ sll(O0, 24, O0); __ sra(O0, 24, Itos_i);   break;
    case T_SHORT  : __ sll(O0, 16, O0); __ sra(O0, 16, Itos_i);   break;
    case T_LONG   :
#ifndef _LP64
                    __ mov(O1, Itos_l2);  // move other half of long
#endif              // ifdef or no ifdef, fall through to the T_INT case
    case T_INT    : __ mov(O0, Itos_i);                         break;
    case T_VOID   : /* nothing to do */                         break;
    case T_FLOAT  : assert(F0 == Ftos_f, "fix this code" );     break;
    case T_DOUBLE : assert(F0 == Ftos_d, "fix this code" );     break;
    case T_OBJECT :
      __ ld_ptr(STATE(_oop_temp), Itos_i);
      __ verify_oop(Itos_i);
      break;
    default       : ShouldNotReachHere();
  }
  __ ret();                           // return from interpreter activation
  __ delayed()->restore(I5_savedSP, G0, SP);  // remove interpreter frame
141
  NOT_PRODUCT(__ emit_int32(0);)       // marker for disassembly
D
duke 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
  return entry;
}

// tosca based result to c++ interpreter stack based result.
// Result goes to address in L1_scratch

address CppInterpreterGenerator::generate_tosca_to_stack_converter(BasicType type) {
  // A result is in the native abi result register from a native method call.
  // We need to return this result to the interpreter by pushing the result on the interpreter's
  // stack. This is relatively simple the destination is in L1_scratch
  // i.e. L1_scratch is the first free element on the stack. If we "push" a return value we must
  // adjust L1_scratch
  address entry = __ pc();
  switch (type) {
    case T_BOOLEAN:
      // !0 => true; 0 => false
      __ subcc(G0, O0, G0);
      __ addc(G0, 0, O0);
      __ st(O0, L1_scratch, 0);
      __ sub(L1_scratch, wordSize, L1_scratch);
      break;

    // cannot use and3, 0xFFFF too big as immediate value!
    case T_CHAR   :
      __ sll(O0, 16, O0);
      __ srl(O0, 16, O0);
      __ st(O0, L1_scratch, 0);
      __ sub(L1_scratch, wordSize, L1_scratch);
      break;

    case T_BYTE   :
      __ sll(O0, 24, O0);
      __ sra(O0, 24, O0);
      __ st(O0, L1_scratch, 0);
      __ sub(L1_scratch, wordSize, L1_scratch);
      break;

    case T_SHORT  :
      __ sll(O0, 16, O0);
      __ sra(O0, 16, O0);
      __ st(O0, L1_scratch, 0);
      __ sub(L1_scratch, wordSize, L1_scratch);
      break;
    case T_LONG   :
#ifndef _LP64
187
#if defined(COMPILER2)
D
duke 已提交
188 189 190 191 192 193 194 195 196 197 198 199 200
  // All return values are where we want them, except for Longs.  C2 returns
  // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
  // Since the interpreter will return longs in G1 and O0/O1 in the 32bit
  // build even if we are returning from interpreted we just do a little
  // stupid shuffing.
  // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
  // do this here. Unfortunately if we did a rethrow we'd see an machepilog node
  // first which would move g1 -> O0/O1 and destroy the exception we were throwing.
      __ stx(G1, L1_scratch, -wordSize);
#else
      // native result is in O0, O1
      __ st(O1, L1_scratch, 0);                      // Low order
      __ st(O0, L1_scratch, -wordSize);              // High order
201
#endif /* COMPILER2 */
D
duke 已提交
202
#else
203
      __ stx(O0, L1_scratch, -wordSize);
D
duke 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
#endif
      __ sub(L1_scratch, 2*wordSize, L1_scratch);
      break;

    case T_INT    :
      __ st(O0, L1_scratch, 0);
      __ sub(L1_scratch, wordSize, L1_scratch);
      break;

    case T_VOID   : /* nothing to do */
      break;

    case T_FLOAT  :
      __ stf(FloatRegisterImpl::S, F0, L1_scratch, 0);
      __ sub(L1_scratch, wordSize, L1_scratch);
      break;

    case T_DOUBLE :
      // Every stack slot is aligned on 64 bit, However is this
      // the correct stack slot on 64bit?? QQQ
      __ stf(FloatRegisterImpl::D, F0, L1_scratch, -wordSize);
      __ sub(L1_scratch, 2*wordSize, L1_scratch);
      break;
    case T_OBJECT :
      __ verify_oop(O0);
      __ st_ptr(O0, L1_scratch, 0);
      __ sub(L1_scratch, wordSize, L1_scratch);
      break;
    default       : ShouldNotReachHere();
  }
  __ retl();                          // return from interpreter activation
  __ delayed()->nop();                // schedule this better
236
  NOT_PRODUCT(__ emit_int32(0);)       // marker for disassembly
D
duke 已提交
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
  return entry;
}

address CppInterpreterGenerator::generate_stack_to_stack_converter(BasicType type) {
  // A result is in the java expression stack of the interpreted method that has just
  // returned. Place this result on the java expression stack of the caller.
  //
  // The current interpreter activation in Lstate is for the method just returning its
  // result. So we know that the result of this method is on the top of the current
  // execution stack (which is pre-pushed) and will be return to the top of the caller
  // stack. The top of the callers stack is the bottom of the locals of the current
  // activation.
  // Because of the way activation are managed by the frame manager the value of esp is
  // below both the stack top of the current activation and naturally the stack top
  // of the calling activation. This enable this routine to leave the return address
  // to the frame manager on the stack and do a vanilla return.
  //
  // On entry: O0 - points to source (callee stack top)
  //           O1 - points to destination (caller stack top [i.e. free location])
  // destroys O2, O3
  //

  address entry = __ pc();
  switch (type) {
    case T_VOID:  break;
      break;
    case T_FLOAT  :
    case T_BOOLEAN:
    case T_CHAR   :
    case T_BYTE   :
    case T_SHORT  :
    case T_INT    :
      // 1 word result
      __ ld(O0, 0, O2);
      __ st(O2, O1, 0);
      __ sub(O1, wordSize, O1);
      break;
    case T_DOUBLE  :
    case T_LONG    :
      // return top two words on current expression stack to caller's expression stack
      // The caller's expression stack is adjacent to the current frame manager's intepretState
      // except we allocated one extra word for this intepretState so we won't overwrite it
      // when we return a two word result.
#ifdef _LP64
      __ ld_ptr(O0, 0, O2);
      __ st_ptr(O2, O1, -wordSize);
#else
      __ ld(O0, 0, O2);
      __ ld(O0, wordSize, O3);
      __ st(O3, O1, 0);
      __ st(O2, O1, -wordSize);
#endif
      __ sub(O1, 2*wordSize, O1);
      break;
    case T_OBJECT :
      __ ld_ptr(O0, 0, O2);
      __ verify_oop(O2);                                               // verify it
      __ st_ptr(O2, O1, 0);
      __ sub(O1, wordSize, O1);
      break;
    default       : ShouldNotReachHere();
  }
  __ retl();
  __ delayed()->nop(); // QQ schedule this better
  return entry;
}

address CppInterpreterGenerator::generate_stack_to_native_abi_converter(BasicType type) {
  // A result is in the java expression stack of the interpreted method that has just
  // returned. Place this result in the native abi that the caller expects.
  // We are in a new frame registers we set must be in caller (i.e. callstub) frame.
  //
  // Similar to generate_stack_to_stack_converter above. Called at a similar time from the
  // frame manager execept in this situation the caller is native code (c1/c2/call_stub)
  // and so rather than return result onto caller's java expression stack we return the
  // result in the expected location based on the native abi.
  // On entry: O0 - source (stack top)
  // On exit result in expected output register
  // QQQ schedule this better

  address entry = __ pc();
  switch (type) {
    case T_VOID:  break;
      break;
    case T_FLOAT  :
      __ ldf(FloatRegisterImpl::S, O0, 0, F0);
      break;
    case T_BOOLEAN:
    case T_CHAR   :
    case T_BYTE   :
    case T_SHORT  :
    case T_INT    :
      // 1 word result
      __ ld(O0, 0, O0->after_save());
      break;
    case T_DOUBLE  :
      __ ldf(FloatRegisterImpl::D, O0, 0, F0);
      break;
    case T_LONG    :
      // return top two words on current expression stack to caller's expression stack
      // The caller's expression stack is adjacent to the current frame manager's interpretState
      // except we allocated one extra word for this intepretState so we won't overwrite it
      // when we return a two word result.
#ifdef _LP64
      __ ld_ptr(O0, 0, O0->after_save());
#else
      __ ld(O0, wordSize, O1->after_save());
      __ ld(O0, 0, O0->after_save());
#endif
#if defined(COMPILER2) && !defined(_LP64)
      // C2 expects long results in G1 we can't tell if we're returning to interpreted
      // or compiled so just be safe use G1 and O0/O1

      // Shift bits into high (msb) of G1
      __ sllx(Otos_l1->after_save(), 32, G1);
      // Zero extend low bits
      __ srl (Otos_l2->after_save(), 0, Otos_l2->after_save());
      __ or3 (Otos_l2->after_save(), G1, G1);
#endif /* COMPILER2 */
      break;
    case T_OBJECT :
      __ ld_ptr(O0, 0, O0->after_save());
      __ verify_oop(O0->after_save());                                               // verify it
      break;
    default       : ShouldNotReachHere();
  }
  __ retl();
  __ delayed()->nop();
  return entry;
}

368
address CppInterpreter::return_entry(TosState state, int length, Bytecodes::Code code) {
D
duke 已提交
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
  // make it look good in the debugger
  return CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation) + frame::pc_return_offset;
}

address CppInterpreter::deopt_entry(TosState state, int length) {
  address ret = NULL;
  if (length != 0) {
    switch (state) {
      case atos: ret = deopt_frame_manager_return_atos; break;
      case btos: ret = deopt_frame_manager_return_btos; break;
      case ctos:
      case stos:
      case itos: ret = deopt_frame_manager_return_itos; break;
      case ltos: ret = deopt_frame_manager_return_ltos; break;
      case ftos: ret = deopt_frame_manager_return_ftos; break;
      case dtos: ret = deopt_frame_manager_return_dtos; break;
      case vtos: ret = deopt_frame_manager_return_vtos; break;
    }
  } else {
    ret = unctrap_frame_manager_entry;  // re-execute the bytecode ( e.g. uncommon trap)
  }
  assert(ret != NULL, "Not initialized");
  return ret;
}

//
// Helpers for commoning out cases in the various type of method entries.
//

// increment invocation count & check for overflow
//
// Note: checking for negative value instead of overflow
//       so we have a 'sticky' overflow test
//
// Lmethod: method
// ??: invocation counter
//
void InterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
407 408 409 410 411 412
  Label done;
  const Register Rcounters = G3_scratch;

  __ ld_ptr(STATE(_method), G5_method);
  __ get_method_counters(G5_method, Rcounters, done);

D
duke 已提交
413
  // Update standard invocation counters
414 415 416 417 418 419 420
  __ increment_invocation_counter(Rcounters, O0, G4_scratch);
  if (ProfileInterpreter) {
    Address interpreter_invocation_counter(Rcounters, 0,
            in_bytes(MethodCounters::interpreter_invocation_counter_offset()));
    __ ld(interpreter_invocation_counter, G4_scratch);
    __ inc(G4_scratch);
    __ st(G4_scratch, interpreter_invocation_counter);
D
duke 已提交
421 422 423 424 425 426 427 428
  }

  Address invocation_limit(G3_scratch, (address)&InvocationCounter::InterpreterInvocationLimit);
  __ sethi(invocation_limit);
  __ ld(invocation_limit, G3_scratch);
  __ cmp(O0, G3_scratch);
  __ br(Assembler::greaterEqualUnsigned, false, Assembler::pn, *overflow);
  __ delayed()->nop();
429
  __ bind(done);
D
duke 已提交
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
}

address InterpreterGenerator::generate_empty_entry(void) {

  // A method that does nothing but return...

  address entry = __ pc();
  Label slow_path;

  // do nothing for empty methods (do not even increment invocation counter)
  if ( UseFastEmptyMethods) {
    // If we need a safepoint check, generate full interpreter entry.
    Address sync_state(G3_scratch, SafepointSynchronize::address_of_state());
    __ load_contents(sync_state, G3_scratch);
    __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
    __ br(Assembler::notEqual, false, Assembler::pn, frame_manager_entry);
    __ delayed()->nop();

    // Code: _return
    __ retl();
    __ delayed()->mov(O5_savedSP, SP);
    return entry;
  }
  return NULL;
}

// Call an accessor method (assuming it is resolved, otherwise drop into
// vanilla (slow path) entry

// Generates code to elide accessor methods
// Uses G3_scratch and G1_scratch as scratch
address InterpreterGenerator::generate_accessor_entry(void) {

  // Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites thereof;
  // parameter size = 1
  // Note: We can only use this code if the getfield has been resolved
  //       and if we don't have a null-pointer exception => check for
  //       these conditions first and use slow path if necessary.
  address entry = __ pc();
  Label slow_path;

  if ( UseFastAccessorMethods) {
    // Check if we need to reach a safepoint and generate full interpreter
    // frame if so.
    Address sync_state(G3_scratch, SafepointSynchronize::address_of_state());
    __ load_contents(sync_state, G3_scratch);
    __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
    __ br(Assembler::notEqual, false, Assembler::pn, slow_path);
    __ delayed()->nop();

    // Check if local 0 != NULL
    __ ld_ptr(Gargs, G0, Otos_i ); // get local 0
    __ tst(Otos_i);  // check if local 0 == NULL and go the slow path
    __ brx(Assembler::zero, false, Assembler::pn, slow_path);
    __ delayed()->nop();


    // read first instruction word and extract bytecode @ 1 and index @ 2
    // get first 4 bytes of the bytecodes (big endian!)
489 490
    __ ld_ptr(Address(G5_method, 0, in_bytes(Method::const_offset())), G1_scratch);
    __ ld(Address(G1_scratch, 0, in_bytes(ConstMethod::codes_offset())), G1_scratch);
D
duke 已提交
491 492 493 494 495 496 497

    // move index @ 2 far left then to the right most two bytes.
    __ sll(G1_scratch, 2*BitsPerByte, G1_scratch);
    __ srl(G1_scratch, 2*BitsPerByte - exact_log2(in_words(
                      ConstantPoolCacheEntry::size()) * BytesPerWord), G1_scratch);

    // get constant pool cache
498 499 500
    __ ld_ptr(G5_method, in_bytes(Method::const_offset()), G3_scratch);
    __ ld_ptr(G3_scratch, in_bytes(ConstMethod::constants_offset()), G3_scratch);
    __ ld_ptr(G3_scratch, ConstantPool::cache_offset_in_bytes(), G3_scratch);
D
duke 已提交
501 502 503 504 505 506

    // get specific constant pool cache entry
    __ add(G3_scratch, G1_scratch, G3_scratch);

    // Check the constant Pool cache entry to see if it has been resolved.
    // If not, need the slow path.
507
    ByteSize cp_base_offset = ConstantPoolCache::base_offset();
D
duke 已提交
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
    __ ld_ptr(G3_scratch, in_bytes(cp_base_offset + ConstantPoolCacheEntry::indices_offset()), G1_scratch);
    __ srl(G1_scratch, 2*BitsPerByte, G1_scratch);
    __ and3(G1_scratch, 0xFF, G1_scratch);
    __ cmp(G1_scratch, Bytecodes::_getfield);
    __ br(Assembler::notEqual, false, Assembler::pn, slow_path);
    __ delayed()->nop();

    // Get the type and return field offset from the constant pool cache
    __ ld_ptr(G3_scratch, in_bytes(cp_base_offset + ConstantPoolCacheEntry::flags_offset()), G1_scratch);
    __ ld_ptr(G3_scratch, in_bytes(cp_base_offset + ConstantPoolCacheEntry::f2_offset()), G3_scratch);

    Label xreturn_path;
    // Need to differentiate between igetfield, agetfield, bgetfield etc.
    // because they are different sizes.
    // Get the type from the constant pool cache
523 524 525
    __ srl(G1_scratch, ConstantPoolCacheEntry::tos_state_shift, G1_scratch);
    // Make sure we don't need to mask G1_scratch after the above shift
    ConstantPoolCacheEntry::verify_tos_state_shift();
D
duke 已提交
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
    __ cmp(G1_scratch, atos );
    __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
    __ delayed()->ld_ptr(Otos_i, G3_scratch, Otos_i);
    __ cmp(G1_scratch, itos);
    __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
    __ delayed()->ld(Otos_i, G3_scratch, Otos_i);
    __ cmp(G1_scratch, stos);
    __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
    __ delayed()->ldsh(Otos_i, G3_scratch, Otos_i);
    __ cmp(G1_scratch, ctos);
    __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
    __ delayed()->lduh(Otos_i, G3_scratch, Otos_i);
#ifdef ASSERT
    __ cmp(G1_scratch, btos);
    __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
    __ delayed()->ldsb(Otos_i, G3_scratch, Otos_i);
    __ should_not_reach_here();
#endif
    __ ldsb(Otos_i, G3_scratch, Otos_i);
    __ bind(xreturn_path);

    // _ireturn/_areturn
    __ retl();                      // return from leaf routine
    __ delayed()->mov(O5_savedSP, SP);

    // Generate regular method entry
    __ bind(slow_path);
K
kvn 已提交
553
    __ ba(fast_accessor_slow_entry_path);
D
duke 已提交
554 555 556 557 558 559
    __ delayed()->nop();
    return entry;
  }
  return NULL;
}

560
address InterpreterGenerator::generate_Reference_get_entry(void) {
561
#if INCLUDE_ALL_GCS
562 563 564 565 566 567 568 569 570 571 572
  if (UseG1GC) {
    // We need to generate have a routine that generates code to:
    //   * load the value in the referent field
    //   * passes that value to the pre-barrier.
    //
    // In the case of G1 this will record the value of the
    // referent in an SATB buffer if marking is active.
    // This will cause concurrent marking to mark the referent
    // field as live.
    Unimplemented();
  }
573
#endif // INCLUDE_ALL_GCS
574 575 576 577 578 579

  // If G1 is not enabled then attempt to go through the accessor entry point
  // Reference.get is an accessor
  return generate_accessor_entry();
}

D
duke 已提交
580 581 582 583 584 585 586 587 588 589 590 591
//
// Interpreter stub for calling a native method. (C++ interpreter)
// This sets up a somewhat different looking stack for calling the native method
// than the typical interpreter frame setup.
//

address InterpreterGenerator::generate_native_entry(bool synchronized) {
  address entry = __ pc();

  // the following temporary registers are used during frame creation
  const Register Gtmp1 = G3_scratch ;
  const Register Gtmp2 = G1_scratch;
592 593 594
  const Register RconstMethod = Gtmp1;
  const Address constMethod(G5_method, 0, in_bytes(Method::const_offset()));
  const Address size_of_parameters(RconstMethod, 0, in_bytes(ConstMethod::size_of_parameters_offset()));
D
duke 已提交
595 596 597 598 599 600

  bool inc_counter  = UseCompiler || CountCompiledCalls;

  // make sure registers are different!
  assert_different_registers(G2_thread, G5_method, Gargs, Gtmp1, Gtmp2);

601
  const Address access_flags      (G5_method, 0, in_bytes(Method::access_flags_offset()));
D
duke 已提交
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629

  Label Lentry;
  __ bind(Lentry);

  const Register Glocals_size = G3;
  assert_different_registers(Glocals_size, G4_scratch, Gframe_size);

  // make sure method is native & not abstract
  // rethink these assertions - they can be simplified and shared (gri 2/25/2000)
#ifdef ASSERT
  __ ld(access_flags, Gtmp1);
  {
    Label L;
    __ btst(JVM_ACC_NATIVE, Gtmp1);
    __ br(Assembler::notZero, false, Assembler::pt, L);
    __ delayed()->nop();
    __ stop("tried to execute non-native method as native");
    __ bind(L);
  }
  { Label L;
    __ btst(JVM_ACC_ABSTRACT, Gtmp1);
    __ br(Assembler::zero, false, Assembler::pt, L);
    __ delayed()->nop();
    __ stop("tried to execute abstract method as non-abstract");
    __ bind(L);
  }
#endif // ASSERT

630
  __ ld_ptr(constMethod, RconstMethod);
D
duke 已提交
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
  __ lduh(size_of_parameters, Gtmp1);
  __ sll(Gtmp1, LogBytesPerWord, Gtmp2);       // parameter size in bytes
  __ add(Gargs, Gtmp2, Gargs);                 // points to first local + BytesPerWord
  // NEW
  __ add(Gargs, -wordSize, Gargs);             // points to first local[0]
  // generate the code to allocate the interpreter stack frame
  // NEW FRAME ALLOCATED HERE
  // save callers original sp
  // __ mov(SP, I5_savedSP->after_restore());

  generate_compute_interpreter_state(Lstate, G0, true);

  // At this point Lstate points to new interpreter state
  //

  const Address do_not_unlock_if_synchronized(G2_thread, 0,
      in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
  // Since at this point in the method invocation the exception handler
  // would try to exit the monitor of synchronized methods which hasn't
  // been entered yet, we set the thread local variable
  // _do_not_unlock_if_synchronized to true. If any exception was thrown by
  // runtime, exception handling i.e. unlock_if_synchronized_method will
  // check this thread local flag.
  // This flag has two effects, one is to force an unwind in the topmost
  // interpreter frame and not perform an unlock while doing so.

  __ movbool(true, G3_scratch);
  __ stbool(G3_scratch, do_not_unlock_if_synchronized);


  // increment invocation counter and check for overflow
  //
  // Note: checking for negative value instead of overflow
  //       so we have a 'sticky' overflow test (may be of
  //       importance as soon as we have true MT/MP)
  Label invocation_counter_overflow;
  if (inc_counter) {
    generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
  }
  Label Lcontinue;
  __ bind(Lcontinue);

  bang_stack_shadow_pages(true);
  // reset the _do_not_unlock_if_synchronized flag
  __ stbool(G0, do_not_unlock_if_synchronized);

  // check for synchronized methods
  // Must happen AFTER invocation_counter check, so method is not locked
  // if counter overflows.

  if (synchronized) {
    lock_method();
    // Don't see how G2_thread is preserved here...
    // __ verify_thread(); QQQ destroys L0,L1 can't use
  } else {
#ifdef ASSERT
    { Label ok;
      __ ld_ptr(STATE(_method), G5_method);
      __ ld(access_flags, O0);
      __ btst(JVM_ACC_SYNCHRONIZED, O0);
      __ br( Assembler::zero, false, Assembler::pt, ok);
      __ delayed()->nop();
      __ stop("method needs synchronization");
      __ bind(ok);
    }
#endif // ASSERT
  }

  // start execution

//   __ verify_thread(); kills L1,L2 can't  use at the moment

  // jvmti/jvmpi support
  __ notify_method_entry();

  // native call

  // (note that O0 is never an oop--at most it is a handle)
  // It is important not to smash any handles created by this call,
  // until any oop handle in O0 is dereferenced.

  // (note that the space for outgoing params is preallocated)

  // get signature handler

  Label pending_exception_present;

  { Label L;
    __ ld_ptr(STATE(_method), G5_method);
720
    __ ld_ptr(Address(G5_method, 0, in_bytes(Method::signature_handler_offset())), G3_scratch);
D
duke 已提交
721 722 723 724 725 726 727 728
    __ tst(G3_scratch);
    __ brx(Assembler::notZero, false, Assembler::pt, L);
    __ delayed()->nop();
    __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), G5_method, false);
    __ ld_ptr(STATE(_method), G5_method);

    Address exception_addr(G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
    __ ld_ptr(exception_addr, G3_scratch);
K
kvn 已提交
729
    __ br_notnull_short(G3_scratch, Assembler::pn, pending_exception_present);
730
    __ ld_ptr(Address(G5_method, 0, in_bytes(Method::signature_handler_offset())), G3_scratch);
D
duke 已提交
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
    __ bind(L);
  }

  // Push a new frame so that the args will really be stored in
  // Copy a few locals across so the new frame has the variables
  // we need but these values will be dead at the jni call and
  // therefore not gc volatile like the values in the current
  // frame (Lstate in particular)

  // Flush the state pointer to the register save area
  // Which is the only register we need for a stack walk.
  __ st_ptr(Lstate, SP, (Lstate->sp_offset_in_saved_window() * wordSize) + STACK_BIAS);

  __ mov(Lstate, O1);         // Need to pass the state pointer across the frame

  // Calculate current frame size
  __ sub(SP, FP, O3);         // Calculate negative of current frame size
  __ save(SP, O3, SP);        // Allocate an identical sized frame

  __ mov(I1, Lstate);          // In the "natural" register.

  // Note I7 has leftover trash. Slow signature handler will fill it in
  // should we get there. Normal jni call will set reasonable last_Java_pc
  // below (and fix I7 so the stack trace doesn't have a meaningless frame
  // in it).


  // call signature handler
  __ ld_ptr(STATE(_method), Lmethod);
  __ ld_ptr(STATE(_locals), Llocals);

  __ callr(G3_scratch, 0);
  __ delayed()->nop();
  __ ld_ptr(STATE(_thread), G2_thread);        // restore thread (shouldn't be needed)

  { Label not_static;

    __ ld_ptr(STATE(_method), G5_method);
    __ ld(access_flags, O0);
    __ btst(JVM_ACC_STATIC, O0);
    __ br( Assembler::zero, false, Assembler::pt, not_static);
    __ delayed()->
      // get native function entry point(O0 is a good temp until the very end)
774
       ld_ptr(Address(G5_method, 0, in_bytes(Method::native_function_offset())), O0);
D
duke 已提交
775
    // for static methods insert the mirror argument
776
    const int mirror_offset = in_bytes(Klass::java_mirror_offset());
D
duke 已提交
777

778 779 780
    __ ld_ptr(Address(G5_method, 0, in_bytes(Method:: const_offset())), O1);
    __ ld_ptr(Address(O1, 0, in_bytes(ConstMethod::constants_offset())), O1);
    __ ld_ptr(Address(O1, 0, ConstantPool::pool_holder_offset_in_bytes()), O1);
D
duke 已提交
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
    __ ld_ptr(O1, mirror_offset, O1);
    // where the mirror handle body is allocated:
#ifdef ASSERT
    if (!PrintSignatureHandlers)  // do not dirty the output with this
    { Label L;
      __ tst(O1);
      __ brx(Assembler::notZero, false, Assembler::pt, L);
      __ delayed()->nop();
      __ stop("mirror is missing");
      __ bind(L);
    }
#endif // ASSERT
    __ st_ptr(O1, STATE(_oop_temp));
    __ add(STATE(_oop_temp), O1);            // this is really an LEA not an add
    __ bind(not_static);
  }

  // At this point, arguments have been copied off of stack into
  // their JNI positions, which are O1..O5 and SP[68..].
  // Oops are boxed in-place on the stack, with handles copied to arguments.
  // The result handler is in Lscratch.  O0 will shortly hold the JNIEnv*.

#ifdef ASSERT
  { Label L;
    __ tst(O0);
    __ brx(Assembler::notZero, false, Assembler::pt, L);
    __ delayed()->nop();
    __ stop("native entry point is missing");
    __ bind(L);
  }
#endif // ASSERT

  //
  // setup the java frame anchor
  //
  // The scavenge function only needs to know that the PC of this frame is
  // in the interpreter method entry code, it doesn't need to know the exact
  // PC and hence we can use O7 which points to the return address from the
  // previous call in the code stream (signature handler function)
  //
  // The other trick is we set last_Java_sp to FP instead of the usual SP because
  // we have pushed the extra frame in order to protect the volatile register(s)
  // in that frame when we return from the jni call
  //


  __ set_last_Java_frame(FP, O7);
  __ mov(O7, I7);  // make dummy interpreter frame look like one above,
                   // not meaningless information that'll confuse me.

  // flush the windows now. We don't care about the current (protection) frame
  // only the outer frames

  __ flush_windows();

  // mark windows as flushed
  Address flags(G2_thread,
                0,
                in_bytes(JavaThread::frame_anchor_offset()) + in_bytes(JavaFrameAnchor::flags_offset()));
  __ set(JavaFrameAnchor::flushed, G3_scratch);
  __ st(G3_scratch, flags);

  // Transition from _thread_in_Java to _thread_in_native. We are already safepoint ready.

  Address thread_state(G2_thread, 0, in_bytes(JavaThread::thread_state_offset()));
#ifdef ASSERT
  { Label L;
    __ ld(thread_state, G3_scratch);
    __ cmp(G3_scratch, _thread_in_Java);
    __ br(Assembler::equal, false, Assembler::pt, L);
    __ delayed()->nop();
    __ stop("Wrong thread state in native stub");
    __ bind(L);
  }
#endif // ASSERT
  __ set(_thread_in_native, G3_scratch);
  __ st(G3_scratch, thread_state);

  // Call the jni method, using the delay slot to set the JNIEnv* argument.
  __ callr(O0, 0);
  __ delayed()->
     add(G2_thread, in_bytes(JavaThread::jni_environment_offset()), O0);
  __ ld_ptr(STATE(_thread), G2_thread);  // restore thread

  // must we block?

  // Block, if necessary, before resuming in _thread_in_Java state.
  // In order for GC to work, don't clear the last_Java_sp until after blocking.
  { Label no_block;
    Address sync_state(G3_scratch, SafepointSynchronize::address_of_state());

    // Switch thread to "native transition" state before reading the synchronization state.
    // This additional state is necessary because reading and testing the synchronization
    // state is not atomic w.r.t. GC, as this scenario demonstrates:
    //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
    //     VM thread changes sync state to synchronizing and suspends threads for GC.
    //     Thread A is resumed to finish this native method, but doesn't block here since it
    //     didn't see any synchronization is progress, and escapes.
    __ set(_thread_in_native_trans, G3_scratch);
    __ st(G3_scratch, thread_state);
    if(os::is_MP()) {
      // Write serialization page so VM thread can do a pseudo remote membar.
      // We use the current thread pointer to calculate a thread specific
      // offset to write to within the page. This minimizes bus traffic
      // due to cache line collision.
      __ serialize_memory(G2_thread, G1_scratch, G3_scratch);
    }
    __ load_contents(sync_state, G3_scratch);
    __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);


    Label L;
    Address suspend_state(G2_thread, 0, in_bytes(JavaThread::suspend_flags_offset()));
    __ br(Assembler::notEqual, false, Assembler::pn, L);
    __ delayed()->
      ld(suspend_state, G3_scratch);
    __ cmp(G3_scratch, 0);
    __ br(Assembler::equal, false, Assembler::pt, no_block);
    __ delayed()->nop();
    __ bind(L);

    // Block.  Save any potential method result value before the operation and
    // use a leaf call to leave the last_Java_frame setup undisturbed.
    save_native_result();
    __ call_VM_leaf(noreg,
                    CAST_FROM_FN_PTR(address, JavaThread::check_safepoint_and_suspend_for_native_trans),
                    G2_thread);
    __ ld_ptr(STATE(_thread), G2_thread);  // restore thread
    // Restore any method result value
    restore_native_result();
    __ bind(no_block);
  }

  // Clear the frame anchor now

  __ reset_last_Java_frame();

  // Move the result handler address
  __ mov(Lscratch, G3_scratch);
  // return possible result to the outer frame
#ifndef __LP64
  __ mov(O0, I0);
  __ restore(O1, G0, O1);
#else
  __ restore(O0, G0, O0);
#endif /* __LP64 */

  // Move result handler to expected register
  __ mov(G3_scratch, Lscratch);


  // thread state is thread_in_native_trans. Any safepoint blocking has
  // happened in the trampoline we are ready to switch to thread_in_Java.

  __ set(_thread_in_Java, G3_scratch);
  __ st(G3_scratch, thread_state);

  // If we have an oop result store it where it will be safe for any further gc
  // until we return now that we've released the handle it might be protected by

  {
    Label no_oop, store_result;

    __ set((intptr_t)AbstractInterpreter::result_handler(T_OBJECT), G3_scratch);
    __ cmp(G3_scratch, Lscratch);
    __ brx(Assembler::notEqual, false, Assembler::pt, no_oop);
    __ delayed()->nop();
    __ addcc(G0, O0, O0);
    __ brx(Assembler::notZero, true, Assembler::pt, store_result);     // if result is not NULL:
    __ delayed()->ld_ptr(O0, 0, O0);                                   // unbox it
    __ mov(G0, O0);

    __ bind(store_result);
    // Store it where gc will look for it and result handler expects it.
    __ st_ptr(O0, STATE(_oop_temp));

    __ bind(no_oop);

  }

  // reset handle block
  __ ld_ptr(G2_thread, in_bytes(JavaThread::active_handles_offset()), G3_scratch);
963
  __ st(G0, G3_scratch, JNIHandleBlock::top_offset_in_bytes());
D
duke 已提交
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057


  // handle exceptions (exception handling will handle unlocking!)
  { Label L;
    Address exception_addr (G2_thread, 0, in_bytes(Thread::pending_exception_offset()));

    __ ld_ptr(exception_addr, Gtemp);
    __ tst(Gtemp);
    __ brx(Assembler::equal, false, Assembler::pt, L);
    __ delayed()->nop();
    __ bind(pending_exception_present);
    // With c++ interpreter we just leave it pending caller will do the correct thing. However...
    // Like x86 we ignore the result of the native call and leave the method locked. This
    // seems wrong to leave things locked.

    __ br(Assembler::always, false, Assembler::pt, StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
    __ delayed()->restore(I5_savedSP, G0, SP);  // remove interpreter frame

    __ bind(L);
  }

  // jvmdi/jvmpi support (preserves thread register)
  __ notify_method_exit(true, ilgl, InterpreterMacroAssembler::NotifyJVMTI);

  if (synchronized) {
    // save and restore any potential method result value around the unlocking operation
    save_native_result();

    const int entry_size            = frame::interpreter_frame_monitor_size() * wordSize;
    // Get the initial monitor we allocated
    __ sub(Lstate, entry_size, O1);                        // initial monitor
    __ unlock_object(O1);
    restore_native_result();
  }

#if defined(COMPILER2) && !defined(_LP64)

  // C2 expects long results in G1 we can't tell if we're returning to interpreted
  // or compiled so just be safe.

  __ sllx(O0, 32, G1);          // Shift bits into high G1
  __ srl (O1, 0, O1);           // Zero extend O1
  __ or3 (O1, G1, G1);          // OR 64 bits into G1

#endif /* COMPILER2 && !_LP64 */

#ifdef ASSERT
  {
    Label ok;
    __ cmp(I5_savedSP, FP);
    __ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, ok);
    __ delayed()->nop();
    __ stop("bad I5_savedSP value");
    __ should_not_reach_here();
    __ bind(ok);
  }
#endif
  // Calls result handler which POPS FRAME
  if (TraceJumps) {
    // Move target to register that is recordable
    __ mov(Lscratch, G3_scratch);
    __ JMP(G3_scratch, 0);
  } else {
    __ jmp(Lscratch, 0);
  }
  __ delayed()->nop();

  if (inc_counter) {
    // handle invocation counter overflow
    __ bind(invocation_counter_overflow);
    generate_counter_overflow(Lcontinue);
  }


  return entry;
}

void CppInterpreterGenerator::generate_compute_interpreter_state(const Register state,
                                                              const Register prev_state,
                                                              bool native) {

  // On entry
  // G5_method - caller's method
  // Gargs - points to initial parameters (i.e. locals[0])
  // G2_thread - valid? (C1 only??)
  // "prev_state" - contains any previous frame manager state which we must save a link
  //
  // On return
  // "state" is a pointer to the newly allocated  state object. We must allocate and initialize
  // a new interpretState object and the method expression stack.

  assert_different_registers(state, prev_state);
  assert_different_registers(prev_state, G3_scratch);
  const Register Gtmp = G3_scratch;
1058 1059
  const Address constMethod       (G5_method, 0, in_bytes(Method::const_offset()));
  const Address access_flags      (G5_method, 0, in_bytes(Method::access_flags_offset()));
D
duke 已提交
1060 1061 1062 1063 1064 1065 1066 1067

  // slop factor is two extra slots on the expression stack so that
  // we always have room to store a result when returning from a call without parameters
  // that returns a result.

  const int slop_factor = 2*wordSize;

  const int fixed_size = ((sizeof(BytecodeInterpreter) + slop_factor) >> LogBytesPerWord) + // what is the slop factor?
1068
                         Method::extra_stack_entries() + // extra stack for jsr 292
D
duke 已提交
1069 1070 1071 1072 1073 1074 1075 1076
                         frame::memory_parameter_word_sp_offset +  // register save area + param window
                         (native ?  frame::interpreter_frame_extra_outgoing_argument_words : 0); // JNI, class

  // XXX G5_method valid

  // Now compute new frame size

  if (native) {
1077 1078 1079
    const Register RconstMethod = Gtmp;
    const Address size_of_parameters(RconstMethod, 0, in_bytes(ConstMethod::size_of_parameters_offset()));
    __ ld_ptr(constMethod, RconstMethod);
D
duke 已提交
1080 1081 1082
    __ lduh( size_of_parameters, Gtmp );
    __ calc_mem_param_words(Gtmp, Gtmp);     // space for native call parameters passed on the stack in words
  } else {
1083 1084 1085
    // Full size expression stack
    __ ld_ptr(constMethod, Gtmp);
    __ lduh(Gtmp, in_bytes(ConstMethod::max_stack_offset()), Gtmp);
D
duke 已提交
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
  }
  __ add(Gtmp, fixed_size, Gtmp);           // plus the fixed portion

  __ neg(Gtmp);                               // negative space for stack/parameters in words
  __ and3(Gtmp, -WordsPerLong, Gtmp);        // make multiple of 2 (SP must be 2-word aligned)
  __ sll(Gtmp, LogBytesPerWord, Gtmp);       // negative space for frame in bytes

  // Need to do stack size check here before we fault on large frames

  Label stack_ok;

  const int max_pages = StackShadowPages > (StackRedPages+StackYellowPages) ? StackShadowPages :
                                                                              (StackRedPages+StackYellowPages);


  __ ld_ptr(G2_thread, in_bytes(Thread::stack_base_offset()), O0);
  __ ld_ptr(G2_thread, in_bytes(Thread::stack_size_offset()), O1);
  // compute stack bottom
  __ sub(O0, O1, O0);

  // Avoid touching the guard pages
  // Also a fudge for frame size of BytecodeInterpreter::run
  // It varies from 1k->4k depending on build type
  const int fudge = 6 * K;

  __ set(fudge + (max_pages * os::vm_page_size()), O1);

  __ add(O0, O1, O0);
  __ sub(O0, Gtmp, O0);
  __ cmp(SP, O0);
  __ brx(Assembler::greaterUnsigned, false, Assembler::pt, stack_ok);
  __ delayed()->nop();

     // throw exception return address becomes throwing pc

  __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
  __ stop("never reached");

  __ bind(stack_ok);

  __ save(SP, Gtmp, SP);                      // setup new frame and register window

  // New window I7 call_stub or previous activation
  // O6 - register save area, BytecodeInterpreter just below it, args/locals just above that
  //
  __ sub(FP, sizeof(BytecodeInterpreter), state);        // Point to new Interpreter state
  __ add(state, STACK_BIAS, state );         // Account for 64bit bias

#define XXX_STATE(field_name) state, in_bytes(byte_offset_of(BytecodeInterpreter, field_name))

  // Initialize a new Interpreter state
  // orig_sp - caller's original sp
  // G2_thread - thread
  // Gargs - &locals[0] (unbiased?)
  // G5_method - method
  // SP (biased) - accounts for full size java stack, BytecodeInterpreter object, register save area, and register parameter save window


  __ set(0xdead0004, O1);


  __ st_ptr(Gargs, XXX_STATE(_locals));
  __ st_ptr(G0, XXX_STATE(_oop_temp));

  __ st_ptr(state, XXX_STATE(_self_link));                // point to self
  __ st_ptr(prev_state->after_save(), XXX_STATE(_prev_link)); // Chain interpreter states
  __ st_ptr(G2_thread, XXX_STATE(_thread));               // Store javathread

  if (native) {
    __ st_ptr(G0, XXX_STATE(_bcp));
  } else {
1157 1158
    __ ld_ptr(G5_method, in_bytes(Method::const_offset()), O2); // get ConstMethod*
    __ add(O2, in_bytes(ConstMethod::codes_offset()), O2);        // get bcp
D
duke 已提交
1159 1160 1161 1162 1163 1164 1165 1166 1167
    __ st_ptr(O2, XXX_STATE(_bcp));
  }

  __ st_ptr(G0, XXX_STATE(_mdx));
  __ st_ptr(G5_method, XXX_STATE(_method));

  __ set((int) BytecodeInterpreter::method_entry, O1);
  __ st(O1, XXX_STATE(_msg));

1168
  __ ld_ptr(constMethod, O3);
1169 1170
  __ ld_ptr(O3, in_bytes(ConstMethod::constants_offset()), O3);
  __ ld_ptr(O3, ConstantPool::cache_offset_in_bytes(), O2);
D
duke 已提交
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
  __ st_ptr(O2, XXX_STATE(_constants));

  __ st_ptr(G0, XXX_STATE(_result._to_call._callee));

  // Monitor base is just start of BytecodeInterpreter object;
  __ mov(state, O2);
  __ st_ptr(O2, XXX_STATE(_monitor_base));

  // Do we need a monitor for synchonized method?
  {
    __ ld(access_flags, O1);
    Label done;
    Label got_obj;
    __ btst(JVM_ACC_SYNCHRONIZED, O1);
    __ br( Assembler::zero, false, Assembler::pt, done);

1187
    const int mirror_offset = in_bytes(Klass::java_mirror_offset());
D
duke 已提交
1188 1189 1190 1191
    __ delayed()->btst(JVM_ACC_STATIC, O1);
    __ ld_ptr(XXX_STATE(_locals), O1);
    __ br( Assembler::zero, true, Assembler::pt, got_obj);
    __ delayed()->ld_ptr(O1, 0, O1);                  // get receiver for not-static case
1192
    __ ld_ptr(constMethod, O1);
1193 1194 1195
    __ ld_ptr( O1, in_bytes(ConstMethod::constants_offset()), O1);
    __ ld_ptr( O1, ConstantPool::pool_holder_offset_in_bytes(), O1);
    // lock the mirror, not the Klass*
D
duke 已提交
1196 1197 1198 1199 1200 1201
    __ ld_ptr( O1, mirror_offset, O1);

    __ bind(got_obj);

  #ifdef ASSERT
    __ tst(O1);
C
coleenp 已提交
1202
    __ breakpoint_trap(Assembler::zero, Assembler::ptr_cc);
D
duke 已提交
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
  #endif // ASSERT

    const int entry_size            = frame::interpreter_frame_monitor_size() * wordSize;
    __ sub(SP, entry_size, SP);                         // account for initial monitor
    __ sub(O2, entry_size, O2);                        // initial monitor
    __ st_ptr(O1, O2, BasicObjectLock::obj_offset_in_bytes()); // and allocate it for interpreter use
    __ bind(done);
  }

  // Remember initial frame bottom

  __ st_ptr(SP, XXX_STATE(_frame_bottom));

  __ st_ptr(O2, XXX_STATE(_stack_base));

  __ sub(O2, wordSize, O2);                    // prepush
  __ st_ptr(O2, XXX_STATE(_stack));                // PREPUSH

1221 1222 1223
  // Full size expression stack
  __ ld_ptr(constMethod, O3);
  __ lduh(O3, in_bytes(ConstMethod::max_stack_offset()), O3);
1224
  __ inc(O3, Method::extra_stack_entries());
D
duke 已提交
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
  __ sll(O3, LogBytesPerWord, O3);
  __ sub(O2, O3, O3);
//  __ sub(O3, wordSize, O3);                    // so prepush doesn't look out of bounds
  __ st_ptr(O3, XXX_STATE(_stack_limit));

  if (!native) {
    //
    // Code to initialize locals
    //
    Register init_value = noreg;    // will be G0 if we must clear locals
    // Now zero locals
    if (true /* zerolocals */ || ClearInterpreterLocals) {
      // explicitly initialize locals
      init_value = G0;
    } else {
    #ifdef ASSERT
      // initialize locals to a garbage pattern for better debugging
      init_value = O3;
      __ set( 0x0F0F0F0F, init_value );
    #endif // ASSERT
    }
    if (init_value != noreg) {
      Label clear_loop;
1248 1249 1250
      const Register RconstMethod = O1;
      const Address size_of_parameters(RconstMethod, 0, in_bytes(ConstMethod::size_of_parameters_offset()));
      const Address size_of_locals    (RconstMethod, 0, in_bytes(ConstMethod::size_of_locals_offset()));
D
duke 已提交
1251 1252 1253

      // NOTE: If you change the frame layout, this code will need to
      // be updated!
1254
      __ ld_ptr( constMethod, RconstMethod );
D
duke 已提交
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
      __ lduh( size_of_locals, O2 );
      __ lduh( size_of_parameters, O1 );
      __ sll( O2, LogBytesPerWord, O2);
      __ sll( O1, LogBytesPerWord, O1 );
      __ ld_ptr(XXX_STATE(_locals), L2_scratch);
      __ sub( L2_scratch, O2, O2 );
      __ sub( L2_scratch, O1, O1 );

      __ bind( clear_loop );
      __ inc( O2, wordSize );

      __ cmp( O2, O1 );
      __ br( Assembler::lessEqualUnsigned, true, Assembler::pt, clear_loop );
      __ delayed()->st_ptr( init_value, O2, 0 );
    }
  }
}
// Find preallocated  monitor and lock method (C++ interpreter)
//
void InterpreterGenerator::lock_method(void) {
// Lock the current method.
// Destroys registers L2_scratch, L3_scratch, O0
//
// Find everything relative to Lstate

#ifdef ASSERT
  __ ld_ptr(STATE(_method), L2_scratch);
1282
  __ ld(L2_scratch, in_bytes(Method::access_flags_offset()), O0);
D
duke 已提交
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309

 { Label ok;
   __ btst(JVM_ACC_SYNCHRONIZED, O0);
   __ br( Assembler::notZero, false, Assembler::pt, ok);
   __ delayed()->nop();
   __ stop("method doesn't need synchronization");
   __ bind(ok);
  }
#endif // ASSERT

  // monitor is already allocated at stack base
  // and the lockee is already present
  __ ld_ptr(STATE(_stack_base), L2_scratch);
  __ ld_ptr(L2_scratch, BasicObjectLock::obj_offset_in_bytes(), O0);   // get object
  __ lock_object(L2_scratch, O0);

}

//  Generate code for handling resuming a deopted method
void CppInterpreterGenerator::generate_deopt_handling() {

  Label return_from_deopt_common;

  // deopt needs to jump to here to enter the interpreter (return a result)
  deopt_frame_manager_return_atos  = __ pc();

  // O0/O1 live
K
kvn 已提交
1310
  __ ba(return_from_deopt_common);
D
duke 已提交
1311 1312 1313 1314 1315 1316 1317
  __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_OBJECT), L3_scratch);    // Result stub address array index


  // deopt needs to jump to here to enter the interpreter (return a result)
  deopt_frame_manager_return_btos  = __ pc();

  // O0/O1 live
K
kvn 已提交
1318
  __ ba(return_from_deopt_common);
D
duke 已提交
1319 1320 1321 1322 1323 1324
  __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_BOOLEAN), L3_scratch);    // Result stub address array index

  // deopt needs to jump to here to enter the interpreter (return a result)
  deopt_frame_manager_return_itos  = __ pc();

  // O0/O1 live
K
kvn 已提交
1325
  __ ba(return_from_deopt_common);
D
duke 已提交
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
  __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_INT), L3_scratch);    // Result stub address array index

  // deopt needs to jump to here to enter the interpreter (return a result)

  deopt_frame_manager_return_ltos  = __ pc();
#if !defined(_LP64) && defined(COMPILER2)
  // All return values are where we want them, except for Longs.  C2 returns
  // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
  // Since the interpreter will return longs in G1 and O0/O1 in the 32bit
  // build even if we are returning from interpreted we just do a little
  // stupid shuffing.
  // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
  // do this here. Unfortunately if we did a rethrow we'd see an machepilog node
  // first which would move g1 -> O0/O1 and destroy the exception we were throwing.

  __ srl (G1, 0,O1);
  __ srlx(G1,32,O0);
#endif /* !_LP64 && COMPILER2 */
  // O0/O1 live
K
kvn 已提交
1345
  __ ba(return_from_deopt_common);
D
duke 已提交
1346 1347 1348 1349 1350 1351
  __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_LONG), L3_scratch);    // Result stub address array index

  // deopt needs to jump to here to enter the interpreter (return a result)

  deopt_frame_manager_return_ftos  = __ pc();
  // O0/O1 live
K
kvn 已提交
1352
  __ ba(return_from_deopt_common);
D
duke 已提交
1353 1354 1355 1356 1357 1358
  __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_FLOAT), L3_scratch);    // Result stub address array index

  // deopt needs to jump to here to enter the interpreter (return a result)
  deopt_frame_manager_return_dtos  = __ pc();

  // O0/O1 live
K
kvn 已提交
1359
  __ ba(return_from_deopt_common);
D
duke 已提交
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
  __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_DOUBLE), L3_scratch);    // Result stub address array index

  // deopt needs to jump to here to enter the interpreter (return a result)
  deopt_frame_manager_return_vtos  = __ pc();

  // O0/O1 live
  __ set(AbstractInterpreter::BasicType_as_index(T_VOID), L3_scratch);

  // Deopt return common
  // an index is present that lets us move any possible result being
  // return to the interpreter's stack
  //
  __ bind(return_from_deopt_common);

  // Result if any is in native abi result (O0..O1/F0..F1). The java expression
  // stack is in the state that the  calling convention left it.
  // Copy the result from native abi result and place it on java expression stack.

  // Current interpreter state is present in Lstate

  // Get current pre-pushed top of interpreter stack
  // Any result (if any) is in native abi
  // result type index is in L3_scratch

  __ ld_ptr(STATE(_stack), L1_scratch);                                          // get top of java expr stack

  __ set((intptr_t)CppInterpreter::_tosca_to_stack, L4_scratch);
  __ sll(L3_scratch, LogBytesPerWord, L3_scratch);
  __ ld_ptr(L4_scratch, L3_scratch, Lscratch);                                       // get typed result converter address
  __ jmpl(Lscratch, G0, O7);                                         // and convert it
  __ delayed()->nop();

  // L1_scratch points to top of stack (prepushed)
  __ st_ptr(L1_scratch, STATE(_stack));
}

// Generate the code to handle a more_monitors message from the c++ interpreter
void CppInterpreterGenerator::generate_more_monitors() {

  Label entry, loop;
  const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
  // 1. compute new pointers                                // esp: old expression stack top
  __ delayed()->ld_ptr(STATE(_stack_base), L4_scratch);            // current expression stack bottom
  __ sub(L4_scratch, entry_size, L4_scratch);
  __ st_ptr(L4_scratch, STATE(_stack_base));

  __ sub(SP, entry_size, SP);                  // Grow stack
  __ st_ptr(SP, STATE(_frame_bottom));

  __ ld_ptr(STATE(_stack_limit), L2_scratch);
  __ sub(L2_scratch, entry_size, L2_scratch);
  __ st_ptr(L2_scratch, STATE(_stack_limit));

  __ ld_ptr(STATE(_stack), L1_scratch);                // Get current stack top
  __ sub(L1_scratch, entry_size, L1_scratch);
  __ st_ptr(L1_scratch, STATE(_stack));
K
kvn 已提交
1416
  __ ba(entry);
D
duke 已提交
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
  __ delayed()->add(L1_scratch, wordSize, L1_scratch);        // first real entry (undo prepush)

  // 2. move expression stack

  __ bind(loop);
  __ st_ptr(L3_scratch, Address(L1_scratch, 0));
  __ add(L1_scratch, wordSize, L1_scratch);
  __ bind(entry);
  __ cmp(L1_scratch, L4_scratch);
  __ br(Assembler::notEqual, false, Assembler::pt, loop);
  __ delayed()->ld_ptr(L1_scratch, entry_size, L3_scratch);

  // now zero the slot so we can find it.
1430
  __ st_ptr(G0, L4_scratch, BasicObjectLock::obj_offset_in_bytes());
D
duke 已提交
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450

}

// Initial entry to C++ interpreter from the call_stub.
// This entry point is called the frame manager since it handles the generation
// of interpreter activation frames via requests directly from the vm (via call_stub)
// and via requests from the interpreter. The requests from the call_stub happen
// directly thru the entry point. Requests from the interpreter happen via returning
// from the interpreter and examining the message the interpreter has returned to
// the frame manager. The frame manager can take the following requests:

// NO_REQUEST - error, should never happen.
// MORE_MONITORS - need a new monitor. Shuffle the expression stack on down and
//                 allocate a new monitor.
// CALL_METHOD - setup a new activation to call a new method. Very similar to what
//               happens during entry during the entry via the call stub.
// RETURN_FROM_METHOD - remove an activation. Return to interpreter or call stub.
//
// Arguments:
//
1451
// ebx: Method*
D
duke 已提交
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
// ecx: receiver - unused (retrieved from stack as needed)
// esi: previous frame manager state (NULL from the call_stub/c1/c2)
//
//
// Stack layout at entry
//
// [ return address     ] <--- esp
// [ parameter n        ]
//   ...
// [ parameter 1        ]
// [ expression stack   ]
//
//
// We are free to blow any registers we like because the call_stub which brought us here
// initially has preserved the callee save registers already.
//
//

static address interpreter_frame_manager = NULL;

#ifdef ASSERT
  #define VALIDATE_STATE(scratch, marker)                         \
  {                                                               \
    Label skip;                                                   \
    __ ld_ptr(STATE(_self_link), scratch);                        \
    __ cmp(Lstate, scratch);                                      \
    __ brx(Assembler::equal, false, Assembler::pt, skip);         \
    __ delayed()->nop();                                          \
    __ breakpoint_trap();                                         \
1481
    __ emit_int32(marker);                                         \
D
duke 已提交
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
    __ bind(skip);                                                \
  }
#else
  #define VALIDATE_STATE(scratch, marker)
#endif /* ASSERT */

void CppInterpreterGenerator::adjust_callers_stack(Register args) {
//
// Adjust caller's stack so that all the locals can be contiguous with
// the parameters.
// Worries about stack overflow make this a pain.
//
// Destroys args, G3_scratch, G3_scratch
// In/Out O5_savedSP (sender's original SP)
//
//  assert_different_registers(state, prev_state);
  const Register Gtmp = G3_scratch;
1499
  const RconstMethod = G3_scratch;
D
duke 已提交
1500
  const Register tmp = O2;
1501 1502 1503
  const Address constMethod(G5_method, 0, in_bytes(Method::const_offset()));
  const Address size_of_parameters(RconstMethod, 0, in_bytes(ConstMethod::size_of_parameters_offset()));
  const Address size_of_locals    (RconstMethod, 0, in_bytes(ConstMethod::size_of_locals_offset()));
D
duke 已提交
1504

1505
  __ ld_ptr(constMethod, RconstMethod);
D
duke 已提交
1506
  __ lduh(size_of_parameters, tmp);
1507 1508
  __ sll(tmp, LogBytesPerWord, Gargs);       // parameter size in bytes
  __ add(args, Gargs, Gargs);                // points to first local + BytesPerWord
D
duke 已提交
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
  // NEW
  __ add(Gargs, -wordSize, Gargs);             // points to first local[0]
  // determine extra space for non-argument locals & adjust caller's SP
  // Gtmp1: parameter size in words
  __ lduh(size_of_locals, Gtmp);
  __ compute_extra_locals_size_in_bytes(tmp, Gtmp, Gtmp);

#if 1
  // c2i adapters place the final interpreter argument in the register save area for O0/I0
  // the call_stub will place the final interpreter argument at
  // frame::memory_parameter_word_sp_offset. This is mostly not noticable for either asm
  // or c++ interpreter. However with the c++ interpreter when we do a recursive call
  // and try to make it look good in the debugger we will store the argument to
  // RecursiveInterpreterActivation in the register argument save area. Without allocating
  // extra space for the compiler this will overwrite locals in the local array of the
  // interpreter.
  // QQQ still needed with frameless adapters???

  const int c2i_adjust_words = frame::memory_parameter_word_sp_offset - frame::callee_register_argument_save_area_sp_offset;

  __ add(Gtmp, c2i_adjust_words*wordSize, Gtmp);
#endif // 1


  __ sub(SP, Gtmp, SP);                      // just caller's frame for the additional space we need.
}

address InterpreterGenerator::generate_normal_entry(bool synchronized) {

1538
  // G5_method: Method*
D
duke 已提交
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
  // G2_thread: thread (unused)
  // Gargs:   bottom of args (sender_sp)
  // O5: sender's sp

  // A single frame manager is plenty as we don't specialize for synchronized. We could and
  // the code is pretty much ready. Would need to change the test below and for good measure
  // modify generate_interpreter_state to only do the (pre) sync stuff stuff for synchronized
  // routines. Not clear this is worth it yet.

  if (interpreter_frame_manager) {
    return interpreter_frame_manager;
  }

  __ bind(frame_manager_entry);

  // the following temporary registers are used during frame creation
  const Register Gtmp1 = G3_scratch;
  // const Register Lmirror = L1;     // native mirror (native calls only)

1558 1559
  const Address constMethod       (G5_method, 0, in_bytes(Method::const_offset()));
  const Address access_flags      (G5_method, 0, in_bytes(Method::access_flags_offset()));
D
duke 已提交
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668

  address entry_point = __ pc();
  __ mov(G0, prevState);                                                 // no current activation


  Label re_dispatch;

  __ bind(re_dispatch);

  // Interpreter needs to have locals completely contiguous. In order to do that
  // We must adjust the caller's stack pointer for any locals beyond just the
  // parameters
  adjust_callers_stack(Gargs);

  // O5_savedSP still contains sender's sp

  // NEW FRAME

  generate_compute_interpreter_state(Lstate, prevState, false);

  // At this point a new interpreter frame and state object are created and initialized
  // Lstate has the pointer to the new activation
  // Any stack banging or limit check should already be done.

  Label call_interpreter;

  __ bind(call_interpreter);


#if 1
  __ set(0xdead002, Lmirror);
  __ set(0xdead002, L2_scratch);
  __ set(0xdead003, L3_scratch);
  __ set(0xdead004, L4_scratch);
  __ set(0xdead005, Lscratch);
  __ set(0xdead006, Lscratch2);
  __ set(0xdead007, L7_scratch);

  __ set(0xdeaf002, O2);
  __ set(0xdeaf003, O3);
  __ set(0xdeaf004, O4);
  __ set(0xdeaf005, O5);
#endif

  // Call interpreter (stack bang complete) enter here if message is
  // set and we know stack size is valid

  Label call_interpreter_2;

  __ bind(call_interpreter_2);

#ifdef ASSERT
  {
    Label skip;
    __ ld_ptr(STATE(_frame_bottom), G3_scratch);
    __ cmp(G3_scratch, SP);
    __ brx(Assembler::equal, false, Assembler::pt, skip);
    __ delayed()->nop();
    __ stop("SP not restored to frame bottom");
    __ bind(skip);
  }
#endif

  VALIDATE_STATE(G3_scratch, 4);
  __ set_last_Java_frame(SP, noreg);
  __ mov(Lstate, O0);                 // (arg) pointer to current state

  __ call(CAST_FROM_FN_PTR(address,
                           JvmtiExport::can_post_interpreter_events() ?
                                                                  BytecodeInterpreter::runWithChecks
                                                                : BytecodeInterpreter::run),
         relocInfo::runtime_call_type);

  __ delayed()->nop();

  __ ld_ptr(STATE(_thread), G2_thread);
  __ reset_last_Java_frame();

  // examine msg from interpreter to determine next action
  __ ld_ptr(STATE(_thread), G2_thread);                                  // restore G2_thread

  __ ld(STATE(_msg), L1_scratch);                                       // Get new message

  Label call_method;
  Label return_from_interpreted_method;
  Label throw_exception;
  Label do_OSR;
  Label bad_msg;
  Label resume_interpreter;

  __ cmp(L1_scratch, (int)BytecodeInterpreter::call_method);
  __ br(Assembler::equal, false, Assembler::pt, call_method);
  __ delayed()->cmp(L1_scratch, (int)BytecodeInterpreter::return_from_method);
  __ br(Assembler::equal, false, Assembler::pt, return_from_interpreted_method);
  __ delayed()->cmp(L1_scratch, (int)BytecodeInterpreter::throwing_exception);
  __ br(Assembler::equal, false, Assembler::pt, throw_exception);
  __ delayed()->cmp(L1_scratch, (int)BytecodeInterpreter::do_osr);
  __ br(Assembler::equal, false, Assembler::pt, do_OSR);
  __ delayed()->cmp(L1_scratch, (int)BytecodeInterpreter::more_monitors);
  __ br(Assembler::notEqual, false, Assembler::pt, bad_msg);

  // Allocate more monitor space, shuffle expression stack....

  generate_more_monitors();

  // new monitor slot allocated, resume the interpreter.

  __ set((int)BytecodeInterpreter::got_monitors, L1_scratch);
  VALIDATE_STATE(G3_scratch, 5);
K
kvn 已提交
1669
  __ ba(call_interpreter);
D
duke 已提交
1670 1671 1672 1673 1674 1675 1676
  __ delayed()->st(L1_scratch, STATE(_msg));

  // uncommon trap needs to jump to here to enter the interpreter (re-execute current bytecode)
  unctrap_frame_manager_entry  = __ pc();

  // QQQ what message do we send

K
kvn 已提交
1677
  __ ba(call_interpreter);
D
duke 已提交
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
  __ delayed()->ld_ptr(STATE(_frame_bottom), SP);                  // restore to full stack frame

  //=============================================================================
  // Returning from a compiled method into a deopted method. The bytecode at the
  // bcp has completed. The result of the bytecode is in the native abi (the tosca
  // for the template based interpreter). Any stack space that was used by the
  // bytecode that has completed has been removed (e.g. parameters for an invoke)
  // so all that we have to do is place any pending result on the expression stack
  // and resume execution on the next bytecode.

  generate_deopt_handling();

  // ready to resume the interpreter

  __ set((int)BytecodeInterpreter::deopt_resume, L1_scratch);
K
kvn 已提交
1693
  __ ba(call_interpreter);
D
duke 已提交
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
  __ delayed()->st(L1_scratch, STATE(_msg));

  // Current frame has caught an exception we need to dispatch to the
  // handler. We can get here because a native interpreter frame caught
  // an exception in which case there is no handler and we must rethrow
  // If it is a vanilla interpreted frame the we simply drop into the
  // interpreter and let it do the lookup.

  Interpreter::_rethrow_exception_entry = __ pc();

  Label return_with_exception;
  Label unwind_and_forward;

  // O0: exception
  // O7: throwing pc

  // We want exception in the thread no matter what we ultimately decide about frame type.

  Address exception_addr (G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
  __ verify_thread();
  __ st_ptr(O0, exception_addr);

1716
  // get the Method*
D
duke 已提交
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
  __ ld_ptr(STATE(_method), G5_method);

  // if this current frame vanilla or native?

  __ ld(access_flags, Gtmp1);
  __ btst(JVM_ACC_NATIVE, Gtmp1);
  __ br(Assembler::zero, false, Assembler::pt, return_with_exception);  // vanilla interpreted frame handle directly
  __ delayed()->nop();

  // We drop thru to unwind a native interpreted frame with a pending exception
  // We jump here for the initial interpreter frame with exception pending
  // We unwind the current acivation and forward it to our caller.

  __ bind(unwind_and_forward);

  // Unwind frame and jump to forward exception. unwinding will place throwing pc in O7
  // as expected by forward_exception.

  __ restore(FP, G0, SP);                  // unwind interpreter state frame
  __ br(Assembler::always, false, Assembler::pt, StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
  __ delayed()->mov(I5_savedSP->after_restore(), SP);

  // Return point from a call which returns a result in the native abi
  // (c1/c2/jni-native). This result must be processed onto the java
  // expression stack.
  //
  // A pending exception may be present in which case there is no result present

  address return_from_native_method = __ pc();

  VALIDATE_STATE(G3_scratch, 6);

  // Result if any is in native abi result (O0..O1/F0..F1). The java expression
  // stack is in the state that the  calling convention left it.
  // Copy the result from native abi result and place it on java expression stack.

  // Current interpreter state is present in Lstate

  // Exception pending?

  __ ld_ptr(STATE(_frame_bottom), SP);                             // restore to full stack frame
  __ ld_ptr(exception_addr, Lscratch);                                         // get any pending exception
  __ tst(Lscratch);                                                            // exception pending?
  __ brx(Assembler::notZero, false, Assembler::pt, return_with_exception);
  __ delayed()->nop();

  // Process the native abi result to java expression stack

  __ ld_ptr(STATE(_result._to_call._callee), L4_scratch);                        // called method
  __ ld_ptr(STATE(_stack), L1_scratch);                                          // get top of java expr stack
1767 1768 1769
  // get parameter size
  __ ld_ptr(L4_scratch, in_bytes(Method::const_offset()), L2_scratch);
  __ lduh(L2_scratch, in_bytes(ConstMethod::size_of_parameters_offset()), L2_scratch);
D
duke 已提交
1770 1771
  __ sll(L2_scratch, LogBytesPerWord, L2_scratch     );                           // parameter size in bytes
  __ add(L1_scratch, L2_scratch, L1_scratch);                                      // stack destination for result
1772
  __ ld(L4_scratch, in_bytes(Method::result_index_offset()), L3_scratch); // called method result type index
D
duke 已提交
1773 1774 1775 1776 1777 1778 1779 1780 1781 1782

  // tosca is really just native abi
  __ set((intptr_t)CppInterpreter::_tosca_to_stack, L4_scratch);
  __ sll(L3_scratch, LogBytesPerWord, L3_scratch);
  __ ld_ptr(L4_scratch, L3_scratch, Lscratch);                                       // get typed result converter address
  __ jmpl(Lscratch, G0, O7);                                                   // and convert it
  __ delayed()->nop();

  // L1_scratch points to top of stack (prepushed)

K
kvn 已提交
1783
  __ ba(resume_interpreter);
D
duke 已提交
1784 1785 1786 1787 1788 1789 1790 1791 1792
  __ delayed()->mov(L1_scratch, O1);

  // An exception is being caught on return to a vanilla interpreter frame.
  // Empty the stack and resume interpreter

  __ bind(return_with_exception);

  __ ld_ptr(STATE(_frame_bottom), SP);                             // restore to full stack frame
  __ ld_ptr(STATE(_stack_base), O1);                               // empty java expression stack
K
kvn 已提交
1793
  __ ba(resume_interpreter);
D
duke 已提交
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
  __ delayed()->sub(O1, wordSize, O1);                             // account for prepush

  // Return from interpreted method we return result appropriate to the caller (i.e. "recursive"
  // interpreter call, or native) and unwind this interpreter activation.
  // All monitors should be unlocked.

  __ bind(return_from_interpreted_method);

  VALIDATE_STATE(G3_scratch, 7);

  Label return_to_initial_caller;

  // Interpreted result is on the top of the completed activation expression stack.
  // We must return it to the top of the callers stack if caller was interpreted
  // otherwise we convert to native abi result and return to call_stub/c1/c2
  // The caller's expression stack was truncated by the call however the current activation
  // has enough stuff on the stack that we have usable space there no matter what. The
  // other thing that makes it easy is that the top of the caller's stack is stored in STATE(_locals)
  // for the current activation

  __ ld_ptr(STATE(_prev_link), L1_scratch);
  __ ld_ptr(STATE(_method), L2_scratch);                               // get method just executed
1816
  __ ld(L2_scratch, in_bytes(Method::result_index_offset()), L2_scratch);
D
duke 已提交
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
  __ tst(L1_scratch);
  __ brx(Assembler::zero, false, Assembler::pt, return_to_initial_caller);
  __ delayed()->sll(L2_scratch, LogBytesPerWord, L2_scratch);

  // Copy result to callers java stack

  __ set((intptr_t)CppInterpreter::_stack_to_stack, L4_scratch);
  __ ld_ptr(L4_scratch, L2_scratch, Lscratch);                          // get typed result converter address
  __ ld_ptr(STATE(_stack), O0);                                       // current top (prepushed)
  __ ld_ptr(STATE(_locals), O1);                                      // stack destination

  // O0 - will be source, O1 - will be destination (preserved)
  __ jmpl(Lscratch, G0, O7);                                          // and convert it
  __ delayed()->add(O0, wordSize, O0);                                // get source (top of current expr stack)

  // O1 == &locals[0]

  // Result is now on caller's stack. Just unwind current activation and resume

  Label unwind_recursive_activation;


  __ bind(unwind_recursive_activation);

  // O1 == &locals[0] (really callers stacktop) for activation now returning
  // returning to interpreter method from "recursive" interpreter call
  // result converter left O1 pointing to top of the( prepushed) java stack for method we are returning
  // to. Now all we must do is unwind the state from the completed call

  // Must restore stack
  VALIDATE_STATE(G3_scratch, 8);

  // Return to interpreter method after a method call (interpreted/native/c1/c2) has completed.
  // Result if any is already on the caller's stack. All we must do now is remove the now dead
  // frame and tell interpreter to resume.


  __ mov(O1, I1);                                                     // pass back new stack top across activation
  // POP FRAME HERE ==================================
  __ restore(FP, G0, SP);                                             // unwind interpreter state frame
  __ ld_ptr(STATE(_frame_bottom), SP);                                // restore to full stack frame


  // Resume the interpreter. The current frame contains the current interpreter
  // state object.
  //
  // O1 == new java stack pointer

  __ bind(resume_interpreter);
  VALIDATE_STATE(G3_scratch, 10);

  // A frame we have already used before so no need to bang stack so use call_interpreter_2 entry

  __ set((int)BytecodeInterpreter::method_resume, L1_scratch);
  __ st(L1_scratch, STATE(_msg));
K
kvn 已提交
1872
  __ ba(call_interpreter_2);
D
duke 已提交
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
  __ delayed()->st_ptr(O1, STATE(_stack));


  // Fast accessor methods share this entry point.
  // This works because frame manager is in the same codelet
  // This can either be an entry via call_stub/c1/c2 or a recursive interpreter call
  // we need to do a little register fixup here once we distinguish the two of them
  if (UseFastAccessorMethods && !synchronized) {
  // Call stub_return address still in O7
    __ bind(fast_accessor_slow_entry_path);
    __ set((intptr_t)return_from_native_method - 8, Gtmp1);
    __ cmp(Gtmp1, O7);                                                // returning to interpreter?
    __ brx(Assembler::equal, true, Assembler::pt, re_dispatch);       // yep
    __ delayed()->nop();
K
kvn 已提交
1887 1888
    __ ba(re_dispatch);
    __ delayed()->mov(G0, prevState);                                 // initial entry
D
duke 已提交
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981

  }

  // interpreter returning to native code (call_stub/c1/c2)
  // convert result and unwind initial activation
  // L2_scratch - scaled result type index

  __ bind(return_to_initial_caller);

  __ set((intptr_t)CppInterpreter::_stack_to_native_abi, L4_scratch);
  __ ld_ptr(L4_scratch, L2_scratch, Lscratch);                           // get typed result converter address
  __ ld_ptr(STATE(_stack), O0);                                        // current top (prepushed)
  __ jmpl(Lscratch, G0, O7);                                           // and convert it
  __ delayed()->add(O0, wordSize, O0);                                 // get source (top of current expr stack)

  Label unwind_initial_activation;
  __ bind(unwind_initial_activation);

  // RETURN TO CALL_STUB/C1/C2 code (result if any in I0..I1/(F0/..F1)
  // we can return here with an exception that wasn't handled by interpreted code
  // how does c1/c2 see it on return?

  // compute resulting sp before/after args popped depending upon calling convention
  // __ ld_ptr(STATE(_saved_sp), Gtmp1);
  //
  // POP FRAME HERE ==================================
  __ restore(FP, G0, SP);
  __ retl();
  __ delayed()->mov(I5_savedSP->after_restore(), SP);

  // OSR request, unwind the current frame and transfer to the OSR entry
  // and enter OSR nmethod

  __ bind(do_OSR);
  Label remove_initial_frame;
  __ ld_ptr(STATE(_prev_link), L1_scratch);
  __ ld_ptr(STATE(_result._osr._osr_buf), G1_scratch);

  // We are going to pop this frame. Is there another interpreter frame underneath
  // it or is it callstub/compiled?

  __ tst(L1_scratch);
  __ brx(Assembler::zero, false, Assembler::pt, remove_initial_frame);
  __ delayed()->ld_ptr(STATE(_result._osr._osr_entry), G3_scratch);

  // Frame underneath is an interpreter frame simply unwind
  // POP FRAME HERE ==================================
  __ restore(FP, G0, SP);                                             // unwind interpreter state frame
  __ mov(I5_savedSP->after_restore(), SP);

  // Since we are now calling native need to change our "return address" from the
  // dummy RecursiveInterpreterActivation to a return from native

  __ set((intptr_t)return_from_native_method - 8, O7);

  __ jmpl(G3_scratch, G0, G0);
  __ delayed()->mov(G1_scratch, O0);

  __ bind(remove_initial_frame);

  // POP FRAME HERE ==================================
  __ restore(FP, G0, SP);
  __ mov(I5_savedSP->after_restore(), SP);
  __ jmpl(G3_scratch, G0, G0);
  __ delayed()->mov(G1_scratch, O0);

  // Call a new method. All we do is (temporarily) trim the expression stack
  // push a return address to bring us back to here and leap to the new entry.
  // At this point we have a topmost frame that was allocated by the frame manager
  // which contains the current method interpreted state. We trim this frame
  // of excess java expression stack entries and then recurse.

  __ bind(call_method);

  // stack points to next free location and not top element on expression stack
  // method expects sp to be pointing to topmost element

  __ ld_ptr(STATE(_thread), G2_thread);
  __ ld_ptr(STATE(_result._to_call._callee), G5_method);


  // SP already takes in to account the 2 extra words we use for slop
  // when we call a "static long no_params()" method. So if
  // we trim back sp by the amount of unused java expression stack
  // there will be automagically the 2 extra words we need.
  // We also have to worry about keeping SP aligned.

  __ ld_ptr(STATE(_stack), Gargs);
  __ ld_ptr(STATE(_stack_limit), L1_scratch);

  // compute the unused java stack size
  __ sub(Gargs, L1_scratch, L2_scratch);                       // compute unused space

1982 1983
  // Round down the unused space to that stack is always 16-byte aligned
  // by making the unused space a multiple of the size of two longs.
D
duke 已提交
1984

1985
  __ and3(L2_scratch, -2*BytesPerLong, L2_scratch);
D
duke 已提交
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050

  // Now trim the stack
  __ add(SP, L2_scratch, SP);


  // Now point to the final argument (account for prepush)
  __ add(Gargs, wordSize, Gargs);
#ifdef ASSERT
  // Make sure we have space for the window
  __ sub(Gargs, SP, L1_scratch);
  __ cmp(L1_scratch, 16*wordSize);
  {
    Label skip;
    __ brx(Assembler::greaterEqual, false, Assembler::pt, skip);
    __ delayed()->nop();
    __ stop("killed stack");
    __ bind(skip);
  }
#endif // ASSERT

  // Create a new frame where we can store values that make it look like the interpreter
  // really recursed.

  // prepare to recurse or call specialized entry

  // First link the registers we need

  // make the pc look good in debugger
  __ set(CAST_FROM_FN_PTR(intptr_t, RecursiveInterpreterActivation), O7);
  // argument too
  __ mov(Lstate, I0);

  // Record our sending SP
  __ mov(SP, O5_savedSP);

  __ ld_ptr(STATE(_result._to_call._callee_entry_point), L2_scratch);
  __ set((intptr_t) entry_point, L1_scratch);
  __ cmp(L1_scratch, L2_scratch);
  __ brx(Assembler::equal, false, Assembler::pt, re_dispatch);
  __ delayed()->mov(Lstate, prevState);                                // link activations

  // method uses specialized entry, push a return so we look like call stub setup
  // this path will handle fact that result is returned in registers and not
  // on the java stack.

  __ set((intptr_t)return_from_native_method - 8, O7);
  __ jmpl(L2_scratch, G0, G0);                               // Do specialized entry
  __ delayed()->nop();

  //
  // Bad Message from interpreter
  //
  __ bind(bad_msg);
  __ stop("Bad message from interpreter");

  // Interpreted method "returned" with an exception pass it on...
  // Pass result, unwind activation and continue/return to interpreter/call_stub
  // We handle result (if any) differently based on return to interpreter or call_stub

  __ bind(throw_exception);
  __ ld_ptr(STATE(_prev_link), L1_scratch);
  __ tst(L1_scratch);
  __ brx(Assembler::zero, false, Assembler::pt, unwind_and_forward);
  __ delayed()->nop();

K
kvn 已提交
2051 2052
  __ ld_ptr(STATE(_locals), O1); // get result of popping callee's args
  __ ba(unwind_recursive_activation);
D
duke 已提交
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
  __ delayed()->nop();

  interpreter_frame_manager = entry_point;
  return entry_point;
}

InterpreterGenerator::InterpreterGenerator(StubQueue* code)
 : CppInterpreterGenerator(code) {
   generate_all(); // down here so it can be "virtual"
}


static int size_activation_helper(int callee_extra_locals, int max_stack, int monitor_size) {

  // Figure out the size of an interpreter frame (in words) given that we have a fully allocated
  // expression stack, the callee will have callee_extra_locals (so we can account for
  // frame extension) and monitor_size for monitors. Basically we need to calculate
  // this exactly like generate_fixed_frame/generate_compute_interpreter_state.
  //
  //
  // The big complicating thing here is that we must ensure that the stack stays properly
  // aligned. This would be even uglier if monitor size wasn't modulo what the stack
  // needs to be aligned for). We are given that the sp (fp) is already aligned by
  // the caller so we must ensure that it is properly aligned for our callee.
  //
  // Ths c++ interpreter always makes sure that we have a enough extra space on the
  // stack at all times to deal with the "stack long no_params()" method issue. This
  // is "slop_factor" here.
  const int slop_factor = 2;

  const int fixed_size = sizeof(BytecodeInterpreter)/wordSize +           // interpreter state object
                         frame::memory_parameter_word_sp_offset;   // register save area + param window
  return (round_to(max_stack +
                   slop_factor +
                   fixed_size +
                   monitor_size +
2089
                   (callee_extra_locals * Interpreter::stackElementWords), WordsPerLong));
D
duke 已提交
2090 2091 2092

}

2093
int AbstractInterpreter::size_top_interpreter_activation(Method* method) {
D
duke 已提交
2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109

  // See call_stub code
  int call_stub_size  = round_to(7 + frame::memory_parameter_word_sp_offset,
                                 WordsPerLong);    // 7 + register save area

  // Save space for one monitor to get into the interpreted method in case
  // the method is synchronized
  int monitor_size    = method->is_synchronized() ?
                                1*frame::interpreter_frame_monitor_size() : 0;
  return size_activation_helper(method->max_locals(), method->max_stack(),
                                 monitor_size) + call_stub_size;
}

void BytecodeInterpreter::layout_interpreterState(interpreterState to_fill,
                                           frame* caller,
                                           frame* current,
2110
                                           Method* method,
D
duke 已提交
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
                                           intptr_t* locals,
                                           intptr_t* stack,
                                           intptr_t* stack_base,
                                           intptr_t* monitor_base,
                                           intptr_t* frame_bottom,
                                           bool is_top_frame
                                           )
{
  // What about any vtable?
  //
  to_fill->_thread = JavaThread::current();
  // This gets filled in later but make it something recognizable for now
  to_fill->_bcp = method->code_base();
  to_fill->_locals = locals;
  to_fill->_constants = method->constants()->cache();
  to_fill->_method = method;
  to_fill->_mdx = NULL;
  to_fill->_stack = stack;
  if (is_top_frame && JavaThread::current()->popframe_forcing_deopt_reexecution() ) {
    to_fill->_msg = deopt_resume2;
  } else {
    to_fill->_msg = method_resume;
  }
  to_fill->_result._to_call._bcp_advance = 0;
  to_fill->_result._to_call._callee_entry_point = NULL; // doesn't matter to anyone
  to_fill->_result._to_call._callee = NULL; // doesn't matter to anyone
  to_fill->_prev_link = NULL;

  // Fill in the registers for the frame

  // Need to install _sender_sp. Actually not too hard in C++!
  // When the skeletal frames are layed out we fill in a value
  // for _sender_sp. That value is only correct for the oldest
  // skeletal frame constructed (because there is only a single
  // entry for "caller_adjustment". While the skeletal frames
  // exist that is good enough. We correct that calculation
  // here and get all the frames correct.

  // to_fill->_sender_sp = locals - (method->size_of_parameters() - 1);

  *current->register_addr(Lstate) = (intptr_t) to_fill;
  // skeletal already places a useful value here and this doesn't account
  // for alignment so don't bother.
  // *current->register_addr(I5_savedSP) =     (intptr_t) locals - (method->size_of_parameters() - 1);

  if (caller->is_interpreted_frame()) {
    interpreterState prev  = caller->get_interpreterState();
    to_fill->_prev_link = prev;
    // Make the prev callee look proper
    prev->_result._to_call._callee = method;
    if (*prev->_bcp == Bytecodes::_invokeinterface) {
      prev->_result._to_call._bcp_advance = 5;
    } else {
      prev->_result._to_call._bcp_advance = 3;
    }
  }
  to_fill->_oop_temp = NULL;
  to_fill->_stack_base = stack_base;
  // Need +1 here because stack_base points to the word just above the first expr stack entry
  // and stack_limit is supposed to point to the word just below the last expr stack entry.
  // See generate_compute_interpreter_state.
2172
  to_fill->_stack_limit = stack_base - (method->max_stack() + 1);
D
duke 已提交
2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
  to_fill->_monitor_base = (BasicObjectLock*) monitor_base;

  // sparc specific
  to_fill->_frame_bottom = frame_bottom;
  to_fill->_self_link = to_fill;
#ifdef ASSERT
  to_fill->_native_fresult = 123456.789;
  to_fill->_native_lresult = CONST64(0xdeadcafedeafcafe);
#endif
}

void BytecodeInterpreter::pd_layout_interpreterState(interpreterState istate, address last_Java_pc, intptr_t* last_Java_fp) {
  istate->_last_Java_pc = (intptr_t*) last_Java_pc;
}


2189
int AbstractInterpreter::layout_activation(Method* method,
D
duke 已提交
2190 2191 2192
                                           int tempcount, // Number of slots on java expression stack in use
                                           int popframe_extra_args,
                                           int moncount,  // Number of active monitors
2193
                                           int caller_actual_parameters,
D
duke 已提交
2194 2195 2196 2197
                                           int callee_param_size,
                                           int callee_locals_size,
                                           frame* caller,
                                           frame* interpreter_frame,
2198 2199
                                           bool is_top_frame,
                                           bool is_bottom_frame) {
D
duke 已提交
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236

  assert(popframe_extra_args == 0, "NEED TO FIX");
  // NOTE this code must exactly mimic what InterpreterGenerator::generate_compute_interpreter_state()
  // does as far as allocating an interpreter frame.
  // If interpreter_frame!=NULL, set up the method, locals, and monitors.
  // The frame interpreter_frame, if not NULL, is guaranteed to be the right size,
  // as determined by a previous call to this method.
  // It is also guaranteed to be walkable even though it is in a skeletal state
  // NOTE: return size is in words not bytes
  // NOTE: tempcount is the current size of the java expression stack. For top most
  //       frames we will allocate a full sized expression stack and not the curback
  //       version that non-top frames have.

  // Calculate the amount our frame will be adjust by the callee. For top frame
  // this is zero.

  // NOTE: ia64 seems to do this wrong (or at least backwards) in that it
  // calculates the extra locals based on itself. Not what the callee does
  // to it. So it ignores last_frame_adjust value. Seems suspicious as far
  // as getting sender_sp correct.

  int extra_locals_size = callee_locals_size - callee_param_size;
  int monitor_size = (sizeof(BasicObjectLock) * moncount) / wordSize;
  int full_frame_words = size_activation_helper(extra_locals_size, method->max_stack(), monitor_size);
  int short_frame_words = size_activation_helper(extra_locals_size, method->max_stack(), monitor_size);
  int frame_words = is_top_frame ? full_frame_words : short_frame_words;


  /*
    if we actually have a frame to layout we must now fill in all the pieces. This means both
    the interpreterState and the registers.
  */
  if (interpreter_frame != NULL) {

    // MUCHO HACK

    intptr_t* frame_bottom = interpreter_frame->sp() - (full_frame_words - frame_words);
2237 2238 2239
    // 'interpreter_frame->sp()' is unbiased while 'frame_bottom' must be a biased value in 64bit mode.
    assert(((intptr_t)frame_bottom & 0xf) == 0, "SP biased in layout_activation");
    frame_bottom = (intptr_t*)((intptr_t)frame_bottom - STACK_BIAS);
D
duke 已提交
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269

    /* Now fillin the interpreterState object */

    interpreterState cur_state = (interpreterState) ((intptr_t)interpreter_frame->fp() -  sizeof(BytecodeInterpreter));


    intptr_t* locals;

    // Calculate the postion of locals[0]. This is painful because of
    // stack alignment (same as ia64). The problem is that we can
    // not compute the location of locals from fp(). fp() will account
    // for the extra locals but it also accounts for aligning the stack
    // and we can't determine if the locals[0] was misaligned but max_locals
    // was enough to have the
    // calculate postion of locals. fp already accounts for extra locals.
    // +2 for the static long no_params() issue.

    if (caller->is_interpreted_frame()) {
      // locals must agree with the caller because it will be used to set the
      // caller's tos when we return.
      interpreterState prev  = caller->get_interpreterState();
      // stack() is prepushed.
      locals = prev->stack() + method->size_of_parameters();
    } else {
      // Lay out locals block in the caller adjacent to the register window save area.
      //
      // Compiled frames do not allocate a varargs area which is why this if
      // statement is needed.
      //
      intptr_t* fp = interpreter_frame->fp();
2270
      int local_words = method->max_locals() * Interpreter::stackElementWords;
D
duke 已提交
2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304

      if (caller->is_compiled_frame()) {
        locals = fp + frame::register_save_words + local_words - 1;
      } else {
        locals = fp + frame::memory_parameter_word_sp_offset + local_words - 1;
      }

    }
    // END MUCHO HACK

    intptr_t* monitor_base = (intptr_t*) cur_state;
    intptr_t* stack_base =  monitor_base - monitor_size;
    /* +1 because stack is always prepushed */
    intptr_t* stack = stack_base - (tempcount + 1);


    BytecodeInterpreter::layout_interpreterState(cur_state,
                                          caller,
                                          interpreter_frame,
                                          method,
                                          locals,
                                          stack,
                                          stack_base,
                                          monitor_base,
                                          frame_bottom,
                                          is_top_frame);

    BytecodeInterpreter::pd_layout_interpreterState(cur_state, interpreter_return_address, interpreter_frame->fp());

  }
  return frame_words;
}

#endif // CC_INTERP