提交 ed41dc6f 编写于 作者: K kvn

6689060: Escape Analysis does not work with Compressed Oops

Summary: 64-bits VM crashes with -XX:+AggresiveOpts (Escape Analysis + Compressed Oops)
Reviewed-by: never, sgoldman
上级 ce22ce8d
......@@ -3647,6 +3647,12 @@ void MacroAssembler::encode_heap_oop_not_null(Register r) {
srlx(r, LogMinObjAlignmentInBytes, r);
}
void MacroAssembler::encode_heap_oop_not_null(Register src, Register dst) {
assert (UseCompressedOops, "must be compressed");
sub(src, G6_heapbase, dst);
srlx(dst, LogMinObjAlignmentInBytes, dst);
}
// Same algorithm as oops.inline.hpp decode_heap_oop.
void MacroAssembler::decode_heap_oop(Register src, Register dst) {
assert (UseCompressedOops, "must be compressed");
......@@ -3665,6 +3671,14 @@ void MacroAssembler::decode_heap_oop_not_null(Register r) {
add(r, G6_heapbase, r);
}
void MacroAssembler::decode_heap_oop_not_null(Register src, Register dst) {
// Do not add assert code to this unless you change vtableStubs_sparc.cpp
// pd_code_size_limit.
assert (UseCompressedOops, "must be compressed");
sllx(src, LogMinObjAlignmentInBytes, dst);
add(dst, G6_heapbase, dst);
}
void MacroAssembler::reinit_heapbase() {
if (UseCompressedOops) {
// call indirectly to solve generation ordering problem
......
......@@ -1998,6 +1998,8 @@ class MacroAssembler: public Assembler {
}
void encode_heap_oop_not_null(Register r);
void decode_heap_oop_not_null(Register r);
void encode_heap_oop_not_null(Register src, Register dst);
void decode_heap_oop_not_null(Register src, Register dst);
// Support for managing the JavaThread pointer (i.e.; the reference to
// thread-local information).
......
......@@ -5957,15 +5957,27 @@ instruct storeA8B(memory mem, regD src) %{
// Convert oop pointer into compressed form
instruct encodeHeapOop(iRegN dst, iRegP src) %{
predicate(n->bottom_type()->is_narrowoop()->make_oopptr()->ptr() != TypePtr::NotNull);
match(Set dst (EncodeP src));
format %{ "SRL $src,3,$dst\t encodeHeapOop" %}
format %{ "encode_heap_oop $src, $dst" %}
ins_encode %{
__ encode_heap_oop($src$$Register, $dst$$Register);
%}
ins_pipe(ialu_reg);
%}
instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
predicate(n->bottom_type()->is_narrowoop()->make_oopptr()->ptr() == TypePtr::NotNull);
match(Set dst (EncodeP src));
format %{ "encode_heap_oop_not_null $src, $dst" %}
ins_encode %{
__ encode_heap_oop_not_null($src$$Register, $dst$$Register);
%}
ins_pipe(ialu_reg);
%}
instruct decodeHeapOop(iRegP dst, iRegN src) %{
predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull);
match(Set dst (DecodeN src));
format %{ "decode_heap_oop $src, $dst" %}
ins_encode %{
......@@ -5974,6 +5986,16 @@ instruct decodeHeapOop(iRegP dst, iRegN src) %{
ins_pipe(ialu_reg);
%}
instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull);
match(Set dst (DecodeN src));
format %{ "decode_heap_oop_not_null $src, $dst" %}
ins_encode %{
__ decode_heap_oop_not_null($src$$Register, $dst$$Register);
%}
ins_pipe(ialu_reg);
%}
// Store Zero into Aligned Packed Bytes
instruct storeA8B0(memory mem, immI0 zero) %{
......
......@@ -4150,7 +4150,7 @@ void MacroAssembler::call_VM_base(Register oop_result,
if (oop_result->is_valid()) {
movq(oop_result, Address(r15_thread, JavaThread::vm_result_offset()));
movptr(Address(r15_thread, JavaThread::vm_result_offset()), NULL_WORD);
verify_oop(oop_result);
verify_oop(oop_result, "broken oop in call_VM_base");
}
}
......@@ -4689,6 +4689,10 @@ void MacroAssembler::warn(const char* msg) {
popq(r12);
}
#ifndef PRODUCT
extern "C" void findpc(intptr_t x);
#endif
void MacroAssembler::debug(char* msg, int64_t pc, int64_t regs[]) {
// In order to get locks to work, we need to fake a in_VM state
if (ShowMessageBoxOnError ) {
......@@ -4707,6 +4711,11 @@ void MacroAssembler::debug(char* msg, int64_t pc, int64_t regs[]) {
if (os::message_box(msg, "Execution stopped, print registers?")) {
ttyLocker ttyl;
tty->print_cr("rip = 0x%016lx", pc);
#ifndef PRODUCT
tty->cr();
findpc(pc);
tty->cr();
#endif
tty->print_cr("rax = 0x%016lx", regs[15]);
tty->print_cr("rbx = 0x%016lx", regs[12]);
tty->print_cr("rcx = 0x%016lx", regs[14]);
......@@ -5187,7 +5196,7 @@ void MacroAssembler::encode_heap_oop(Register r) {
bind(ok);
popq(rscratch1);
#endif
verify_oop(r);
verify_oop(r, "broken oop in encode_heap_oop");
testq(r, r);
cmovq(Assembler::equal, r, r12_heapbase);
subq(r, r12_heapbase);
......@@ -5203,11 +5212,28 @@ void MacroAssembler::encode_heap_oop_not_null(Register r) {
stop("null oop passed to encode_heap_oop_not_null");
bind(ok);
#endif
verify_oop(r);
verify_oop(r, "broken oop in encode_heap_oop_not_null");
subq(r, r12_heapbase);
shrq(r, LogMinObjAlignmentInBytes);
}
void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
assert (UseCompressedOops, "should be compressed");
#ifdef ASSERT
Label ok;
testq(src, src);
jcc(Assembler::notEqual, ok);
stop("null oop passed to encode_heap_oop_not_null2");
bind(ok);
#endif
verify_oop(src, "broken oop in encode_heap_oop_not_null2");
if (dst != src) {
movq(dst, src);
}
subq(dst, r12_heapbase);
shrq(dst, LogMinObjAlignmentInBytes);
}
void MacroAssembler::decode_heap_oop(Register r) {
assert (UseCompressedOops, "should be compressed");
#ifdef ASSERT
......@@ -5232,7 +5258,7 @@ void MacroAssembler::decode_heap_oop(Register r) {
leaq(r, Address(r12_heapbase, r, Address::times_8, 0));
#endif
bind(done);
verify_oop(r);
verify_oop(r, "broken oop in decode_heap_oop");
}
void MacroAssembler::decode_heap_oop_not_null(Register r) {
......@@ -5243,6 +5269,14 @@ void MacroAssembler::decode_heap_oop_not_null(Register r) {
leaq(r, Address(r12_heapbase, r, Address::times_8, 0));
}
void MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
assert (UseCompressedOops, "should only be used for compressed headers");
// Cannot assert, unverified entry point counts instructions (see .ad file)
// vtableStubs also counts instructions in pd_code_size_limit.
assert(Address::times_8 == LogMinObjAlignmentInBytes, "decode alg wrong");
leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
}
Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
switch (cond) {
// Note some conditions are synonyms for others
......
......@@ -1111,6 +1111,8 @@ class MacroAssembler : public Assembler {
void decode_heap_oop(Register r);
void encode_heap_oop_not_null(Register r);
void decode_heap_oop_not_null(Register r);
void encode_heap_oop_not_null(Register dst, Register src);
void decode_heap_oop_not_null(Register dst, Register src);
// Stack frame creation/removal
void enter();
......
......@@ -913,11 +913,12 @@ class StubGenerator: public StubCodeGenerator {
// Stack after saving c_rarg3:
// [tos + 0]: saved c_rarg3
// [tos + 1]: saved c_rarg2
// [tos + 2]: saved flags
// [tos + 3]: return address
// * [tos + 4]: error message (char*)
// * [tos + 5]: object to verify (oop)
// * [tos + 6]: saved rax - saved by caller and bashed
// [tos + 2]: saved r12 (several TemplateTable methods use it)
// [tos + 3]: saved flags
// [tos + 4]: return address
// * [tos + 5]: error message (char*)
// * [tos + 6]: object to verify (oop)
// * [tos + 7]: saved rax - saved by caller and bashed
// * = popped on exit
address generate_verify_oop() {
StubCodeMark mark(this, "StubRoutines", "verify_oop");
......@@ -928,12 +929,24 @@ class StubGenerator: public StubCodeGenerator {
__ pushfq();
__ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
__ pushq(r12);
// save c_rarg2 and c_rarg3
__ pushq(c_rarg2);
__ pushq(c_rarg3);
enum {
// After previous pushes.
oop_to_verify = 6 * wordSize,
saved_rax = 7 * wordSize,
// Before the call to MacroAssembler::debug(), see below.
return_addr = 16 * wordSize,
error_msg = 17 * wordSize
};
// get object
__ movq(rax, Address(rsp, 5 * wordSize));
__ movq(rax, Address(rsp, oop_to_verify));
// make sure object is 'reasonable'
__ testq(rax, rax);
......@@ -946,6 +959,9 @@ class StubGenerator: public StubCodeGenerator {
__ cmpq(c_rarg2, c_rarg3);
__ jcc(Assembler::notZero, error);
// set r12 to heapbase for load_klass()
__ reinit_heapbase();
// make sure klass is 'reasonable'
__ load_klass(rax, rax); // get klass
__ testq(rax, rax);
......@@ -971,40 +987,45 @@ class StubGenerator: public StubCodeGenerator {
// return if everything seems ok
__ bind(exit);
__ movq(rax, Address(rsp, 6 * wordSize)); // get saved rax back
__ popq(c_rarg3); // restore c_rarg3
__ popq(c_rarg2); // restore c_rarg2
__ movq(rax, Address(rsp, saved_rax)); // get saved rax back
__ popq(c_rarg3); // restore c_rarg3
__ popq(c_rarg2); // restore c_rarg2
__ popq(r12); // restore r12
__ popfq(); // restore flags
__ ret(3 * wordSize); // pop caller saved stuff
// handle errors
__ bind(error);
__ movq(rax, Address(rsp, 6 * wordSize)); // get saved rax back
__ popq(c_rarg3); // get saved c_rarg3 back
__ popq(c_rarg2); // get saved c_rarg2 back
__ movq(rax, Address(rsp, saved_rax)); // get saved rax back
__ popq(c_rarg3); // get saved c_rarg3 back
__ popq(c_rarg2); // get saved c_rarg2 back
__ popq(r12); // get saved r12 back
__ popfq(); // get saved flags off stack --
// will be ignored
__ pushaq(); // push registers
// (rip is already
// already pushed)
// debug(char* msg, int64_t regs[])
// debug(char* msg, int64_t pc, int64_t regs[])
// We've popped the registers we'd saved (c_rarg3, c_rarg2 and flags), and
// pushed all the registers, so now the stack looks like:
// [tos + 0] 16 saved registers
// [tos + 16] return address
// [tos + 17] error message (char*)
__ movq(c_rarg0, Address(rsp, 17 * wordSize)); // pass address of error message
__ movq(c_rarg1, rsp); // pass address of regs on stack
// * [tos + 17] error message (char*)
// * [tos + 18] object to verify (oop)
// * [tos + 19] saved rax - saved by caller and bashed
// * = popped on exit
__ movq(c_rarg0, Address(rsp, error_msg)); // pass address of error message
__ movq(c_rarg1, Address(rsp, return_addr)); // pass return address
__ movq(c_rarg2, rsp); // pass address of regs on stack
__ movq(r12, rsp); // remember rsp
__ subq(rsp, frame::arg_reg_save_area_bytes);// windows
__ andq(rsp, -16); // align stack as required by ABI
BLOCK_COMMENT("call MacroAssembler::debug");
__ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug)));
__ movq(rsp, r12); // restore rsp
__ reinit_heapbase(); // r12 is heapbase
__ popaq(); // pop registers
__ popaq(); // pop registers (includes r12)
__ ret(3 * wordSize); // pop caller saved stuff
return start;
......@@ -1038,7 +1059,7 @@ class StubGenerator: public StubCodeGenerator {
assert_different_registers(Rtmp, Rint);
__ movslq(Rtmp, Rint);
__ cmpq(Rtmp, Rint);
__ jccb(Assembler::equal, L);
__ jcc(Assembler::equal, L);
__ stop("high 32-bits of int value are not 0");
__ bind(L);
#endif
......
......@@ -6080,7 +6080,8 @@ instruct loadKlassComp(rRegP dst, memory mem)
predicate(n->in(MemNode::Address)->bottom_type()->is_narrow());
ins_cost(125); // XXX
format %{ "movl $dst, $mem\t# compressed class" %}
format %{ "movl $dst, $mem\t# compressed class\n\t"
"decode_heap_oop $dst,$dst" %}
ins_encode %{
Address addr = build_address($mem$$base, $mem$$index, $mem$$scale, $mem$$disp);
Register dst = as_Register($dst$$reg);
......@@ -6349,7 +6350,7 @@ instruct loadConF(regF dst, immF src)
instruct loadConN0(rRegN dst, immN0 src, rFlagsReg cr) %{
match(Set dst src);
effect(KILL cr);
format %{ "xorq $dst, $src\t# compressed ptr" %}
format %{ "xorq $dst, $src\t# compressed NULL ptr" %}
ins_encode %{
Register dst = $dst$$Register;
__ xorq(dst, dst);
......@@ -6361,7 +6362,8 @@ instruct loadConN(rRegN dst, immN src) %{
match(Set dst src);
ins_cost(125);
format %{ "movl $dst, $src\t# compressed ptr" %}
format %{ "movq $dst, $src\t# compressed ptr\n\t"
"encode_heap_oop_not_null $dst,$dst" %}
ins_encode %{
address con = (address)$src$$constant;
Register dst = $dst$$Register;
......@@ -6996,6 +6998,7 @@ instruct castP2X(rRegL dst, rRegP src)
// Convert oop pointer into compressed form
instruct encodeHeapOop(rRegN dst, rRegP src, rFlagsReg cr) %{
predicate(n->bottom_type()->is_narrowoop()->make_oopptr()->ptr() != TypePtr::NotNull);
match(Set dst (EncodeP src));
effect(KILL cr);
format %{ "encode_heap_oop $dst,$src" %}
......@@ -7010,7 +7013,21 @@ instruct encodeHeapOop(rRegN dst, rRegP src, rFlagsReg cr) %{
ins_pipe(ialu_reg_long);
%}
instruct encodeHeapOop_not_null(rRegN dst, rRegP src, rFlagsReg cr) %{
predicate(n->bottom_type()->is_narrowoop()->make_oopptr()->ptr() == TypePtr::NotNull);
match(Set dst (EncodeP src));
effect(KILL cr);
format %{ "encode_heap_oop_not_null $dst,$src" %}
ins_encode %{
Register s = $src$$Register;
Register d = $dst$$Register;
__ encode_heap_oop_not_null(d, s);
%}
ins_pipe(ialu_reg_long);
%}
instruct decodeHeapOop(rRegP dst, rRegN src, rFlagsReg cr) %{
predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull);
match(Set dst (DecodeN src));
effect(KILL cr);
format %{ "decode_heap_oop $dst,$src" %}
......@@ -7025,6 +7042,18 @@ instruct decodeHeapOop(rRegP dst, rRegN src, rFlagsReg cr) %{
ins_pipe(ialu_reg_long);
%}
instruct decodeHeapOop_not_null(rRegP dst, rRegN src) %{
predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull);
match(Set dst (DecodeN src));
format %{ "decode_heap_oop_not_null $dst,$src" %}
ins_encode %{
Register s = $src$$Register;
Register d = $dst$$Register;
__ decode_heap_oop_not_null(d, s);
%}
ins_pipe(ialu_reg_long);
%}
//----------Conditional Move---------------------------------------------------
// Jump
......
......@@ -563,6 +563,26 @@ Node* DecodeNNode::Identity(PhaseTransform* phase) {
return this;
}
const Type *DecodeNNode::Value( PhaseTransform *phase ) const {
if (phase->type( in(1) ) == TypeNarrowOop::NULL_PTR) {
return TypePtr::NULL_PTR;
}
return bottom_type();
}
Node* DecodeNNode::decode(PhaseGVN* phase, Node* value) {
if (value->Opcode() == Op_EncodeP) {
// (DecodeN (EncodeP p)) -> p
return value->in(1);
}
const Type* newtype = value->bottom_type();
if (newtype == TypeNarrowOop::NULL_PTR) {
return phase->transform(new (phase->C, 1) ConPNode(TypePtr::NULL_PTR));
} else {
return phase->transform(new (phase->C, 2) DecodeNNode(value, newtype->is_narrowoop()->make_oopptr()));
}
}
Node* EncodePNode::Identity(PhaseTransform* phase) {
const Type *t = phase->type( in(1) );
if( t == Type::TOP ) return in(1);
......@@ -574,14 +594,26 @@ Node* EncodePNode::Identity(PhaseTransform* phase) {
return this;
}
const Type *EncodePNode::Value( PhaseTransform *phase ) const {
if (phase->type( in(1) ) == TypePtr::NULL_PTR) {
return TypeNarrowOop::NULL_PTR;
}
return bottom_type();
}
Node* EncodePNode::encode(PhaseGVN* phase, Node* value) {
if (value->Opcode() == Op_DecodeN) {
// (EncodeP (DecodeN p)) -> p
return value->in(1);
}
const Type* newtype = value->bottom_type();
if (newtype == TypePtr::NULL_PTR) {
return phase->transform(new (phase->C, 1) ConNNode(TypeNarrowOop::NULL_PTR));
} else if (newtype->isa_oopptr()) {
return phase->transform(new (phase->C, 2) EncodePNode(value, newtype->is_oopptr()->make_narrowoop()));
} else {
return phase->transform(new (phase->C, 2) EncodePNode(value,
newtype->is_oopptr()->make_narrowoop()));
ShouldNotReachHere();
return NULL; // to make C++ compiler happy.
}
}
......
......@@ -282,6 +282,7 @@ class EncodePNode : public TypeNode {
}
virtual int Opcode() const;
virtual Node *Identity( PhaseTransform *phase );
virtual const Type *Value( PhaseTransform *phase ) const;
virtual uint ideal_reg() const { return Op_RegN; }
static Node* encode(PhaseGVN* phase, Node* value);
......@@ -300,7 +301,10 @@ class DecodeNNode : public TypeNode {
}
virtual int Opcode() const;
virtual Node *Identity( PhaseTransform *phase );
virtual const Type *Value( PhaseTransform *phase ) const;
virtual uint ideal_reg() const { return Op_RegP; }
static Node* decode(PhaseGVN* phase, Node* value);
};
//------------------------------Conv2BNode-------------------------------------
......
......@@ -215,6 +215,10 @@ void ConnectionGraph::PointsTo(VectorSet &ptset, Node * n, PhaseTransform *phase
VectorSet visited(Thread::current()->resource_area());
GrowableArray<uint> worklist;
#ifdef ASSERT
Node *orig_n = n;
#endif
n = n->uncast();
PointsToNode npt = _nodes->at_grow(n->_idx);
......@@ -223,8 +227,14 @@ void ConnectionGraph::PointsTo(VectorSet &ptset, Node * n, PhaseTransform *phase
ptset.set(n->_idx);
return;
}
assert(npt._node != NULL, "unregistered node");
#ifdef ASSERT
if (npt._node == NULL) {
if (orig_n != n)
orig_n->dump();
n->dump();
assert(npt._node != NULL, "unregistered node");
}
#endif
worklist.push(n->_idx);
while(worklist.length() > 0) {
int ni = worklist.pop();
......@@ -266,7 +276,7 @@ void ConnectionGraph::remove_deferred(uint ni, GrowableArray<uint>* deferred_edg
PointsToNode *ptn = ptnode_adr(ni);
// Mark current edges as visited and move deferred edges to separate array.
for (; i < ptn->edge_count(); i++) {
while (i < ptn->edge_count()) {
uint t = ptn->edge_target(i);
#ifdef ASSERT
assert(!visited->test_set(t), "expecting no duplications");
......@@ -276,6 +286,8 @@ void ConnectionGraph::remove_deferred(uint ni, GrowableArray<uint>* deferred_edg
if (ptn->edge_type(i) == PointsToNode::DeferredEdge) {
ptn->remove_edge(t, PointsToNode::DeferredEdge);
deferred_edges->append(t);
} else {
i++;
}
}
for (int next = 0; next < deferred_edges->length(); ++next) {
......@@ -1716,6 +1728,8 @@ void ConnectionGraph::record_for_escape_analysis(Node *n, PhaseTransform *phase)
}
case Op_CastPP:
case Op_CheckCastPP:
case Op_EncodeP:
case Op_DecodeN:
{
add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
int ti = n->in(1)->_idx;
......@@ -1743,12 +1757,6 @@ void ConnectionGraph::record_for_escape_analysis(Node *n, PhaseTransform *phase)
add_node(n, PointsToNode::JavaObject, es, true);
break;
}
case Op_CreateEx:
{
// assume that all exception objects globally escape
add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
break;
}
case Op_ConN:
{
// assume all narrow oop constants globally escape except for null
......@@ -1761,6 +1769,12 @@ void ConnectionGraph::record_for_escape_analysis(Node *n, PhaseTransform *phase)
add_node(n, PointsToNode::JavaObject, es, true);
break;
}
case Op_CreateEx:
{
// assume that all exception objects globally escape
add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
break;
}
case Op_LoadKlass:
{
add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
......@@ -1976,10 +1990,11 @@ void ConnectionGraph::build_connection_graph(Node *n, PhaseTransform *phase) {
break;
}
case Op_LoadP:
case Op_LoadN:
{
const Type *t = phase->type(n);
#ifdef ASSERT
if (t->isa_ptr() == NULL)
if (!t->isa_narrowoop() && t->isa_ptr() == NULL)
assert(false, "Op_LoadP");
#endif
......@@ -2060,11 +2075,16 @@ void ConnectionGraph::build_connection_graph(Node *n, PhaseTransform *phase) {
break;
}
case Op_StoreP:
case Op_StoreN:
case Op_StorePConditional:
case Op_CompareAndSwapP:
case Op_CompareAndSwapN:
{
Node *adr = n->in(MemNode::Address);
const Type *adr_type = phase->type(adr);
if (adr_type->isa_narrowoop()) {
adr_type = adr_type->is_narrowoop()->make_oopptr();
}
#ifdef ASSERT
if (!adr_type->isa_oopptr())
assert(phase->type(adr) == TypeRawPtr::NOTNULL, "Op_StoreP");
......
......@@ -584,7 +584,7 @@ bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <Sa
const Type *field_type;
// The next code is taken from Parse::do_get_xxx().
if (basic_elem_type == T_OBJECT) {
if (basic_elem_type == T_OBJECT || basic_elem_type == T_ARRAY) {
if (!elem_type->is_loaded()) {
field_type = TypeInstPtr::BOTTOM;
} else if (field != NULL && field->is_constant()) {
......@@ -597,6 +597,10 @@ bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <Sa
} else {
field_type = TypeOopPtr::make_from_klass(elem_type->as_klass());
}
if (UseCompressedOops) {
field_type = field_type->is_oopptr()->make_narrowoop();
basic_elem_type = T_NARROWOOP;
}
} else {
field_type = Type::get_const_basic_type(basic_elem_type);
}
......@@ -659,6 +663,13 @@ bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <Sa
#endif
return false;
}
if (UseCompressedOops && field_type->isa_narrowoop()) {
// Enable "DecodeN(EncodeP(Allocate)) --> Allocate" transformation
// to be able scalar replace the allocation.
_igvn.set_delay_transform(false);
field_val = DecodeNNode::decode(&_igvn, field_val);
_igvn.set_delay_transform(true);
}
sfpt->add_req(field_val);
}
JVMState *jvms = sfpt->jvms();
......
......@@ -754,13 +754,12 @@ Node *LoadNode::make( PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const Type
const TypeNarrowOop* narrowtype;
if (rt->isa_narrowoop()) {
narrowtype = rt->is_narrowoop();
rt = narrowtype->make_oopptr();
} else {
narrowtype = rt->is_oopptr()->make_narrowoop();
}
Node* load = gvn.transform(new (C, 3) LoadNNode(ctl, mem, adr, adr_type, narrowtype));
return new (C, 2) DecodeNNode(load, rt);
return DecodeNNode::decode(&gvn, load);
} else
#endif
{
......@@ -1841,15 +1840,7 @@ StoreNode* StoreNode::make( PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, cons
(UseCompressedOops && val->bottom_type()->isa_klassptr() &&
adr->bottom_type()->isa_rawptr())) {
const TypePtr* type = val->bottom_type()->is_ptr();
Node* cp;
if (type->isa_oopptr()) {
const TypeNarrowOop* etype = type->is_oopptr()->make_narrowoop();
cp = gvn.transform(new (C, 2) EncodePNode(val, etype));
} else if (type == TypePtr::NULL_PTR) {
cp = gvn.transform(new (C, 1) ConNNode(TypeNarrowOop::NULL_PTR));
} else {
ShouldNotReachHere();
}
Node* cp = EncodePNode::encode(&gvn, val);
return new (C, 4) StoreNNode(ctl, mem, adr, adr_type, cp);
} else
#endif
......
......@@ -2176,6 +2176,8 @@ JRT_END
#ifndef PRODUCT
bool AdapterHandlerLibrary::contains(CodeBlob* b) {
if (_handlers == NULL) return false;
for (int i = 0 ; i < _handlers->length() ; i++) {
AdapterHandlerEntry* a = get_entry(i);
if ( a != NULL && b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册