assembler_x86.cpp 236.8 KB
Newer Older
D
duke 已提交
1
/*
2
 * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
D
duke 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

#include "incls/_precompiled.incl"
26
#include "incls/_assembler_x86.cpp.incl"
D
duke 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

// Implementation of AddressLiteral

AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
  _is_lval = false;
  _target = target;
  switch (rtype) {
  case relocInfo::oop_type:
    // Oops are a special case. Normally they would be their own section
    // but in cases like icBuffer they are literals in the code stream that
    // we don't have a section for. We use none so that we get a literal address
    // which is always patchable.
    break;
  case relocInfo::external_word_type:
    _rspec = external_word_Relocation::spec(target);
    break;
  case relocInfo::internal_word_type:
    _rspec = internal_word_Relocation::spec(target);
    break;
  case relocInfo::opt_virtual_call_type:
    _rspec = opt_virtual_call_Relocation::spec();
    break;
  case relocInfo::static_call_type:
    _rspec = static_call_Relocation::spec();
    break;
  case relocInfo::runtime_call_type:
    _rspec = runtime_call_Relocation::spec();
    break;
55 56 57 58
  case relocInfo::poll_type:
  case relocInfo::poll_return_type:
    _rspec = Relocation::spec_simple(rtype);
    break;
D
duke 已提交
59 60 61 62 63 64 65 66 67 68 69
  case relocInfo::none:
    break;
  default:
    ShouldNotReachHere();
    break;
  }
}

// Implementation of Address

#ifdef _LP64
70 71

Address Address::make_array(ArrayAddress adr) {
D
duke 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
  // Not implementable on 64bit machines
  // Should have been handled higher up the call chain.
  ShouldNotReachHere();
  return Address();
}

// exceedingly dangerous constructor
Address::Address(int disp, address loc, relocInfo::relocType rtype) {
  _base  = noreg;
  _index = noreg;
  _scale = no_scale;
  _disp  = disp;
  switch (rtype) {
    case relocInfo::external_word_type:
      _rspec = external_word_Relocation::spec(loc);
      break;
    case relocInfo::internal_word_type:
      _rspec = internal_word_Relocation::spec(loc);
      break;
    case relocInfo::runtime_call_type:
      // HMM
      _rspec = runtime_call_Relocation::spec();
      break;
95 96 97 98
    case relocInfo::poll_type:
    case relocInfo::poll_return_type:
      _rspec = Relocation::spec_simple(rtype);
      break;
D
duke 已提交
99 100 101 102 103 104
    case relocInfo::none:
      break;
    default:
      ShouldNotReachHere();
  }
}
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
#else // LP64

Address Address::make_array(ArrayAddress adr) {
  AddressLiteral base = adr.base();
  Address index = adr.index();
  assert(index._disp == 0, "must not have disp"); // maybe it can?
  Address array(index._base, index._index, index._scale, (intptr_t) base.target());
  array._rspec = base._rspec;
  return array;
}

// exceedingly dangerous constructor
Address::Address(address loc, RelocationHolder spec) {
  _base  = noreg;
  _index = noreg;
  _scale = no_scale;
  _disp  = (intptr_t) loc;
  _rspec = spec;
}

#endif // _LP64


D
duke 已提交
128 129 130 131

// Convert the raw encoding form into the form expected by the constructor for
// Address.  An index of 4 (rsp) corresponds to having no index, so convert
// that to noreg for the Address constructor.
132 133 134 135 136
Address Address::make_raw(int base, int index, int scale, int disp, bool disp_is_oop) {
  RelocationHolder rspec;
  if (disp_is_oop) {
    rspec = Relocation::spec_simple(relocInfo::oop_type);
  }
D
duke 已提交
137 138 139
  bool valid_index = index != rsp->encoding();
  if (valid_index) {
    Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
140
    madr._rspec = rspec;
D
duke 已提交
141 142 143
    return madr;
  } else {
    Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
144
    madr._rspec = rspec;
D
duke 已提交
145 146 147 148 149
    return madr;
  }
}

// Implementation of Assembler
150

D
duke 已提交
151 152 153 154
int AbstractAssembler::code_fill_byte() {
  return (u_char)'\xF4'; // hlt
}

155 156 157 158 159
// make this go away someday
void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
  if (rtype == relocInfo::none)
        emit_long(data);
  else  emit_data(data, Relocation::spec_simple(rtype), format);
D
duke 已提交
160 161
}

162 163
void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
  assert(imm_operand == 0, "default format must be immediate in this file");
D
duke 已提交
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
  assert(inst_mark() != NULL, "must be inside InstructionMark");
  if (rspec.type() !=  relocInfo::none) {
    #ifdef ASSERT
      check_relocation(rspec, format);
    #endif
    // Do not use AbstractAssembler::relocate, which is not intended for
    // embedded words.  Instead, relocate to the enclosing instruction.

    // hack. call32 is too wide for mask so use disp32
    if (format == call32_operand)
      code_section()->relocate(inst_mark(), rspec, disp32_operand);
    else
      code_section()->relocate(inst_mark(), rspec, format);
  }
  emit_long(data);
}

181 182 183 184
static int encode(Register r) {
  int enc = r->encoding();
  if (enc >= 8) {
    enc -= 8;
D
duke 已提交
185
  }
186
  return enc;
D
duke 已提交
187 188
}

189 190 191 192 193 194
static int encode(XMMRegister r) {
  int enc = r->encoding();
  if (enc >= 8) {
    enc -= 8;
  }
  return enc;
D
duke 已提交
195 196 197
}

void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
198
  assert(dst->has_byte_register(), "must have byte register");
D
duke 已提交
199 200 201 202
  assert(isByte(op1) && isByte(op2), "wrong opcode");
  assert(isByte(imm8), "not a byte");
  assert((op1 & 0x01) == 0, "should be 8bit operation");
  emit_byte(op1);
203
  emit_byte(op2 | encode(dst));
D
duke 已提交
204 205 206
  emit_byte(imm8);
}

207 208

void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
D
duke 已提交
209 210 211 212 213
  assert(isByte(op1) && isByte(op2), "wrong opcode");
  assert((op1 & 0x01) == 1, "should be 32bit operation");
  assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
  if (is8bit(imm32)) {
    emit_byte(op1 | 0x02); // set sign bit
214
    emit_byte(op2 | encode(dst));
D
duke 已提交
215 216 217
    emit_byte(imm32 & 0xFF);
  } else {
    emit_byte(op1);
218
    emit_byte(op2 | encode(dst));
D
duke 已提交
219 220 221 222 223
    emit_long(imm32);
  }
}

// immediate-to-memory forms
224
void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
D
duke 已提交
225 226 227 228 229 230 231 232 233 234 235 236 237
  assert((op1 & 0x01) == 1, "should be 32bit operation");
  assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
  if (is8bit(imm32)) {
    emit_byte(op1 | 0x02); // set sign bit
    emit_operand(rm, adr, 1);
    emit_byte(imm32 & 0xFF);
  } else {
    emit_byte(op1);
    emit_operand(rm, adr, 4);
    emit_long(imm32);
  }
}

238 239 240 241 242 243 244 245 246 247 248
void Assembler::emit_arith(int op1, int op2, Register dst, jobject obj) {
  LP64_ONLY(ShouldNotReachHere());
  assert(isByte(op1) && isByte(op2), "wrong opcode");
  assert((op1 & 0x01) == 1, "should be 32bit operation");
  assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
  InstructionMark im(this);
  emit_byte(op1);
  emit_byte(op2 | encode(dst));
  emit_data((intptr_t)obj, relocInfo::oop_type, 0);
}

D
duke 已提交
249 250 251 252

void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
  assert(isByte(op1) && isByte(op2), "wrong opcode");
  emit_byte(op1);
253
  emit_byte(op2 | encode(dst) << 3 | encode(src));
D
duke 已提交
254 255
}

256

D
duke 已提交
257 258 259 260 261
void Assembler::emit_operand(Register reg, Register base, Register index,
                             Address::ScaleFactor scale, int disp,
                             RelocationHolder const& rspec,
                             int rip_relative_correction) {
  relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
262 263 264 265 266 267 268

  // Encode the registers as needed in the fields they are used in

  int regenc = encode(reg) << 3;
  int indexenc = index->is_valid() ? encode(index) << 3 : 0;
  int baseenc = base->is_valid() ? encode(base) : 0;

D
duke 已提交
269 270 271 272 273
  if (base->is_valid()) {
    if (index->is_valid()) {
      assert(scale != Address::no_scale, "inconsistent address");
      // [base + index*scale + disp]
      if (disp == 0 && rtype == relocInfo::none  &&
274
          base != rbp LP64_ONLY(&& base != r13)) {
D
duke 已提交
275 276 277
        // [base + index*scale]
        // [00 reg 100][ss index base]
        assert(index != rsp, "illegal addressing mode");
278 279
        emit_byte(0x04 | regenc);
        emit_byte(scale << 6 | indexenc | baseenc);
D
duke 已提交
280 281 282 283
      } else if (is8bit(disp) && rtype == relocInfo::none) {
        // [base + index*scale + imm8]
        // [01 reg 100][ss index base] imm8
        assert(index != rsp, "illegal addressing mode");
284 285
        emit_byte(0x44 | regenc);
        emit_byte(scale << 6 | indexenc | baseenc);
D
duke 已提交
286 287 288 289 290
        emit_byte(disp & 0xFF);
      } else {
        // [base + index*scale + disp32]
        // [10 reg 100][ss index base] disp32
        assert(index != rsp, "illegal addressing mode");
291 292
        emit_byte(0x84 | regenc);
        emit_byte(scale << 6 | indexenc | baseenc);
D
duke 已提交
293 294
        emit_data(disp, rspec, disp32_operand);
      }
295
    } else if (base == rsp LP64_ONLY(|| base == r12)) {
D
duke 已提交
296 297 298 299
      // [rsp + disp]
      if (disp == 0 && rtype == relocInfo::none) {
        // [rsp]
        // [00 reg 100][00 100 100]
300
        emit_byte(0x04 | regenc);
D
duke 已提交
301 302 303 304
        emit_byte(0x24);
      } else if (is8bit(disp) && rtype == relocInfo::none) {
        // [rsp + imm8]
        // [01 reg 100][00 100 100] disp8
305
        emit_byte(0x44 | regenc);
D
duke 已提交
306 307 308 309 310
        emit_byte(0x24);
        emit_byte(disp & 0xFF);
      } else {
        // [rsp + imm32]
        // [10 reg 100][00 100 100] disp32
311
        emit_byte(0x84 | regenc);
D
duke 已提交
312 313 314 315 316
        emit_byte(0x24);
        emit_data(disp, rspec, disp32_operand);
      }
    } else {
      // [base + disp]
317
      assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
D
duke 已提交
318
      if (disp == 0 && rtype == relocInfo::none &&
319
          base != rbp LP64_ONLY(&& base != r13)) {
D
duke 已提交
320 321
        // [base]
        // [00 reg base]
322
        emit_byte(0x00 | regenc | baseenc);
D
duke 已提交
323 324 325
      } else if (is8bit(disp) && rtype == relocInfo::none) {
        // [base + disp8]
        // [01 reg base] disp8
326
        emit_byte(0x40 | regenc | baseenc);
D
duke 已提交
327 328 329 330
        emit_byte(disp & 0xFF);
      } else {
        // [base + disp32]
        // [10 reg base] disp32
331
        emit_byte(0x80 | regenc | baseenc);
D
duke 已提交
332 333 334 335 336 337 338 339 340
        emit_data(disp, rspec, disp32_operand);
      }
    }
  } else {
    if (index->is_valid()) {
      assert(scale != Address::no_scale, "inconsistent address");
      // [index*scale + disp]
      // [00 reg 100][ss index 101] disp32
      assert(index != rsp, "illegal addressing mode");
341 342
      emit_byte(0x04 | regenc);
      emit_byte(scale << 6 | indexenc | 0x05);
D
duke 已提交
343 344
      emit_data(disp, rspec, disp32_operand);
    } else if (rtype != relocInfo::none ) {
345
      // [disp] (64bit) RIP-RELATIVE (32bit) abs
D
duke 已提交
346 347
      // [00 000 101] disp32

348
      emit_byte(0x05 | regenc);
D
duke 已提交
349 350 351 352 353 354 355 356
      // Note that the RIP-rel. correction applies to the generated
      // disp field, but _not_ to the target address in the rspec.

      // disp was created by converting the target address minus the pc
      // at the start of the instruction. That needs more correction here.
      // intptr_t disp = target - next_ip;
      assert(inst_mark() != NULL, "must be inside InstructionMark");
      address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
357 358 359
      int64_t adjusted = disp;
      // Do rip-rel adjustment for 64bit
      LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
D
duke 已提交
360 361
      assert(is_simm32(adjusted),
             "must be 32bit offset (RIP relative address)");
362
      emit_data((int32_t) adjusted, rspec, disp32_operand);
D
duke 已提交
363 364

    } else {
365
      // 32bit never did this, did everything as the rip-rel/disp code above
D
duke 已提交
366 367
      // [disp] ABSOLUTE
      // [00 reg 100][00 100 101] disp32
368
      emit_byte(0x04 | regenc);
D
duke 已提交
369 370 371 372 373 374 375 376
      emit_byte(0x25);
      emit_data(disp, rspec, disp32_operand);
    }
  }
}

void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
                             Address::ScaleFactor scale, int disp,
377 378
                             RelocationHolder const& rspec) {
  emit_operand((Register)reg, base, index, scale, disp, rspec);
D
duke 已提交
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
}

// Secret local extension to Assembler::WhichOperand:
#define end_pc_operand (_WhichOperand_limit)

address Assembler::locate_operand(address inst, WhichOperand which) {
  // Decode the given instruction, and return the address of
  // an embedded 32-bit operand word.

  // If "which" is disp32_operand, selects the displacement portion
  // of an effective address specifier.
  // If "which" is imm64_operand, selects the trailing immediate constant.
  // If "which" is call32_operand, selects the displacement of a call or jump.
  // Caller is responsible for ensuring that there is such an operand,
  // and that it is 32/64 bits wide.

  // If "which" is end_pc_operand, find the end of the instruction.

  address ip = inst;
  bool is_64bit = false;

  debug_only(bool has_disp32 = false);
  int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn

  again_after_prefix:
  switch (0xFF & *ip++) {

  // These convenience macros generate groups of "case" labels for the switch.
#define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
#define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
             case (x)+4: case (x)+5: case (x)+6: case (x)+7
#define REP16(x) REP8((x)+0): \
              case REP8((x)+8)

  case CS_segment:
  case SS_segment:
  case DS_segment:
  case ES_segment:
  case FS_segment:
  case GS_segment:
419 420 421
    // Seems dubious
    LP64_ONLY(assert(false, "shouldn't have that prefix"));
    assert(ip == inst+1, "only one prefix allowed");
D
duke 已提交
422 423 424 425 426 427 428 429 430 431 432
    goto again_after_prefix;

  case 0x67:
  case REX:
  case REX_B:
  case REX_X:
  case REX_XB:
  case REX_R:
  case REX_RB:
  case REX_RX:
  case REX_RXB:
433
    NOT_LP64(assert(false, "64bit prefixes"));
D
duke 已提交
434 435 436 437 438 439 440 441 442 443
    goto again_after_prefix;

  case REX_W:
  case REX_WB:
  case REX_WX:
  case REX_WXB:
  case REX_WR:
  case REX_WRB:
  case REX_WRX:
  case REX_WRXB:
444
    NOT_LP64(assert(false, "64bit prefixes"));
D
duke 已提交
445 446 447 448 449 450 451 452 453
    is_64bit = true;
    goto again_after_prefix;

  case 0xFF: // pushq a; decl a; incl a; call a; jmp a
  case 0x88: // movb a, r
  case 0x89: // movl a, r
  case 0x8A: // movb r, a
  case 0x8B: // movl r, a
  case 0x8F: // popl a
454
    debug_only(has_disp32 = true);
D
duke 已提交
455 456 457 458 459 460
    break;

  case 0x68: // pushq #32
    if (which == end_pc_operand) {
      return ip + 4;
    }
461 462
    assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
    return ip;                  // not produced by emit_operand
D
duke 已提交
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482

  case 0x66: // movw ... (size prefix)
    again_after_size_prefix2:
    switch (0xFF & *ip++) {
    case REX:
    case REX_B:
    case REX_X:
    case REX_XB:
    case REX_R:
    case REX_RB:
    case REX_RX:
    case REX_RXB:
    case REX_W:
    case REX_WB:
    case REX_WX:
    case REX_WXB:
    case REX_WR:
    case REX_WRB:
    case REX_WRX:
    case REX_WRXB:
483
      NOT_LP64(assert(false, "64bit prefix found"));
D
duke 已提交
484 485 486
      goto again_after_size_prefix2;
    case 0x8B: // movw r, a
    case 0x89: // movw a, r
487
      debug_only(has_disp32 = true);
D
duke 已提交
488 489
      break;
    case 0xC7: // movw a, #16
490
      debug_only(has_disp32 = true);
D
duke 已提交
491 492 493 494 495 496 497 498 499 500 501 502
      tail_size = 2;  // the imm16
      break;
    case 0x0F: // several SSE/SSE2 variants
      ip--;    // reparse the 0x0F
      goto again_after_prefix;
    default:
      ShouldNotReachHere();
    }
    break;

  case REP8(0xB8): // movl/q r, #32/#64(oop?)
    if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
503 504 505 506 507
    // these asserts are somewhat nonsensical
#ifndef _LP64
    assert(which == imm_operand || which == disp32_operand, "");
#else
    assert((which == call32_operand || which == imm_operand) && is_64bit ||
508
           which == narrow_oop_operand && !is_64bit, "");
509
#endif // _LP64
D
duke 已提交
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
    return ip;

  case 0x69: // imul r, a, #32
  case 0xC7: // movl a, #32(oop?)
    tail_size = 4;
    debug_only(has_disp32 = true); // has both kinds of operands!
    break;

  case 0x0F: // movx..., etc.
    switch (0xFF & *ip++) {
    case 0x12: // movlps
    case 0x28: // movaps
    case 0x2E: // ucomiss
    case 0x2F: // comiss
    case 0x54: // andps
525 526
    case 0x55: // andnps
    case 0x56: // orps
D
duke 已提交
527 528 529 530
    case 0x57: // xorps
    case 0x6E: // movd
    case 0x7E: // movd
    case 0xAE: // ldmxcsr   a
531 532 533
      // 64bit side says it these have both operands but that doesn't
      // appear to be true
      debug_only(has_disp32 = true);
D
duke 已提交
534
      break;
535

D
duke 已提交
536 537
    case 0xAD: // shrd r, a, %cl
    case 0xAF: // imul r, a
538 539 540 541
    case 0xBE: // movsbl r, a (movsxb)
    case 0xBF: // movswl r, a (movsxw)
    case 0xB6: // movzbl r, a (movzxb)
    case 0xB7: // movzwl r, a (movzxw)
D
duke 已提交
542 543 544 545 546 547 548 549 550
    case REP16(0x40): // cmovl cc, r, a
    case 0xB0: // cmpxchgb
    case 0xB1: // cmpxchg
    case 0xC1: // xaddl
    case 0xC7: // cmpxchg8
    case REP16(0x90): // setcc a
      debug_only(has_disp32 = true);
      // fall out of the switch to decode the address
      break;
551

D
duke 已提交
552 553 554 555
    case 0xAC: // shrd r, a, #8
      debug_only(has_disp32 = true);
      tail_size = 1;  // the imm8
      break;
556

D
duke 已提交
557 558
    case REP16(0x80): // jcc rdisp32
      if (which == end_pc_operand)  return ip + 4;
559
      assert(which == call32_operand, "jcc has no disp32 or imm");
D
duke 已提交
560 561 562 563 564 565 566 567
      return ip;
    default:
      ShouldNotReachHere();
    }
    break;

  case 0x81: // addl a, #32; addl r, #32
    // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
568
    // on 32bit in the case of cmpl, the imm might be an oop
D
duke 已提交
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
    tail_size = 4;
    debug_only(has_disp32 = true); // has both kinds of operands!
    break;

  case 0x83: // addl a, #8; addl r, #8
    // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
    debug_only(has_disp32 = true); // has both kinds of operands!
    tail_size = 1;
    break;

  case 0x9B:
    switch (0xFF & *ip++) {
    case 0xD9: // fnstcw a
      debug_only(has_disp32 = true);
      break;
    default:
      ShouldNotReachHere();
    }
    break;

  case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
  case REP4(0x10): // adc...
  case REP4(0x20): // and...
  case REP4(0x30): // xor...
  case REP4(0x08): // or...
  case REP4(0x18): // sbb...
  case REP4(0x28): // sub...
  case 0xF7: // mull a
597
  case 0x8D: // lea r, a
D
duke 已提交
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
  case 0x87: // xchg r, a
  case REP4(0x38): // cmp...
  case 0x85: // test r, a
    debug_only(has_disp32 = true); // has both kinds of operands!
    break;

  case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
  case 0xC6: // movb a, #8
  case 0x80: // cmpb a, #8
  case 0x6B: // imul r, a, #8
    debug_only(has_disp32 = true); // has both kinds of operands!
    tail_size = 1; // the imm8
    break;

  case 0xE8: // call rdisp32
  case 0xE9: // jmp  rdisp32
    if (which == end_pc_operand)  return ip + 4;
615
    assert(which == call32_operand, "call has no disp32 or imm");
D
duke 已提交
616 617 618 619 620 621 622 623 624 625 626 627 628 629
    return ip;

  case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
  case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
  case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
  case 0xDD: // fld_d a; fst_d a; fstp_d a
  case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
  case 0xDF: // fild_d a; fistp_d a
  case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
  case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
  case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
    debug_only(has_disp32 = true);
    break;

630 631 632 633
  case 0xF0:                    // Lock
    assert(os::is_MP(), "only on MP");
    goto again_after_prefix;

D
duke 已提交
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
  case 0xF3:                    // For SSE
  case 0xF2:                    // For SSE2
    switch (0xFF & *ip++) {
    case REX:
    case REX_B:
    case REX_X:
    case REX_XB:
    case REX_R:
    case REX_RB:
    case REX_RX:
    case REX_RXB:
    case REX_W:
    case REX_WB:
    case REX_WX:
    case REX_WXB:
    case REX_WR:
    case REX_WRB:
    case REX_WRX:
    case REX_WRXB:
653
      NOT_LP64(assert(false, "found 64bit prefix"));
D
duke 已提交
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
      ip++;
    default:
      ip++;
    }
    debug_only(has_disp32 = true); // has both kinds of operands!
    break;

  default:
    ShouldNotReachHere();

#undef REP8
#undef REP16
  }

  assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
669 670 671 672 673 674
#ifdef _LP64
  assert(which != imm_operand, "instruction is not a movq reg, imm64");
#else
  // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
  assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
#endif // LP64
D
duke 已提交
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
  assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");

  // parse the output of emit_operand
  int op2 = 0xFF & *ip++;
  int base = op2 & 0x07;
  int op3 = -1;
  const int b100 = 4;
  const int b101 = 5;
  if (base == b100 && (op2 >> 6) != 3) {
    op3 = 0xFF & *ip++;
    base = op3 & 0x07;   // refetch the base
  }
  // now ip points at the disp (if any)

  switch (op2 >> 6) {
  case 0:
    // [00 reg  100][ss index base]
    // [00 reg  100][00   100  esp]
    // [00 reg base]
    // [00 reg  100][ss index  101][disp32]
    // [00 reg  101]               [disp32]

    if (base == b101) {
      if (which == disp32_operand)
        return ip;              // caller wants the disp32
      ip += 4;                  // skip the disp32
    }
    break;

  case 1:
    // [01 reg  100][ss index base][disp8]
    // [01 reg  100][00   100  esp][disp8]
    // [01 reg base]               [disp8]
    ip += 1;                    // skip the disp8
    break;

  case 2:
    // [10 reg  100][ss index base][disp32]
    // [10 reg  100][00   100  esp][disp32]
    // [10 reg base]               [disp32]
    if (which == disp32_operand)
      return ip;                // caller wants the disp32
    ip += 4;                    // skip the disp32
    break;

  case 3:
    // [11 reg base]  (not a memory addressing mode)
    break;
  }

  if (which == end_pc_operand) {
    return ip + tail_size;
  }

729
#ifdef _LP64
730
  assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
731 732 733
#else
  assert(which == imm_operand, "instruction has only an imm field");
#endif // LP64
D
duke 已提交
734 735 736 737 738 739 740 741
  return ip;
}

address Assembler::locate_next_instruction(address inst) {
  // Secretly share code with locate_operand:
  return locate_operand(inst, end_pc_operand);
}

742

D
duke 已提交
743 744 745
#ifdef ASSERT
void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
  address inst = inst_mark();
746
  assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
D
duke 已提交
747 748 749 750 751 752
  address opnd;

  Relocation* r = rspec.reloc();
  if (r->type() == relocInfo::none) {
    return;
  } else if (r->is_call() || format == call32_operand) {
753
    // assert(format == imm32_operand, "cannot specify a nonzero format");
D
duke 已提交
754 755
    opnd = locate_operand(inst, call32_operand);
  } else if (r->is_data()) {
756 757 758
    assert(format == imm_operand || format == disp32_operand
           LP64_ONLY(|| format == narrow_oop_operand), "format ok");
    opnd = locate_operand(inst, (WhichOperand)format);
D
duke 已提交
759
  } else {
760
    assert(format == imm_operand, "cannot specify a format");
D
duke 已提交
761 762 763 764
    return;
  }
  assert(opnd == pc(), "must put operand where relocs can find it");
}
765
#endif // ASSERT
D
duke 已提交
766

767 768 769 770 771
void Assembler::emit_operand32(Register reg, Address adr) {
  assert(reg->encoding() < 8, "no extended registers");
  assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
  emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
               adr._rspec);
D
duke 已提交
772 773 774 775 776 777 778 779 780
}

void Assembler::emit_operand(Register reg, Address adr,
                             int rip_relative_correction) {
  emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
               adr._rspec,
               rip_relative_correction);
}

781
void Assembler::emit_operand(XMMRegister reg, Address adr) {
D
duke 已提交
782
  emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
783 784 785 786 787 788 789 790 791 792 793 794 795
               adr._rspec);
}

// MMX operations
void Assembler::emit_operand(MMXRegister reg, Address adr) {
  assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
  emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
}

// work around gcc (3.2.1-7a) bug
void Assembler::emit_operand(Address adr, MMXRegister reg) {
  assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
  emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
D
duke 已提交
796 797
}

798

D
duke 已提交
799 800 801 802 803 804 805 806
void Assembler::emit_farith(int b1, int b2, int i) {
  assert(isByte(b1) && isByte(b2), "wrong opcode");
  assert(0 <= i &&  i < 8, "illegal stack offset");
  emit_byte(b1);
  emit_byte(b2 + i);
}


807
// Now the Assembler instruction (identical for 32/64 bits)
D
duke 已提交
808

809 810 811
void Assembler::adcl(Register dst, int32_t imm32) {
  prefix(dst);
  emit_arith(0x81, 0xD0, dst, imm32);
D
duke 已提交
812 813
}

814 815 816 817 818
void Assembler::adcl(Register dst, Address src) {
  InstructionMark im(this);
  prefix(src, dst);
  emit_byte(0x13);
  emit_operand(dst, src);
D
duke 已提交
819 820
}

821 822 823
void Assembler::adcl(Register dst, Register src) {
  (void) prefix_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x13, 0xC0, dst, src);
D
duke 已提交
824 825
}

826 827 828 829
void Assembler::addl(Address dst, int32_t imm32) {
  InstructionMark im(this);
  prefix(dst);
  emit_arith_operand(0x81, rax, dst, imm32);
D
duke 已提交
830 831
}

832 833 834 835 836
void Assembler::addl(Address dst, Register src) {
  InstructionMark im(this);
  prefix(dst, src);
  emit_byte(0x01);
  emit_operand(src, dst);
D
duke 已提交
837 838
}

839 840 841 842
void Assembler::addl(Register dst, int32_t imm32) {
  prefix(dst);
  emit_arith(0x81, 0xC0, dst, imm32);
}
D
duke 已提交
843

844 845 846 847 848
void Assembler::addl(Register dst, Address src) {
  InstructionMark im(this);
  prefix(src, dst);
  emit_byte(0x03);
  emit_operand(dst, src);
D
duke 已提交
849 850
}

851 852 853
void Assembler::addl(Register dst, Register src) {
  (void) prefix_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x03, 0xC0, dst, src);
D
duke 已提交
854 855
}

856 857 858 859 860 861
void Assembler::addr_nop_4() {
  // 4 bytes: NOP DWORD PTR [EAX+0]
  emit_byte(0x0F);
  emit_byte(0x1F);
  emit_byte(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
  emit_byte(0);    // 8-bits offset (1 byte)
D
duke 已提交
862 863
}

864 865 866 867 868 869 870
void Assembler::addr_nop_5() {
  // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
  emit_byte(0x0F);
  emit_byte(0x1F);
  emit_byte(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
  emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
  emit_byte(0);    // 8-bits offset (1 byte)
D
duke 已提交
871 872
}

873 874 875 876 877 878
void Assembler::addr_nop_7() {
  // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
  emit_byte(0x0F);
  emit_byte(0x1F);
  emit_byte(0x80); // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
  emit_long(0);    // 32-bits offset (4 bytes)
D
duke 已提交
879 880
}

881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
void Assembler::addr_nop_8() {
  // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
  emit_byte(0x0F);
  emit_byte(0x1F);
  emit_byte(0x84); // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
  emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
  emit_long(0);    // 32-bits offset (4 bytes)
}

void Assembler::addsd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_byte(0xF2);
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
  emit_byte(0x58);
  emit_byte(0xC0 | encode);
}

void Assembler::addsd(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
D
duke 已提交
901
  InstructionMark im(this);
902 903 904 905
  emit_byte(0xF2);
  prefix(src, dst);
  emit_byte(0x0F);
  emit_byte(0x58);
D
duke 已提交
906 907 908
  emit_operand(dst, src);
}

909 910 911 912 913 914 915 916 917 918 919
void Assembler::addss(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
  emit_byte(0xF3);
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
  emit_byte(0x58);
  emit_byte(0xC0 | encode);
}

void Assembler::addss(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
D
duke 已提交
920
  InstructionMark im(this);
921 922 923 924 925 926 927 928
  emit_byte(0xF3);
  prefix(src, dst);
  emit_byte(0x0F);
  emit_byte(0x58);
  emit_operand(dst, src);
}

void Assembler::andl(Register dst, int32_t imm32) {
D
duke 已提交
929
  prefix(dst);
930
  emit_arith(0x81, 0xE0, dst, imm32);
D
duke 已提交
931 932
}

933
void Assembler::andl(Register dst, Address src) {
D
duke 已提交
934
  InstructionMark im(this);
935 936 937
  prefix(src, dst);
  emit_byte(0x23);
  emit_operand(dst, src);
D
duke 已提交
938 939
}

940 941 942
void Assembler::andl(Register dst, Register src) {
  (void) prefix_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x23, 0xC0, dst, src);
D
duke 已提交
943 944
}

945 946
void Assembler::andpd(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
D
duke 已提交
947 948 949
  InstructionMark im(this);
  emit_byte(0x66);
  prefix(src, dst);
950 951
  emit_byte(0x0F);
  emit_byte(0x54);
D
duke 已提交
952 953 954
  emit_operand(dst, src);
}

955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
void Assembler::bswapl(Register reg) { // bswap
  int encode = prefix_and_encode(reg->encoding());
  emit_byte(0x0F);
  emit_byte(0xC8 | encode);
}

void Assembler::call(Label& L, relocInfo::relocType rtype) {
  // suspect disp32 is always good
  int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);

  if (L.is_bound()) {
    const int long_size = 5;
    int offs = (int)( target(L) - pc() );
    assert(offs <= 0, "assembler error");
    InstructionMark im(this);
    // 1110 1000 #32-bit disp
    emit_byte(0xE8);
    emit_data(offs - long_size, rtype, operand);
  } else {
    InstructionMark im(this);
    // 1110 1000 #32-bit disp
    L.add_patch_at(code(), locator());

    emit_byte(0xE8);
    emit_data(int(0), rtype, operand);
  }
}

void Assembler::call(Register dst) {
  // This was originally using a 32bit register encoding
  // and surely we want 64bit!
  // this is a 32bit encoding but in 64bit mode the default
  // operand size is 64bit so there is no need for the
  // wide prefix. So prefix only happens if we use the
  // new registers. Much like push/pop.
  int x = offset();
  // this may be true but dbx disassembles it as if it
  // were 32bits...
  // int encode = prefix_and_encode(dst->encoding());
  // if (offset() != x) assert(dst->encoding() >= 8, "what?");
  int encode = prefixq_and_encode(dst->encoding());

  emit_byte(0xFF);
  emit_byte(0xD0 | encode);
}


void Assembler::call(Address adr) {
D
duke 已提交
1003
  InstructionMark im(this);
1004 1005 1006
  prefix(adr);
  emit_byte(0xFF);
  emit_operand(rdx, adr);
D
duke 已提交
1007 1008
}

1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
  assert(entry != NULL, "call most probably wrong");
  InstructionMark im(this);
  emit_byte(0xE8);
  intptr_t disp = entry - (_code_pos + sizeof(int32_t));
  assert(is_simm32(disp), "must be 32bit offset (call2)");
  // Technically, should use call32_operand, but this format is
  // implied by the fact that we're emitting a call instruction.

  int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
  emit_data((int) disp, rspec, operand);
D
duke 已提交
1020 1021
}

1022 1023 1024 1025 1026 1027
void Assembler::cdql() {
  emit_byte(0x99);
}

void Assembler::cmovl(Condition cc, Register dst, Register src) {
  NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
D
duke 已提交
1028
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
1029 1030
  emit_byte(0x0F);
  emit_byte(0x40 | cc);
D
duke 已提交
1031 1032 1033
  emit_byte(0xC0 | encode);
}

1034 1035 1036

void Assembler::cmovl(Condition cc, Register dst, Address src) {
  NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
D
duke 已提交
1037
  prefix(src, dst);
1038 1039
  emit_byte(0x0F);
  emit_byte(0x40 | cc);
D
duke 已提交
1040 1041 1042
  emit_operand(dst, src);
}

1043
void Assembler::cmpb(Address dst, int imm8) {
D
duke 已提交
1044 1045
  InstructionMark im(this);
  prefix(dst);
1046 1047 1048
  emit_byte(0x80);
  emit_operand(rdi, dst, 1);
  emit_byte(imm8);
D
duke 已提交
1049 1050
}

1051
void Assembler::cmpl(Address dst, int32_t imm32) {
D
duke 已提交
1052
  InstructionMark im(this);
1053 1054 1055 1056
  prefix(dst);
  emit_byte(0x81);
  emit_operand(rdi, dst, 4);
  emit_long(imm32);
D
duke 已提交
1057 1058
}

1059 1060 1061
void Assembler::cmpl(Register dst, int32_t imm32) {
  prefix(dst);
  emit_arith(0x81, 0xF8, dst, imm32);
D
duke 已提交
1062 1063
}

1064 1065 1066
void Assembler::cmpl(Register dst, Register src) {
  (void) prefix_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x3B, 0xC0, dst, src);
D
duke 已提交
1067 1068 1069
}


1070
void Assembler::cmpl(Register dst, Address  src) {
D
duke 已提交
1071
  InstructionMark im(this);
1072 1073
  prefix(src, dst);
  emit_byte(0x3B);
D
duke 已提交
1074 1075 1076
  emit_operand(dst, src);
}

1077
void Assembler::cmpw(Address dst, int imm16) {
D
duke 已提交
1078
  InstructionMark im(this);
1079 1080 1081 1082 1083
  assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
  emit_byte(0x66);
  emit_byte(0x81);
  emit_operand(rdi, dst, 2);
  emit_word(imm16);
D
duke 已提交
1084 1085
}

1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
// The 32-bit cmpxchg compares the value at adr with the contents of rax,
// and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
// The ZF is set if the compared values were equal, and cleared otherwise.
void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
  if (Atomics & 2) {
     // caveat: no instructionmark, so this isn't relocatable.
     // Emit a synthetic, non-atomic, CAS equivalent.
     // Beware.  The synthetic form sets all ICCs, not just ZF.
     // cmpxchg r,[m] is equivalent to rax, = CAS (m, rax, r)
     cmpl(rax, adr);
     movl(rax, adr);
     if (reg != rax) {
        Label L ;
        jcc(Assembler::notEqual, L);
        movl(adr, reg);
        bind(L);
     }
  } else {
     InstructionMark im(this);
     prefix(adr, reg);
     emit_byte(0x0F);
     emit_byte(0xB1);
     emit_operand(reg, adr);
  }
D
duke 已提交
1110 1111
}

1112 1113 1114 1115 1116 1117
void Assembler::comisd(XMMRegister dst, Address src) {
  // NOTE: dbx seems to decode this as comiss even though the
  // 0x66 is there. Strangly ucomisd comes out correct
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_byte(0x66);
  comiss(dst, src);
D
duke 已提交
1118 1119
}

1120 1121
void Assembler::comiss(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
D
duke 已提交
1122 1123 1124 1125

  InstructionMark im(this);
  prefix(src, dst);
  emit_byte(0x0F);
1126
  emit_byte(0x2F);
D
duke 已提交
1127 1128 1129
  emit_operand(dst, src);
}

1130 1131 1132
void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_byte(0xF3);
D
duke 已提交
1133 1134
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
1135
  emit_byte(0xE6);
D
duke 已提交
1136 1137 1138
  emit_byte(0xC0 | encode);
}

1139 1140 1141
void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
D
duke 已提交
1142
  emit_byte(0x0F);
1143
  emit_byte(0x5B);
D
duke 已提交
1144 1145 1146
  emit_byte(0xC0 | encode);
}

1147 1148 1149
void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_byte(0xF2);
D
duke 已提交
1150 1151
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
1152
  emit_byte(0x5A);
D
duke 已提交
1153 1154 1155
  emit_byte(0xC0 | encode);
}

1156 1157 1158
void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_byte(0xF2);
D
duke 已提交
1159 1160
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
1161
  emit_byte(0x2A);
D
duke 已提交
1162 1163 1164
  emit_byte(0xC0 | encode);
}

1165 1166
void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
D
duke 已提交
1167
  emit_byte(0xF3);
1168
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
D
duke 已提交
1169
  emit_byte(0x0F);
1170 1171
  emit_byte(0x2A);
  emit_byte(0xC0 | encode);
D
duke 已提交
1172 1173
}

1174 1175
void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
D
duke 已提交
1176 1177 1178
  emit_byte(0xF3);
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
1179
  emit_byte(0x5A);
D
duke 已提交
1180 1181 1182
  emit_byte(0xC0 | encode);
}

1183 1184
void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
D
duke 已提交
1185 1186 1187
  emit_byte(0xF2);
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
1188
  emit_byte(0x2C);
D
duke 已提交
1189 1190 1191
  emit_byte(0xC0 | encode);
}

1192 1193 1194 1195
void Assembler::cvttss2sil(Register dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
  emit_byte(0xF3);
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
D
duke 已提交
1196
  emit_byte(0x0F);
1197
  emit_byte(0x2C);
D
duke 已提交
1198 1199 1200
  emit_byte(0xC0 | encode);
}

1201 1202 1203 1204 1205 1206
void Assembler::decl(Address dst) {
  // Don't use it directly. Use MacroAssembler::decrement() instead.
  InstructionMark im(this);
  prefix(dst);
  emit_byte(0xFF);
  emit_operand(rcx, dst);
D
duke 已提交
1207 1208
}

1209 1210
void Assembler::divsd(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
D
duke 已提交
1211
  InstructionMark im(this);
1212
  emit_byte(0xF2);
D
duke 已提交
1213 1214
  prefix(src, dst);
  emit_byte(0x0F);
1215
  emit_byte(0x5E);
D
duke 已提交
1216 1217 1218
  emit_operand(dst, src);
}

1219 1220 1221
void Assembler::divsd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_byte(0xF2);
D
duke 已提交
1222 1223
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
1224
  emit_byte(0x5E);
D
duke 已提交
1225 1226 1227
  emit_byte(0xC0 | encode);
}

1228 1229
void Assembler::divss(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
D
duke 已提交
1230
  InstructionMark im(this);
1231
  emit_byte(0xF3);
D
duke 已提交
1232 1233
  prefix(src, dst);
  emit_byte(0x0F);
1234
  emit_byte(0x5E);
D
duke 已提交
1235 1236 1237
  emit_operand(dst, src);
}

1238 1239 1240 1241
void Assembler::divss(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
  emit_byte(0xF3);
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
D
duke 已提交
1242
  emit_byte(0x0F);
1243
  emit_byte(0x5E);
D
duke 已提交
1244 1245 1246
  emit_byte(0xC0 | encode);
}

1247 1248
void Assembler::emms() {
  NOT_LP64(assert(VM_Version::supports_mmx(), ""));
D
duke 已提交
1249
  emit_byte(0x0F);
1250
  emit_byte(0x77);
D
duke 已提交
1251 1252
}

1253 1254
void Assembler::hlt() {
  emit_byte(0xF4);
D
duke 已提交
1255 1256
}

1257 1258 1259 1260
void Assembler::idivl(Register src) {
  int encode = prefix_and_encode(src->encoding());
  emit_byte(0xF7);
  emit_byte(0xF8 | encode);
D
duke 已提交
1261 1262
}

1263
void Assembler::imull(Register dst, Register src) {
D
duke 已提交
1264 1265
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
1266
  emit_byte(0xAF);
D
duke 已提交
1267 1268 1269 1270
  emit_byte(0xC0 | encode);
}


1271
void Assembler::imull(Register dst, Register src, int value) {
D
duke 已提交
1272
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
1273 1274 1275 1276 1277 1278 1279 1280 1281
  if (is8bit(value)) {
    emit_byte(0x6B);
    emit_byte(0xC0 | encode);
    emit_byte(value);
  } else {
    emit_byte(0x69);
    emit_byte(0xC0 | encode);
    emit_long(value);
  }
D
duke 已提交
1282 1283
}

1284 1285
void Assembler::incl(Address dst) {
  // Don't use it directly. Use MacroAssembler::increment() instead.
D
duke 已提交
1286
  InstructionMark im(this);
1287 1288 1289
  prefix(dst);
  emit_byte(0xFF);
  emit_operand(rax, dst);
D
duke 已提交
1290 1291
}

1292
void Assembler::jcc(Condition cc, Label& L, relocInfo::relocType rtype) {
D
duke 已提交
1293
  InstructionMark im(this);
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
  relocate(rtype);
  assert((0 <= cc) && (cc < 16), "illegal cc");
  if (L.is_bound()) {
    address dst = target(L);
    assert(dst != NULL, "jcc most probably wrong");

    const int short_size = 2;
    const int long_size = 6;
    intptr_t offs = (intptr_t)dst - (intptr_t)_code_pos;
    if (rtype == relocInfo::none && is8bit(offs - short_size)) {
      // 0111 tttn #8-bit disp
      emit_byte(0x70 | cc);
      emit_byte((offs - short_size) & 0xFF);
    } else {
      // 0000 1111 1000 tttn #32-bit disp
      assert(is_simm32(offs - long_size),
             "must be 32bit offset (call4)");
      emit_byte(0x0F);
      emit_byte(0x80 | cc);
      emit_long(offs - long_size);
    }
  } else {
    // Note: could eliminate cond. jumps to this jump if condition
    //       is the same however, seems to be rather unlikely case.
    // Note: use jccb() if label to be bound is very close to get
    //       an 8-bit displacement
    L.add_patch_at(code(), locator());
    emit_byte(0x0F);
    emit_byte(0x80 | cc);
    emit_long(0);
  }
D
duke 已提交
1325 1326
}

1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
void Assembler::jccb(Condition cc, Label& L) {
  if (L.is_bound()) {
    const int short_size = 2;
    address entry = target(L);
    assert(is8bit((intptr_t)entry - ((intptr_t)_code_pos + short_size)),
           "Dispacement too large for a short jmp");
    intptr_t offs = (intptr_t)entry - (intptr_t)_code_pos;
    // 0111 tttn #8-bit disp
    emit_byte(0x70 | cc);
    emit_byte((offs - short_size) & 0xFF);
  } else {
    InstructionMark im(this);
    L.add_patch_at(code(), locator());
    emit_byte(0x70 | cc);
    emit_byte(0);
  }
D
duke 已提交
1343 1344
}

1345
void Assembler::jmp(Address adr) {
D
duke 已提交
1346
  InstructionMark im(this);
1347 1348 1349
  prefix(adr);
  emit_byte(0xFF);
  emit_operand(rsp, adr);
D
duke 已提交
1350 1351
}

1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
void Assembler::jmp(Label& L, relocInfo::relocType rtype) {
  if (L.is_bound()) {
    address entry = target(L);
    assert(entry != NULL, "jmp most probably wrong");
    InstructionMark im(this);
    const int short_size = 2;
    const int long_size = 5;
    intptr_t offs = entry - _code_pos;
    if (rtype == relocInfo::none && is8bit(offs - short_size)) {
      emit_byte(0xEB);
      emit_byte((offs - short_size) & 0xFF);
    } else {
      emit_byte(0xE9);
      emit_long(offs - long_size);
    }
  } else {
    // By default, forward jumps are always 32-bit displacements, since
    // we can't yet know where the label will be bound.  If you're sure that
    // the forward jump will not run beyond 256 bytes, use jmpb to
    // force an 8-bit displacement.
    InstructionMark im(this);
    relocate(rtype);
    L.add_patch_at(code(), locator());
    emit_byte(0xE9);
    emit_long(0);
  }
D
duke 已提交
1378 1379
}

1380 1381 1382 1383
void Assembler::jmp(Register entry) {
  int encode = prefix_and_encode(entry->encoding());
  emit_byte(0xFF);
  emit_byte(0xE0 | encode);
D
duke 已提交
1384 1385
}

1386
void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
D
duke 已提交
1387
  InstructionMark im(this);
1388 1389 1390 1391 1392
  emit_byte(0xE9);
  assert(dest != NULL, "must have a target");
  intptr_t disp = dest - (_code_pos + sizeof(int32_t));
  assert(is_simm32(disp), "must be 32bit offset (jmp)");
  emit_data(disp, rspec.reloc(), call32_operand);
D
duke 已提交
1393 1394
}

1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
void Assembler::jmpb(Label& L) {
  if (L.is_bound()) {
    const int short_size = 2;
    address entry = target(L);
    assert(is8bit((entry - _code_pos) + short_size),
           "Dispacement too large for a short jmp");
    assert(entry != NULL, "jmp most probably wrong");
    intptr_t offs = entry - _code_pos;
    emit_byte(0xEB);
    emit_byte((offs - short_size) & 0xFF);
  } else {
    InstructionMark im(this);
    L.add_patch_at(code(), locator());
    emit_byte(0xEB);
    emit_byte(0);
  }
D
duke 已提交
1411 1412
}

1413 1414
void Assembler::ldmxcsr( Address src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
D
duke 已提交
1415
  InstructionMark im(this);
1416 1417 1418 1419
  prefix(src);
  emit_byte(0x0F);
  emit_byte(0xAE);
  emit_operand(as_Register(2), src);
D
duke 已提交
1420 1421
}

1422
void Assembler::leal(Register dst, Address src) {
D
duke 已提交
1423
  InstructionMark im(this);
1424 1425 1426 1427 1428 1429
#ifdef _LP64
  emit_byte(0x67); // addr32
  prefix(src, dst);
#endif // LP64
  emit_byte(0x8D);
  emit_operand(dst, src);
D
duke 已提交
1430 1431
}

1432 1433 1434 1435 1436 1437 1438
void Assembler::lock() {
  if (Atomics & 1) {
     // Emit either nothing, a NOP, or a NOP: prefix
     emit_byte(0x90) ;
  } else {
     emit_byte(0xF0);
  }
D
duke 已提交
1439 1440
}

1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
// Serializes memory.
void Assembler::mfence() {
    // Memory barriers are only needed on multiprocessors
  if (os::is_MP()) {
    if( LP64_ONLY(true ||) VM_Version::supports_sse2() ) {
      emit_byte( 0x0F );                // MFENCE; faster blows no regs
      emit_byte( 0xAE );
      emit_byte( 0xF0 );
    } else {
      // All usable chips support "locked" instructions which suffice
      // as barriers, and are much faster than the alternative of
      // using cpuid instruction. We use here a locked add [esp],0.
      // This is conveniently otherwise a no-op except for blowing
      // flags (which we save and restore.)
      pushf();                // Save eflags register
      lock();
      addl(Address(rsp, 0), 0);// Assert the lock# signal here
      popf();                 // Restore eflags register
    }
  }
D
duke 已提交
1461 1462
}

1463 1464
void Assembler::mov(Register dst, Register src) {
  LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
D
duke 已提交
1465 1466
}

1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
void Assembler::movapd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  int dstenc = dst->encoding();
  int srcenc = src->encoding();
  emit_byte(0x66);
  if (dstenc < 8) {
    if (srcenc >= 8) {
      prefix(REX_B);
      srcenc -= 8;
    }
  } else {
    if (srcenc < 8) {
      prefix(REX_R);
    } else {
      prefix(REX_RB);
      srcenc -= 8;
    }
    dstenc -= 8;
  }
  emit_byte(0x0F);
  emit_byte(0x28);
  emit_byte(0xC0 | dstenc << 3 | srcenc);
D
duke 已提交
1489 1490
}

1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
void Assembler::movaps(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
  int dstenc = dst->encoding();
  int srcenc = src->encoding();
  if (dstenc < 8) {
    if (srcenc >= 8) {
      prefix(REX_B);
      srcenc -= 8;
    }
  } else {
    if (srcenc < 8) {
      prefix(REX_R);
    } else {
      prefix(REX_RB);
      srcenc -= 8;
    }
    dstenc -= 8;
  }
  emit_byte(0x0F);
  emit_byte(0x28);
  emit_byte(0xC0 | dstenc << 3 | srcenc);
}

void Assembler::movb(Register dst, Address src) {
  NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
D
duke 已提交
1516
  InstructionMark im(this);
1517 1518
  prefix(src, dst, true);
  emit_byte(0x8A);
D
duke 已提交
1519 1520 1521 1522
  emit_operand(dst, src);
}


1523
void Assembler::movb(Address dst, int imm8) {
D
duke 已提交
1524
  InstructionMark im(this);
1525 1526 1527 1528
   prefix(dst);
  emit_byte(0xC6);
  emit_operand(rax, dst, 1);
  emit_byte(imm8);
D
duke 已提交
1529 1530
}

1531 1532 1533

void Assembler::movb(Address dst, Register src) {
  assert(src->has_byte_register(), "must have byte register");
D
duke 已提交
1534
  InstructionMark im(this);
1535 1536
  prefix(dst, src, true);
  emit_byte(0x88);
D
duke 已提交
1537 1538 1539
  emit_operand(src, dst);
}

1540 1541 1542 1543 1544 1545 1546
void Assembler::movdl(XMMRegister dst, Register src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_byte(0x66);
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
  emit_byte(0x6E);
  emit_byte(0xC0 | encode);
D
duke 已提交
1547 1548
}

1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
void Assembler::movdl(Register dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_byte(0x66);
  // swap src/dst to get correct prefix
  int encode = prefix_and_encode(src->encoding(), dst->encoding());
  emit_byte(0x0F);
  emit_byte(0x7E);
  emit_byte(0xC0 | encode);
}

void Assembler::movdqa(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
D
duke 已提交
1561
  InstructionMark im(this);
1562
  emit_byte(0x66);
D
duke 已提交
1563
  prefix(src, dst);
1564 1565
  emit_byte(0x0F);
  emit_byte(0x6F);
D
duke 已提交
1566 1567 1568
  emit_operand(dst, src);
}

1569 1570 1571 1572 1573 1574 1575
void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_byte(0x66);
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
  emit_byte(0x6F);
  emit_byte(0xC0 | encode);
D
duke 已提交
1576 1577
}

1578 1579
void Assembler::movdqa(Address dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
D
duke 已提交
1580
  InstructionMark im(this);
1581 1582 1583 1584 1585
  emit_byte(0x66);
  prefix(dst, src);
  emit_byte(0x0F);
  emit_byte(0x7F);
  emit_operand(src, dst);
D
duke 已提交
1586 1587
}

1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
void Assembler::movdqu(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  InstructionMark im(this);
  emit_byte(0xF3);
  prefix(src, dst);
  emit_byte(0x0F);
  emit_byte(0x6F);
  emit_operand(dst, src);
}

void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_byte(0xF3);
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
  emit_byte(0x6F);
  emit_byte(0xC0 | encode);
}

void Assembler::movdqu(Address dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  InstructionMark im(this);
  emit_byte(0xF3);
  prefix(dst, src);
  emit_byte(0x0F);
  emit_byte(0x7F);
  emit_operand(src, dst);
}

1617 1618 1619 1620 1621 1622
// Uses zero extension on 64bit

void Assembler::movl(Register dst, int32_t imm32) {
  int encode = prefix_and_encode(dst->encoding());
  emit_byte(0xB8 | encode);
  emit_long(imm32);
D
duke 已提交
1623 1624
}

1625 1626 1627 1628
void Assembler::movl(Register dst, Register src) {
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x8B);
  emit_byte(0xC0 | encode);
D
duke 已提交
1629 1630
}

1631
void Assembler::movl(Register dst, Address src) {
D
duke 已提交
1632
  InstructionMark im(this);
1633 1634
  prefix(src, dst);
  emit_byte(0x8B);
D
duke 已提交
1635 1636 1637
  emit_operand(dst, src);
}

1638 1639 1640 1641 1642 1643
void Assembler::movl(Address dst, int32_t imm32) {
  InstructionMark im(this);
  prefix(dst);
  emit_byte(0xC7);
  emit_operand(rax, dst, 4);
  emit_long(imm32);
D
duke 已提交
1644 1645
}

1646 1647 1648 1649 1650
void Assembler::movl(Address dst, Register src) {
  InstructionMark im(this);
  prefix(dst, src);
  emit_byte(0x89);
  emit_operand(src, dst);
D
duke 已提交
1651 1652
}

1653 1654 1655 1656 1657
// New cpus require to use movsd and movss to avoid partial register stall
// when loading from memory. But for old Opteron use movlpd instead of movsd.
// The selection is done in MacroAssembler::movdbl() and movflt().
void Assembler::movlpd(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
D
duke 已提交
1658
  InstructionMark im(this);
1659
  emit_byte(0x66);
D
duke 已提交
1660
  prefix(src, dst);
1661 1662
  emit_byte(0x0F);
  emit_byte(0x12);
D
duke 已提交
1663 1664 1665
  emit_operand(dst, src);
}

1666 1667 1668 1669 1670
void Assembler::movq( MMXRegister dst, Address src ) {
  assert( VM_Version::supports_mmx(), "" );
  emit_byte(0x0F);
  emit_byte(0x6F);
  emit_operand(dst, src);
D
duke 已提交
1671 1672
}

1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
void Assembler::movq( Address dst, MMXRegister src ) {
  assert( VM_Version::supports_mmx(), "" );
  emit_byte(0x0F);
  emit_byte(0x7F);
  // workaround gcc (3.2.1-7a) bug
  // In that version of gcc with only an emit_operand(MMX, Address)
  // gcc will tail jump and try and reverse the parameters completely
  // obliterating dst in the process. By having a version available
  // that doesn't need to swap the args at the tail jump the bug is
  // avoided.
  emit_operand(dst, src);
D
duke 已提交
1684 1685
}

1686 1687
void Assembler::movq(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
D
duke 已提交
1688
  InstructionMark im(this);
1689 1690 1691 1692
  emit_byte(0xF3);
  prefix(src, dst);
  emit_byte(0x0F);
  emit_byte(0x7E);
D
duke 已提交
1693 1694 1695
  emit_operand(dst, src);
}

1696 1697
void Assembler::movq(Address dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
D
duke 已提交
1698
  InstructionMark im(this);
1699 1700 1701 1702 1703
  emit_byte(0x66);
  prefix(dst, src);
  emit_byte(0x0F);
  emit_byte(0xD6);
  emit_operand(src, dst);
D
duke 已提交
1704 1705
}

1706
void Assembler::movsbl(Register dst, Address src) { // movsxb
D
duke 已提交
1707
  InstructionMark im(this);
1708 1709 1710 1711
  prefix(src, dst);
  emit_byte(0x0F);
  emit_byte(0xBE);
  emit_operand(dst, src);
D
duke 已提交
1712 1713
}

1714 1715 1716 1717 1718 1719
void Assembler::movsbl(Register dst, Register src) { // movsxb
  NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
  int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
  emit_byte(0x0F);
  emit_byte(0xBE);
  emit_byte(0xC0 | encode);
D
duke 已提交
1720 1721
}

1722 1723 1724 1725 1726 1727 1728
void Assembler::movsd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_byte(0xF2);
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
  emit_byte(0x10);
  emit_byte(0xC0 | encode);
D
duke 已提交
1729 1730
}

1731 1732
void Assembler::movsd(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
D
duke 已提交
1733
  InstructionMark im(this);
1734
  emit_byte(0xF2);
D
duke 已提交
1735
  prefix(src, dst);
1736 1737
  emit_byte(0x0F);
  emit_byte(0x10);
D
duke 已提交
1738 1739 1740
  emit_operand(dst, src);
}

1741 1742
void Assembler::movsd(Address dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
D
duke 已提交
1743
  InstructionMark im(this);
1744 1745 1746 1747 1748
  emit_byte(0xF2);
  prefix(dst, src);
  emit_byte(0x0F);
  emit_byte(0x11);
  emit_operand(src, dst);
D
duke 已提交
1749 1750
}

1751 1752 1753 1754 1755 1756 1757
void Assembler::movss(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
  emit_byte(0xF3);
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
  emit_byte(0x10);
  emit_byte(0xC0 | encode);
D
duke 已提交
1758 1759
}

1760 1761 1762 1763 1764 1765 1766 1767
void Assembler::movss(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
  InstructionMark im(this);
  emit_byte(0xF3);
  prefix(src, dst);
  emit_byte(0x0F);
  emit_byte(0x10);
  emit_operand(dst, src);
D
duke 已提交
1768 1769
}

1770 1771 1772 1773 1774 1775 1776 1777
void Assembler::movss(Address dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
  InstructionMark im(this);
  emit_byte(0xF3);
  prefix(dst, src);
  emit_byte(0x0F);
  emit_byte(0x11);
  emit_operand(src, dst);
D
duke 已提交
1778 1779
}

1780
void Assembler::movswl(Register dst, Address src) { // movsxw
D
duke 已提交
1781
  InstructionMark im(this);
1782 1783 1784
  prefix(src, dst);
  emit_byte(0x0F);
  emit_byte(0xBF);
D
duke 已提交
1785 1786 1787
  emit_operand(dst, src);
}

1788
void Assembler::movswl(Register dst, Register src) { // movsxw
D
duke 已提交
1789 1790
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
1791
  emit_byte(0xBF);
D
duke 已提交
1792 1793 1794
  emit_byte(0xC0 | encode);
}

1795 1796
void Assembler::movw(Address dst, int imm16) {
  InstructionMark im(this);
D
duke 已提交
1797

1798 1799 1800 1801 1802
  emit_byte(0x66); // switch to 16-bit mode
  prefix(dst);
  emit_byte(0xC7);
  emit_operand(rax, dst, 2);
  emit_word(imm16);
D
duke 已提交
1803 1804
}

1805
void Assembler::movw(Register dst, Address src) {
D
duke 已提交
1806
  InstructionMark im(this);
1807 1808 1809 1810
  emit_byte(0x66);
  prefix(src, dst);
  emit_byte(0x8B);
  emit_operand(dst, src);
D
duke 已提交
1811 1812
}

1813 1814 1815 1816 1817 1818
void Assembler::movw(Address dst, Register src) {
  InstructionMark im(this);
  emit_byte(0x66);
  prefix(dst, src);
  emit_byte(0x89);
  emit_operand(src, dst);
D
duke 已提交
1819 1820
}

1821
void Assembler::movzbl(Register dst, Address src) { // movzxb
D
duke 已提交
1822
  InstructionMark im(this);
1823 1824 1825 1826
  prefix(src, dst);
  emit_byte(0x0F);
  emit_byte(0xB6);
  emit_operand(dst, src);
D
duke 已提交
1827 1828
}

1829 1830 1831 1832 1833 1834
void Assembler::movzbl(Register dst, Register src) { // movzxb
  NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
  int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
  emit_byte(0x0F);
  emit_byte(0xB6);
  emit_byte(0xC0 | encode);
D
duke 已提交
1835 1836
}

1837 1838 1839
void Assembler::movzwl(Register dst, Address src) { // movzxw
  InstructionMark im(this);
  prefix(src, dst);
D
duke 已提交
1840
  emit_byte(0x0F);
1841 1842
  emit_byte(0xB7);
  emit_operand(dst, src);
D
duke 已提交
1843 1844
}

1845
void Assembler::movzwl(Register dst, Register src) { // movzxw
D
duke 已提交
1846 1847
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
1848
  emit_byte(0xB7);
D
duke 已提交
1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
  emit_byte(0xC0 | encode);
}

void Assembler::mull(Address src) {
  InstructionMark im(this);
  prefix(src);
  emit_byte(0xF7);
  emit_operand(rsp, src);
}

void Assembler::mull(Register src) {
  int encode = prefix_and_encode(src->encoding());
  emit_byte(0xF7);
  emit_byte(0xE0 | encode);
}

1865 1866
void Assembler::mulsd(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
D
duke 已提交
1867
  InstructionMark im(this);
1868
  emit_byte(0xF2);
D
duke 已提交
1869
  prefix(src, dst);
1870 1871
  emit_byte(0x0F);
  emit_byte(0x59);
D
duke 已提交
1872 1873 1874
  emit_operand(dst, src);
}

1875 1876 1877 1878 1879 1880 1881
void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_byte(0xF2);
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
  emit_byte(0x59);
  emit_byte(0xC0 | encode);
D
duke 已提交
1882 1883
}

1884 1885
void Assembler::mulss(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
D
duke 已提交
1886
  InstructionMark im(this);
1887 1888 1889 1890
  emit_byte(0xF3);
  prefix(src, dst);
  emit_byte(0x0F);
  emit_byte(0x59);
D
duke 已提交
1891 1892 1893
  emit_operand(dst, src);
}

1894 1895 1896 1897 1898 1899 1900
void Assembler::mulss(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
  emit_byte(0xF3);
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
  emit_byte(0x59);
  emit_byte(0xC0 | encode);
D
duke 已提交
1901 1902
}

1903
void Assembler::negl(Register dst) {
D
duke 已提交
1904
  int encode = prefix_and_encode(dst->encoding());
1905 1906
  emit_byte(0xF7);
  emit_byte(0xD8 | encode);
D
duke 已提交
1907 1908
}

1909 1910 1911 1912 1913 1914 1915
void Assembler::nop(int i) {
#ifdef ASSERT
  assert(i > 0, " ");
  // The fancy nops aren't currently recognized by debuggers making it a
  // pain to disassemble code while debugging. If asserts are on clearly
  // speed is not an issue so simply use the single byte traditional nop
  // to do alignment.
D
duke 已提交
1916

1917 1918
  for (; i > 0 ; i--) emit_byte(0x90);
  return;
D
duke 已提交
1919

1920
#endif // ASSERT
D
duke 已提交
1921

1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
  if (UseAddressNop && VM_Version::is_intel()) {
    //
    // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
    //  1: 0x90
    //  2: 0x66 0x90
    //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
    //  4: 0x0F 0x1F 0x40 0x00
    //  5: 0x0F 0x1F 0x44 0x00 0x00
    //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
    //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
    //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
    //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
    // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
    // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
D
duke 已提交
1936

1937
    // The rest coding is Intel specific - don't use consecutive address nops
D
duke 已提交
1938

1939 1940 1941 1942
    // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
    // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
    // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
    // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
D
duke 已提交
1943

1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
    while(i >= 15) {
      // For Intel don't generate consecutive addess nops (mix with regular nops)
      i -= 15;
      emit_byte(0x66);   // size prefix
      emit_byte(0x66);   // size prefix
      emit_byte(0x66);   // size prefix
      addr_nop_8();
      emit_byte(0x66);   // size prefix
      emit_byte(0x66);   // size prefix
      emit_byte(0x66);   // size prefix
      emit_byte(0x90);   // nop
    }
    switch (i) {
      case 14:
        emit_byte(0x66); // size prefix
      case 13:
        emit_byte(0x66); // size prefix
      case 12:
        addr_nop_8();
        emit_byte(0x66); // size prefix
        emit_byte(0x66); // size prefix
        emit_byte(0x66); // size prefix
        emit_byte(0x90); // nop
        break;
      case 11:
        emit_byte(0x66); // size prefix
      case 10:
        emit_byte(0x66); // size prefix
      case 9:
        emit_byte(0x66); // size prefix
      case 8:
        addr_nop_8();
        break;
      case 7:
        addr_nop_7();
        break;
      case 6:
        emit_byte(0x66); // size prefix
      case 5:
        addr_nop_5();
        break;
      case 4:
        addr_nop_4();
        break;
      case 3:
        // Don't use "0x0F 0x1F 0x00" - need patching safe padding
        emit_byte(0x66); // size prefix
      case 2:
        emit_byte(0x66); // size prefix
      case 1:
        emit_byte(0x90); // nop
        break;
      default:
        assert(i == 0, " ");
    }
    return;
  }
  if (UseAddressNop && VM_Version::is_amd()) {
    //
    // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
    //  1: 0x90
    //  2: 0x66 0x90
    //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
    //  4: 0x0F 0x1F 0x40 0x00
    //  5: 0x0F 0x1F 0x44 0x00 0x00
    //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
    //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
    //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
    //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
    // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
    // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00

    // The rest coding is AMD specific - use consecutive address nops

    // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
    // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
    // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
    // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
    // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
    //     Size prefixes (0x66) are added for larger sizes

    while(i >= 22) {
      i -= 11;
      emit_byte(0x66); // size prefix
      emit_byte(0x66); // size prefix
      emit_byte(0x66); // size prefix
      addr_nop_8();
    }
    // Generate first nop for size between 21-12
    switch (i) {
      case 21:
        i -= 1;
        emit_byte(0x66); // size prefix
      case 20:
      case 19:
        i -= 1;
        emit_byte(0x66); // size prefix
      case 18:
      case 17:
        i -= 1;
        emit_byte(0x66); // size prefix
      case 16:
      case 15:
        i -= 8;
        addr_nop_8();
        break;
      case 14:
      case 13:
        i -= 7;
        addr_nop_7();
        break;
      case 12:
        i -= 6;
        emit_byte(0x66); // size prefix
        addr_nop_5();
        break;
      default:
        assert(i < 12, " ");
    }

    // Generate second nop for size between 11-1
    switch (i) {
      case 11:
        emit_byte(0x66); // size prefix
      case 10:
        emit_byte(0x66); // size prefix
      case 9:
        emit_byte(0x66); // size prefix
      case 8:
        addr_nop_8();
        break;
      case 7:
        addr_nop_7();
        break;
      case 6:
        emit_byte(0x66); // size prefix
      case 5:
        addr_nop_5();
        break;
      case 4:
        addr_nop_4();
        break;
      case 3:
        // Don't use "0x0F 0x1F 0x00" - need patching safe padding
        emit_byte(0x66); // size prefix
      case 2:
        emit_byte(0x66); // size prefix
      case 1:
        emit_byte(0x90); // nop
        break;
      default:
        assert(i == 0, " ");
    }
    return;
  }

  // Using nops with size prefixes "0x66 0x90".
  // From AMD Optimization Guide:
  //  1: 0x90
  //  2: 0x66 0x90
  //  3: 0x66 0x66 0x90
  //  4: 0x66 0x66 0x66 0x90
  //  5: 0x66 0x66 0x90 0x66 0x90
  //  6: 0x66 0x66 0x90 0x66 0x66 0x90
  //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
  //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
  //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
  // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
  //
  while(i > 12) {
    i -= 4;
    emit_byte(0x66); // size prefix
    emit_byte(0x66);
    emit_byte(0x66);
    emit_byte(0x90); // nop
  }
  // 1 - 12 nops
  if(i > 8) {
    if(i > 9) {
      i -= 1;
      emit_byte(0x66);
    }
    i -= 3;
    emit_byte(0x66);
    emit_byte(0x66);
    emit_byte(0x90);
  }
  // 1 - 8 nops
  if(i > 4) {
    if(i > 6) {
      i -= 1;
      emit_byte(0x66);
    }
    i -= 3;
    emit_byte(0x66);
    emit_byte(0x66);
    emit_byte(0x90);
  }
  switch (i) {
    case 4:
      emit_byte(0x66);
    case 3:
      emit_byte(0x66);
    case 2:
      emit_byte(0x66);
    case 1:
      emit_byte(0x90);
      break;
    default:
      assert(i == 0, " ");
  }
D
duke 已提交
2155 2156
}

2157 2158 2159 2160
void Assembler::notl(Register dst) {
  int encode = prefix_and_encode(dst->encoding());
  emit_byte(0xF7);
  emit_byte(0xD0 | encode );
D
duke 已提交
2161 2162
}

2163
void Assembler::orl(Address dst, int32_t imm32) {
D
duke 已提交
2164
  InstructionMark im(this);
2165 2166 2167 2168
  prefix(dst);
  emit_byte(0x81);
  emit_operand(rcx, dst, 4);
  emit_long(imm32);
D
duke 已提交
2169 2170
}

2171 2172 2173
void Assembler::orl(Register dst, int32_t imm32) {
  prefix(dst);
  emit_arith(0x81, 0xC8, dst, imm32);
D
duke 已提交
2174 2175
}

2176 2177

void Assembler::orl(Register dst, Address src) {
D
duke 已提交
2178
  InstructionMark im(this);
2179 2180
  prefix(src, dst);
  emit_byte(0x0B);
D
duke 已提交
2181 2182 2183
  emit_operand(dst, src);
}

2184 2185 2186 2187

void Assembler::orl(Register dst, Register src) {
  (void) prefix_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x0B, 0xC0, dst, src);
D
duke 已提交
2188 2189
}

2190 2191
// generic
void Assembler::pop(Register dst) {
D
duke 已提交
2192
  int encode = prefix_and_encode(dst->encoding());
2193
  emit_byte(0x58 | encode);
D
duke 已提交
2194 2195
}

2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
void Assembler::popcntl(Register dst, Address src) {
  assert(VM_Version::supports_popcnt(), "must support");
  InstructionMark im(this);
  emit_byte(0xF3);
  prefix(src, dst);
  emit_byte(0x0F);
  emit_byte(0xB8);
  emit_operand(dst, src);
}

void Assembler::popcntl(Register dst, Register src) {
  assert(VM_Version::supports_popcnt(), "must support");
  emit_byte(0xF3);
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
  emit_byte(0xB8);
  emit_byte(0xC0 | encode);
}

2215 2216
void Assembler::popf() {
  emit_byte(0x9D);
D
duke 已提交
2217 2218
}

2219 2220 2221 2222 2223 2224
void Assembler::popl(Address dst) {
  // NOTE: this will adjust stack by 8byte on 64bits
  InstructionMark im(this);
  prefix(dst);
  emit_byte(0x8F);
  emit_operand(rax, dst);
D
duke 已提交
2225 2226
}

2227 2228 2229
void Assembler::prefetch_prefix(Address src) {
  prefix(src);
  emit_byte(0x0F);
D
duke 已提交
2230 2231
}

2232 2233 2234 2235 2236 2237
void Assembler::prefetchnta(Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), "must support"));
  InstructionMark im(this);
  prefetch_prefix(src);
  emit_byte(0x18);
  emit_operand(rax, src); // 0, src
D
duke 已提交
2238 2239
}

2240 2241 2242 2243 2244 2245
void Assembler::prefetchr(Address src) {
  NOT_LP64(assert(VM_Version::supports_3dnow(), "must support"));
  InstructionMark im(this);
  prefetch_prefix(src);
  emit_byte(0x0D);
  emit_operand(rax, src); // 0, src
D
duke 已提交
2246 2247
}

2248 2249 2250 2251 2252 2253
void Assembler::prefetcht0(Address src) {
  NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  InstructionMark im(this);
  prefetch_prefix(src);
  emit_byte(0x18);
  emit_operand(rcx, src); // 1, src
D
duke 已提交
2254 2255
}

2256 2257
void Assembler::prefetcht1(Address src) {
  NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
D
duke 已提交
2258
  InstructionMark im(this);
2259 2260 2261
  prefetch_prefix(src);
  emit_byte(0x18);
  emit_operand(rdx, src); // 2, src
D
duke 已提交
2262 2263
}

2264 2265 2266 2267 2268 2269
void Assembler::prefetcht2(Address src) {
  NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  InstructionMark im(this);
  prefetch_prefix(src);
  emit_byte(0x18);
  emit_operand(rbx, src); // 3, src
D
duke 已提交
2270 2271
}

2272 2273
void Assembler::prefetchw(Address src) {
  NOT_LP64(assert(VM_Version::supports_3dnow(), "must support"));
D
duke 已提交
2274
  InstructionMark im(this);
2275 2276 2277
  prefetch_prefix(src);
  emit_byte(0x0D);
  emit_operand(rcx, src); // 1, src
D
duke 已提交
2278 2279
}

2280 2281
void Assembler::prefix(Prefix p) {
  a_byte(p);
D
duke 已提交
2282 2283
}

2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
  assert(isByte(mode), "invalid value");
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));

  emit_byte(0x66);
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
  emit_byte(0x70);
  emit_byte(0xC0 | encode);
  emit_byte(mode & 0xFF);

D
duke 已提交
2295 2296
}

2297 2298 2299 2300
void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
  assert(isByte(mode), "invalid value");
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));

D
duke 已提交
2301
  InstructionMark im(this);
2302 2303 2304 2305 2306 2307
  emit_byte(0x66);
  prefix(src, dst);
  emit_byte(0x0F);
  emit_byte(0x70);
  emit_operand(dst, src);
  emit_byte(mode & 0xFF);
D
duke 已提交
2308 2309
}

2310 2311 2312
void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
  assert(isByte(mode), "invalid value");
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
D
duke 已提交
2313

2314 2315 2316 2317 2318 2319
  emit_byte(0xF2);
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
  emit_byte(0x70);
  emit_byte(0xC0 | encode);
  emit_byte(mode & 0xFF);
D
duke 已提交
2320 2321
}

2322 2323 2324 2325
void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
  assert(isByte(mode), "invalid value");
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));

D
duke 已提交
2326
  InstructionMark im(this);
2327 2328 2329 2330
  emit_byte(0xF2);
  prefix(src, dst); // QQ new
  emit_byte(0x0F);
  emit_byte(0x70);
D
duke 已提交
2331
  emit_operand(dst, src);
2332
  emit_byte(mode & 0xFF);
D
duke 已提交
2333 2334
}

2335 2336 2337 2338 2339 2340 2341 2342 2343 2344
void Assembler::psrlq(XMMRegister dst, int shift) {
  // HMM Table D-1 says sse2 or mmx
  NOT_LP64(assert(VM_Version::supports_sse(), ""));

  int encode = prefixq_and_encode(xmm2->encoding(), dst->encoding());
  emit_byte(0x66);
  emit_byte(0x0F);
  emit_byte(0x73);
  emit_byte(0xC0 | encode);
  emit_byte(shift);
D
duke 已提交
2345 2346
}

2347 2348 2349 2350 2351 2352 2353
void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_byte(0x66);
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
  emit_byte(0x60);
  emit_byte(0xC0 | encode);
D
duke 已提交
2354 2355
}

2356 2357 2358 2359
void Assembler::push(int32_t imm32) {
  // in 64bits we push 64bits onto the stack but only
  // take a 32bit immediate
  emit_byte(0x68);
D
duke 已提交
2360 2361 2362
  emit_long(imm32);
}

2363 2364 2365 2366
void Assembler::push(Register src) {
  int encode = prefix_and_encode(src->encoding());

  emit_byte(0x50 | encode);
D
duke 已提交
2367 2368
}

2369 2370
void Assembler::pushf() {
  emit_byte(0x9C);
D
duke 已提交
2371 2372
}

2373 2374 2375 2376 2377 2378
void Assembler::pushl(Address src) {
  // Note this will push 64bit on 64bit
  InstructionMark im(this);
  prefix(src);
  emit_byte(0xFF);
  emit_operand(rsi, src);
D
duke 已提交
2379 2380
}

2381 2382
void Assembler::pxor(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
D
duke 已提交
2383
  InstructionMark im(this);
2384 2385
  emit_byte(0x66);
  prefix(src, dst);
D
duke 已提交
2386
  emit_byte(0x0F);
2387 2388
  emit_byte(0xEF);
  emit_operand(dst, src);
D
duke 已提交
2389 2390
}

2391 2392
void Assembler::pxor(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
D
duke 已提交
2393
  InstructionMark im(this);
2394 2395
  emit_byte(0x66);
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
D
duke 已提交
2396
  emit_byte(0x0F);
2397 2398
  emit_byte(0xEF);
  emit_byte(0xC0 | encode);
D
duke 已提交
2399 2400
}

2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
void Assembler::rcll(Register dst, int imm8) {
  assert(isShiftCount(imm8), "illegal shift count");
  int encode = prefix_and_encode(dst->encoding());
  if (imm8 == 1) {
    emit_byte(0xD1);
    emit_byte(0xD0 | encode);
  } else {
    emit_byte(0xC1);
    emit_byte(0xD0 | encode);
    emit_byte(imm8);
  }
D
duke 已提交
2412 2413
}

2414 2415 2416 2417 2418 2419 2420
// copies data from [esi] to [edi] using rcx pointer sized words
// generic
void Assembler::rep_mov() {
  emit_byte(0xF3);
  // MOVSQ
  LP64_ONLY(prefix(REX_W));
  emit_byte(0xA5);
D
duke 已提交
2421 2422
}

2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499
// sets rcx pointer sized words with rax, value at [edi]
// generic
void Assembler::rep_set() { // rep_set
  emit_byte(0xF3);
  // STOSQ
  LP64_ONLY(prefix(REX_W));
  emit_byte(0xAB);
}

// scans rcx pointer sized words at [edi] for occurance of rax,
// generic
void Assembler::repne_scan() { // repne_scan
  emit_byte(0xF2);
  // SCASQ
  LP64_ONLY(prefix(REX_W));
  emit_byte(0xAF);
}

#ifdef _LP64
// scans rcx 4 byte words at [edi] for occurance of rax,
// generic
void Assembler::repne_scanl() { // repne_scan
  emit_byte(0xF2);
  // SCASL
  emit_byte(0xAF);
}
#endif

void Assembler::ret(int imm16) {
  if (imm16 == 0) {
    emit_byte(0xC3);
  } else {
    emit_byte(0xC2);
    emit_word(imm16);
  }
}

void Assembler::sahf() {
#ifdef _LP64
  // Not supported in 64bit mode
  ShouldNotReachHere();
#endif
  emit_byte(0x9E);
}

void Assembler::sarl(Register dst, int imm8) {
  int encode = prefix_and_encode(dst->encoding());
  assert(isShiftCount(imm8), "illegal shift count");
  if (imm8 == 1) {
    emit_byte(0xD1);
    emit_byte(0xF8 | encode);
  } else {
    emit_byte(0xC1);
    emit_byte(0xF8 | encode);
    emit_byte(imm8);
  }
}

void Assembler::sarl(Register dst) {
  int encode = prefix_and_encode(dst->encoding());
  emit_byte(0xD3);
  emit_byte(0xF8 | encode);
}

void Assembler::sbbl(Address dst, int32_t imm32) {
  InstructionMark im(this);
  prefix(dst);
  emit_arith_operand(0x81, rbx, dst, imm32);
}

void Assembler::sbbl(Register dst, int32_t imm32) {
  prefix(dst);
  emit_arith(0x81, 0xD8, dst, imm32);
}


void Assembler::sbbl(Register dst, Address src) {
D
duke 已提交
2500 2501
  InstructionMark im(this);
  prefix(src, dst);
2502
  emit_byte(0x1B);
D
duke 已提交
2503 2504 2505
  emit_operand(dst, src);
}

2506 2507 2508
void Assembler::sbbl(Register dst, Register src) {
  (void) prefix_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x1B, 0xC0, dst, src);
D
duke 已提交
2509 2510
}

2511 2512 2513 2514 2515 2516
void Assembler::setb(Condition cc, Register dst) {
  assert(0 <= cc && cc < 16, "illegal cc");
  int encode = prefix_and_encode(dst->encoding(), true);
  emit_byte(0x0F);
  emit_byte(0x90 | cc);
  emit_byte(0xC0 | encode);
D
duke 已提交
2517 2518
}

2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529
void Assembler::shll(Register dst, int imm8) {
  assert(isShiftCount(imm8), "illegal shift count");
  int encode = prefix_and_encode(dst->encoding());
  if (imm8 == 1 ) {
    emit_byte(0xD1);
    emit_byte(0xE0 | encode);
  } else {
    emit_byte(0xC1);
    emit_byte(0xE0 | encode);
    emit_byte(imm8);
  }
D
duke 已提交
2530 2531
}

2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562
void Assembler::shll(Register dst) {
  int encode = prefix_and_encode(dst->encoding());
  emit_byte(0xD3);
  emit_byte(0xE0 | encode);
}

void Assembler::shrl(Register dst, int imm8) {
  assert(isShiftCount(imm8), "illegal shift count");
  int encode = prefix_and_encode(dst->encoding());
  emit_byte(0xC1);
  emit_byte(0xE8 | encode);
  emit_byte(imm8);
}

void Assembler::shrl(Register dst) {
  int encode = prefix_and_encode(dst->encoding());
  emit_byte(0xD3);
  emit_byte(0xE8 | encode);
}

// copies a single word from [esi] to [edi]
void Assembler::smovl() {
  emit_byte(0xA5);
}

void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
  // HMM Table D-1 says sse2
  // NOT_LP64(assert(VM_Version::supports_sse(), ""));
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_byte(0xF2);
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
D
duke 已提交
2563
  emit_byte(0x0F);
2564 2565
  emit_byte(0x51);
  emit_byte(0xC0 | encode);
D
duke 已提交
2566 2567
}

2568 2569 2570 2571
void Assembler::stmxcsr( Address dst) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
  InstructionMark im(this);
  prefix(dst);
D
duke 已提交
2572
  emit_byte(0x0F);
2573 2574
  emit_byte(0xAE);
  emit_operand(as_Register(3), dst);
D
duke 已提交
2575 2576
}

2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588
void Assembler::subl(Address dst, int32_t imm32) {
  InstructionMark im(this);
  prefix(dst);
  if (is8bit(imm32)) {
    emit_byte(0x83);
    emit_operand(rbp, dst, 1);
    emit_byte(imm32 & 0xFF);
  } else {
    emit_byte(0x81);
    emit_operand(rbp, dst, 4);
    emit_long(imm32);
  }
D
duke 已提交
2589 2590
}

2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603
void Assembler::subl(Register dst, int32_t imm32) {
  prefix(dst);
  emit_arith(0x81, 0xE8, dst, imm32);
}

void Assembler::subl(Address dst, Register src) {
  InstructionMark im(this);
  prefix(dst, src);
  emit_byte(0x29);
  emit_operand(src, dst);
}

void Assembler::subl(Register dst, Address src) {
D
duke 已提交
2604 2605
  InstructionMark im(this);
  prefix(src, dst);
2606
  emit_byte(0x2B);
D
duke 已提交
2607 2608 2609
  emit_operand(dst, src);
}

2610 2611 2612 2613 2614 2615 2616 2617
void Assembler::subl(Register dst, Register src) {
  (void) prefix_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x2B, 0xC0, dst, src);
}

void Assembler::subsd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_byte(0xF2);
D
duke 已提交
2618
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
2619 2620 2621
  emit_byte(0x0F);
  emit_byte(0x5C);
  emit_byte(0xC0 | encode);
D
duke 已提交
2622 2623
}

2624 2625
void Assembler::subsd(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
D
duke 已提交
2626
  InstructionMark im(this);
2627 2628 2629 2630
  emit_byte(0xF2);
  prefix(src, dst);
  emit_byte(0x0F);
  emit_byte(0x5C);
D
duke 已提交
2631 2632 2633
  emit_operand(dst, src);
}

2634 2635 2636 2637 2638 2639 2640
void Assembler::subss(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
  emit_byte(0xF3);
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
  emit_byte(0x5C);
  emit_byte(0xC0 | encode);
D
duke 已提交
2641 2642
}

2643 2644
void Assembler::subss(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
D
duke 已提交
2645
  InstructionMark im(this);
2646 2647
  emit_byte(0xF3);
  prefix(src, dst);
D
duke 已提交
2648
  emit_byte(0x0F);
2649 2650
  emit_byte(0x5C);
  emit_operand(dst, src);
D
duke 已提交
2651 2652
}

2653 2654 2655 2656
void Assembler::testb(Register dst, int imm8) {
  NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
  (void) prefix_and_encode(dst->encoding(), true);
  emit_arith_b(0xF6, 0xC0, dst, imm8);
D
duke 已提交
2657 2658
}

2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
void Assembler::testl(Register dst, int32_t imm32) {
  // not using emit_arith because test
  // doesn't support sign-extension of
  // 8bit operands
  int encode = dst->encoding();
  if (encode == 0) {
    emit_byte(0xA9);
  } else {
    encode = prefix_and_encode(encode);
    emit_byte(0xF7);
    emit_byte(0xC0 | encode);
  }
  emit_long(imm32);
D
duke 已提交
2672 2673
}

2674 2675 2676 2677
void Assembler::testl(Register dst, Register src) {
  (void) prefix_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x85, 0xC0, dst, src);
}
D
duke 已提交
2678

2679 2680 2681 2682 2683
void Assembler::testl(Register dst, Address  src) {
  InstructionMark im(this);
  prefix(src, dst);
  emit_byte(0x85);
  emit_operand(dst, src);
D
duke 已提交
2684 2685
}

2686 2687 2688 2689
void Assembler::ucomisd(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_byte(0x66);
  ucomiss(dst, src);
D
duke 已提交
2690 2691
}

2692 2693 2694 2695
void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_byte(0x66);
  ucomiss(dst, src);
D
duke 已提交
2696 2697
}

2698 2699 2700 2701 2702
void Assembler::ucomiss(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));

  InstructionMark im(this);
  prefix(src, dst);
D
duke 已提交
2703
  emit_byte(0x0F);
2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264
  emit_byte(0x2E);
  emit_operand(dst, src);
}

void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
  emit_byte(0x2E);
  emit_byte(0xC0 | encode);
}


void Assembler::xaddl(Address dst, Register src) {
  InstructionMark im(this);
  prefix(dst, src);
  emit_byte(0x0F);
  emit_byte(0xC1);
  emit_operand(src, dst);
}

void Assembler::xchgl(Register dst, Address src) { // xchg
  InstructionMark im(this);
  prefix(src, dst);
  emit_byte(0x87);
  emit_operand(dst, src);
}

void Assembler::xchgl(Register dst, Register src) {
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x87);
  emit_byte(0xc0 | encode);
}

void Assembler::xorl(Register dst, int32_t imm32) {
  prefix(dst);
  emit_arith(0x81, 0xF0, dst, imm32);
}

void Assembler::xorl(Register dst, Address src) {
  InstructionMark im(this);
  prefix(src, dst);
  emit_byte(0x33);
  emit_operand(dst, src);
}

void Assembler::xorl(Register dst, Register src) {
  (void) prefix_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x33, 0xC0, dst, src);
}

void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_byte(0x66);
  xorps(dst, src);
}

void Assembler::xorpd(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  InstructionMark im(this);
  emit_byte(0x66);
  prefix(src, dst);
  emit_byte(0x0F);
  emit_byte(0x57);
  emit_operand(dst, src);
}


void Assembler::xorps(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
  emit_byte(0x57);
  emit_byte(0xC0 | encode);
}

void Assembler::xorps(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
  InstructionMark im(this);
  prefix(src, dst);
  emit_byte(0x0F);
  emit_byte(0x57);
  emit_operand(dst, src);
}

#ifndef _LP64
// 32bit only pieces of the assembler

void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
  // NO PREFIX AS NEVER 64BIT
  InstructionMark im(this);
  emit_byte(0x81);
  emit_byte(0xF8 | src1->encoding());
  emit_data(imm32, rspec, 0);
}

void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
  // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
  InstructionMark im(this);
  emit_byte(0x81);
  emit_operand(rdi, src1);
  emit_data(imm32, rspec, 0);
}

// The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
// and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
// into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
void Assembler::cmpxchg8(Address adr) {
  InstructionMark im(this);
  emit_byte(0x0F);
  emit_byte(0xc7);
  emit_operand(rcx, adr);
}

void Assembler::decl(Register dst) {
  // Don't use it directly. Use MacroAssembler::decrementl() instead.
 emit_byte(0x48 | dst->encoding());
}

#endif // _LP64

// 64bit typically doesn't use the x87 but needs to for the trig funcs

void Assembler::fabs() {
  emit_byte(0xD9);
  emit_byte(0xE1);
}

void Assembler::fadd(int i) {
  emit_farith(0xD8, 0xC0, i);
}

void Assembler::fadd_d(Address src) {
  InstructionMark im(this);
  emit_byte(0xDC);
  emit_operand32(rax, src);
}

void Assembler::fadd_s(Address src) {
  InstructionMark im(this);
  emit_byte(0xD8);
  emit_operand32(rax, src);
}

void Assembler::fadda(int i) {
  emit_farith(0xDC, 0xC0, i);
}

void Assembler::faddp(int i) {
  emit_farith(0xDE, 0xC0, i);
}

void Assembler::fchs() {
  emit_byte(0xD9);
  emit_byte(0xE0);
}

void Assembler::fcom(int i) {
  emit_farith(0xD8, 0xD0, i);
}

void Assembler::fcomp(int i) {
  emit_farith(0xD8, 0xD8, i);
}

void Assembler::fcomp_d(Address src) {
  InstructionMark im(this);
  emit_byte(0xDC);
  emit_operand32(rbx, src);
}

void Assembler::fcomp_s(Address src) {
  InstructionMark im(this);
  emit_byte(0xD8);
  emit_operand32(rbx, src);
}

void Assembler::fcompp() {
  emit_byte(0xDE);
  emit_byte(0xD9);
}

void Assembler::fcos() {
  emit_byte(0xD9);
  emit_byte(0xFF);
}

void Assembler::fdecstp() {
  emit_byte(0xD9);
  emit_byte(0xF6);
}

void Assembler::fdiv(int i) {
  emit_farith(0xD8, 0xF0, i);
}

void Assembler::fdiv_d(Address src) {
  InstructionMark im(this);
  emit_byte(0xDC);
  emit_operand32(rsi, src);
}

void Assembler::fdiv_s(Address src) {
  InstructionMark im(this);
  emit_byte(0xD8);
  emit_operand32(rsi, src);
}

void Assembler::fdiva(int i) {
  emit_farith(0xDC, 0xF8, i);
}

// Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
//       is erroneous for some of the floating-point instructions below.

void Assembler::fdivp(int i) {
  emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
}

void Assembler::fdivr(int i) {
  emit_farith(0xD8, 0xF8, i);
}

void Assembler::fdivr_d(Address src) {
  InstructionMark im(this);
  emit_byte(0xDC);
  emit_operand32(rdi, src);
}

void Assembler::fdivr_s(Address src) {
  InstructionMark im(this);
  emit_byte(0xD8);
  emit_operand32(rdi, src);
}

void Assembler::fdivra(int i) {
  emit_farith(0xDC, 0xF0, i);
}

void Assembler::fdivrp(int i) {
  emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
}

void Assembler::ffree(int i) {
  emit_farith(0xDD, 0xC0, i);
}

void Assembler::fild_d(Address adr) {
  InstructionMark im(this);
  emit_byte(0xDF);
  emit_operand32(rbp, adr);
}

void Assembler::fild_s(Address adr) {
  InstructionMark im(this);
  emit_byte(0xDB);
  emit_operand32(rax, adr);
}

void Assembler::fincstp() {
  emit_byte(0xD9);
  emit_byte(0xF7);
}

void Assembler::finit() {
  emit_byte(0x9B);
  emit_byte(0xDB);
  emit_byte(0xE3);
}

void Assembler::fist_s(Address adr) {
  InstructionMark im(this);
  emit_byte(0xDB);
  emit_operand32(rdx, adr);
}

void Assembler::fistp_d(Address adr) {
  InstructionMark im(this);
  emit_byte(0xDF);
  emit_operand32(rdi, adr);
}

void Assembler::fistp_s(Address adr) {
  InstructionMark im(this);
  emit_byte(0xDB);
  emit_operand32(rbx, adr);
}

void Assembler::fld1() {
  emit_byte(0xD9);
  emit_byte(0xE8);
}

void Assembler::fld_d(Address adr) {
  InstructionMark im(this);
  emit_byte(0xDD);
  emit_operand32(rax, adr);
}

void Assembler::fld_s(Address adr) {
  InstructionMark im(this);
  emit_byte(0xD9);
  emit_operand32(rax, adr);
}


void Assembler::fld_s(int index) {
  emit_farith(0xD9, 0xC0, index);
}

void Assembler::fld_x(Address adr) {
  InstructionMark im(this);
  emit_byte(0xDB);
  emit_operand32(rbp, adr);
}

void Assembler::fldcw(Address src) {
  InstructionMark im(this);
  emit_byte(0xd9);
  emit_operand32(rbp, src);
}

void Assembler::fldenv(Address src) {
  InstructionMark im(this);
  emit_byte(0xD9);
  emit_operand32(rsp, src);
}

void Assembler::fldlg2() {
  emit_byte(0xD9);
  emit_byte(0xEC);
}

void Assembler::fldln2() {
  emit_byte(0xD9);
  emit_byte(0xED);
}

void Assembler::fldz() {
  emit_byte(0xD9);
  emit_byte(0xEE);
}

void Assembler::flog() {
  fldln2();
  fxch();
  fyl2x();
}

void Assembler::flog10() {
  fldlg2();
  fxch();
  fyl2x();
}

void Assembler::fmul(int i) {
  emit_farith(0xD8, 0xC8, i);
}

void Assembler::fmul_d(Address src) {
  InstructionMark im(this);
  emit_byte(0xDC);
  emit_operand32(rcx, src);
}

void Assembler::fmul_s(Address src) {
  InstructionMark im(this);
  emit_byte(0xD8);
  emit_operand32(rcx, src);
}

void Assembler::fmula(int i) {
  emit_farith(0xDC, 0xC8, i);
}

void Assembler::fmulp(int i) {
  emit_farith(0xDE, 0xC8, i);
}

void Assembler::fnsave(Address dst) {
  InstructionMark im(this);
  emit_byte(0xDD);
  emit_operand32(rsi, dst);
}

void Assembler::fnstcw(Address src) {
  InstructionMark im(this);
  emit_byte(0x9B);
  emit_byte(0xD9);
  emit_operand32(rdi, src);
}

void Assembler::fnstsw_ax() {
  emit_byte(0xdF);
  emit_byte(0xE0);
}

void Assembler::fprem() {
  emit_byte(0xD9);
  emit_byte(0xF8);
}

void Assembler::fprem1() {
  emit_byte(0xD9);
  emit_byte(0xF5);
}

void Assembler::frstor(Address src) {
  InstructionMark im(this);
  emit_byte(0xDD);
  emit_operand32(rsp, src);
}

void Assembler::fsin() {
  emit_byte(0xD9);
  emit_byte(0xFE);
}

void Assembler::fsqrt() {
  emit_byte(0xD9);
  emit_byte(0xFA);
}

void Assembler::fst_d(Address adr) {
  InstructionMark im(this);
  emit_byte(0xDD);
  emit_operand32(rdx, adr);
}

void Assembler::fst_s(Address adr) {
  InstructionMark im(this);
  emit_byte(0xD9);
  emit_operand32(rdx, adr);
}

void Assembler::fstp_d(Address adr) {
  InstructionMark im(this);
  emit_byte(0xDD);
  emit_operand32(rbx, adr);
}

void Assembler::fstp_d(int index) {
  emit_farith(0xDD, 0xD8, index);
}

void Assembler::fstp_s(Address adr) {
  InstructionMark im(this);
  emit_byte(0xD9);
  emit_operand32(rbx, adr);
}

void Assembler::fstp_x(Address adr) {
  InstructionMark im(this);
  emit_byte(0xDB);
  emit_operand32(rdi, adr);
}

void Assembler::fsub(int i) {
  emit_farith(0xD8, 0xE0, i);
}

void Assembler::fsub_d(Address src) {
  InstructionMark im(this);
  emit_byte(0xDC);
  emit_operand32(rsp, src);
}

void Assembler::fsub_s(Address src) {
  InstructionMark im(this);
  emit_byte(0xD8);
  emit_operand32(rsp, src);
}

void Assembler::fsuba(int i) {
  emit_farith(0xDC, 0xE8, i);
}

void Assembler::fsubp(int i) {
  emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
}

void Assembler::fsubr(int i) {
  emit_farith(0xD8, 0xE8, i);
}

void Assembler::fsubr_d(Address src) {
  InstructionMark im(this);
  emit_byte(0xDC);
  emit_operand32(rbp, src);
}

void Assembler::fsubr_s(Address src) {
  InstructionMark im(this);
  emit_byte(0xD8);
  emit_operand32(rbp, src);
}

void Assembler::fsubra(int i) {
  emit_farith(0xDC, 0xE0, i);
}

void Assembler::fsubrp(int i) {
  emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
}

void Assembler::ftan() {
  emit_byte(0xD9);
  emit_byte(0xF2);
  emit_byte(0xDD);
  emit_byte(0xD8);
}

void Assembler::ftst() {
  emit_byte(0xD9);
  emit_byte(0xE4);
}

void Assembler::fucomi(int i) {
  // make sure the instruction is supported (introduced for P6, together with cmov)
  guarantee(VM_Version::supports_cmov(), "illegal instruction");
  emit_farith(0xDB, 0xE8, i);
}

void Assembler::fucomip(int i) {
  // make sure the instruction is supported (introduced for P6, together with cmov)
  guarantee(VM_Version::supports_cmov(), "illegal instruction");
  emit_farith(0xDF, 0xE8, i);
}

void Assembler::fwait() {
  emit_byte(0x9B);
}

void Assembler::fxch(int i) {
  emit_farith(0xD9, 0xC8, i);
}

void Assembler::fyl2x() {
  emit_byte(0xD9);
  emit_byte(0xF1);
}


#ifndef _LP64

void Assembler::incl(Register dst) {
  // Don't use it directly. Use MacroAssembler::incrementl() instead.
 emit_byte(0x40 | dst->encoding());
}

void Assembler::lea(Register dst, Address src) {
  leal(dst, src);
}

void Assembler::mov_literal32(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
  InstructionMark im(this);
  emit_byte(0xC7);
  emit_operand(rax, dst);
  emit_data((int)imm32, rspec, 0);
}

3265 3266 3267 3268 3269 3270
void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
  InstructionMark im(this);
  int encode = prefix_and_encode(dst->encoding());
  emit_byte(0xB8 | encode);
  emit_data((int)imm32, rspec, 0);
}
3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878

void Assembler::popa() { // 32bit
  emit_byte(0x61);
}

void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
  InstructionMark im(this);
  emit_byte(0x68);
  emit_data(imm32, rspec, 0);
}

void Assembler::pusha() { // 32bit
  emit_byte(0x60);
}

void Assembler::set_byte_if_not_zero(Register dst) {
  emit_byte(0x0F);
  emit_byte(0x95);
  emit_byte(0xE0 | dst->encoding());
}

void Assembler::shldl(Register dst, Register src) {
  emit_byte(0x0F);
  emit_byte(0xA5);
  emit_byte(0xC0 | src->encoding() << 3 | dst->encoding());
}

void Assembler::shrdl(Register dst, Register src) {
  emit_byte(0x0F);
  emit_byte(0xAD);
  emit_byte(0xC0 | src->encoding() << 3 | dst->encoding());
}

#else // LP64

// 64bit only pieces of the assembler
// This should only be used by 64bit instructions that can use rip-relative
// it cannot be used by instructions that want an immediate value.

bool Assembler::reachable(AddressLiteral adr) {
  int64_t disp;
  // None will force a 64bit literal to the code stream. Likely a placeholder
  // for something that will be patched later and we need to certain it will
  // always be reachable.
  if (adr.reloc() == relocInfo::none) {
    return false;
  }
  if (adr.reloc() == relocInfo::internal_word_type) {
    // This should be rip relative and easily reachable.
    return true;
  }
  if (adr.reloc() == relocInfo::virtual_call_type ||
      adr.reloc() == relocInfo::opt_virtual_call_type ||
      adr.reloc() == relocInfo::static_call_type ||
      adr.reloc() == relocInfo::static_stub_type ) {
    // This should be rip relative within the code cache and easily
    // reachable until we get huge code caches. (At which point
    // ic code is going to have issues).
    return true;
  }
  if (adr.reloc() != relocInfo::external_word_type &&
      adr.reloc() != relocInfo::poll_return_type &&  // these are really external_word but need special
      adr.reloc() != relocInfo::poll_type &&         // relocs to identify them
      adr.reloc() != relocInfo::runtime_call_type ) {
    return false;
  }

  // Stress the correction code
  if (ForceUnreachable) {
    // Must be runtimecall reloc, see if it is in the codecache
    // Flipping stuff in the codecache to be unreachable causes issues
    // with things like inline caches where the additional instructions
    // are not handled.
    if (CodeCache::find_blob(adr._target) == NULL) {
      return false;
    }
  }
  // For external_word_type/runtime_call_type if it is reachable from where we
  // are now (possibly a temp buffer) and where we might end up
  // anywhere in the codeCache then we are always reachable.
  // This would have to change if we ever save/restore shared code
  // to be more pessimistic.

  disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
  if (!is_simm32(disp)) return false;
  disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
  if (!is_simm32(disp)) return false;

  disp = (int64_t)adr._target - ((int64_t)_code_pos + sizeof(int));

  // Because rip relative is a disp + address_of_next_instruction and we
  // don't know the value of address_of_next_instruction we apply a fudge factor
  // to make sure we will be ok no matter the size of the instruction we get placed into.
  // We don't have to fudge the checks above here because they are already worst case.

  // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
  // + 4 because better safe than sorry.
  const int fudge = 12 + 4;
  if (disp < 0) {
    disp -= fudge;
  } else {
    disp += fudge;
  }
  return is_simm32(disp);
}

void Assembler::emit_data64(jlong data,
                            relocInfo::relocType rtype,
                            int format) {
  if (rtype == relocInfo::none) {
    emit_long64(data);
  } else {
    emit_data64(data, Relocation::spec_simple(rtype), format);
  }
}

void Assembler::emit_data64(jlong data,
                            RelocationHolder const& rspec,
                            int format) {
  assert(imm_operand == 0, "default format must be immediate in this file");
  assert(imm_operand == format, "must be immediate");
  assert(inst_mark() != NULL, "must be inside InstructionMark");
  // Do not use AbstractAssembler::relocate, which is not intended for
  // embedded words.  Instead, relocate to the enclosing instruction.
  code_section()->relocate(inst_mark(), rspec, format);
#ifdef ASSERT
  check_relocation(rspec, format);
#endif
  emit_long64(data);
}

int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
  if (reg_enc >= 8) {
    prefix(REX_B);
    reg_enc -= 8;
  } else if (byteinst && reg_enc >= 4) {
    prefix(REX);
  }
  return reg_enc;
}

int Assembler::prefixq_and_encode(int reg_enc) {
  if (reg_enc < 8) {
    prefix(REX_W);
  } else {
    prefix(REX_WB);
    reg_enc -= 8;
  }
  return reg_enc;
}

int Assembler::prefix_and_encode(int dst_enc, int src_enc, bool byteinst) {
  if (dst_enc < 8) {
    if (src_enc >= 8) {
      prefix(REX_B);
      src_enc -= 8;
    } else if (byteinst && src_enc >= 4) {
      prefix(REX);
    }
  } else {
    if (src_enc < 8) {
      prefix(REX_R);
    } else {
      prefix(REX_RB);
      src_enc -= 8;
    }
    dst_enc -= 8;
  }
  return dst_enc << 3 | src_enc;
}

int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
  if (dst_enc < 8) {
    if (src_enc < 8) {
      prefix(REX_W);
    } else {
      prefix(REX_WB);
      src_enc -= 8;
    }
  } else {
    if (src_enc < 8) {
      prefix(REX_WR);
    } else {
      prefix(REX_WRB);
      src_enc -= 8;
    }
    dst_enc -= 8;
  }
  return dst_enc << 3 | src_enc;
}

void Assembler::prefix(Register reg) {
  if (reg->encoding() >= 8) {
    prefix(REX_B);
  }
}

void Assembler::prefix(Address adr) {
  if (adr.base_needs_rex()) {
    if (adr.index_needs_rex()) {
      prefix(REX_XB);
    } else {
      prefix(REX_B);
    }
  } else {
    if (adr.index_needs_rex()) {
      prefix(REX_X);
    }
  }
}

void Assembler::prefixq(Address adr) {
  if (adr.base_needs_rex()) {
    if (adr.index_needs_rex()) {
      prefix(REX_WXB);
    } else {
      prefix(REX_WB);
    }
  } else {
    if (adr.index_needs_rex()) {
      prefix(REX_WX);
    } else {
      prefix(REX_W);
    }
  }
}


void Assembler::prefix(Address adr, Register reg, bool byteinst) {
  if (reg->encoding() < 8) {
    if (adr.base_needs_rex()) {
      if (adr.index_needs_rex()) {
        prefix(REX_XB);
      } else {
        prefix(REX_B);
      }
    } else {
      if (adr.index_needs_rex()) {
        prefix(REX_X);
      } else if (reg->encoding() >= 4 ) {
        prefix(REX);
      }
    }
  } else {
    if (adr.base_needs_rex()) {
      if (adr.index_needs_rex()) {
        prefix(REX_RXB);
      } else {
        prefix(REX_RB);
      }
    } else {
      if (adr.index_needs_rex()) {
        prefix(REX_RX);
      } else {
        prefix(REX_R);
      }
    }
  }
}

void Assembler::prefixq(Address adr, Register src) {
  if (src->encoding() < 8) {
    if (adr.base_needs_rex()) {
      if (adr.index_needs_rex()) {
        prefix(REX_WXB);
      } else {
        prefix(REX_WB);
      }
    } else {
      if (adr.index_needs_rex()) {
        prefix(REX_WX);
      } else {
        prefix(REX_W);
      }
    }
  } else {
    if (adr.base_needs_rex()) {
      if (adr.index_needs_rex()) {
        prefix(REX_WRXB);
      } else {
        prefix(REX_WRB);
      }
    } else {
      if (adr.index_needs_rex()) {
        prefix(REX_WRX);
      } else {
        prefix(REX_WR);
      }
    }
  }
}

void Assembler::prefix(Address adr, XMMRegister reg) {
  if (reg->encoding() < 8) {
    if (adr.base_needs_rex()) {
      if (adr.index_needs_rex()) {
        prefix(REX_XB);
      } else {
        prefix(REX_B);
      }
    } else {
      if (adr.index_needs_rex()) {
        prefix(REX_X);
      }
    }
  } else {
    if (adr.base_needs_rex()) {
      if (adr.index_needs_rex()) {
        prefix(REX_RXB);
      } else {
        prefix(REX_RB);
      }
    } else {
      if (adr.index_needs_rex()) {
        prefix(REX_RX);
      } else {
        prefix(REX_R);
      }
    }
  }
}

void Assembler::adcq(Register dst, int32_t imm32) {
  (void) prefixq_and_encode(dst->encoding());
  emit_arith(0x81, 0xD0, dst, imm32);
}

void Assembler::adcq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
  emit_byte(0x13);
  emit_operand(dst, src);
}

void Assembler::adcq(Register dst, Register src) {
  (int) prefixq_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x13, 0xC0, dst, src);
}

void Assembler::addq(Address dst, int32_t imm32) {
  InstructionMark im(this);
  prefixq(dst);
  emit_arith_operand(0x81, rax, dst,imm32);
}

void Assembler::addq(Address dst, Register src) {
  InstructionMark im(this);
  prefixq(dst, src);
  emit_byte(0x01);
  emit_operand(src, dst);
}

void Assembler::addq(Register dst, int32_t imm32) {
  (void) prefixq_and_encode(dst->encoding());
  emit_arith(0x81, 0xC0, dst, imm32);
}

void Assembler::addq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
  emit_byte(0x03);
  emit_operand(dst, src);
}

void Assembler::addq(Register dst, Register src) {
  (void) prefixq_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x03, 0xC0, dst, src);
}

void Assembler::andq(Register dst, int32_t imm32) {
  (void) prefixq_and_encode(dst->encoding());
  emit_arith(0x81, 0xE0, dst, imm32);
}

void Assembler::andq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
  emit_byte(0x23);
  emit_operand(dst, src);
}

void Assembler::andq(Register dst, Register src) {
  (int) prefixq_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x23, 0xC0, dst, src);
}

void Assembler::bswapq(Register reg) {
  int encode = prefixq_and_encode(reg->encoding());
  emit_byte(0x0F);
  emit_byte(0xC8 | encode);
}

void Assembler::cdqq() {
  prefix(REX_W);
  emit_byte(0x99);
}

void Assembler::clflush(Address adr) {
  prefix(adr);
  emit_byte(0x0F);
  emit_byte(0xAE);
  emit_operand(rdi, adr);
}

void Assembler::cmovq(Condition cc, Register dst, Register src) {
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
  emit_byte(0x40 | cc);
  emit_byte(0xC0 | encode);
}

void Assembler::cmovq(Condition cc, Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
  emit_byte(0x0F);
  emit_byte(0x40 | cc);
  emit_operand(dst, src);
}

void Assembler::cmpq(Address dst, int32_t imm32) {
  InstructionMark im(this);
  prefixq(dst);
  emit_byte(0x81);
  emit_operand(rdi, dst, 4);
  emit_long(imm32);
}

void Assembler::cmpq(Register dst, int32_t imm32) {
  (void) prefixq_and_encode(dst->encoding());
  emit_arith(0x81, 0xF8, dst, imm32);
}

void Assembler::cmpq(Address dst, Register src) {
  InstructionMark im(this);
  prefixq(dst, src);
  emit_byte(0x3B);
  emit_operand(src, dst);
}

void Assembler::cmpq(Register dst, Register src) {
  (void) prefixq_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x3B, 0xC0, dst, src);
}

void Assembler::cmpq(Register dst, Address  src) {
  InstructionMark im(this);
  prefixq(src, dst);
  emit_byte(0x3B);
  emit_operand(dst, src);
}

void Assembler::cmpxchgq(Register reg, Address adr) {
  InstructionMark im(this);
  prefixq(adr, reg);
  emit_byte(0x0F);
  emit_byte(0xB1);
  emit_operand(reg, adr);
}

void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_byte(0xF2);
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
  emit_byte(0x2A);
  emit_byte(0xC0 | encode);
}

void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
  emit_byte(0xF3);
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
  emit_byte(0x2A);
  emit_byte(0xC0 | encode);
}

void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_byte(0xF2);
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
  emit_byte(0x2C);
  emit_byte(0xC0 | encode);
}

void Assembler::cvttss2siq(Register dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
  emit_byte(0xF3);
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
  emit_byte(0x2C);
  emit_byte(0xC0 | encode);
}

void Assembler::decl(Register dst) {
  // Don't use it directly. Use MacroAssembler::decrementl() instead.
  // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
  int encode = prefix_and_encode(dst->encoding());
  emit_byte(0xFF);
  emit_byte(0xC8 | encode);
}

void Assembler::decq(Register dst) {
  // Don't use it directly. Use MacroAssembler::decrementq() instead.
  // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  int encode = prefixq_and_encode(dst->encoding());
  emit_byte(0xFF);
  emit_byte(0xC8 | encode);
}

void Assembler::decq(Address dst) {
  // Don't use it directly. Use MacroAssembler::decrementq() instead.
  InstructionMark im(this);
  prefixq(dst);
  emit_byte(0xFF);
  emit_operand(rcx, dst);
}

void Assembler::fxrstor(Address src) {
  prefixq(src);
  emit_byte(0x0F);
  emit_byte(0xAE);
  emit_operand(as_Register(1), src);
}

void Assembler::fxsave(Address dst) {
  prefixq(dst);
  emit_byte(0x0F);
  emit_byte(0xAE);
  emit_operand(as_Register(0), dst);
}

void Assembler::idivq(Register src) {
  int encode = prefixq_and_encode(src->encoding());
  emit_byte(0xF7);
  emit_byte(0xF8 | encode);
}

void Assembler::imulq(Register dst, Register src) {
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
  emit_byte(0xAF);
  emit_byte(0xC0 | encode);
}

void Assembler::imulq(Register dst, Register src, int value) {
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  if (is8bit(value)) {
    emit_byte(0x6B);
    emit_byte(0xC0 | encode);
    emit_byte(value);
  } else {
    emit_byte(0x69);
    emit_byte(0xC0 | encode);
    emit_long(value);
  }
}

void Assembler::incl(Register dst) {
  // Don't use it directly. Use MacroAssembler::incrementl() instead.
  // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  int encode = prefix_and_encode(dst->encoding());
  emit_byte(0xFF);
  emit_byte(0xC0 | encode);
}

void Assembler::incq(Register dst) {
  // Don't use it directly. Use MacroAssembler::incrementq() instead.
  // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  int encode = prefixq_and_encode(dst->encoding());
  emit_byte(0xFF);
  emit_byte(0xC0 | encode);
}

void Assembler::incq(Address dst) {
  // Don't use it directly. Use MacroAssembler::incrementq() instead.
  InstructionMark im(this);
  prefixq(dst);
  emit_byte(0xFF);
  emit_operand(rax, dst);
}

void Assembler::lea(Register dst, Address src) {
  leaq(dst, src);
}

void Assembler::leaq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
  emit_byte(0x8D);
  emit_operand(dst, src);
}

void Assembler::mov64(Register dst, int64_t imm64) {
  InstructionMark im(this);
  int encode = prefixq_and_encode(dst->encoding());
  emit_byte(0xB8 | encode);
  emit_long64(imm64);
}

void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
  InstructionMark im(this);
  int encode = prefixq_and_encode(dst->encoding());
  emit_byte(0xB8 | encode);
  emit_data64(imm64, rspec);
}

3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909
void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
  InstructionMark im(this);
  int encode = prefix_and_encode(dst->encoding());
  emit_byte(0xB8 | encode);
  emit_data((int)imm32, rspec, narrow_oop_operand);
}

void Assembler::mov_narrow_oop(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
  InstructionMark im(this);
  prefix(dst);
  emit_byte(0xC7);
  emit_operand(rax, dst, 4);
  emit_data((int)imm32, rspec, narrow_oop_operand);
}

void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
  InstructionMark im(this);
  int encode = prefix_and_encode(src1->encoding());
  emit_byte(0x81);
  emit_byte(0xF8 | encode);
  emit_data((int)imm32, rspec, narrow_oop_operand);
}

void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
  InstructionMark im(this);
  prefix(src1);
  emit_byte(0x81);
  emit_operand(rax, src1, 4);
  emit_data((int)imm32, rspec, narrow_oop_operand);
}

3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928
void Assembler::movdq(XMMRegister dst, Register src) {
  // table D-1 says MMX/SSE2
  NOT_LP64(assert(VM_Version::supports_sse2() || VM_Version::supports_mmx(), ""));
  emit_byte(0x66);
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
  emit_byte(0x6E);
  emit_byte(0xC0 | encode);
}

void Assembler::movdq(Register dst, XMMRegister src) {
  // table D-1 says MMX/SSE2
  NOT_LP64(assert(VM_Version::supports_sse2() || VM_Version::supports_mmx(), ""));
  emit_byte(0x66);
  // swap src/dst to get correct prefix
  int encode = prefixq_and_encode(src->encoding(), dst->encoding());
  emit_byte(0x0F);
  emit_byte(0x7E);
  emit_byte(0xC0 | encode);
D
duke 已提交
3929 3930
}

3931 3932 3933 3934 3935
void Assembler::movq(Register dst, Register src) {
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x8B);
  emit_byte(0xC0 | encode);
}
D
duke 已提交
3936

3937 3938 3939 3940 3941 3942
void Assembler::movq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
  emit_byte(0x8B);
  emit_operand(dst, src);
}
D
duke 已提交
3943

3944 3945 3946 3947 3948 3949
void Assembler::movq(Address dst, Register src) {
  InstructionMark im(this);
  prefixq(dst, src);
  emit_byte(0x89);
  emit_operand(src, dst);
}
D
duke 已提交
3950

3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965
void Assembler::movsbq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
  emit_byte(0x0F);
  emit_byte(0xBE);
  emit_operand(dst, src);
}

void Assembler::movsbq(Register dst, Register src) {
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
  emit_byte(0xBE);
  emit_byte(0xC0 | encode);
}

3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998
void Assembler::movslq(Register dst, int32_t imm32) {
  // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
  // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
  // as a result we shouldn't use until tested at runtime...
  ShouldNotReachHere();
  InstructionMark im(this);
  int encode = prefixq_and_encode(dst->encoding());
  emit_byte(0xC7 | encode);
  emit_long(imm32);
}

void Assembler::movslq(Address dst, int32_t imm32) {
  assert(is_simm32(imm32), "lost bits");
  InstructionMark im(this);
  prefixq(dst);
  emit_byte(0xC7);
  emit_operand(rax, dst, 4);
  emit_long(imm32);
}

void Assembler::movslq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
  emit_byte(0x63);
  emit_operand(dst, src);
}

void Assembler::movslq(Register dst, Register src) {
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x63);
  emit_byte(0xC0 | encode);
}

3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043
void Assembler::movswq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
  emit_byte(0x0F);
  emit_byte(0xBF);
  emit_operand(dst, src);
}

void Assembler::movswq(Register dst, Register src) {
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
  emit_byte(0xBF);
  emit_byte(0xC0 | encode);
}

void Assembler::movzbq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
  emit_byte(0x0F);
  emit_byte(0xB6);
  emit_operand(dst, src);
}

void Assembler::movzbq(Register dst, Register src) {
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
  emit_byte(0xB6);
  emit_byte(0xC0 | encode);
}

void Assembler::movzwq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
  emit_byte(0x0F);
  emit_byte(0xB7);
  emit_operand(dst, src);
}

void Assembler::movzwq(Register dst, Register src) {
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
  emit_byte(0xB7);
  emit_byte(0xC0 | encode);
}

4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101
void Assembler::negq(Register dst) {
  int encode = prefixq_and_encode(dst->encoding());
  emit_byte(0xF7);
  emit_byte(0xD8 | encode);
}

void Assembler::notq(Register dst) {
  int encode = prefixq_and_encode(dst->encoding());
  emit_byte(0xF7);
  emit_byte(0xD0 | encode);
}

void Assembler::orq(Address dst, int32_t imm32) {
  InstructionMark im(this);
  prefixq(dst);
  emit_byte(0x81);
  emit_operand(rcx, dst, 4);
  emit_long(imm32);
}

void Assembler::orq(Register dst, int32_t imm32) {
  (void) prefixq_and_encode(dst->encoding());
  emit_arith(0x81, 0xC8, dst, imm32);
}

void Assembler::orq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
  emit_byte(0x0B);
  emit_operand(dst, src);
}

void Assembler::orq(Register dst, Register src) {
  (void) prefixq_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x0B, 0xC0, dst, src);
}

void Assembler::popa() { // 64bit
  movq(r15, Address(rsp, 0));
  movq(r14, Address(rsp, wordSize));
  movq(r13, Address(rsp, 2 * wordSize));
  movq(r12, Address(rsp, 3 * wordSize));
  movq(r11, Address(rsp, 4 * wordSize));
  movq(r10, Address(rsp, 5 * wordSize));
  movq(r9,  Address(rsp, 6 * wordSize));
  movq(r8,  Address(rsp, 7 * wordSize));
  movq(rdi, Address(rsp, 8 * wordSize));
  movq(rsi, Address(rsp, 9 * wordSize));
  movq(rbp, Address(rsp, 10 * wordSize));
  // skip rsp
  movq(rbx, Address(rsp, 12 * wordSize));
  movq(rdx, Address(rsp, 13 * wordSize));
  movq(rcx, Address(rsp, 14 * wordSize));
  movq(rax, Address(rsp, 15 * wordSize));

  addq(rsp, 16 * wordSize);
}

4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120
void Assembler::popcntq(Register dst, Address src) {
  assert(VM_Version::supports_popcnt(), "must support");
  InstructionMark im(this);
  emit_byte(0xF3);
  prefixq(src, dst);
  emit_byte(0x0F);
  emit_byte(0xB8);
  emit_operand(dst, src);
}

void Assembler::popcntq(Register dst, Register src) {
  assert(VM_Version::supports_popcnt(), "must support");
  emit_byte(0xF3);
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
  emit_byte(0xB8);
  emit_byte(0xC0 | encode);
}

4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169
void Assembler::popq(Address dst) {
  InstructionMark im(this);
  prefixq(dst);
  emit_byte(0x8F);
  emit_operand(rax, dst);
}

void Assembler::pusha() { // 64bit
  // we have to store original rsp.  ABI says that 128 bytes
  // below rsp are local scratch.
  movq(Address(rsp, -5 * wordSize), rsp);

  subq(rsp, 16 * wordSize);

  movq(Address(rsp, 15 * wordSize), rax);
  movq(Address(rsp, 14 * wordSize), rcx);
  movq(Address(rsp, 13 * wordSize), rdx);
  movq(Address(rsp, 12 * wordSize), rbx);
  // skip rsp
  movq(Address(rsp, 10 * wordSize), rbp);
  movq(Address(rsp, 9 * wordSize), rsi);
  movq(Address(rsp, 8 * wordSize), rdi);
  movq(Address(rsp, 7 * wordSize), r8);
  movq(Address(rsp, 6 * wordSize), r9);
  movq(Address(rsp, 5 * wordSize), r10);
  movq(Address(rsp, 4 * wordSize), r11);
  movq(Address(rsp, 3 * wordSize), r12);
  movq(Address(rsp, 2 * wordSize), r13);
  movq(Address(rsp, wordSize), r14);
  movq(Address(rsp, 0), r15);
}

void Assembler::pushq(Address src) {
  InstructionMark im(this);
  prefixq(src);
  emit_byte(0xFF);
  emit_operand(rsi, src);
}

void Assembler::rclq(Register dst, int imm8) {
  assert(isShiftCount(imm8 >> 1), "illegal shift count");
  int encode = prefixq_and_encode(dst->encoding());
  if (imm8 == 1) {
    emit_byte(0xD1);
    emit_byte(0xD0 | encode);
  } else {
    emit_byte(0xC1);
    emit_byte(0xD0 | encode);
    emit_byte(imm8);
D
duke 已提交
4170
  }
4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183
}
void Assembler::sarq(Register dst, int imm8) {
  assert(isShiftCount(imm8 >> 1), "illegal shift count");
  int encode = prefixq_and_encode(dst->encoding());
  if (imm8 == 1) {
    emit_byte(0xD1);
    emit_byte(0xF8 | encode);
  } else {
    emit_byte(0xC1);
    emit_byte(0xF8 | encode);
    emit_byte(imm8);
  }
}
D
duke 已提交
4184

4185 4186 4187 4188 4189 4190 4191 4192 4193 4194
void Assembler::sarq(Register dst) {
  int encode = prefixq_and_encode(dst->encoding());
  emit_byte(0xD3);
  emit_byte(0xF8 | encode);
}
void Assembler::sbbq(Address dst, int32_t imm32) {
  InstructionMark im(this);
  prefixq(dst);
  emit_arith_operand(0x81, rbx, dst, imm32);
}
D
duke 已提交
4195

4196 4197 4198 4199
void Assembler::sbbq(Register dst, int32_t imm32) {
  (void) prefixq_and_encode(dst->encoding());
  emit_arith(0x81, 0xD8, dst, imm32);
}
D
duke 已提交
4200

4201 4202 4203 4204 4205 4206
void Assembler::sbbq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
  emit_byte(0x1B);
  emit_operand(dst, src);
}
D
duke 已提交
4207

4208 4209 4210 4211
void Assembler::sbbq(Register dst, Register src) {
  (void) prefixq_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x1B, 0xC0, dst, src);
}
D
duke 已提交
4212

4213 4214 4215 4216 4217 4218 4219 4220 4221 4222
void Assembler::shlq(Register dst, int imm8) {
  assert(isShiftCount(imm8 >> 1), "illegal shift count");
  int encode = prefixq_and_encode(dst->encoding());
  if (imm8 == 1) {
    emit_byte(0xD1);
    emit_byte(0xE0 | encode);
  } else {
    emit_byte(0xC1);
    emit_byte(0xE0 | encode);
    emit_byte(imm8);
D
duke 已提交
4223
  }
4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266
}

void Assembler::shlq(Register dst) {
  int encode = prefixq_and_encode(dst->encoding());
  emit_byte(0xD3);
  emit_byte(0xE0 | encode);
}

void Assembler::shrq(Register dst, int imm8) {
  assert(isShiftCount(imm8 >> 1), "illegal shift count");
  int encode = prefixq_and_encode(dst->encoding());
  emit_byte(0xC1);
  emit_byte(0xE8 | encode);
  emit_byte(imm8);
}

void Assembler::shrq(Register dst) {
  int encode = prefixq_and_encode(dst->encoding());
  emit_byte(0xD3);
  emit_byte(0xE8 | encode);
}

void Assembler::sqrtsd(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  InstructionMark im(this);
  emit_byte(0xF2);
  prefix(src, dst);
  emit_byte(0x0F);
  emit_byte(0x51);
  emit_operand(dst, src);
}

void Assembler::subq(Address dst, int32_t imm32) {
  InstructionMark im(this);
  prefixq(dst);
  if (is8bit(imm32)) {
    emit_byte(0x83);
    emit_operand(rbp, dst, 1);
    emit_byte(imm32 & 0xFF);
  } else {
    emit_byte(0x81);
    emit_operand(rbp, dst, 4);
    emit_long(imm32);
D
duke 已提交
4267 4268 4269
  }
}

4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301
void Assembler::subq(Register dst, int32_t imm32) {
  (void) prefixq_and_encode(dst->encoding());
  emit_arith(0x81, 0xE8, dst, imm32);
}

void Assembler::subq(Address dst, Register src) {
  InstructionMark im(this);
  prefixq(dst, src);
  emit_byte(0x29);
  emit_operand(src, dst);
}

void Assembler::subq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
  emit_byte(0x2B);
  emit_operand(dst, src);
}

void Assembler::subq(Register dst, Register src) {
  (void) prefixq_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x2B, 0xC0, dst, src);
}

void Assembler::testq(Register dst, int32_t imm32) {
  // not using emit_arith because test
  // doesn't support sign-extension of
  // 8bit operands
  int encode = dst->encoding();
  if (encode == 0) {
    prefix(REX_W);
    emit_byte(0xA9);
D
duke 已提交
4302
  } else {
4303 4304 4305
    encode = prefixq_and_encode(encode);
    emit_byte(0xF7);
    emit_byte(0xC0 | encode);
D
duke 已提交
4306
  }
4307
  emit_long(imm32);
D
duke 已提交
4308 4309
}

4310 4311 4312
void Assembler::testq(Register dst, Register src) {
  (void) prefixq_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x85, 0xC0, dst, src);
D
duke 已提交
4313 4314
}

4315 4316 4317 4318 4319 4320
void Assembler::xaddq(Address dst, Register src) {
  InstructionMark im(this);
  prefixq(dst, src);
  emit_byte(0x0F);
  emit_byte(0xC1);
  emit_operand(src, dst);
D
duke 已提交
4321 4322
}

4323 4324 4325 4326 4327
void Assembler::xchgq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
  emit_byte(0x87);
  emit_operand(dst, src);
D
duke 已提交
4328 4329
}

4330 4331 4332 4333
void Assembler::xchgq(Register dst, Register src) {
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x87);
  emit_byte(0xc0 | encode);
D
duke 已提交
4334 4335
}

4336 4337 4338
void Assembler::xorq(Register dst, Register src) {
  (void) prefixq_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x33, 0xC0, dst, src);
D
duke 已提交
4339 4340
}

4341 4342 4343 4344 4345
void Assembler::xorq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
  emit_byte(0x33);
  emit_operand(dst, src);
4346 4347
}

4348
#endif // !LP64
4349

4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366
static Assembler::Condition reverse[] = {
    Assembler::noOverflow     /* overflow      = 0x0 */ ,
    Assembler::overflow       /* noOverflow    = 0x1 */ ,
    Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
    Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
    Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
    Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
    Assembler::above          /* belowEqual    = 0x6 */ ,
    Assembler::belowEqual     /* above         = 0x7 */ ,
    Assembler::positive       /* negative      = 0x8 */ ,
    Assembler::negative       /* positive      = 0x9 */ ,
    Assembler::noParity       /* parity        = 0xa */ ,
    Assembler::parity         /* noParity      = 0xb */ ,
    Assembler::greaterEqual   /* less          = 0xc */ ,
    Assembler::less           /* greaterEqual  = 0xd */ ,
    Assembler::greater        /* lessEqual     = 0xe */ ,
    Assembler::lessEqual      /* greater       = 0xf, */
D
duke 已提交
4367

4368
};
D
duke 已提交
4369 4370


4371
// Implementation of MacroAssembler
D
duke 已提交
4372

4373 4374
// First all the versions that have distinct versions depending on 32/64 bit
// Unless the difference is trivial (1 line or so).
D
duke 已提交
4375

4376
#ifndef _LP64
D
duke 已提交
4377

4378
// 32bit versions
D
duke 已提交
4379

4380 4381
Address MacroAssembler::as_Address(AddressLiteral adr) {
  return Address(adr.target(), adr.rspec());
D
duke 已提交
4382 4383
}

4384 4385
Address MacroAssembler::as_Address(ArrayAddress adr) {
  return Address::make_array(adr);
D
duke 已提交
4386 4387
}

4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398
int MacroAssembler::biased_locking_enter(Register lock_reg,
                                         Register obj_reg,
                                         Register swap_reg,
                                         Register tmp_reg,
                                         bool swap_reg_contains_mark,
                                         Label& done,
                                         Label* slow_case,
                                         BiasedLockingCounters* counters) {
  assert(UseBiasedLocking, "why call this otherwise?");
  assert(swap_reg == rax, "swap_reg must be rax, for cmpxchg");
  assert_different_registers(lock_reg, obj_reg, swap_reg);
D
duke 已提交
4399

4400 4401
  if (PrintBiasedLockingStatistics && counters == NULL)
    counters = BiasedLocking::counters();
D
duke 已提交
4402

4403 4404 4405 4406
  bool need_tmp_reg = false;
  if (tmp_reg == noreg) {
    need_tmp_reg = true;
    tmp_reg = lock_reg;
D
duke 已提交
4407
  } else {
4408
    assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
D
duke 已提交
4409
  }
4410 4411 4412 4413
  assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
  Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
  Address klass_addr     (obj_reg, oopDesc::klass_offset_in_bytes());
  Address saved_mark_addr(lock_reg, 0);
D
duke 已提交
4414

4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425
  // Biased locking
  // See whether the lock is currently biased toward our thread and
  // whether the epoch is still valid
  // Note that the runtime guarantees sufficient alignment of JavaThread
  // pointers to allow age to be placed into low bits
  // First check to see whether biasing is even enabled for this object
  Label cas_label;
  int null_check_offset = -1;
  if (!swap_reg_contains_mark) {
    null_check_offset = offset();
    movl(swap_reg, mark_addr);
D
duke 已提交
4426
  }
4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463
  if (need_tmp_reg) {
    push(tmp_reg);
  }
  movl(tmp_reg, swap_reg);
  andl(tmp_reg, markOopDesc::biased_lock_mask_in_place);
  cmpl(tmp_reg, markOopDesc::biased_lock_pattern);
  if (need_tmp_reg) {
    pop(tmp_reg);
  }
  jcc(Assembler::notEqual, cas_label);
  // The bias pattern is present in the object's header. Need to check
  // whether the bias owner and the epoch are both still current.
  // Note that because there is no current thread register on x86 we
  // need to store off the mark word we read out of the object to
  // avoid reloading it and needing to recheck invariants below. This
  // store is unfortunate but it makes the overall code shorter and
  // simpler.
  movl(saved_mark_addr, swap_reg);
  if (need_tmp_reg) {
    push(tmp_reg);
  }
  get_thread(tmp_reg);
  xorl(swap_reg, tmp_reg);
  if (swap_reg_contains_mark) {
    null_check_offset = offset();
  }
  movl(tmp_reg, klass_addr);
  xorl(swap_reg, Address(tmp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  andl(swap_reg, ~((int) markOopDesc::age_mask_in_place));
  if (need_tmp_reg) {
    pop(tmp_reg);
  }
  if (counters != NULL) {
    cond_inc32(Assembler::zero,
               ExternalAddress((address)counters->biased_lock_entry_count_addr()));
  }
  jcc(Assembler::equal, done);
D
duke 已提交
4464

4465 4466
  Label try_revoke_bias;
  Label try_rebias;
D
duke 已提交
4467

4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502
  // At this point we know that the header has the bias pattern and
  // that we are not the bias owner in the current epoch. We need to
  // figure out more details about the state of the header in order to
  // know what operations can be legally performed on the object's
  // header.

  // If the low three bits in the xor result aren't clear, that means
  // the prototype header is no longer biased and we have to revoke
  // the bias on this object.
  testl(swap_reg, markOopDesc::biased_lock_mask_in_place);
  jcc(Assembler::notZero, try_revoke_bias);

  // Biasing is still enabled for this data type. See whether the
  // epoch of the current bias is still valid, meaning that the epoch
  // bits of the mark word are equal to the epoch bits of the
  // prototype header. (Note that the prototype header's epoch bits
  // only change at a safepoint.) If not, attempt to rebias the object
  // toward the current thread. Note that we must be absolutely sure
  // that the current epoch is invalid in order to do this because
  // otherwise the manipulations it performs on the mark word are
  // illegal.
  testl(swap_reg, markOopDesc::epoch_mask_in_place);
  jcc(Assembler::notZero, try_rebias);

  // The epoch of the current bias is still valid but we know nothing
  // about the owner; it might be set or it might be clear. Try to
  // acquire the bias of the object using an atomic operation. If this
  // fails we will go in to the runtime to revoke the object's bias.
  // Note that we first construct the presumed unbiased header so we
  // don't accidentally blow away another thread's valid bias.
  movl(swap_reg, saved_mark_addr);
  andl(swap_reg,
       markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
  if (need_tmp_reg) {
    push(tmp_reg);
D
duke 已提交
4503
  }
4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524
  get_thread(tmp_reg);
  orl(tmp_reg, swap_reg);
  if (os::is_MP()) {
    lock();
  }
  cmpxchgptr(tmp_reg, Address(obj_reg, 0));
  if (need_tmp_reg) {
    pop(tmp_reg);
  }
  // If the biasing toward our thread failed, this means that
  // another thread succeeded in biasing it toward itself and we
  // need to revoke that bias. The revocation will occur in the
  // interpreter runtime in the slow case.
  if (counters != NULL) {
    cond_inc32(Assembler::zero,
               ExternalAddress((address)counters->anonymously_biased_lock_entry_count_addr()));
  }
  if (slow_case != NULL) {
    jcc(Assembler::notZero, *slow_case);
  }
  jmp(done);
D
duke 已提交
4525

4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537
  bind(try_rebias);
  // At this point we know the epoch has expired, meaning that the
  // current "bias owner", if any, is actually invalid. Under these
  // circumstances _only_, we are allowed to use the current header's
  // value as the comparison value when doing the cas to acquire the
  // bias in the current epoch. In other words, we allow transfer of
  // the bias from one thread to another directly in this situation.
  //
  // FIXME: due to a lack of registers we currently blow away the age
  // bits in this situation. Should attempt to preserve them.
  if (need_tmp_reg) {
    push(tmp_reg);
D
duke 已提交
4538
  }
4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560
  get_thread(tmp_reg);
  movl(swap_reg, klass_addr);
  orl(tmp_reg, Address(swap_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  movl(swap_reg, saved_mark_addr);
  if (os::is_MP()) {
    lock();
  }
  cmpxchgptr(tmp_reg, Address(obj_reg, 0));
  if (need_tmp_reg) {
    pop(tmp_reg);
  }
  // If the biasing toward our thread failed, then another thread
  // succeeded in biasing it toward itself and we need to revoke that
  // bias. The revocation will occur in the runtime in the slow case.
  if (counters != NULL) {
    cond_inc32(Assembler::zero,
               ExternalAddress((address)counters->rebiased_lock_entry_count_addr()));
  }
  if (slow_case != NULL) {
    jcc(Assembler::notZero, *slow_case);
  }
  jmp(done);
D
duke 已提交
4561

4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593
  bind(try_revoke_bias);
  // The prototype mark in the klass doesn't have the bias bit set any
  // more, indicating that objects of this data type are not supposed
  // to be biased any more. We are going to try to reset the mark of
  // this object to the prototype value and fall through to the
  // CAS-based locking scheme. Note that if our CAS fails, it means
  // that another thread raced us for the privilege of revoking the
  // bias of this particular object, so it's okay to continue in the
  // normal locking code.
  //
  // FIXME: due to a lack of registers we currently blow away the age
  // bits in this situation. Should attempt to preserve them.
  movl(swap_reg, saved_mark_addr);
  if (need_tmp_reg) {
    push(tmp_reg);
  }
  movl(tmp_reg, klass_addr);
  movl(tmp_reg, Address(tmp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  if (os::is_MP()) {
    lock();
  }
  cmpxchgptr(tmp_reg, Address(obj_reg, 0));
  if (need_tmp_reg) {
    pop(tmp_reg);
  }
  // Fall through to the normal CAS-based lock, because no matter what
  // the result of the above CAS, some thread must have succeeded in
  // removing the bias bit from the object's header.
  if (counters != NULL) {
    cond_inc32(Assembler::zero,
               ExternalAddress((address)counters->revoked_lock_entry_count_addr()));
  }
D
duke 已提交
4594

4595
  bind(cas_label);
D
duke 已提交
4596

4597
  return null_check_offset;
D
duke 已提交
4598
}
4599 4600 4601 4602
void MacroAssembler::call_VM_leaf_base(address entry_point,
                                       int number_of_arguments) {
  call(RuntimeAddress(entry_point));
  increment(rsp, number_of_arguments * wordSize);
D
duke 已提交
4603 4604
}

4605 4606
void MacroAssembler::cmpoop(Address src1, jobject obj) {
  cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
D
duke 已提交
4607 4608
}

4609 4610
void MacroAssembler::cmpoop(Register src1, jobject obj) {
  cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
D
duke 已提交
4611 4612
}

4613 4614 4615 4616 4617 4618 4619 4620
void MacroAssembler::extend_sign(Register hi, Register lo) {
  // According to Intel Doc. AP-526, "Integer Divide", p.18.
  if (VM_Version::is_P6() && hi == rdx && lo == rax) {
    cdql();
  } else {
    movl(hi, lo);
    sarl(hi, 31);
  }
D
duke 已提交
4621 4622
}

4623 4624 4625 4626 4627 4628 4629
void MacroAssembler::fat_nop() {
  // A 5 byte nop that is safe for patching (see patch_verified_entry)
  emit_byte(0x26); // es:
  emit_byte(0x2e); // cs:
  emit_byte(0x64); // fs:
  emit_byte(0x65); // gs:
  emit_byte(0x90);
D
duke 已提交
4630 4631
}

4632 4633 4634 4635 4636 4637 4638 4639
void MacroAssembler::jC2(Register tmp, Label& L) {
  // set parity bit if FPU flag C2 is set (via rax)
  save_rax(tmp);
  fwait(); fnstsw_ax();
  sahf();
  restore_rax(tmp);
  // branch
  jcc(Assembler::parity, L);
D
duke 已提交
4640 4641
}

4642 4643 4644 4645 4646 4647 4648 4649
void MacroAssembler::jnC2(Register tmp, Label& L) {
  // set parity bit if FPU flag C2 is set (via rax)
  save_rax(tmp);
  fwait(); fnstsw_ax();
  sahf();
  restore_rax(tmp);
  // branch
  jcc(Assembler::noParity, L);
D
duke 已提交
4650 4651
}

4652 4653 4654 4655
// 32bit can do a case table jump in one instruction but we no longer allow the base
// to be installed in the Address class
void MacroAssembler::jump(ArrayAddress entry) {
  jmp(as_Address(entry));
D
duke 已提交
4656 4657
}

4658 4659 4660 4661
// Note: y_lo will be destroyed
void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
  // Long compare for Java (semantics as described in JVM spec.)
  Label high, low, done;
D
duke 已提交
4662

4663 4664 4665 4666 4667 4668 4669 4670
  cmpl(x_hi, y_hi);
  jcc(Assembler::less, low);
  jcc(Assembler::greater, high);
  // x_hi is the return register
  xorl(x_hi, x_hi);
  cmpl(x_lo, y_lo);
  jcc(Assembler::below, low);
  jcc(Assembler::equal, done);
D
duke 已提交
4671

4672 4673 4674 4675
  bind(high);
  xorl(x_hi, x_hi);
  increment(x_hi);
  jmp(done);
D
duke 已提交
4676

4677 4678 4679
  bind(low);
  xorl(x_hi, x_hi);
  decrementl(x_hi);
D
duke 已提交
4680

4681
  bind(done);
D
duke 已提交
4682 4683
}

4684 4685
void MacroAssembler::lea(Register dst, AddressLiteral src) {
    mov_literal32(dst, (int32_t)src.target(), src.rspec());
D
duke 已提交
4686 4687
}

4688 4689 4690 4691
void MacroAssembler::lea(Address dst, AddressLiteral adr) {
  // leal(dst, as_Address(adr));
  // see note in movl as to why we must use a move
  mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
D
duke 已提交
4692 4693
}

4694 4695 4696
void MacroAssembler::leave() {
  mov(rsp, rbp);
  pop(rbp);
D
duke 已提交
4697 4698
}

4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784
void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
  // Multiplication of two Java long values stored on the stack
  // as illustrated below. Result is in rdx:rax.
  //
  // rsp ---> [  ??  ] \               \
  //            ....    | y_rsp_offset  |
  //          [ y_lo ] /  (in bytes)    | x_rsp_offset
  //          [ y_hi ]                  | (in bytes)
  //            ....                    |
  //          [ x_lo ]                 /
  //          [ x_hi ]
  //            ....
  //
  // Basic idea: lo(result) = lo(x_lo * y_lo)
  //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
  Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
  Label quick;
  // load x_hi, y_hi and check if quick
  // multiplication is possible
  movl(rbx, x_hi);
  movl(rcx, y_hi);
  movl(rax, rbx);
  orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
  jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
  // do full multiplication
  // 1st step
  mull(y_lo);                                    // x_hi * y_lo
  movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
  // 2nd step
  movl(rax, x_lo);
  mull(rcx);                                     // x_lo * y_hi
  addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
  // 3rd step
  bind(quick);                                   // note: rbx, = 0 if quick multiply!
  movl(rax, x_lo);
  mull(y_lo);                                    // x_lo * y_lo
  addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
}

void MacroAssembler::lneg(Register hi, Register lo) {
  negl(lo);
  adcl(hi, 0);
  negl(hi);
}

void MacroAssembler::lshl(Register hi, Register lo) {
  // Java shift left long support (semantics as described in JVM spec., p.305)
  // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
  // shift value is in rcx !
  assert(hi != rcx, "must not use rcx");
  assert(lo != rcx, "must not use rcx");
  const Register s = rcx;                        // shift count
  const int      n = BitsPerWord;
  Label L;
  andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
  cmpl(s, n);                                    // if (s < n)
  jcc(Assembler::less, L);                       // else (s >= n)
  movl(hi, lo);                                  // x := x << n
  xorl(lo, lo);
  // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
  bind(L);                                       // s (mod n) < n
  shldl(hi, lo);                                 // x := x << s
  shll(lo);
}


void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
  // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
  // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
  assert(hi != rcx, "must not use rcx");
  assert(lo != rcx, "must not use rcx");
  const Register s = rcx;                        // shift count
  const int      n = BitsPerWord;
  Label L;
  andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
  cmpl(s, n);                                    // if (s < n)
  jcc(Assembler::less, L);                       // else (s >= n)
  movl(lo, hi);                                  // x := x >> n
  if (sign_extension) sarl(hi, 31);
  else                xorl(hi, hi);
  // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
  bind(L);                                       // s (mod n) < n
  shrdl(lo, hi);                                 // x := x >> s
  if (sign_extension) sarl(hi);
  else                shrl(hi);
D
duke 已提交
4785 4786
}

4787 4788
void MacroAssembler::movoop(Register dst, jobject obj) {
  mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
D
duke 已提交
4789 4790
}

4791 4792
void MacroAssembler::movoop(Address dst, jobject obj) {
  mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
D
duke 已提交
4793 4794
}

4795 4796 4797 4798 4799 4800
void MacroAssembler::movptr(Register dst, AddressLiteral src) {
  if (src.is_lval()) {
    mov_literal32(dst, (intptr_t)src.target(), src.rspec());
  } else {
    movl(dst, as_Address(src));
  }
D
duke 已提交
4801 4802
}

4803 4804
void MacroAssembler::movptr(ArrayAddress dst, Register src) {
  movl(as_Address(dst), src);
D
duke 已提交
4805 4806
}

4807 4808
void MacroAssembler::movptr(Register dst, ArrayAddress src) {
  movl(dst, as_Address(src));
D
duke 已提交
4809 4810
}

4811 4812 4813
// src should NEVER be a real pointer. Use AddressLiteral for true pointers
void MacroAssembler::movptr(Address dst, intptr_t src) {
  movl(dst, src);
D
duke 已提交
4814 4815
}

4816 4817 4818

void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
  movsd(dst, as_Address(src));
D
duke 已提交
4819 4820
}

4821 4822 4823 4824 4825
void MacroAssembler::pop_callee_saved_registers() {
  pop(rcx);
  pop(rdx);
  pop(rdi);
  pop(rsi);
D
duke 已提交
4826 4827
}

4828 4829 4830
void MacroAssembler::pop_fTOS() {
  fld_d(Address(rsp, 0));
  addl(rsp, 2 * wordSize);
D
duke 已提交
4831 4832
}

4833 4834 4835 4836 4837
void MacroAssembler::push_callee_saved_registers() {
  push(rsi);
  push(rdi);
  push(rdx);
  push(rcx);
D
duke 已提交
4838 4839
}

4840 4841 4842
void MacroAssembler::push_fTOS() {
  subl(rsp, 2 * wordSize);
  fstp_d(Address(rsp, 0));
D
duke 已提交
4843 4844
}

4845 4846 4847

void MacroAssembler::pushoop(jobject obj) {
  push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
D
duke 已提交
4848 4849
}

4850 4851 4852 4853 4854 4855 4856

void MacroAssembler::pushptr(AddressLiteral src) {
  if (src.is_lval()) {
    push_literal32((int32_t)src.target(), src.rspec());
  } else {
    pushl(as_Address(src));
  }
D
duke 已提交
4857 4858
}

4859 4860 4861
void MacroAssembler::set_word_if_not_zero(Register dst) {
  xorl(dst, dst);
  set_byte_if_not_zero(dst);
D
duke 已提交
4862 4863
}

4864 4865
static void pass_arg0(MacroAssembler* masm, Register arg) {
  masm->push(arg);
D
duke 已提交
4866 4867
}

4868 4869
static void pass_arg1(MacroAssembler* masm, Register arg) {
  masm->push(arg);
D
duke 已提交
4870 4871
}

4872 4873
static void pass_arg2(MacroAssembler* masm, Register arg) {
  masm->push(arg);
4874 4875
}

4876 4877
static void pass_arg3(MacroAssembler* masm, Register arg) {
  masm->push(arg);
4878 4879
}

4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922
#ifndef PRODUCT
extern "C" void findpc(intptr_t x);
#endif

void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
  // In order to get locks to work, we need to fake a in_VM state
  JavaThread* thread = JavaThread::current();
  JavaThreadState saved_state = thread->thread_state();
  thread->set_thread_state(_thread_in_vm);
  if (ShowMessageBoxOnError) {
    JavaThread* thread = JavaThread::current();
    JavaThreadState saved_state = thread->thread_state();
    thread->set_thread_state(_thread_in_vm);
    if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
      ttyLocker ttyl;
      BytecodeCounter::print();
    }
    // To see where a verify_oop failed, get $ebx+40/X for this frame.
    // This is the value of eip which points to where verify_oop will return.
    if (os::message_box(msg, "Execution stopped, print registers?")) {
      ttyLocker ttyl;
      tty->print_cr("eip = 0x%08x", eip);
#ifndef PRODUCT
      tty->cr();
      findpc(eip);
      tty->cr();
#endif
      tty->print_cr("rax, = 0x%08x", rax);
      tty->print_cr("rbx, = 0x%08x", rbx);
      tty->print_cr("rcx = 0x%08x", rcx);
      tty->print_cr("rdx = 0x%08x", rdx);
      tty->print_cr("rdi = 0x%08x", rdi);
      tty->print_cr("rsi = 0x%08x", rsi);
      tty->print_cr("rbp, = 0x%08x", rbp);
      tty->print_cr("rsp = 0x%08x", rsp);
      BREAKPOINT;
    }
  } else {
    ttyLocker ttyl;
    ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
    assert(false, "DEBUG MESSAGE");
  }
  ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
D
duke 已提交
4923 4924
}

4925 4926 4927 4928 4929 4930 4931 4932
void MacroAssembler::stop(const char* msg) {
  ExternalAddress message((address)msg);
  // push address of message
  pushptr(message.addr());
  { Label L; call(L, relocInfo::none); bind(L); }     // push eip
  pusha();                                           // push registers
  call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
  hlt();
D
duke 已提交
4933 4934
}

4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949
void MacroAssembler::warn(const char* msg) {
  push_CPU_state();

  ExternalAddress message((address) msg);
  // push address of message
  pushptr(message.addr());

  call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
  addl(rsp, wordSize);       // discard argument
  pop_CPU_state();
}

#else // _LP64

// 64 bit versions
D
duke 已提交
4950 4951

Address MacroAssembler::as_Address(AddressLiteral adr) {
4952 4953 4954
  // amd64 always does this as a pc-rel
  // we can be absolute or disp based on the instruction type
  // jmp/call are displacements others are absolute
D
duke 已提交
4955 4956
  assert(!adr.is_lval(), "must be rval");
  assert(reachable(adr), "must be");
4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967
  return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());

}

Address MacroAssembler::as_Address(ArrayAddress adr) {
  AddressLiteral base = adr.base();
  lea(rscratch1, base);
  Address index = adr.index();
  assert(index._disp == 0, "must not have disp"); // maybe it can?
  Address array(rscratch1, index._index, index._scale, index._disp);
  return array;
D
duke 已提交
4968 4969
}

4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122
int MacroAssembler::biased_locking_enter(Register lock_reg,
                                         Register obj_reg,
                                         Register swap_reg,
                                         Register tmp_reg,
                                         bool swap_reg_contains_mark,
                                         Label& done,
                                         Label* slow_case,
                                         BiasedLockingCounters* counters) {
  assert(UseBiasedLocking, "why call this otherwise?");
  assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
  assert(tmp_reg != noreg, "tmp_reg must be supplied");
  assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
  assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
  Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
  Address saved_mark_addr(lock_reg, 0);

  if (PrintBiasedLockingStatistics && counters == NULL)
    counters = BiasedLocking::counters();

  // Biased locking
  // See whether the lock is currently biased toward our thread and
  // whether the epoch is still valid
  // Note that the runtime guarantees sufficient alignment of JavaThread
  // pointers to allow age to be placed into low bits
  // First check to see whether biasing is even enabled for this object
  Label cas_label;
  int null_check_offset = -1;
  if (!swap_reg_contains_mark) {
    null_check_offset = offset();
    movq(swap_reg, mark_addr);
  }
  movq(tmp_reg, swap_reg);
  andq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
  cmpq(tmp_reg, markOopDesc::biased_lock_pattern);
  jcc(Assembler::notEqual, cas_label);
  // The bias pattern is present in the object's header. Need to check
  // whether the bias owner and the epoch are both still current.
  load_prototype_header(tmp_reg, obj_reg);
  orq(tmp_reg, r15_thread);
  xorq(tmp_reg, swap_reg);
  andq(tmp_reg, ~((int) markOopDesc::age_mask_in_place));
  if (counters != NULL) {
    cond_inc32(Assembler::zero,
               ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
  }
  jcc(Assembler::equal, done);

  Label try_revoke_bias;
  Label try_rebias;

  // At this point we know that the header has the bias pattern and
  // that we are not the bias owner in the current epoch. We need to
  // figure out more details about the state of the header in order to
  // know what operations can be legally performed on the object's
  // header.

  // If the low three bits in the xor result aren't clear, that means
  // the prototype header is no longer biased and we have to revoke
  // the bias on this object.
  testq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
  jcc(Assembler::notZero, try_revoke_bias);

  // Biasing is still enabled for this data type. See whether the
  // epoch of the current bias is still valid, meaning that the epoch
  // bits of the mark word are equal to the epoch bits of the
  // prototype header. (Note that the prototype header's epoch bits
  // only change at a safepoint.) If not, attempt to rebias the object
  // toward the current thread. Note that we must be absolutely sure
  // that the current epoch is invalid in order to do this because
  // otherwise the manipulations it performs on the mark word are
  // illegal.
  testq(tmp_reg, markOopDesc::epoch_mask_in_place);
  jcc(Assembler::notZero, try_rebias);

  // The epoch of the current bias is still valid but we know nothing
  // about the owner; it might be set or it might be clear. Try to
  // acquire the bias of the object using an atomic operation. If this
  // fails we will go in to the runtime to revoke the object's bias.
  // Note that we first construct the presumed unbiased header so we
  // don't accidentally blow away another thread's valid bias.
  andq(swap_reg,
       markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
  movq(tmp_reg, swap_reg);
  orq(tmp_reg, r15_thread);
  if (os::is_MP()) {
    lock();
  }
  cmpxchgq(tmp_reg, Address(obj_reg, 0));
  // If the biasing toward our thread failed, this means that
  // another thread succeeded in biasing it toward itself and we
  // need to revoke that bias. The revocation will occur in the
  // interpreter runtime in the slow case.
  if (counters != NULL) {
    cond_inc32(Assembler::zero,
               ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
  }
  if (slow_case != NULL) {
    jcc(Assembler::notZero, *slow_case);
  }
  jmp(done);

  bind(try_rebias);
  // At this point we know the epoch has expired, meaning that the
  // current "bias owner", if any, is actually invalid. Under these
  // circumstances _only_, we are allowed to use the current header's
  // value as the comparison value when doing the cas to acquire the
  // bias in the current epoch. In other words, we allow transfer of
  // the bias from one thread to another directly in this situation.
  //
  // FIXME: due to a lack of registers we currently blow away the age
  // bits in this situation. Should attempt to preserve them.
  load_prototype_header(tmp_reg, obj_reg);
  orq(tmp_reg, r15_thread);
  if (os::is_MP()) {
    lock();
  }
  cmpxchgq(tmp_reg, Address(obj_reg, 0));
  // If the biasing toward our thread failed, then another thread
  // succeeded in biasing it toward itself and we need to revoke that
  // bias. The revocation will occur in the runtime in the slow case.
  if (counters != NULL) {
    cond_inc32(Assembler::zero,
               ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
  }
  if (slow_case != NULL) {
    jcc(Assembler::notZero, *slow_case);
  }
  jmp(done);

  bind(try_revoke_bias);
  // The prototype mark in the klass doesn't have the bias bit set any
  // more, indicating that objects of this data type are not supposed
  // to be biased any more. We are going to try to reset the mark of
  // this object to the prototype value and fall through to the
  // CAS-based locking scheme. Note that if our CAS fails, it means
  // that another thread raced us for the privilege of revoking the
  // bias of this particular object, so it's okay to continue in the
  // normal locking code.
  //
  // FIXME: due to a lack of registers we currently blow away the age
  // bits in this situation. Should attempt to preserve them.
  load_prototype_header(tmp_reg, obj_reg);
  if (os::is_MP()) {
    lock();
  }
  cmpxchgq(tmp_reg, Address(obj_reg, 0));
  // Fall through to the normal CAS-based lock, because no matter what
  // the result of the above CAS, some thread must have succeeded in
  // removing the bias bit from the object's header.
  if (counters != NULL) {
    cond_inc32(Assembler::zero,
               ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
  }
D
duke 已提交
5123

5124
  bind(cas_label);
D
duke 已提交
5125

5126
  return null_check_offset;
D
duke 已提交
5127 5128
}

5129 5130
void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
  Label L, E;
D
duke 已提交
5131

5132 5133 5134 5135 5136
#ifdef _WIN64
  // Windows always allocates space for it's register args
  assert(num_args <= 4, "only register arguments supported");
  subq(rsp,  frame::arg_reg_save_area_bytes);
#endif
D
duke 已提交
5137

5138 5139 5140
  // Align stack if necessary
  testl(rsp, 15);
  jcc(Assembler::zero, L);
D
duke 已提交
5141

5142 5143 5144
  subq(rsp, 8);
  {
    call(RuntimeAddress(entry_point));
D
duke 已提交
5145
  }
5146 5147
  addq(rsp, 8);
  jmp(E);
D
duke 已提交
5148

5149 5150 5151
  bind(L);
  {
    call(RuntimeAddress(entry_point));
D
duke 已提交
5152 5153
  }

5154
  bind(E);
D
duke 已提交
5155

5156 5157 5158 5159
#ifdef _WIN64
  // restore stack pointer
  addq(rsp, frame::arg_reg_save_area_bytes);
#endif
D
duke 已提交
5160 5161 5162

}

5163 5164
void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
  assert(!src2.is_lval(), "should use cmpptr");
D
duke 已提交
5165 5166 5167 5168 5169 5170 5171 5172 5173

  if (reachable(src2)) {
    cmpq(src1, as_Address(src2));
  } else {
    lea(rscratch1, src2);
    Assembler::cmpq(src1, Address(rscratch1, 0));
  }
}

5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216
int MacroAssembler::corrected_idivq(Register reg) {
  // Full implementation of Java ldiv and lrem; checks for special
  // case as described in JVM spec., p.243 & p.271.  The function
  // returns the (pc) offset of the idivl instruction - may be needed
  // for implicit exceptions.
  //
  //         normal case                           special case
  //
  // input : rax: dividend                         min_long
  //         reg: divisor   (may not be eax/edx)   -1
  //
  // output: rax: quotient  (= rax idiv reg)       min_long
  //         rdx: remainder (= rax irem reg)       0
  assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
  static const int64_t min_long = 0x8000000000000000;
  Label normal_case, special_case;

  // check for special case
  cmp64(rax, ExternalAddress((address) &min_long));
  jcc(Assembler::notEqual, normal_case);
  xorl(rdx, rdx); // prepare rdx for possible special case (where
                  // remainder = 0)
  cmpq(reg, -1);
  jcc(Assembler::equal, special_case);

  // handle normal case
  bind(normal_case);
  cdqq();
  int idivq_offset = offset();
  idivq(reg);

  // normal and special case exit
  bind(special_case);

  return idivq_offset;
}

void MacroAssembler::decrementq(Register reg, int value) {
  if (value == min_jint) { subq(reg, value); return; }
  if (value <  0) { incrementq(reg, -value); return; }
  if (value == 0) {                        ; return; }
  if (value == 1 && UseIncDec) { decq(reg) ; return; }
  /* else */      { subq(reg, value)       ; return; }
D
duke 已提交
5217 5218
}

5219 5220 5221 5222 5223 5224 5225
void MacroAssembler::decrementq(Address dst, int value) {
  if (value == min_jint) { subq(dst, value); return; }
  if (value <  0) { incrementq(dst, -value); return; }
  if (value == 0) {                        ; return; }
  if (value == 1 && UseIncDec) { decq(dst) ; return; }
  /* else */      { subq(dst, value)       ; return; }
}
D
duke 已提交
5226

5227 5228 5229 5230 5231 5232 5233 5234 5235
void MacroAssembler::fat_nop() {
  // A 5 byte nop that is safe for patching (see patch_verified_entry)
  // Recommened sequence from 'Software Optimization Guide for the AMD
  // Hammer Processor'
  emit_byte(0x66);
  emit_byte(0x66);
  emit_byte(0x90);
  emit_byte(0x66);
  emit_byte(0x90);
D
duke 已提交
5236 5237
}

5238 5239 5240 5241 5242 5243
void MacroAssembler::incrementq(Register reg, int value) {
  if (value == min_jint) { addq(reg, value); return; }
  if (value <  0) { decrementq(reg, -value); return; }
  if (value == 0) {                        ; return; }
  if (value == 1 && UseIncDec) { incq(reg) ; return; }
  /* else */      { addq(reg, value)       ; return; }
D
duke 已提交
5244 5245
}

5246 5247 5248 5249 5250 5251
void MacroAssembler::incrementq(Address dst, int value) {
  if (value == min_jint) { addq(dst, value); return; }
  if (value <  0) { decrementq(dst, -value); return; }
  if (value == 0) {                        ; return; }
  if (value == 1 && UseIncDec) { incq(dst) ; return; }
  /* else */      { addq(dst, value)       ; return; }
D
duke 已提交
5252 5253
}

5254 5255 5256 5257 5258 5259 5260 5261
// 32bit can do a case table jump in one instruction but we no longer allow the base
// to be installed in the Address class
void MacroAssembler::jump(ArrayAddress entry) {
  lea(rscratch1, entry.base());
  Address dispatch = entry.index();
  assert(dispatch._base == noreg, "must be");
  dispatch._base = rscratch1;
  jmp(dispatch);
D
duke 已提交
5262 5263
}

5264 5265 5266
void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
  ShouldNotReachHere(); // 64bit doesn't use two regs
  cmpq(x_lo, y_lo);
D
duke 已提交
5267 5268 5269 5270 5271 5272
}

void MacroAssembler::lea(Register dst, AddressLiteral src) {
    mov_literal64(dst, (intptr_t)src.target(), src.rspec());
}

5273 5274 5275
void MacroAssembler::lea(Address dst, AddressLiteral adr) {
  mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
  movptr(dst, rscratch1);
D
duke 已提交
5276 5277
}

5278 5279 5280
void MacroAssembler::leave() {
  // %%% is this really better? Why not on 32bit too?
  emit_byte(0xC9); // LEAVE
D
duke 已提交
5281 5282
}

5283 5284 5285
void MacroAssembler::lneg(Register hi, Register lo) {
  ShouldNotReachHere(); // 64bit doesn't use two regs
  negq(lo);
D
duke 已提交
5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311
}

void MacroAssembler::movoop(Register dst, jobject obj) {
  mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
}

void MacroAssembler::movoop(Address dst, jobject obj) {
  mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
  movq(dst, rscratch1);
}

void MacroAssembler::movptr(Register dst, AddressLiteral src) {
  if (src.is_lval()) {
    mov_literal64(dst, (intptr_t)src.target(), src.rspec());
  } else {
    if (reachable(src)) {
      movq(dst, as_Address(src));
    } else {
      lea(rscratch1, src);
      movq(dst, Address(rscratch1,0));
    }
  }
}

void MacroAssembler::movptr(ArrayAddress dst, Register src) {
  movq(as_Address(dst), src);
5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330
}

void MacroAssembler::movptr(Register dst, ArrayAddress src) {
  movq(dst, as_Address(src));
}

// src should NEVER be a real pointer. Use AddressLiteral for true pointers
void MacroAssembler::movptr(Address dst, intptr_t src) {
  mov64(rscratch1, src);
  movq(dst, rscratch1);
}

// These are mostly for initializing NULL
void MacroAssembler::movptr(Address dst, int32_t src) {
  movslq(dst, src);
}

void MacroAssembler::movptr(Register dst, int32_t src) {
  mov64(dst, (intptr_t)src);
D
duke 已提交
5331 5332 5333 5334
}

void MacroAssembler::pushoop(jobject obj) {
  movoop(rscratch1, obj);
5335
  push(rscratch1);
D
duke 已提交
5336 5337 5338 5339 5340
}

void MacroAssembler::pushptr(AddressLiteral src) {
  lea(rscratch1, src);
  if (src.is_lval()) {
5341
    push(rscratch1);
D
duke 已提交
5342 5343 5344
  } else {
    pushq(Address(rscratch1, 0));
  }
5345 5346 5347 5348 5349
}

void MacroAssembler::reset_last_Java_frame(bool clear_fp,
                                           bool clear_pc) {
  // we must set sp to zero to clear frame
5350
  movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
5351 5352 5353
  // must clear fp, so that compiled frames are not confused; it is
  // possible that we need it only for debugging
  if (clear_fp) {
5354
    movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
5355 5356 5357
  }

  if (clear_pc) {
5358
    movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
D
duke 已提交
5359 5360 5361
  }
}

5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389
void MacroAssembler::set_last_Java_frame(Register last_java_sp,
                                         Register last_java_fp,
                                         address  last_java_pc) {
  // determine last_java_sp register
  if (!last_java_sp->is_valid()) {
    last_java_sp = rsp;
  }

  // last_java_fp is optional
  if (last_java_fp->is_valid()) {
    movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
           last_java_fp);
  }

  // last_java_pc is optional
  if (last_java_pc != NULL) {
    Address java_pc(r15_thread,
                    JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
    lea(rscratch1, InternalAddress(last_java_pc));
    movptr(java_pc, rscratch1);
  }

  movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
}

static void pass_arg0(MacroAssembler* masm, Register arg) {
  if (c_rarg0 != arg ) {
    masm->mov(c_rarg0, arg);
D
duke 已提交
5390 5391 5392
  }
}

5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481
static void pass_arg1(MacroAssembler* masm, Register arg) {
  if (c_rarg1 != arg ) {
    masm->mov(c_rarg1, arg);
  }
}

static void pass_arg2(MacroAssembler* masm, Register arg) {
  if (c_rarg2 != arg ) {
    masm->mov(c_rarg2, arg);
  }
}

static void pass_arg3(MacroAssembler* masm, Register arg) {
  if (c_rarg3 != arg ) {
    masm->mov(c_rarg3, arg);
  }
}

void MacroAssembler::stop(const char* msg) {
  address rip = pc();
  pusha(); // get regs on stack
  lea(c_rarg0, ExternalAddress((address) msg));
  lea(c_rarg1, InternalAddress(rip));
  movq(c_rarg2, rsp); // pass pointer to regs array
  andq(rsp, -16); // align stack as required by ABI
  call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
  hlt();
}

void MacroAssembler::warn(const char* msg) {
  push(r12);
  movq(r12, rsp);
  andq(rsp, -16);     // align stack as required by push_CPU_state and call

  push_CPU_state();   // keeps alignment at 16 bytes
  lea(c_rarg0, ExternalAddress((address) msg));
  call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0);
  pop_CPU_state();

  movq(rsp, r12);
  pop(r12);
}

#ifndef PRODUCT
extern "C" void findpc(intptr_t x);
#endif

void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
  // In order to get locks to work, we need to fake a in_VM state
  if (ShowMessageBoxOnError ) {
    JavaThread* thread = JavaThread::current();
    JavaThreadState saved_state = thread->thread_state();
    thread->set_thread_state(_thread_in_vm);
#ifndef PRODUCT
    if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
      ttyLocker ttyl;
      BytecodeCounter::print();
    }
#endif
    // To see where a verify_oop failed, get $ebx+40/X for this frame.
    // XXX correct this offset for amd64
    // This is the value of eip which points to where verify_oop will return.
    if (os::message_box(msg, "Execution stopped, print registers?")) {
      ttyLocker ttyl;
      tty->print_cr("rip = 0x%016lx", pc);
#ifndef PRODUCT
      tty->cr();
      findpc(pc);
      tty->cr();
#endif
      tty->print_cr("rax = 0x%016lx", regs[15]);
      tty->print_cr("rbx = 0x%016lx", regs[12]);
      tty->print_cr("rcx = 0x%016lx", regs[14]);
      tty->print_cr("rdx = 0x%016lx", regs[13]);
      tty->print_cr("rdi = 0x%016lx", regs[8]);
      tty->print_cr("rsi = 0x%016lx", regs[9]);
      tty->print_cr("rbp = 0x%016lx", regs[10]);
      tty->print_cr("rsp = 0x%016lx", regs[11]);
      tty->print_cr("r8  = 0x%016lx", regs[7]);
      tty->print_cr("r9  = 0x%016lx", regs[6]);
      tty->print_cr("r10 = 0x%016lx", regs[5]);
      tty->print_cr("r11 = 0x%016lx", regs[4]);
      tty->print_cr("r12 = 0x%016lx", regs[3]);
      tty->print_cr("r13 = 0x%016lx", regs[2]);
      tty->print_cr("r14 = 0x%016lx", regs[1]);
      tty->print_cr("r15 = 0x%016lx", regs[0]);
      BREAKPOINT;
    }
    ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
D
duke 已提交
5482
  } else {
5483 5484 5485
    ttyLocker ttyl;
    ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
                    msg);
D
duke 已提交
5486 5487 5488
  }
}

5489
#endif // _LP64
D
duke 已提交
5490

5491
// Now versions that are common to 32/64 bit
D
duke 已提交
5492

5493 5494
void MacroAssembler::addptr(Register dst, int32_t imm32) {
  LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
D
duke 已提交
5495 5496
}

5497 5498
void MacroAssembler::addptr(Register dst, Register src) {
  LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
D
duke 已提交
5499 5500
}

5501 5502
void MacroAssembler::addptr(Address dst, Register src) {
  LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
D
duke 已提交
5503 5504
}

5505 5506 5507 5508
void MacroAssembler::align(int modulus) {
  if (offset() % modulus != 0) {
    nop(modulus - (offset() % modulus));
  }
D
duke 已提交
5509 5510
}

5511 5512
void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
  andpd(dst, as_Address(src));
D
duke 已提交
5513 5514
}

5515 5516
void MacroAssembler::andptr(Register dst, int32_t imm32) {
  LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
D
duke 已提交
5517 5518
}

5519 5520 5521 5522 5523 5524
void MacroAssembler::atomic_incl(AddressLiteral counter_addr) {
  pushf();
  if (os::is_MP())
    lock();
  incrementl(counter_addr);
  popf();
D
duke 已提交
5525 5526
}

5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539
// Writes to stack successive pages until offset reached to check for
// stack overflow + shadow pages.  This clobbers tmp.
void MacroAssembler::bang_stack_size(Register size, Register tmp) {
  movptr(tmp, rsp);
  // Bang stack for total size given plus shadow page size.
  // Bang one page at a time because large size can bang beyond yellow and
  // red zones.
  Label loop;
  bind(loop);
  movl(Address(tmp, (-os::vm_page_size())), size );
  subptr(tmp, os::vm_page_size());
  subl(size, os::vm_page_size());
  jcc(Assembler::greater, loop);
D
duke 已提交
5540

5541 5542 5543 5544 5545 5546 5547
  // Bang down shadow pages too.
  // The -1 because we already subtracted 1 page.
  for (int i = 0; i< StackShadowPages-1; i++) {
    // this could be any sized move but this is can be a debugging crumb
    // so the bigger the better.
    movptr(Address(tmp, (-i*os::vm_page_size())), size );
  }
D
duke 已提交
5548 5549
}

5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562
void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
  assert(UseBiasedLocking, "why call this otherwise?");

  // Check for biased locking unlock case, which is a no-op
  // Note: we do not have to check the thread ID for two reasons.
  // First, the interpreter checks for IllegalMonitorStateException at
  // a higher level. Second, if the bias was revoked while we held the
  // lock, the object could not be rebiased toward another thread, so
  // the bias bit would be clear.
  movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
  andptr(temp_reg, markOopDesc::biased_lock_mask_in_place);
  cmpptr(temp_reg, markOopDesc::biased_lock_pattern);
  jcc(Assembler::equal, done);
D
duke 已提交
5563 5564
}

5565 5566 5567 5568 5569 5570 5571
void MacroAssembler::c2bool(Register x) {
  // implements x == 0 ? 0 : 1
  // note: must only look at least-significant byte of x
  //       since C-style booleans are stored in one byte
  //       only! (was bug)
  andl(x, 0xFF);
  setb(Assembler::notZero, x);
D
duke 已提交
5572 5573
}

5574 5575 5576
// Wouldn't need if AddressLiteral version had new name
void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
  Assembler::call(L, rtype);
D
duke 已提交
5577 5578
}

5579 5580
void MacroAssembler::call(Register entry) {
  Assembler::call(entry);
D
duke 已提交
5581 5582
}

5583 5584 5585 5586 5587 5588
void MacroAssembler::call(AddressLiteral entry) {
  if (reachable(entry)) {
    Assembler::call_literal(entry.target(), entry.rspec());
  } else {
    lea(rscratch1, entry);
    Assembler::call(rscratch1);
D
duke 已提交
5589 5590 5591
  }
}

5592
// Implementation of call_VM versions
D
duke 已提交
5593

5594 5595 5596 5597 5598 5599
void MacroAssembler::call_VM(Register oop_result,
                             address entry_point,
                             bool check_exceptions) {
  Label C, E;
  call(C, relocInfo::none);
  jmp(E);
D
duke 已提交
5600

5601 5602 5603
  bind(C);
  call_VM_helper(oop_result, entry_point, 0, check_exceptions);
  ret(0);
D
duke 已提交
5604

5605
  bind(E);
D
duke 已提交
5606 5607
}

5608 5609 5610 5611 5612 5613 5614
void MacroAssembler::call_VM(Register oop_result,
                             address entry_point,
                             Register arg_1,
                             bool check_exceptions) {
  Label C, E;
  call(C, relocInfo::none);
  jmp(E);
D
duke 已提交
5615

5616 5617 5618 5619
  bind(C);
  pass_arg1(this, arg_1);
  call_VM_helper(oop_result, entry_point, 1, check_exceptions);
  ret(0);
D
duke 已提交
5620

5621
  bind(E);
D
duke 已提交
5622 5623
}

5624 5625 5626 5627 5628 5629 5630 5631
void MacroAssembler::call_VM(Register oop_result,
                             address entry_point,
                             Register arg_1,
                             Register arg_2,
                             bool check_exceptions) {
  Label C, E;
  call(C, relocInfo::none);
  jmp(E);
D
duke 已提交
5632

5633
  bind(C);
D
duke 已提交
5634

5635
  LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
D
duke 已提交
5636

5637 5638 5639 5640
  pass_arg2(this, arg_2);
  pass_arg1(this, arg_1);
  call_VM_helper(oop_result, entry_point, 2, check_exceptions);
  ret(0);
D
duke 已提交
5641

5642
  bind(E);
D
duke 已提交
5643 5644
}

5645 5646 5647 5648 5649 5650 5651 5652 5653
void MacroAssembler::call_VM(Register oop_result,
                             address entry_point,
                             Register arg_1,
                             Register arg_2,
                             Register arg_3,
                             bool check_exceptions) {
  Label C, E;
  call(C, relocInfo::none);
  jmp(E);
D
duke 已提交
5654

5655
  bind(C);
D
duke 已提交
5656

5657 5658 5659
  LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  pass_arg3(this, arg_3);
D
duke 已提交
5660

5661 5662
  LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  pass_arg2(this, arg_2);
D
duke 已提交
5663

5664 5665 5666
  pass_arg1(this, arg_1);
  call_VM_helper(oop_result, entry_point, 3, check_exceptions);
  ret(0);
D
duke 已提交
5667

5668 5669
  bind(E);
}
D
duke 已提交
5670

5671 5672 5673 5674 5675 5676 5677 5678
void MacroAssembler::call_VM(Register oop_result,
                             Register last_java_sp,
                             address entry_point,
                             int number_of_arguments,
                             bool check_exceptions) {
  Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
  call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
}
D
duke 已提交
5679

5680 5681 5682 5683 5684 5685 5686 5687
void MacroAssembler::call_VM(Register oop_result,
                             Register last_java_sp,
                             address entry_point,
                             Register arg_1,
                             bool check_exceptions) {
  pass_arg1(this, arg_1);
  call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
}
D
duke 已提交
5688

5689 5690 5691 5692 5693 5694
void MacroAssembler::call_VM(Register oop_result,
                             Register last_java_sp,
                             address entry_point,
                             Register arg_1,
                             Register arg_2,
                             bool check_exceptions) {
D
duke 已提交
5695

5696 5697 5698 5699
  LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  pass_arg2(this, arg_2);
  pass_arg1(this, arg_1);
  call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
D
duke 已提交
5700 5701
}

5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716
void MacroAssembler::call_VM(Register oop_result,
                             Register last_java_sp,
                             address entry_point,
                             Register arg_1,
                             Register arg_2,
                             Register arg_3,
                             bool check_exceptions) {
  LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  pass_arg3(this, arg_3);
  LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  pass_arg2(this, arg_2);
  pass_arg1(this, arg_1);
  call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
}
D
duke 已提交
5717 5718 5719 5720

void MacroAssembler::call_VM_base(Register oop_result,
                                  Register java_thread,
                                  Register last_java_sp,
5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732
                                  address  entry_point,
                                  int      number_of_arguments,
                                  bool     check_exceptions) {
  // determine java_thread register
  if (!java_thread->is_valid()) {
#ifdef _LP64
    java_thread = r15_thread;
#else
    java_thread = rdi;
    get_thread(java_thread);
#endif // LP64
  }
D
duke 已提交
5733 5734 5735 5736 5737
  // determine last_java_sp register
  if (!last_java_sp->is_valid()) {
    last_java_sp = rsp;
  }
  // debugging support
5738 5739 5740 5741
  assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
  LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
  assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
  assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
D
duke 已提交
5742

5743
  // push java thread (becomes first argument of C function)
D
duke 已提交
5744

5745 5746
  NOT_LP64(push(java_thread); number_of_arguments++);
  LP64_ONLY(mov(c_rarg0, r15_thread));
D
duke 已提交
5747

5748 5749
  // set last Java frame before call
  assert(last_java_sp != rbp, "can't use ebp/rbp");
D
duke 已提交
5750

5751 5752
  // Only interpreter should have to set fp
  set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
D
duke 已提交
5753

5754 5755
  // do the call, remove parameters
  MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
D
duke 已提交
5756

5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770
  // restore the thread (cannot use the pushed argument since arguments
  // may be overwritten by C code generated by an optimizing compiler);
  // however can use the register value directly if it is callee saved.
  if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
    // rdi & rsi (also r15) are callee saved -> nothing to do
#ifdef ASSERT
    guarantee(java_thread != rax, "change this code");
    push(rax);
    { Label L;
      get_thread(rax);
      cmpptr(java_thread, rax);
      jcc(Assembler::equal, L);
      stop("MacroAssembler::call_VM_base: rdi not callee saved?");
      bind(L);
D
duke 已提交
5771
    }
5772
    pop(rax);
D
duke 已提交
5773
#endif
5774 5775
  } else {
    get_thread(java_thread);
D
duke 已提交
5776 5777
  }
  // reset last Java frame
5778 5779
  // Only interpreter should have to clear fp
  reset_last_Java_frame(java_thread, true, false);
D
duke 已提交
5780

5781 5782 5783 5784 5785
#ifndef CC_INTERP
   // C++ interp handles this in the interpreter
  check_and_handle_popframe(java_thread);
  check_and_handle_earlyret(java_thread);
#endif /* CC_INTERP */
D
duke 已提交
5786 5787

  if (check_exceptions) {
5788 5789 5790 5791 5792 5793
    // check for pending exceptions (java_thread is set upon return)
    cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
#ifndef _LP64
    jump_cc(Assembler::notEqual,
            RuntimeAddress(StubRoutines::forward_exception_entry()));
#else
D
duke 已提交
5794 5795 5796
    // This used to conditionally jump to forward_exception however it is
    // possible if we relocate that the branch will not reach. So we must jump
    // around so we can always reach
5797

D
duke 已提交
5798 5799 5800 5801
    Label ok;
    jcc(Assembler::equal, ok);
    jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
    bind(ok);
5802
#endif // LP64
D
duke 已提交
5803 5804 5805 5806
  }

  // get oop result if there is one and reset the value in the thread
  if (oop_result->is_valid()) {
5807
    movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
5808
    movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
5809
    verify_oop(oop_result, "broken oop in call_VM_base");
D
duke 已提交
5810 5811 5812
  }
}

5813
void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
D
duke 已提交
5814

5815 5816 5817 5818 5819 5820 5821 5822 5823
  // Calculate the value for last_Java_sp
  // somewhat subtle. call_VM does an intermediate call
  // which places a return address on the stack just under the
  // stack pointer as the user finsihed with it. This allows
  // use to retrieve last_Java_pc from last_Java_sp[-1].
  // On 32bit we then have to push additional args on the stack to accomplish
  // the actual requested call. On 64bit call_VM only can use register args
  // so the only extra space is the return address that call_VM created.
  // This hopefully explains the calculations here.
D
duke 已提交
5824

5825
#ifdef _LP64
D
duke 已提交
5826
  // We've pushed one address, correct last_Java_sp
5827 5828 5829 5830 5831 5832
  lea(rax, Address(rsp, wordSize));
#else
  lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
#endif // LP64

  call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
D
duke 已提交
5833 5834 5835

}

5836 5837 5838
void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
  call_VM_leaf_base(entry_point, number_of_arguments);
}
D
duke 已提交
5839

5840 5841 5842 5843
void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
  pass_arg0(this, arg_0);
  call_VM_leaf(entry_point, 1);
}
D
duke 已提交
5844

5845
void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
D
duke 已提交
5846

5847 5848 5849 5850
  LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  pass_arg1(this, arg_1);
  pass_arg0(this, arg_0);
  call_VM_leaf(entry_point, 2);
D
duke 已提交
5851 5852
}

5853 5854 5855 5856 5857 5858 5859 5860 5861
void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
  LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
  LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  pass_arg2(this, arg_2);
  LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  pass_arg1(this, arg_1);
  pass_arg0(this, arg_0);
  call_VM_leaf(entry_point, 3);
}
D
duke 已提交
5862

5863 5864
void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
}
D
duke 已提交
5865

5866 5867
void MacroAssembler::check_and_handle_popframe(Register java_thread) {
}
D
duke 已提交
5868

5869 5870 5871 5872 5873 5874
void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
  if (reachable(src1)) {
    cmpl(as_Address(src1), imm);
  } else {
    lea(rscratch1, src1);
    cmpl(Address(rscratch1, 0), imm);
D
duke 已提交
5875
  }
5876
}
D
duke 已提交
5877

5878 5879 5880 5881 5882 5883 5884 5885
void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
  assert(!src2.is_lval(), "use cmpptr");
  if (reachable(src2)) {
    cmpl(src1, as_Address(src2));
  } else {
    lea(rscratch1, src2);
    cmpl(src1, Address(rscratch1, 0));
  }
D
duke 已提交
5886 5887
}

5888 5889 5890
void MacroAssembler::cmp32(Register src1, int32_t imm) {
  Assembler::cmpl(src1, imm);
}
D
duke 已提交
5891

5892 5893 5894
void MacroAssembler::cmp32(Register src1, Address src2) {
  Assembler::cmpl(src1, src2);
}
D
duke 已提交
5895

5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913
void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
  ucomisd(opr1, opr2);

  Label L;
  if (unordered_is_less) {
    movl(dst, -1);
    jcc(Assembler::parity, L);
    jcc(Assembler::below , L);
    movl(dst, 0);
    jcc(Assembler::equal , L);
    increment(dst);
  } else { // unordered is greater
    movl(dst, 1);
    jcc(Assembler::parity, L);
    jcc(Assembler::above , L);
    movl(dst, 0);
    jcc(Assembler::equal , L);
    decrementl(dst);
D
duke 已提交
5914
  }
5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935
  bind(L);
}

void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
  ucomiss(opr1, opr2);

  Label L;
  if (unordered_is_less) {
    movl(dst, -1);
    jcc(Assembler::parity, L);
    jcc(Assembler::below , L);
    movl(dst, 0);
    jcc(Assembler::equal , L);
    increment(dst);
  } else { // unordered is greater
    movl(dst, 1);
    jcc(Assembler::parity, L);
    jcc(Assembler::above , L);
    movl(dst, 0);
    jcc(Assembler::equal , L);
    decrementl(dst);
D
duke 已提交
5936
  }
5937 5938
  bind(L);
}
D
duke 已提交
5939

5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066

void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
  if (reachable(src1)) {
    cmpb(as_Address(src1), imm);
  } else {
    lea(rscratch1, src1);
    cmpb(Address(rscratch1, 0), imm);
  }
}

void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
#ifdef _LP64
  if (src2.is_lval()) {
    movptr(rscratch1, src2);
    Assembler::cmpq(src1, rscratch1);
  } else if (reachable(src2)) {
    cmpq(src1, as_Address(src2));
  } else {
    lea(rscratch1, src2);
    Assembler::cmpq(src1, Address(rscratch1, 0));
  }
#else
  if (src2.is_lval()) {
    cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
  } else {
    cmpl(src1, as_Address(src2));
  }
#endif // _LP64
}

void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
  assert(src2.is_lval(), "not a mem-mem compare");
#ifdef _LP64
  // moves src2's literal address
  movptr(rscratch1, src2);
  Assembler::cmpq(src1, rscratch1);
#else
  cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
#endif // _LP64
}

void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
  if (reachable(adr)) {
    if (os::is_MP())
      lock();
    cmpxchgptr(reg, as_Address(adr));
  } else {
    lea(rscratch1, adr);
    if (os::is_MP())
      lock();
    cmpxchgptr(reg, Address(rscratch1, 0));
  }
}

void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
  LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
}

void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
  comisd(dst, as_Address(src));
}

void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
  comiss(dst, as_Address(src));
}


void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
  Condition negated_cond = negate_condition(cond);
  Label L;
  jcc(negated_cond, L);
  atomic_incl(counter_addr);
  bind(L);
}

int MacroAssembler::corrected_idivl(Register reg) {
  // Full implementation of Java idiv and irem; checks for
  // special case as described in JVM spec., p.243 & p.271.
  // The function returns the (pc) offset of the idivl
  // instruction - may be needed for implicit exceptions.
  //
  //         normal case                           special case
  //
  // input : rax,: dividend                         min_int
  //         reg: divisor   (may not be rax,/rdx)   -1
  //
  // output: rax,: quotient  (= rax, idiv reg)       min_int
  //         rdx: remainder (= rax, irem reg)       0
  assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
  const int min_int = 0x80000000;
  Label normal_case, special_case;

  // check for special case
  cmpl(rax, min_int);
  jcc(Assembler::notEqual, normal_case);
  xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
  cmpl(reg, -1);
  jcc(Assembler::equal, special_case);

  // handle normal case
  bind(normal_case);
  cdql();
  int idivl_offset = offset();
  idivl(reg);

  // normal and special case exit
  bind(special_case);

  return idivl_offset;
}



void MacroAssembler::decrementl(Register reg, int value) {
  if (value == min_jint) {subl(reg, value) ; return; }
  if (value <  0) { incrementl(reg, -value); return; }
  if (value == 0) {                        ; return; }
  if (value == 1 && UseIncDec) { decl(reg) ; return; }
  /* else */      { subl(reg, value)       ; return; }
}

void MacroAssembler::decrementl(Address dst, int value) {
  if (value == min_jint) {subl(dst, value) ; return; }
  if (value <  0) { incrementl(dst, -value); return; }
  if (value == 0) {                        ; return; }
  if (value == 1 && UseIncDec) { decl(dst) ; return; }
  /* else */      { subl(dst, value)       ; return; }
D
duke 已提交
6067 6068
}

6069 6070 6071 6072 6073 6074
void MacroAssembler::division_with_shift (Register reg, int shift_value) {
  assert (shift_value > 0, "illegal shift value");
  Label _is_positive;
  testl (reg, reg);
  jcc (Assembler::positive, _is_positive);
  int offset = (1 << shift_value) - 1 ;
D
duke 已提交
6075

6076 6077 6078 6079
  if (offset == 1) {
    incrementl(reg);
  } else {
    addl(reg, offset);
D
duke 已提交
6080 6081
  }

6082 6083
  bind (_is_positive);
  sarl(reg, shift_value);
D
duke 已提交
6084 6085
}

6086 6087 6088 6089 6090 6091 6092 6093
// !defined(COMPILER2) is because of stupid core builds
#if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2)
void MacroAssembler::empty_FPU_stack() {
  if (VM_Version::supports_mmx()) {
    emms();
  } else {
    for (int i = 8; i-- > 0; ) ffree(i);
  }
D
duke 已提交
6094
}
6095
#endif // !LP64 || C1 || !C2
D
duke 已提交
6096

6097 6098 6099 6100 6101 6102 6103 6104 6105

// Defines obj, preserves var_size_in_bytes
void MacroAssembler::eden_allocate(Register obj,
                                   Register var_size_in_bytes,
                                   int con_size_in_bytes,
                                   Register t1,
                                   Label& slow_case) {
  assert(obj == rax, "obj must be in rax, for cmpxchg");
  assert_different_registers(obj, var_size_in_bytes, t1);
A
Merge  
apetrusenko 已提交
6106 6107
  if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
    jmp(slow_case);
6108
  } else {
A
Merge  
apetrusenko 已提交
6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128
    Register end = t1;
    Label retry;
    bind(retry);
    ExternalAddress heap_top((address) Universe::heap()->top_addr());
    movptr(obj, heap_top);
    if (var_size_in_bytes == noreg) {
      lea(end, Address(obj, con_size_in_bytes));
    } else {
      lea(end, Address(obj, var_size_in_bytes, Address::times_1));
    }
    // if end < obj then we wrapped around => object too long => slow case
    cmpptr(end, obj);
    jcc(Assembler::below, slow_case);
    cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
    jcc(Assembler::above, slow_case);
    // Compare obj with the top addr, and if still equal, store the new top addr in
    // end at the address of the top addr pointer. Sets ZF if was equal, and clears
    // it otherwise. Use lock prefix for atomicity on MPs.
    locked_cmpxchgptr(end, heap_top);
    jcc(Assembler::notEqual, retry);
D
duke 已提交
6129 6130 6131
  }
}

6132 6133 6134
void MacroAssembler::enter() {
  push(rbp);
  mov(rbp, rsp);
D
duke 已提交
6135 6136
}

6137 6138 6139
void MacroAssembler::fcmp(Register tmp) {
  fcmp(tmp, 1, true, true);
}
D
duke 已提交
6140

6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168
void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
  assert(!pop_right || pop_left, "usage error");
  if (VM_Version::supports_cmov()) {
    assert(tmp == noreg, "unneeded temp");
    if (pop_left) {
      fucomip(index);
    } else {
      fucomi(index);
    }
    if (pop_right) {
      fpop();
    }
  } else {
    assert(tmp != noreg, "need temp");
    if (pop_left) {
      if (pop_right) {
        fcompp();
      } else {
        fcomp(index);
      }
    } else {
      fcom(index);
    }
    // convert FPU condition into eflags condition via rax,
    save_rax(tmp);
    fwait(); fnstsw_ax();
    sahf();
    restore_rax(tmp);
D
duke 已提交
6169
  }
6170 6171 6172 6173 6174
  // condition codes set as follows:
  //
  // CF (corresponds to C0) if x < y
  // PF (corresponds to C2) if unordered
  // ZF (corresponds to C3) if x = y
D
duke 已提交
6175 6176
}

6177 6178
void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
  fcmp2int(dst, unordered_is_less, 1, true, true);
D
duke 已提交
6179 6180
}

6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197
void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
  fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
  Label L;
  if (unordered_is_less) {
    movl(dst, -1);
    jcc(Assembler::parity, L);
    jcc(Assembler::below , L);
    movl(dst, 0);
    jcc(Assembler::equal , L);
    increment(dst);
  } else { // unordered is greater
    movl(dst, 1);
    jcc(Assembler::parity, L);
    jcc(Assembler::above , L);
    movl(dst, 0);
    jcc(Assembler::equal , L);
    decrementl(dst);
D
duke 已提交
6198
  }
6199
  bind(L);
D
duke 已提交
6200 6201
}

6202 6203
void MacroAssembler::fld_d(AddressLiteral src) {
  fld_d(as_Address(src));
D
duke 已提交
6204 6205
}

6206 6207
void MacroAssembler::fld_s(AddressLiteral src) {
  fld_s(as_Address(src));
D
duke 已提交
6208 6209
}

6210 6211
void MacroAssembler::fld_x(AddressLiteral src) {
  Assembler::fld_x(as_Address(src));
D
duke 已提交
6212 6213
}

6214 6215
void MacroAssembler::fldcw(AddressLiteral src) {
  Assembler::fldcw(as_Address(src));
D
duke 已提交
6216 6217
}

6218 6219 6220
void MacroAssembler::fpop() {
  ffree();
  fincstp();
D
duke 已提交
6221 6222
}

6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243
void MacroAssembler::fremr(Register tmp) {
  save_rax(tmp);
  { Label L;
    bind(L);
    fprem();
    fwait(); fnstsw_ax();
#ifdef _LP64
    testl(rax, 0x400);
    jcc(Assembler::notEqual, L);
#else
    sahf();
    jcc(Assembler::parity, L);
#endif // _LP64
  }
  restore_rax(tmp);
  // Result is in ST0.
  // Note: fxch & fpop to get rid of ST1
  // (otherwise FPU stack could overflow eventually)
  fxch(1);
  fpop();
}
6244 6245


6246 6247 6248
void MacroAssembler::incrementl(AddressLiteral dst) {
  if (reachable(dst)) {
    incrementl(as_Address(dst));
6249
  } else {
6250 6251
    lea(rscratch1, dst);
    incrementl(Address(rscratch1, 0));
6252
  }
D
duke 已提交
6253 6254
}

6255 6256
void MacroAssembler::incrementl(ArrayAddress dst) {
  incrementl(as_Address(dst));
D
duke 已提交
6257 6258
}

6259 6260 6261 6262 6263 6264
void MacroAssembler::incrementl(Register reg, int value) {
  if (value == min_jint) {addl(reg, value) ; return; }
  if (value <  0) { decrementl(reg, -value); return; }
  if (value == 0) {                        ; return; }
  if (value == 1 && UseIncDec) { incl(reg) ; return; }
  /* else */      { addl(reg, value)       ; return; }
D
duke 已提交
6265 6266
}

6267 6268 6269 6270 6271 6272 6273
void MacroAssembler::incrementl(Address dst, int value) {
  if (value == min_jint) {addl(dst, value) ; return; }
  if (value <  0) { decrementl(dst, -value); return; }
  if (value == 0) {                        ; return; }
  if (value == 1 && UseIncDec) { incl(dst) ; return; }
  /* else */      { addl(dst, value)       ; return; }
}
D
duke 已提交
6274

6275 6276 6277 6278 6279 6280 6281 6282
void MacroAssembler::jump(AddressLiteral dst) {
  if (reachable(dst)) {
    jmp_literal(dst.target(), dst.rspec());
  } else {
    lea(rscratch1, dst);
    jmp(rscratch1);
  }
}
D
duke 已提交
6283

6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311
void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
  if (reachable(dst)) {
    InstructionMark im(this);
    relocate(dst.reloc());
    const int short_size = 2;
    const int long_size = 6;
    int offs = (intptr_t)dst.target() - ((intptr_t)_code_pos);
    if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
      // 0111 tttn #8-bit disp
      emit_byte(0x70 | cc);
      emit_byte((offs - short_size) & 0xFF);
    } else {
      // 0000 1111 1000 tttn #32-bit disp
      emit_byte(0x0F);
      emit_byte(0x80 | cc);
      emit_long(offs - long_size);
    }
  } else {
#ifdef ASSERT
    warning("reversing conditional branch");
#endif /* ASSERT */
    Label skip;
    jccb(reverse[cc], skip);
    lea(rscratch1, dst);
    Assembler::jmp(rscratch1);
    bind(skip);
  }
}
D
duke 已提交
6312

6313 6314 6315 6316 6317 6318 6319 6320
void MacroAssembler::ldmxcsr(AddressLiteral src) {
  if (reachable(src)) {
    Assembler::ldmxcsr(as_Address(src));
  } else {
    lea(rscratch1, src);
    Assembler::ldmxcsr(Address(rscratch1, 0));
  }
}
D
duke 已提交
6321

6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332
int MacroAssembler::load_signed_byte(Register dst, Address src) {
  int off;
  if (LP64_ONLY(true ||) VM_Version::is_P6()) {
    off = offset();
    movsbl(dst, src); // movsxb
  } else {
    off = load_unsigned_byte(dst, src);
    shll(dst, 24);
    sarl(dst, 24);
  }
  return off;
D
duke 已提交
6333 6334
}

6335 6336 6337 6338 6339
// Note: load_signed_short used to be called load_signed_word.
// Although the 'w' in x86 opcodes refers to the term "word" in the assembler
// manual, which means 16 bits, that usage is found nowhere in HotSpot code.
// The term "word" in HotSpot means a 32- or 64-bit machine word.
int MacroAssembler::load_signed_short(Register dst, Address src) {
6340 6341 6342 6343 6344 6345 6346 6347
  int off;
  if (LP64_ONLY(true ||) VM_Version::is_P6()) {
    // This is dubious to me since it seems safe to do a signed 16 => 64 bit
    // version but this is what 64bit has always done. This seems to imply
    // that users are only using 32bits worth.
    off = offset();
    movswl(dst, src); // movsxw
  } else {
6348
    off = load_unsigned_short(dst, src);
6349 6350 6351 6352
    shll(dst, 16);
    sarl(dst, 16);
  }
  return off;
D
duke 已提交
6353 6354
}

6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367
int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
  // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
  // and "3.9 Partial Register Penalties", p. 22).
  int off;
  if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
    off = offset();
    movzbl(dst, src); // movzxb
  } else {
    xorl(dst, dst);
    off = offset();
    movb(dst, src);
  }
  return off;
D
duke 已提交
6368 6369
}

6370 6371
// Note: load_unsigned_short used to be called load_unsigned_word.
int MacroAssembler::load_unsigned_short(Register dst, Address src) {
6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383
  // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
  // and "3.9 Partial Register Penalties", p. 22).
  int off;
  if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
    off = offset();
    movzwl(dst, src); // movzxw
  } else {
    xorl(dst, dst);
    off = offset();
    movw(dst, src);
  }
  return off;
D
duke 已提交
6384 6385
}

6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407
void MacroAssembler::load_sized_value(Register dst, Address src,
                                      int size_in_bytes, bool is_signed) {
  switch (size_in_bytes ^ (is_signed ? -1 : 0)) {
#ifndef _LP64
  // For case 8, caller is responsible for manually loading
  // the second word into another register.
  case ~8:  // fall through:
  case  8:  movl(                dst, src ); break;
#else
  case ~8:  // fall through:
  case  8:  movq(                dst, src ); break;
#endif
  case ~4:  // fall through:
  case  4:  movl(                dst, src ); break;
  case ~2:  load_signed_short(   dst, src ); break;
  case  2:  load_unsigned_short( dst, src ); break;
  case ~1:  load_signed_byte(    dst, src ); break;
  case  1:  load_unsigned_byte(  dst, src ); break;
  default:  ShouldNotReachHere();
  }
}

6408 6409 6410 6411 6412 6413 6414
void MacroAssembler::mov32(AddressLiteral dst, Register src) {
  if (reachable(dst)) {
    movl(as_Address(dst), src);
  } else {
    lea(rscratch1, dst);
    movl(Address(rscratch1, 0), src);
  }
D
duke 已提交
6415 6416
}

6417 6418 6419 6420 6421 6422 6423
void MacroAssembler::mov32(Register dst, AddressLiteral src) {
  if (reachable(src)) {
    movl(dst, as_Address(src));
  } else {
    lea(rscratch1, src);
    movl(dst, Address(rscratch1, 0));
  }
D
duke 已提交
6424 6425
}

6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437
// C++ bool manipulation

void MacroAssembler::movbool(Register dst, Address src) {
  if(sizeof(bool) == 1)
    movb(dst, src);
  else if(sizeof(bool) == 2)
    movw(dst, src);
  else if(sizeof(bool) == 4)
    movl(dst, src);
  else
    // unsupported
    ShouldNotReachHere();
D
duke 已提交
6438 6439
}

6440 6441 6442 6443 6444 6445 6446 6447 6448 6449
void MacroAssembler::movbool(Address dst, bool boolconst) {
  if(sizeof(bool) == 1)
    movb(dst, (int) boolconst);
  else if(sizeof(bool) == 2)
    movw(dst, (int) boolconst);
  else if(sizeof(bool) == 4)
    movl(dst, (int) boolconst);
  else
    // unsupported
    ShouldNotReachHere();
D
duke 已提交
6450 6451
}

6452 6453 6454 6455 6456 6457 6458 6459 6460 6461
void MacroAssembler::movbool(Address dst, Register src) {
  if(sizeof(bool) == 1)
    movb(dst, src);
  else if(sizeof(bool) == 2)
    movw(dst, src);
  else if(sizeof(bool) == 4)
    movl(dst, src);
  else
    // unsupported
    ShouldNotReachHere();
D
duke 已提交
6462 6463
}

6464 6465 6466
void MacroAssembler::movbyte(ArrayAddress dst, int src) {
  movb(as_Address(dst), src);
}
D
duke 已提交
6467

6468 6469 6470 6471 6472 6473 6474
void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
  if (reachable(src)) {
    if (UseXmmLoadAndClearUpper) {
      movsd (dst, as_Address(src));
    } else {
      movlpd(dst, as_Address(src));
    }
D
duke 已提交
6475
  } else {
6476 6477 6478 6479 6480 6481
    lea(rscratch1, src);
    if (UseXmmLoadAndClearUpper) {
      movsd (dst, Address(rscratch1, 0));
    } else {
      movlpd(dst, Address(rscratch1, 0));
    }
D
duke 已提交
6482 6483 6484
  }
}

6485 6486 6487 6488 6489 6490 6491
void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
  if (reachable(src)) {
    movss(dst, as_Address(src));
  } else {
    lea(rscratch1, src);
    movss(dst, Address(rscratch1, 0));
  }
D
duke 已提交
6492 6493
}

6494 6495
void MacroAssembler::movptr(Register dst, Register src) {
  LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
D
duke 已提交
6496 6497
}

6498 6499 6500
void MacroAssembler::movptr(Register dst, Address src) {
  LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
}
D
duke 已提交
6501

6502 6503 6504
// src should NEVER be a real pointer. Use AddressLiteral for true pointers
void MacroAssembler::movptr(Register dst, intptr_t src) {
  LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
D
duke 已提交
6505 6506
}

6507 6508 6509
void MacroAssembler::movptr(Address dst, Register src) {
  LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
}
D
duke 已提交
6510

6511 6512 6513 6514 6515 6516 6517 6518
void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
  if (reachable(src)) {
    movss(dst, as_Address(src));
  } else {
    lea(rscratch1, src);
    movss(dst, Address(rscratch1, 0));
  }
}
D
duke 已提交
6519

6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533
void MacroAssembler::null_check(Register reg, int offset) {
  if (needs_explicit_null_check(offset)) {
    // provoke OS NULL exception if reg = NULL by
    // accessing M[reg] w/o changing any (non-CC) registers
    // NOTE: cmpl is plenty here to provoke a segv
    cmpptr(rax, Address(reg, 0));
    // Note: should probably use testl(rax, Address(reg, 0));
    //       may be shorter code (however, this version of
    //       testl needs to be implemented first)
  } else {
    // nothing to do, (later) access of M[reg + offset]
    // will provoke OS NULL exception if reg = NULL
  }
}
D
duke 已提交
6534

6535 6536 6537 6538
void MacroAssembler::os_breakpoint() {
  // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
  // (e.g., MSVC can't call ps() otherwise)
  call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
D
duke 已提交
6539 6540
}

6541 6542 6543 6544
void MacroAssembler::pop_CPU_state() {
  pop_FPU_state();
  pop_IU_state();
}
D
duke 已提交
6545

6546 6547 6548 6549
void MacroAssembler::pop_FPU_state() {
  NOT_LP64(frstor(Address(rsp, 0));)
  LP64_ONLY(fxrstor(Address(rsp, 0));)
  addptr(rsp, FPUStateSizeInWords * wordSize);
D
duke 已提交
6550 6551
}

6552 6553 6554 6555 6556
void MacroAssembler::pop_IU_state() {
  popa();
  LP64_ONLY(addq(rsp, 8));
  popf();
}
D
duke 已提交
6557

6558 6559 6560 6561 6562 6563
// Save Integer and Float state
// Warning: Stack must be 16 byte aligned (64bit)
void MacroAssembler::push_CPU_state() {
  push_IU_state();
  push_FPU_state();
}
D
duke 已提交
6564

6565 6566 6567 6568 6569 6570 6571 6572
void MacroAssembler::push_FPU_state() {
  subptr(rsp, FPUStateSizeInWords * wordSize);
#ifndef _LP64
  fnsave(Address(rsp, 0));
  fwait();
#else
  fxsave(Address(rsp, 0));
#endif // LP64
D
duke 已提交
6573 6574
}

6575 6576 6577 6578 6579 6580 6581
void MacroAssembler::push_IU_state() {
  // Push flags first because pusha kills them
  pushf();
  // Make sure rsp stays 16-byte aligned
  LP64_ONLY(subq(rsp, 8));
  pusha();
}
6582

6583 6584 6585 6586 6587 6588 6589
void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp, bool clear_pc) {
  // determine java_thread register
  if (!java_thread->is_valid()) {
    java_thread = rdi;
    get_thread(java_thread);
  }
  // we must set sp to zero to clear frame
6590
  movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
6591
  if (clear_fp) {
6592
    movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
D
duke 已提交
6593
  }
6594 6595

  if (clear_pc)
6596
    movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
6597

D
duke 已提交
6598 6599
}

6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612
void MacroAssembler::restore_rax(Register tmp) {
  if (tmp == noreg) pop(rax);
  else if (tmp != rax) mov(rax, tmp);
}

void MacroAssembler::round_to(Register reg, int modulus) {
  addptr(reg, modulus - 1);
  andptr(reg, -modulus);
}

void MacroAssembler::save_rax(Register tmp) {
  if (tmp == noreg) push(rax);
  else if (tmp != rax) mov(tmp, rax);
D
duke 已提交
6613 6614 6615 6616 6617 6618
}

// Write serialization page so VM thread can do a pseudo remote membar.
// We use the current thread pointer to calculate a thread specific
// offset to write to within the page. This minimizes bus traffic
// due to cache line collision.
6619
void MacroAssembler::serialize_memory(Register thread, Register tmp) {
D
duke 已提交
6620 6621 6622 6623 6624 6625 6626
  movl(tmp, thread);
  shrl(tmp, os::get_serialize_page_shift_count());
  andl(tmp, (os::vm_page_size() - sizeof(int)));

  Address index(noreg, tmp, Address::times_1);
  ExternalAddress page(os::get_memory_serialize_page());

6627 6628
  // Size of store must match masking code above
  movl(as_Address(ArrayAddress(page, index)), tmp);
D
duke 已提交
6629 6630
}

6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648
// Calls to C land
//
// When entering C land, the rbp, & rsp of the last Java frame have to be recorded
// in the (thread-local) JavaThread object. When leaving C land, the last Java fp
// has to be reset to 0. This is required to allow proper stack traversal.
void MacroAssembler::set_last_Java_frame(Register java_thread,
                                         Register last_java_sp,
                                         Register last_java_fp,
                                         address  last_java_pc) {
  // determine java_thread register
  if (!java_thread->is_valid()) {
    java_thread = rdi;
    get_thread(java_thread);
  }
  // determine last_java_sp register
  if (!last_java_sp->is_valid()) {
    last_java_sp = rsp;
  }
D
duke 已提交
6649

6650
  // last_java_fp is optional
D
duke 已提交
6651

6652 6653 6654
  if (last_java_fp->is_valid()) {
    movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
  }
D
duke 已提交
6655

6656
  // last_java_pc is optional
D
duke 已提交
6657

6658 6659 6660 6661
  if (last_java_pc != NULL) {
    lea(Address(java_thread,
                 JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
        InternalAddress(last_java_pc));
D
duke 已提交
6662 6663

  }
6664
  movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
D
duke 已提交
6665 6666
}

6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677
void MacroAssembler::shlptr(Register dst, int imm8) {
  LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
}

void MacroAssembler::shrptr(Register dst, int imm8) {
  LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
}

void MacroAssembler::sign_extend_byte(Register reg) {
  if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
    movsbl(reg, reg); // movsxb
D
duke 已提交
6678
  } else {
6679 6680
    shll(reg, 24);
    sarl(reg, 24);
D
duke 已提交
6681
  }
6682
}
D
duke 已提交
6683

6684 6685 6686 6687 6688 6689
void MacroAssembler::sign_extend_short(Register reg) {
  if (LP64_ONLY(true ||) VM_Version::is_P6()) {
    movswl(reg, reg); // movsxw
  } else {
    shll(reg, 16);
    sarl(reg, 16);
D
duke 已提交
6690
  }
6691 6692
}

A
Merge  
apetrusenko 已提交
6693 6694
//////////////////////////////////////////////////////////////////////////////////
#ifndef SERIALGC
D
duke 已提交
6695

A
Merge  
apetrusenko 已提交
6696 6697 6698 6699 6700 6701 6702 6703 6704 6705
void MacroAssembler::g1_write_barrier_pre(Register obj,
#ifndef _LP64
                                          Register thread,
#endif
                                          Register tmp,
                                          Register tmp2,
                                          bool tosca_live) {
  LP64_ONLY(Register thread = r15_thread;)
  Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
                                       PtrQueue::byte_offset_of_active()));
D
duke 已提交
6706

A
Merge  
apetrusenko 已提交
6707 6708 6709 6710
  Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
                                       PtrQueue::byte_offset_of_index()));
  Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
                                       PtrQueue::byte_offset_of_buf()));
D
duke 已提交
6711 6712


A
Merge  
apetrusenko 已提交
6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765
  Label done;
  Label runtime;

  // if (!marking_in_progress) goto done;
  if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
    cmpl(in_progress, 0);
  } else {
    assert(in_bytes(PtrQueue::byte_width_of_active()) == 1, "Assumption");
    cmpb(in_progress, 0);
  }
  jcc(Assembler::equal, done);

  // if (x.f == NULL) goto done;
  cmpptr(Address(obj, 0), NULL_WORD);
  jcc(Assembler::equal, done);

  // Can we store original value in the thread's buffer?

  LP64_ONLY(movslq(tmp, index);)
  movptr(tmp2, Address(obj, 0));
#ifdef _LP64
  cmpq(tmp, 0);
#else
  cmpl(index, 0);
#endif
  jcc(Assembler::equal, runtime);
#ifdef _LP64
  subq(tmp, wordSize);
  movl(index, tmp);
  addq(tmp, buffer);
#else
  subl(index, wordSize);
  movl(tmp, buffer);
  addl(tmp, index);
#endif
  movptr(Address(tmp, 0), tmp2);
  jmp(done);
  bind(runtime);
  // save the live input values
  if(tosca_live) push(rax);
  push(obj);
#ifdef _LP64
  movq(c_rarg0, Address(obj, 0));
  call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), c_rarg0, r15_thread);
#else
  push(thread);
  call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), tmp2, thread);
  pop(thread);
#endif
  pop(obj);
  if(tosca_live) pop(rax);
  bind(done);

D
duke 已提交
6766 6767
}

A
Merge  
apetrusenko 已提交
6768 6769 6770 6771
void MacroAssembler::g1_write_barrier_post(Register store_addr,
                                           Register new_val,
#ifndef _LP64
                                           Register thread,
6772
#endif
A
Merge  
apetrusenko 已提交
6773 6774
                                           Register tmp,
                                           Register tmp2) {
6775

A
Merge  
apetrusenko 已提交
6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820
  LP64_ONLY(Register thread = r15_thread;)
  Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
                                       PtrQueue::byte_offset_of_index()));
  Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
                                       PtrQueue::byte_offset_of_buf()));
  BarrierSet* bs = Universe::heap()->barrier_set();
  CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  Label done;
  Label runtime;

  // Does store cross heap regions?

  movptr(tmp, store_addr);
  xorptr(tmp, new_val);
  shrptr(tmp, HeapRegion::LogOfHRGrainBytes);
  jcc(Assembler::equal, done);

  // crosses regions, storing NULL?

  cmpptr(new_val, (int32_t) NULL_WORD);
  jcc(Assembler::equal, done);

  // storing region crossing non-NULL, is card already dirty?

  ExternalAddress cardtable((address) ct->byte_map_base);
  assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
#ifdef _LP64
  const Register card_addr = tmp;

  movq(card_addr, store_addr);
  shrq(card_addr, CardTableModRefBS::card_shift);

  lea(tmp2, cardtable);

  // get the address of the card
  addq(card_addr, tmp2);
#else
  const Register card_index = tmp;

  movl(card_index, store_addr);
  shrl(card_index, CardTableModRefBS::card_shift);

  Address index(noreg, card_index, Address::times_1);
  const Register card_addr = tmp;
  lea(card_addr, as_Address(ArrayAddress(cardtable, index)));
D
duke 已提交
6821
#endif
A
Merge  
apetrusenko 已提交
6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853
  cmpb(Address(card_addr, 0), 0);
  jcc(Assembler::equal, done);

  // storing a region crossing, non-NULL oop, card is clean.
  // dirty card and log.

  movb(Address(card_addr, 0), 0);

  cmpl(queue_index, 0);
  jcc(Assembler::equal, runtime);
  subl(queue_index, wordSize);
  movptr(tmp2, buffer);
#ifdef _LP64
  movslq(rscratch1, queue_index);
  addq(tmp2, rscratch1);
  movq(Address(tmp2, 0), card_addr);
#else
  addl(tmp2, queue_index);
  movl(Address(tmp2, 0), card_index);
#endif
  jmp(done);

  bind(runtime);
  // save the live input values
  push(store_addr);
  push(new_val);
#ifdef _LP64
  call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, r15_thread);
#else
  push(thread);
  call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
  pop(thread);
6854
#endif
A
Merge  
apetrusenko 已提交
6855 6856 6857 6858
  pop(new_val);
  pop(store_addr);

  bind(done);
D
duke 已提交
6859 6860 6861

}

A
Merge  
apetrusenko 已提交
6862 6863
#endif // SERIALGC
//////////////////////////////////////////////////////////////////////////////////
D
duke 已提交
6864 6865


6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951
void MacroAssembler::store_check(Register obj) {
  // Does a store check for the oop in register obj. The content of
  // register obj is destroyed afterwards.
  store_check_part_1(obj);
  store_check_part_2(obj);
}

void MacroAssembler::store_check(Register obj, Address dst) {
  store_check(obj);
}


// split the store check operation so that other instructions can be scheduled inbetween
void MacroAssembler::store_check_part_1(Register obj) {
  BarrierSet* bs = Universe::heap()->barrier_set();
  assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  shrptr(obj, CardTableModRefBS::card_shift);
}

void MacroAssembler::store_check_part_2(Register obj) {
  BarrierSet* bs = Universe::heap()->barrier_set();
  assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");

  // The calculation for byte_map_base is as follows:
  // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
  // So this essentially converts an address to a displacement and
  // it will never need to be relocated. On 64bit however the value may be too
  // large for a 32bit displacement

  intptr_t disp = (intptr_t) ct->byte_map_base;
  if (is_simm32(disp)) {
    Address cardtable(noreg, obj, Address::times_1, disp);
    movb(cardtable, 0);
  } else {
    // By doing it as an ExternalAddress disp could be converted to a rip-relative
    // displacement and done in a single instruction given favorable mapping and
    // a smarter version of as_Address. Worst case it is two instructions which
    // is no worse off then loading disp into a register and doing as a simple
    // Address() as above.
    // We can't do as ExternalAddress as the only style since if disp == 0 we'll
    // assert since NULL isn't acceptable in a reloci (see 6644928). In any case
    // in some cases we'll get a single instruction version.

    ExternalAddress cardtable((address)disp);
    Address index(noreg, obj, Address::times_1);
    movb(as_Address(ArrayAddress(cardtable, index)), 0);
  }
}

void MacroAssembler::subptr(Register dst, int32_t imm32) {
  LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
}

void MacroAssembler::subptr(Register dst, Register src) {
  LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
}

void MacroAssembler::test32(Register src1, AddressLiteral src2) {
  // src2 must be rval

  if (reachable(src2)) {
    testl(src1, as_Address(src2));
  } else {
    lea(rscratch1, src2);
    testl(src1, Address(rscratch1, 0));
  }
}

// C++ bool manipulation
void MacroAssembler::testbool(Register dst) {
  if(sizeof(bool) == 1)
    testb(dst, 0xff);
  else if(sizeof(bool) == 2) {
    // testw implementation needed for two byte bools
    ShouldNotReachHere();
  } else if(sizeof(bool) == 4)
    testl(dst, dst);
  else
    // unsupported
    ShouldNotReachHere();
}

void MacroAssembler::testptr(Register dst, Register src) {
  LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
D
duke 已提交
6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963
}

// Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
void MacroAssembler::tlab_allocate(Register obj,
                                   Register var_size_in_bytes,
                                   int con_size_in_bytes,
                                   Register t1,
                                   Register t2,
                                   Label& slow_case) {
  assert_different_registers(obj, t1, t2);
  assert_different_registers(obj, var_size_in_bytes, t1);
  Register end = t2;
6964
  Register thread = NOT_LP64(t1) LP64_ONLY(r15_thread);
D
duke 已提交
6965 6966 6967

  verify_tlab();

6968 6969 6970
  NOT_LP64(get_thread(thread));

  movptr(obj, Address(thread, JavaThread::tlab_top_offset()));
D
duke 已提交
6971
  if (var_size_in_bytes == noreg) {
6972
    lea(end, Address(obj, con_size_in_bytes));
D
duke 已提交
6973
  } else {
6974
    lea(end, Address(obj, var_size_in_bytes, Address::times_1));
D
duke 已提交
6975
  }
6976
  cmpptr(end, Address(thread, JavaThread::tlab_end_offset()));
D
duke 已提交
6977 6978 6979
  jcc(Assembler::above, slow_case);

  // update the tlab top pointer
6980
  movptr(Address(thread, JavaThread::tlab_top_offset()), end);
D
duke 已提交
6981 6982 6983

  // recover var_size_in_bytes if necessary
  if (var_size_in_bytes == end) {
6984
    subptr(var_size_in_bytes, obj);
D
duke 已提交
6985 6986 6987 6988
  }
  verify_tlab();
}

6989
// Preserves rbx, and rdx.
D
duke 已提交
6990 6991 6992 6993
void MacroAssembler::tlab_refill(Label& retry,
                                 Label& try_eden,
                                 Label& slow_case) {
  Register top = rax;
6994 6995 6996 6997
  Register t1  = rcx;
  Register t2  = rsi;
  Register thread_reg = NOT_LP64(rdi) LP64_ONLY(r15_thread);
  assert_different_registers(top, thread_reg, t1, t2, /* preserve: */ rbx, rdx);
D
duke 已提交
6998 6999 7000 7001 7002 7003 7004
  Label do_refill, discard_tlab;

  if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
    // No allocation in the shared eden.
    jmp(slow_case);
  }

7005 7006 7007 7008
  NOT_LP64(get_thread(thread_reg));

  movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  movptr(t1,  Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
D
duke 已提交
7009 7010

  // calculate amount of free space
7011 7012
  subptr(t1, top);
  shrptr(t1, LogHeapWordSize);
D
duke 已提交
7013 7014 7015

  // Retain tlab and allocate object in shared space if
  // the amount free in the tlab is too large to discard.
7016
  cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
D
duke 已提交
7017 7018 7019
  jcc(Assembler::lessEqual, discard_tlab);

  // Retain
7020 7021 7022
  // %%% yuck as movptr...
  movptr(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment());
  addptr(Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())), t2);
D
duke 已提交
7023 7024
  if (TLABStats) {
    // increment number of slow_allocations
7025
    addl(Address(thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset())), 1);
D
duke 已提交
7026 7027 7028 7029 7030 7031
  }
  jmp(try_eden);

  bind(discard_tlab);
  if (TLABStats) {
    // increment number of refills
7032
    addl(Address(thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1);
D
duke 已提交
7033
    // accumulate wastage -- t1 is amount free in tlab
7034
    addl(Address(thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1);
D
duke 已提交
7035 7036 7037 7038
  }

  // if tlab is currently allocated (top or end != null) then
  // fill [top, end + alignment_reserve) with array object
7039
  testptr (top, top);
D
duke 已提交
7040 7041 7042
  jcc(Assembler::zero, do_refill);

  // set up the mark word
7043
  movptr(Address(top, oopDesc::mark_offset_in_bytes()), (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2));
D
duke 已提交
7044
  // set the length to the remaining space
7045 7046 7047 7048
  subptr(t1, typeArrayOopDesc::header_size(T_INT));
  addptr(t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve());
  shlptr(t1, log2_intptr(HeapWordSize/sizeof(jint)));
  movptr(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
D
duke 已提交
7049
  // set klass to intArrayKlass
7050
  // dubious reloc why not an oop reloc?
D
duke 已提交
7051
  movptr(t1, ExternalAddress((address) Universe::intArrayKlassObj_addr()));
7052 7053
  // store klass last.  concurrent gcs assumes klass length is valid if
  // klass field is not null.
7054
  store_klass(top, t1);
D
duke 已提交
7055 7056 7057

  // refill the tlab with an eden allocation
  bind(do_refill);
7058 7059
  movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
  shlptr(t1, LogHeapWordSize);
D
duke 已提交
7060 7061 7062 7063 7064 7065 7066 7067 7068
  // add object_size ??
  eden_allocate(top, t1, 0, t2, slow_case);

  // Check that t1 was preserved in eden_allocate.
#ifdef ASSERT
  if (UseTLAB) {
    Label ok;
    Register tsize = rsi;
    assert_different_registers(tsize, thread_reg, t1);
7069 7070 7071 7072
    push(tsize);
    movptr(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
    shlptr(tsize, LogHeapWordSize);
    cmpptr(t1, tsize);
D
duke 已提交
7073 7074 7075 7076 7077
    jcc(Assembler::equal, ok);
    stop("assert(t1 != tlab size)");
    should_not_reach_here();

    bind(ok);
7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107
    pop(tsize);
  }
#endif
  movptr(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
  movptr(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
  addptr(top, t1);
  subptr(top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
  movptr(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
  verify_tlab();
  jmp(retry);
}

static const double     pi_4 =  0.7853981633974483;

void MacroAssembler::trigfunc(char trig, int num_fpu_regs_in_use) {
  // A hand-coded argument reduction for values in fabs(pi/4, pi/2)
  // was attempted in this code; unfortunately it appears that the
  // switch to 80-bit precision and back causes this to be
  // unprofitable compared with simply performing a runtime call if
  // the argument is out of the (-pi/4, pi/4) range.

  Register tmp = noreg;
  if (!VM_Version::supports_cmov()) {
    // fcmp needs a temporary so preserve rbx,
    tmp = rbx;
    push(tmp);
  }

  Label slow_case, done;

7108 7109 7110 7111 7112 7113 7114 7115
  ExternalAddress pi4_adr = (address)&pi_4;
  if (reachable(pi4_adr)) {
    // x ?<= pi/4
    fld_d(pi4_adr);
    fld_s(1);                // Stack:  X  PI/4  X
    fabs();                  // Stack: |X| PI/4  X
    fcmp(tmp);
    jcc(Assembler::above, slow_case);
7116

7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132
    // fastest case: -pi/4 <= x <= pi/4
    switch(trig) {
    case 's':
      fsin();
      break;
    case 'c':
      fcos();
      break;
    case 't':
      ftan();
      break;
    default:
      assert(false, "bad intrinsic");
      break;
    }
    jmp(done);
7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213
  }

  // slow case: runtime call
  bind(slow_case);
  // Preserve registers across runtime call
  pusha();
  int incoming_argument_and_return_value_offset = -1;
  if (num_fpu_regs_in_use > 1) {
    // Must preserve all other FPU regs (could alternatively convert
    // SharedRuntime::dsin and dcos into assembly routines known not to trash
    // FPU state, but can not trust C compiler)
    NEEDS_CLEANUP;
    // NOTE that in this case we also push the incoming argument to
    // the stack and restore it later; we also use this stack slot to
    // hold the return value from dsin or dcos.
    for (int i = 0; i < num_fpu_regs_in_use; i++) {
      subptr(rsp, sizeof(jdouble));
      fstp_d(Address(rsp, 0));
    }
    incoming_argument_and_return_value_offset = sizeof(jdouble)*(num_fpu_regs_in_use-1);
    fld_d(Address(rsp, incoming_argument_and_return_value_offset));
  }
  subptr(rsp, sizeof(jdouble));
  fstp_d(Address(rsp, 0));
#ifdef _LP64
  movdbl(xmm0, Address(rsp, 0));
#endif // _LP64

  // NOTE: we must not use call_VM_leaf here because that requires a
  // complete interpreter frame in debug mode -- same bug as 4387334
  // MacroAssembler::call_VM_leaf_base is perfectly safe and will
  // do proper 64bit abi

  NEEDS_CLEANUP;
  // Need to add stack banging before this runtime call if it needs to
  // be taken; however, there is no generic stack banging routine at
  // the MacroAssembler level
  switch(trig) {
  case 's':
    {
      MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), 0);
    }
    break;
  case 'c':
    {
      MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), 0);
    }
    break;
  case 't':
    {
      MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), 0);
    }
    break;
  default:
    assert(false, "bad intrinsic");
    break;
  }
#ifdef _LP64
    movsd(Address(rsp, 0), xmm0);
    fld_d(Address(rsp, 0));
#endif // _LP64
  addptr(rsp, sizeof(jdouble));
  if (num_fpu_regs_in_use > 1) {
    // Must save return value to stack and then restore entire FPU stack
    fstp_d(Address(rsp, incoming_argument_and_return_value_offset));
    for (int i = 0; i < num_fpu_regs_in_use; i++) {
      fld_d(Address(rsp, 0));
      addptr(rsp, sizeof(jdouble));
    }
  }
  popa();

  // Come here with result in F-TOS
  bind(done);

  if (tmp != noreg) {
    pop(tmp);
  }
}


7214 7215 7216 7217 7218 7219 7220
// Look up the method for a megamorphic invokeinterface call.
// The target method is determined by <intf_klass, itable_index>.
// The receiver klass is in recv_klass.
// On success, the result will be in method_result, and execution falls through.
// On failure, execution transfers to the given label.
void MacroAssembler::lookup_interface_method(Register recv_klass,
                                             Register intf_klass,
7221
                                             RegisterOrConstant itable_index,
7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288
                                             Register method_result,
                                             Register scan_temp,
                                             Label& L_no_such_interface) {
  assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
  assert(itable_index.is_constant() || itable_index.as_register() == method_result,
         "caller must use same register for non-constant itable index as for method");

  // Compute start of first itableOffsetEntry (which is at the end of the vtable)
  int vtable_base = instanceKlass::vtable_start_offset() * wordSize;
  int itentry_off = itableMethodEntry::method_offset_in_bytes();
  int scan_step   = itableOffsetEntry::size() * wordSize;
  int vte_size    = vtableEntry::size() * wordSize;
  Address::ScaleFactor times_vte_scale = Address::times_ptr;
  assert(vte_size == wordSize, "else adjust times_vte_scale");

  movl(scan_temp, Address(recv_klass, instanceKlass::vtable_length_offset() * wordSize));

  // %%% Could store the aligned, prescaled offset in the klassoop.
  lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
  if (HeapWordsPerLong > 1) {
    // Round up to align_object_offset boundary
    // see code for instanceKlass::start_of_itable!
    round_to(scan_temp, BytesPerLong);
  }

  // Adjust recv_klass by scaled itable_index, so we can free itable_index.
  assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
  lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));

  // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
  //   if (scan->interface() == intf) {
  //     result = (klass + scan->offset() + itable_index);
  //   }
  // }
  Label search, found_method;

  for (int peel = 1; peel >= 0; peel--) {
    movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
    cmpptr(intf_klass, method_result);

    if (peel) {
      jccb(Assembler::equal, found_method);
    } else {
      jccb(Assembler::notEqual, search);
      // (invert the test to fall through to found_method...)
    }

    if (!peel)  break;

    bind(search);

    // Check that the previous entry is non-null.  A null entry means that
    // the receiver class doesn't implement the interface, and wasn't the
    // same as when the caller was compiled.
    testptr(method_result, method_result);
    jcc(Assembler::zero, L_no_such_interface);
    addptr(scan_temp, scan_step);
  }

  bind(found_method);

  // Got a hit.
  movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
  movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
}


7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305
void MacroAssembler::check_klass_subtype(Register sub_klass,
                           Register super_klass,
                           Register temp_reg,
                           Label& L_success) {
  Label L_failure;
  check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
  check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
  bind(L_failure);
}


void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
                                                   Register super_klass,
                                                   Register temp_reg,
                                                   Label* L_success,
                                                   Label* L_failure,
                                                   Label* L_slow_path,
7306
                                        RegisterOrConstant super_check_offset) {
7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354
  assert_different_registers(sub_klass, super_klass, temp_reg);
  bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
  if (super_check_offset.is_register()) {
    assert_different_registers(sub_klass, super_klass,
                               super_check_offset.as_register());
  } else if (must_load_sco) {
    assert(temp_reg != noreg, "supply either a temp or a register offset");
  }

  Label L_fallthrough;
  int label_nulls = 0;
  if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
  assert(label_nulls <= 1, "at most one NULL in the batch");

  int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
                   Klass::secondary_super_cache_offset_in_bytes());
  int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
                    Klass::super_check_offset_offset_in_bytes());
  Address super_check_offset_addr(super_klass, sco_offset);

  // Hacked jcc, which "knows" that L_fallthrough, at least, is in
  // range of a jccb.  If this routine grows larger, reconsider at
  // least some of these.
#define local_jcc(assembler_cond, label)                                \
  if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
  else                             jcc( assembler_cond, label) /*omit semi*/

  // Hacked jmp, which may only be used just before L_fallthrough.
#define final_jmp(label)                                                \
  if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
  else                            jmp(label)                /*omit semi*/

  // If the pointers are equal, we are done (e.g., String[] elements).
  // This self-check enables sharing of secondary supertype arrays among
  // non-primary types such as array-of-interface.  Otherwise, each such
  // type would need its own customized SSA.
  // We move this check to the front of the fast path because many
  // type checks are in fact trivially successful in this manner,
  // so we get a nicely predicted branch right at the start of the check.
  cmpptr(sub_klass, super_klass);
  local_jcc(Assembler::equal, *L_success);

  // Check the supertype display:
  if (must_load_sco) {
    // Positive movl does right thing on LP64.
    movl(temp_reg, super_check_offset_addr);
7355
    super_check_offset = RegisterOrConstant(temp_reg);
7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507
  }
  Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
  cmpptr(super_klass, super_check_addr); // load displayed supertype

  // This check has worked decisively for primary supers.
  // Secondary supers are sought in the super_cache ('super_cache_addr').
  // (Secondary supers are interfaces and very deeply nested subtypes.)
  // This works in the same check above because of a tricky aliasing
  // between the super_cache and the primary super display elements.
  // (The 'super_check_addr' can address either, as the case requires.)
  // Note that the cache is updated below if it does not help us find
  // what we need immediately.
  // So if it was a primary super, we can just fail immediately.
  // Otherwise, it's the slow path for us (no success at this point).

  if (super_check_offset.is_register()) {
    local_jcc(Assembler::equal, *L_success);
    cmpl(super_check_offset.as_register(), sc_offset);
    if (L_failure == &L_fallthrough) {
      local_jcc(Assembler::equal, *L_slow_path);
    } else {
      local_jcc(Assembler::notEqual, *L_failure);
      final_jmp(*L_slow_path);
    }
  } else if (super_check_offset.as_constant() == sc_offset) {
    // Need a slow path; fast failure is impossible.
    if (L_slow_path == &L_fallthrough) {
      local_jcc(Assembler::equal, *L_success);
    } else {
      local_jcc(Assembler::notEqual, *L_slow_path);
      final_jmp(*L_success);
    }
  } else {
    // No slow path; it's a fast decision.
    if (L_failure == &L_fallthrough) {
      local_jcc(Assembler::equal, *L_success);
    } else {
      local_jcc(Assembler::notEqual, *L_failure);
      final_jmp(*L_success);
    }
  }

  bind(L_fallthrough);

#undef local_jcc
#undef final_jmp
}


void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
                                                   Register super_klass,
                                                   Register temp_reg,
                                                   Register temp2_reg,
                                                   Label* L_success,
                                                   Label* L_failure,
                                                   bool set_cond_codes) {
  assert_different_registers(sub_klass, super_klass, temp_reg);
  if (temp2_reg != noreg)
    assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
#define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)

  Label L_fallthrough;
  int label_nulls = 0;
  if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  assert(label_nulls <= 1, "at most one NULL in the batch");

  // a couple of useful fields in sub_klass:
  int ss_offset = (klassOopDesc::header_size() * HeapWordSize +
                   Klass::secondary_supers_offset_in_bytes());
  int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
                   Klass::secondary_super_cache_offset_in_bytes());
  Address secondary_supers_addr(sub_klass, ss_offset);
  Address super_cache_addr(     sub_klass, sc_offset);

  // Do a linear scan of the secondary super-klass chain.
  // This code is rarely used, so simplicity is a virtue here.
  // The repne_scan instruction uses fixed registers, which we must spill.
  // Don't worry too much about pre-existing connections with the input regs.

  assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
  assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)

  // Get super_klass value into rax (even if it was in rdi or rcx).
  bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
  if (super_klass != rax || UseCompressedOops) {
    if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
    mov(rax, super_klass);
  }
  if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
  if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }

#ifndef PRODUCT
  int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
  ExternalAddress pst_counter_addr((address) pst_counter);
  NOT_LP64(  incrementl(pst_counter_addr) );
  LP64_ONLY( lea(rcx, pst_counter_addr) );
  LP64_ONLY( incrementl(Address(rcx, 0)) );
#endif //PRODUCT

  // We will consult the secondary-super array.
  movptr(rdi, secondary_supers_addr);
  // Load the array length.  (Positive movl does right thing on LP64.)
  movl(rcx, Address(rdi, arrayOopDesc::length_offset_in_bytes()));
  // Skip to start of data.
  addptr(rdi, arrayOopDesc::base_offset_in_bytes(T_OBJECT));

  // Scan RCX words at [RDI] for an occurrence of RAX.
  // Set NZ/Z based on last compare.
#ifdef _LP64
  // This part is tricky, as values in supers array could be 32 or 64 bit wide
  // and we store values in objArrays always encoded, thus we need to encode
  // the value of rax before repne.  Note that rax is dead after the repne.
  if (UseCompressedOops) {
    encode_heap_oop_not_null(rax);
    // The superclass is never null; it would be a basic system error if a null
    // pointer were to sneak in here.  Note that we have already loaded the
    // Klass::super_check_offset from the super_klass in the fast path,
    // so if there is a null in that register, we are already in the afterlife.
    repne_scanl();
  } else
#endif // _LP64
    repne_scan();

  // Unspill the temp. registers:
  if (pushed_rdi)  pop(rdi);
  if (pushed_rcx)  pop(rcx);
  if (pushed_rax)  pop(rax);

  if (set_cond_codes) {
    // Special hack for the AD files:  rdi is guaranteed non-zero.
    assert(!pushed_rdi, "rdi must be left non-NULL");
    // Also, the condition codes are properly set Z/NZ on succeed/failure.
  }

  if (L_failure == &L_fallthrough)
        jccb(Assembler::notEqual, *L_failure);
  else  jcc(Assembler::notEqual, *L_failure);

  // Success.  Cache the super we found and proceed in triumph.
  movptr(super_cache_addr, super_klass);

  if (L_success != &L_fallthrough) {
    jmp(*L_success);
  }

#undef IS_A_TEMP

  bind(L_fallthrough);
}


7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552
void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
  ucomisd(dst, as_Address(src));
}

void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
  ucomiss(dst, as_Address(src));
}

void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
  if (reachable(src)) {
    xorpd(dst, as_Address(src));
  } else {
    lea(rscratch1, src);
    xorpd(dst, Address(rscratch1, 0));
  }
}

void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
  if (reachable(src)) {
    xorps(dst, as_Address(src));
  } else {
    lea(rscratch1, src);
    xorps(dst, Address(rscratch1, 0));
  }
}

void MacroAssembler::verify_oop(Register reg, const char* s) {
  if (!VerifyOops) return;

  // Pass register number to verify_oop_subroutine
  char* b = new char[strlen(s) + 50];
  sprintf(b, "verify_oop: %s: %s", reg->name(), s);
  push(rax);                          // save rax,
  push(reg);                          // pass register argument
  ExternalAddress buffer((address) b);
  // avoid using pushptr, as it modifies scratch registers
  // and our contract is not to modify anything
  movptr(rax, buffer.addr());
  push(rax);
  // call indirectly to solve generation ordering problem
  movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
  call(rax);
}


7553 7554 7555
RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
                                                      Register tmp,
                                                      int offset) {
7556 7557
  intptr_t value = *delayed_value_addr;
  if (value != 0)
7558
    return RegisterOrConstant(value + offset);
7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573

  // load indirectly to solve generation ordering problem
  movptr(tmp, ExternalAddress((address) delayed_value_addr));

#ifdef ASSERT
  Label L;
  testl(tmp, tmp);
  jccb(Assembler::notZero, L);
  hlt();
  bind(L);
#endif

  if (offset != 0)
    addptr(tmp, offset);

7574
  return RegisterOrConstant(tmp);
7575 7576 7577
}


7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637
void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
  if (!VerifyOops) return;

  // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
  // Pass register number to verify_oop_subroutine
  char* b = new char[strlen(s) + 50];
  sprintf(b, "verify_oop_addr: %s", s);

  push(rax);                          // save rax,
  // addr may contain rsp so we will have to adjust it based on the push
  // we just did
  // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
  // stores rax into addr which is backwards of what was intended.
  if (addr.uses(rsp)) {
    lea(rax, addr);
    pushptr(Address(rax, BytesPerWord));
  } else {
    pushptr(addr);
  }

  ExternalAddress buffer((address) b);
  // pass msg argument
  // avoid using pushptr, as it modifies scratch registers
  // and our contract is not to modify anything
  movptr(rax, buffer.addr());
  push(rax);

  // call indirectly to solve generation ordering problem
  movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
  call(rax);
  // Caller pops the arguments and restores rax, from the stack
}

void MacroAssembler::verify_tlab() {
#ifdef ASSERT
  if (UseTLAB && VerifyOops) {
    Label next, ok;
    Register t1 = rsi;
    Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);

    push(t1);
    NOT_LP64(push(thread_reg));
    NOT_LP64(get_thread(thread_reg));

    movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
    cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
    jcc(Assembler::aboveEqual, next);
    stop("assert(top >= start)");
    should_not_reach_here();

    bind(next);
    movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
    cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
    jcc(Assembler::aboveEqual, ok);
    stop("assert(top <= end)");
    should_not_reach_here();

    bind(ok);
    NOT_LP64(pop(thread_reg));
    pop(t1);
D
duke 已提交
7638 7639 7640 7641
  }
#endif
}

7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685
class ControlWord {
 public:
  int32_t _value;

  int  rounding_control() const        { return  (_value >> 10) & 3      ; }
  int  precision_control() const       { return  (_value >>  8) & 3      ; }
  bool precision() const               { return ((_value >>  5) & 1) != 0; }
  bool underflow() const               { return ((_value >>  4) & 1) != 0; }
  bool overflow() const                { return ((_value >>  3) & 1) != 0; }
  bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
  bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
  bool invalid() const                 { return ((_value >>  0) & 1) != 0; }

  void print() const {
    // rounding control
    const char* rc;
    switch (rounding_control()) {
      case 0: rc = "round near"; break;
      case 1: rc = "round down"; break;
      case 2: rc = "round up  "; break;
      case 3: rc = "chop      "; break;
    };
    // precision control
    const char* pc;
    switch (precision_control()) {
      case 0: pc = "24 bits "; break;
      case 1: pc = "reserved"; break;
      case 2: pc = "53 bits "; break;
      case 3: pc = "64 bits "; break;
    };
    // flags
    char f[9];
    f[0] = ' ';
    f[1] = ' ';
    f[2] = (precision   ()) ? 'P' : 'p';
    f[3] = (underflow   ()) ? 'U' : 'u';
    f[4] = (overflow    ()) ? 'O' : 'o';
    f[5] = (zero_divide ()) ? 'Z' : 'z';
    f[6] = (denormalized()) ? 'D' : 'd';
    f[7] = (invalid     ()) ? 'I' : 'i';
    f[8] = '\x0';
    // output
    printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
  }
D
duke 已提交
7686

7687
};
D
duke 已提交
7688

7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728
class StatusWord {
 public:
  int32_t _value;

  bool busy() const                    { return ((_value >> 15) & 1) != 0; }
  bool C3() const                      { return ((_value >> 14) & 1) != 0; }
  bool C2() const                      { return ((_value >> 10) & 1) != 0; }
  bool C1() const                      { return ((_value >>  9) & 1) != 0; }
  bool C0() const                      { return ((_value >>  8) & 1) != 0; }
  int  top() const                     { return  (_value >> 11) & 7      ; }
  bool error_status() const            { return ((_value >>  7) & 1) != 0; }
  bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
  bool precision() const               { return ((_value >>  5) & 1) != 0; }
  bool underflow() const               { return ((_value >>  4) & 1) != 0; }
  bool overflow() const                { return ((_value >>  3) & 1) != 0; }
  bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
  bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
  bool invalid() const                 { return ((_value >>  0) & 1) != 0; }

  void print() const {
    // condition codes
    char c[5];
    c[0] = (C3()) ? '3' : '-';
    c[1] = (C2()) ? '2' : '-';
    c[2] = (C1()) ? '1' : '-';
    c[3] = (C0()) ? '0' : '-';
    c[4] = '\x0';
    // flags
    char f[9];
    f[0] = (error_status()) ? 'E' : '-';
    f[1] = (stack_fault ()) ? 'S' : '-';
    f[2] = (precision   ()) ? 'P' : '-';
    f[3] = (underflow   ()) ? 'U' : '-';
    f[4] = (overflow    ()) ? 'O' : '-';
    f[5] = (zero_divide ()) ? 'Z' : '-';
    f[6] = (denormalized()) ? 'D' : '-';
    f[7] = (invalid     ()) ? 'I' : '-';
    f[8] = '\x0';
    // output
    printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
D
duke 已提交
7729 7730
  }

7731
};
D
duke 已提交
7732

7733 7734 7735
class TagWord {
 public:
  int32_t _value;
D
duke 已提交
7736

7737
  int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
D
duke 已提交
7738

7739 7740
  void print() const {
    printf("%04x", _value & 0xFFFF);
D
duke 已提交
7741
  }
7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752

};

class FPU_Register {
 public:
  int32_t _m0;
  int32_t _m1;
  int16_t _ex;

  bool is_indefinite() const           {
    return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
D
duke 已提交
7753 7754
  }

7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808
  void print() const {
    char  sign = (_ex < 0) ? '-' : '+';
    const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
    printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
  };

};

class FPU_State {
 public:
  enum {
    register_size       = 10,
    number_of_registers =  8,
    register_mask       =  7
  };

  ControlWord  _control_word;
  StatusWord   _status_word;
  TagWord      _tag_word;
  int32_t      _error_offset;
  int32_t      _error_selector;
  int32_t      _data_offset;
  int32_t      _data_selector;
  int8_t       _register[register_size * number_of_registers];

  int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
  FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }

  const char* tag_as_string(int tag) const {
    switch (tag) {
      case 0: return "valid";
      case 1: return "zero";
      case 2: return "special";
      case 3: return "empty";
    }
    ShouldNotReachHere()
    return NULL;
  }

  void print() const {
    // print computation registers
    { int t = _status_word.top();
      for (int i = 0; i < number_of_registers; i++) {
        int j = (i - t) & register_mask;
        printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
        st(j)->print();
        printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
      }
    }
    printf("\n");
    // print control registers
    printf("ctrl = "); _control_word.print(); printf("\n");
    printf("stat = "); _status_word .print(); printf("\n");
    printf("tags = "); _tag_word    .print(); printf("\n");
D
duke 已提交
7809
  }
7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837

};

class Flag_Register {
 public:
  int32_t _value;

  bool overflow() const                { return ((_value >> 11) & 1) != 0; }
  bool direction() const               { return ((_value >> 10) & 1) != 0; }
  bool sign() const                    { return ((_value >>  7) & 1) != 0; }
  bool zero() const                    { return ((_value >>  6) & 1) != 0; }
  bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
  bool parity() const                  { return ((_value >>  2) & 1) != 0; }
  bool carry() const                   { return ((_value >>  0) & 1) != 0; }

  void print() const {
    // flags
    char f[8];
    f[0] = (overflow       ()) ? 'O' : '-';
    f[1] = (direction      ()) ? 'D' : '-';
    f[2] = (sign           ()) ? 'S' : '-';
    f[3] = (zero           ()) ? 'Z' : '-';
    f[4] = (auxiliary_carry()) ? 'A' : '-';
    f[5] = (parity         ()) ? 'P' : '-';
    f[6] = (carry          ()) ? 'C' : '-';
    f[7] = '\x0';
    // output
    printf("%08x  flags = %s", _value, f);
D
duke 已提交
7838
  }
7839 7840 7841 7842 7843 7844 7845 7846 7847

};

class IU_Register {
 public:
  int32_t _value;

  void print() const {
    printf("%08x  %11d", _value, _value);
D
duke 已提交
7848 7849
  }

7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876
};

class IU_State {
 public:
  Flag_Register _eflags;
  IU_Register   _rdi;
  IU_Register   _rsi;
  IU_Register   _rbp;
  IU_Register   _rsp;
  IU_Register   _rbx;
  IU_Register   _rdx;
  IU_Register   _rcx;
  IU_Register   _rax;

  void print() const {
    // computation registers
    printf("rax,  = "); _rax.print(); printf("\n");
    printf("rbx,  = "); _rbx.print(); printf("\n");
    printf("rcx  = "); _rcx.print(); printf("\n");
    printf("rdx  = "); _rdx.print(); printf("\n");
    printf("rdi  = "); _rdi.print(); printf("\n");
    printf("rsi  = "); _rsi.print(); printf("\n");
    printf("rbp,  = "); _rbp.print(); printf("\n");
    printf("rsp  = "); _rsp.print(); printf("\n");
    printf("\n");
    // control registers
    printf("flgs = "); _eflags.print(); printf("\n");
D
duke 已提交
7877
  }
7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891
};


class CPU_State {
 public:
  FPU_State _fpu_state;
  IU_State  _iu_state;

  void print() const {
    printf("--------------------------------------------------\n");
    _iu_state .print();
    printf("\n");
    _fpu_state.print();
    printf("--------------------------------------------------\n");
D
duke 已提交
7892 7893
  }

7894
};
D
duke 已提交
7895 7896


7897 7898 7899
static void _print_CPU_state(CPU_State* state) {
  state->print();
};
D
duke 已提交
7900 7901


7902 7903 7904 7905 7906 7907
void MacroAssembler::print_CPU_state() {
  push_CPU_state();
  push(rsp);                // pass CPU state
  call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
  addptr(rsp, wordSize);       // discard argument
  pop_CPU_state();
D
duke 已提交
7908 7909 7910
}


7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987
static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
  static int counter = 0;
  FPU_State* fs = &state->_fpu_state;
  counter++;
  // For leaf calls, only verify that the top few elements remain empty.
  // We only need 1 empty at the top for C2 code.
  if( stack_depth < 0 ) {
    if( fs->tag_for_st(7) != 3 ) {
      printf("FPR7 not empty\n");
      state->print();
      assert(false, "error");
      return false;
    }
    return true;                // All other stack states do not matter
  }

  assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
         "bad FPU control word");

  // compute stack depth
  int i = 0;
  while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
  int d = i;
  while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
  // verify findings
  if (i != FPU_State::number_of_registers) {
    // stack not contiguous
    printf("%s: stack not contiguous at ST%d\n", s, i);
    state->print();
    assert(false, "error");
    return false;
  }
  // check if computed stack depth corresponds to expected stack depth
  if (stack_depth < 0) {
    // expected stack depth is -stack_depth or less
    if (d > -stack_depth) {
      // too many elements on the stack
      printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
      state->print();
      assert(false, "error");
      return false;
    }
  } else {
    // expected stack depth is stack_depth
    if (d != stack_depth) {
      // wrong stack depth
      printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
      state->print();
      assert(false, "error");
      return false;
    }
  }
  // everything is cool
  return true;
}


void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
  if (!VerifyFPU) return;
  push_CPU_state();
  push(rsp);                // pass CPU state
  ExternalAddress msg((address) s);
  // pass message string s
  pushptr(msg.addr());
  push(stack_depth);        // pass stack depth
  call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
  addptr(rsp, 3 * wordSize);   // discard arguments
  // check for error
  { Label L;
    testl(rax, rax);
    jcc(Assembler::notZero, L);
    int3();                  // break if error condition
    bind(L);
  }
  pop_CPU_state();
}

7988
void MacroAssembler::load_klass(Register dst, Register src) {
7989
#ifdef _LP64
7990 7991 7992
  if (UseCompressedOops) {
    movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
    decode_heap_oop_not_null(dst);
7993 7994 7995
  } else
#endif
    movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
7996 7997
}

7998
void MacroAssembler::load_prototype_header(Register dst, Register src) {
7999
#ifdef _LP64
8000
  if (UseCompressedOops) {
8001
    assert (Universe::heap() != NULL, "java heap should be initialized");
8002
    movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
8003 8004 8005 8006 8007 8008 8009
    if (Universe::narrow_oop_shift() != 0) {
      assert(Address::times_8 == LogMinObjAlignmentInBytes &&
             Address::times_8 == Universe::narrow_oop_shift(), "decode alg wrong");
      movq(dst, Address(r12_heapbase, dst, Address::times_8, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
    } else {
      movq(dst, Address(dst, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
    }
8010 8011
  } else
#endif
8012 8013 8014 8015
  {
    movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
    movptr(dst, Address(dst, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  }
8016 8017
}

8018
void MacroAssembler::store_klass(Register dst, Register src) {
8019
#ifdef _LP64
8020 8021
  if (UseCompressedOops) {
    encode_heap_oop_not_null(src);
8022
    movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
8023 8024 8025
  } else
#endif
    movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
8026 8027
}

8028
#ifdef _LP64
8029 8030 8031 8032
void MacroAssembler::store_klass_gap(Register dst, Register src) {
  if (UseCompressedOops) {
    // Store to klass gap in destination
    movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057
  }
}

void MacroAssembler::load_heap_oop(Register dst, Address src) {
  if (UseCompressedOops) {
    movl(dst, src);
    decode_heap_oop(dst);
  } else {
    movq(dst, src);
  }
}

void MacroAssembler::store_heap_oop(Address dst, Register src) {
  if (UseCompressedOops) {
    assert(!dst.uses(src), "not enough registers");
    encode_heap_oop(src);
    movl(dst, src);
  } else {
    movq(dst, src);
  }
}

// Algorithm must match oop.inline.hpp encode_heap_oop.
void MacroAssembler::encode_heap_oop(Register r) {
  assert (UseCompressedOops, "should be compressed");
8058 8059 8060 8061 8062 8063 8064 8065 8066
  assert (Universe::heap() != NULL, "java heap should be initialized");
  if (Universe::narrow_oop_base() == NULL) {
    verify_oop(r, "broken oop in encode_heap_oop");
    if (Universe::narrow_oop_shift() != 0) {
      assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
      shrq(r, LogMinObjAlignmentInBytes);
    }
    return;
  }
8067
#ifdef ASSERT
8068 8069
  if (CheckCompressedOops) {
    Label ok;
8070
    push(rscratch1); // cmpptr trashes rscratch1
8071
    cmpptr(r12_heapbase, ExternalAddress((address)Universe::narrow_oop_base_addr()));
8072 8073 8074
    jcc(Assembler::equal, ok);
    stop("MacroAssembler::encode_heap_oop: heap base corrupted?");
    bind(ok);
8075
    pop(rscratch1);
8076
  }
8077
#endif
8078
  verify_oop(r, "broken oop in encode_heap_oop");
8079 8080 8081 8082 8083 8084 8085 8086
  testq(r, r);
  cmovq(Assembler::equal, r, r12_heapbase);
  subq(r, r12_heapbase);
  shrq(r, LogMinObjAlignmentInBytes);
}

void MacroAssembler::encode_heap_oop_not_null(Register r) {
  assert (UseCompressedOops, "should be compressed");
8087
  assert (Universe::heap() != NULL, "java heap should be initialized");
8088
#ifdef ASSERT
8089 8090 8091 8092 8093 8094 8095
  if (CheckCompressedOops) {
    Label ok;
    testq(r, r);
    jcc(Assembler::notEqual, ok);
    stop("null oop passed to encode_heap_oop_not_null");
    bind(ok);
  }
8096
#endif
8097
  verify_oop(r, "broken oop in encode_heap_oop_not_null");
8098 8099 8100 8101 8102 8103 8104
  if (Universe::narrow_oop_base() != NULL) {
    subq(r, r12_heapbase);
  }
  if (Universe::narrow_oop_shift() != 0) {
    assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
    shrq(r, LogMinObjAlignmentInBytes);
  }
8105 8106
}

8107 8108
void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
  assert (UseCompressedOops, "should be compressed");
8109
  assert (Universe::heap() != NULL, "java heap should be initialized");
8110
#ifdef ASSERT
8111 8112 8113 8114 8115 8116 8117
  if (CheckCompressedOops) {
    Label ok;
    testq(src, src);
    jcc(Assembler::notEqual, ok);
    stop("null oop passed to encode_heap_oop_not_null2");
    bind(ok);
  }
8118 8119 8120 8121 8122
#endif
  verify_oop(src, "broken oop in encode_heap_oop_not_null2");
  if (dst != src) {
    movq(dst, src);
  }
8123 8124 8125 8126 8127 8128 8129
  if (Universe::narrow_oop_base() != NULL) {
    subq(dst, r12_heapbase);
  }
  if (Universe::narrow_oop_shift() != 0) {
    assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
    shrq(dst, LogMinObjAlignmentInBytes);
  }
8130 8131
}

8132 8133
void  MacroAssembler::decode_heap_oop(Register r) {
  assert (UseCompressedOops, "should be compressed");
8134 8135 8136 8137 8138 8139 8140 8141 8142
  assert (Universe::heap() != NULL, "java heap should be initialized");
  if (Universe::narrow_oop_base() == NULL) {
    if (Universe::narrow_oop_shift() != 0) {
      assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
      shlq(r, LogMinObjAlignmentInBytes);
    }
    verify_oop(r, "broken oop in decode_heap_oop");
    return;
  }
8143
#ifdef ASSERT
8144 8145
  if (CheckCompressedOops) {
    Label ok;
8146
    push(rscratch1);
8147
    cmpptr(r12_heapbase,
8148
           ExternalAddress((address)Universe::narrow_oop_base_addr()));
8149 8150 8151
    jcc(Assembler::equal, ok);
    stop("MacroAssembler::decode_heap_oop: heap base corrupted?");
    bind(ok);
8152
    pop(rscratch1);
8153
  }
8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166
#endif

  Label done;
  shlq(r, LogMinObjAlignmentInBytes);
  jccb(Assembler::equal, done);
  addq(r, r12_heapbase);
#if 0
   // alternate decoding probably a wash.
   testq(r, r);
   jccb(Assembler::equal, done);
   leaq(r, Address(r12_heapbase, r, Address::times_8, 0));
#endif
  bind(done);
8167
  verify_oop(r, "broken oop in decode_heap_oop");
8168 8169 8170 8171
}

void  MacroAssembler::decode_heap_oop_not_null(Register r) {
  assert (UseCompressedOops, "should only be used for compressed headers");
8172
  assert (Universe::heap() != NULL, "java heap should be initialized");
8173 8174
  // Cannot assert, unverified entry point counts instructions (see .ad file)
  // vtableStubs also counts instructions in pd_code_size_limit.
8175
  // Also do not verify_oop as this is called by verify_oop.
8176 8177 8178 8179 8180 8181 8182 8183 8184 8185
  if (Universe::narrow_oop_base() == NULL) {
    if (Universe::narrow_oop_shift() != 0) {
      assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
      shlq(r, LogMinObjAlignmentInBytes);
    }
  } else {
      assert (Address::times_8 == LogMinObjAlignmentInBytes &&
              Address::times_8 == Universe::narrow_oop_shift(), "decode alg wrong");
    leaq(r, Address(r12_heapbase, r, Address::times_8, 0));
  }
8186 8187
}

8188 8189
void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
  assert (UseCompressedOops, "should only be used for compressed headers");
8190
  assert (Universe::heap() != NULL, "java heap should be initialized");
8191 8192
  // Cannot assert, unverified entry point counts instructions (see .ad file)
  // vtableStubs also counts instructions in pd_code_size_limit.
8193
  // Also do not verify_oop as this is called by verify_oop.
8194 8195 8196 8197 8198 8199 8200
  if (Universe::narrow_oop_shift() != 0) {
    assert (Address::times_8 == LogMinObjAlignmentInBytes &&
            Address::times_8 == Universe::narrow_oop_shift(), "decode alg wrong");
    leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
  } else if (dst != src) {
    movq(dst, src);
  }
8201 8202
}

8203
void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233
  assert (UseCompressedOops, "should only be used for compressed headers");
  assert (Universe::heap() != NULL, "java heap should be initialized");
  assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  int oop_index = oop_recorder()->find_index(obj);
  RelocationHolder rspec = oop_Relocation::spec(oop_index);
  mov_narrow_oop(dst, oop_index, rspec);
}

void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
  assert (UseCompressedOops, "should only be used for compressed headers");
  assert (Universe::heap() != NULL, "java heap should be initialized");
  assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  int oop_index = oop_recorder()->find_index(obj);
  RelocationHolder rspec = oop_Relocation::spec(oop_index);
  mov_narrow_oop(dst, oop_index, rspec);
}

void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
  assert (UseCompressedOops, "should only be used for compressed headers");
  assert (Universe::heap() != NULL, "java heap should be initialized");
  assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  int oop_index = oop_recorder()->find_index(obj);
  RelocationHolder rspec = oop_Relocation::spec(oop_index);
  Assembler::cmp_narrow_oop(dst, oop_index, rspec);
}

void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
  assert (UseCompressedOops, "should only be used for compressed headers");
  assert (Universe::heap() != NULL, "java heap should be initialized");
  assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
8234 8235
  int oop_index = oop_recorder()->find_index(obj);
  RelocationHolder rspec = oop_Relocation::spec(oop_index);
8236
  Assembler::cmp_narrow_oop(dst, oop_index, rspec);
8237 8238
}

8239 8240
void MacroAssembler::reinit_heapbase() {
  if (UseCompressedOops) {
8241
    movptr(r12_heapbase, ExternalAddress((address)Universe::narrow_oop_base_addr()));
8242 8243 8244
  }
}
#endif // _LP64
8245

D
duke 已提交
8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278
Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
  switch (cond) {
    // Note some conditions are synonyms for others
    case Assembler::zero:         return Assembler::notZero;
    case Assembler::notZero:      return Assembler::zero;
    case Assembler::less:         return Assembler::greaterEqual;
    case Assembler::lessEqual:    return Assembler::greater;
    case Assembler::greater:      return Assembler::lessEqual;
    case Assembler::greaterEqual: return Assembler::less;
    case Assembler::below:        return Assembler::aboveEqual;
    case Assembler::belowEqual:   return Assembler::above;
    case Assembler::above:        return Assembler::belowEqual;
    case Assembler::aboveEqual:   return Assembler::below;
    case Assembler::overflow:     return Assembler::noOverflow;
    case Assembler::noOverflow:   return Assembler::overflow;
    case Assembler::negative:     return Assembler::positive;
    case Assembler::positive:     return Assembler::negative;
    case Assembler::parity:       return Assembler::noParity;
    case Assembler::noParity:     return Assembler::parity;
  }
  ShouldNotReachHere(); return Assembler::overflow;
}

SkipIfEqual::SkipIfEqual(
    MacroAssembler* masm, const bool* flag_addr, bool value) {
  _masm = masm;
  _masm->cmp8(ExternalAddress((address)flag_addr), value);
  _masm->jcc(Assembler::equal, _label);
}

SkipIfEqual::~SkipIfEqual() {
  _masm->bind(_label);
}