1. 09 5月, 2013 2 次提交
  2. 18 4月, 2013 1 次提交
  3. 27 3月, 2013 2 次提交
  4. 14 3月, 2013 1 次提交
    • M
      batman-adv: network coding - add the initial infrastructure code · d353d8d4
      Martin Hundebøll 提交于
      Network coding exploits the 802.11 shared medium to allow multiple
      packets to be sent in a single transmission. In brief, a relay can XOR
      two packets, and send the coded packet to two destinations. The
      receivers can decode one of the original packets by XOR'ing the coded
      packet with the other original packet. This will lead to increased
      throughput in topologies where two packets cross one relay.
      
      In a simple topology with three nodes, it takes four transmissions
      without network coding to get one packet from Node A to Node B and one
      from Node B to Node A:
      
       1.  Node A  ---- p1 --->  Node R                Node B
       2.  Node A                Node R  <--- p2 ----  Node B
       3.  Node A  <--- p2 ----  Node R                Node B
       4.  Node A                Node R  ---- p1 --->  Node B
      
      With network coding, the relay only needs one transmission, which saves
      us one slot of valuable airtime:
      
       1.  Node A  ---- p1 --->  Node R                Node B
       2.  Node A                Node R  <--- p2 ----  Node B
       3.  Node A  <- p1 x p2 -  Node R  - p1 x p2 ->  Node B
      
      The same principle holds for a topology including five nodes. Here the
      packets from Node A and Node B are overheard by Node C and Node D,
      respectively. This allows Node R to send a network coded packet to save
      one transmission:
      
         Node A                  Node B
      
          |     \              /    |
          |      p1          p2     |
          |       \          /      |
          p1       > Node R <       p2
          |                         |
          |         /      \        |
          |    p1 x p2    p1 x p2   |
          v       /          \      v
                 /            \
         Node C <              > Node D
      
      More information is available on the open-mesh.org wiki[1].
      
      This patch adds the initial code to support network coding in
      batman-adv. It sets up a worker thread to do house keeping and adds a
      sysfs file to enable/disable network coding. The feature is disabled by
      default, as it requires a wifi-driver with working promiscuous mode, and
      also because it adds a small delay at each hop.
      
      [1] http://www.open-mesh.org/projects/batman-adv/wiki/CatwomanSigned-off-by: NMartin Hundebøll <martin@hundeboll.net>
      Signed-off-by: NMarek Lindner <lindner_marek@yahoo.de>
      Signed-off-by: NAntonio Quartulli <ordex@autistici.org>
      d353d8d4
  5. 28 2月, 2013 1 次提交
    • S
      hlist: drop the node parameter from iterators · b67bfe0d
      Sasha Levin 提交于
      I'm not sure why, but the hlist for each entry iterators were conceived
      
              list_for_each_entry(pos, head, member)
      
      The hlist ones were greedy and wanted an extra parameter:
      
              hlist_for_each_entry(tpos, pos, head, member)
      
      Why did they need an extra pos parameter? I'm not quite sure. Not only
      they don't really need it, it also prevents the iterator from looking
      exactly like the list iterator, which is unfortunate.
      
      Besides the semantic patch, there was some manual work required:
      
       - Fix up the actual hlist iterators in linux/list.h
       - Fix up the declaration of other iterators based on the hlist ones.
       - A very small amount of places were using the 'node' parameter, this
       was modified to use 'obj->member' instead.
       - Coccinelle didn't handle the hlist_for_each_entry_safe iterator
       properly, so those had to be fixed up manually.
      
      The semantic patch which is mostly the work of Peter Senna Tschudin is here:
      
      @@
      iterator name hlist_for_each_entry, hlist_for_each_entry_continue, hlist_for_each_entry_from, hlist_for_each_entry_rcu, hlist_for_each_entry_rcu_bh, hlist_for_each_entry_continue_rcu_bh, for_each_busy_worker, ax25_uid_for_each, ax25_for_each, inet_bind_bucket_for_each, sctp_for_each_hentry, sk_for_each, sk_for_each_rcu, sk_for_each_from, sk_for_each_safe, sk_for_each_bound, hlist_for_each_entry_safe, hlist_for_each_entry_continue_rcu, nr_neigh_for_each, nr_neigh_for_each_safe, nr_node_for_each, nr_node_for_each_safe, for_each_gfn_indirect_valid_sp, for_each_gfn_sp, for_each_host;
      
      type T;
      expression a,c,d,e;
      identifier b;
      statement S;
      @@
      
      -T b;
          <+... when != b
      (
      hlist_for_each_entry(a,
      - b,
      c, d) S
      |
      hlist_for_each_entry_continue(a,
      - b,
      c) S
      |
      hlist_for_each_entry_from(a,
      - b,
      c) S
      |
      hlist_for_each_entry_rcu(a,
      - b,
      c, d) S
      |
      hlist_for_each_entry_rcu_bh(a,
      - b,
      c, d) S
      |
      hlist_for_each_entry_continue_rcu_bh(a,
      - b,
      c) S
      |
      for_each_busy_worker(a, c,
      - b,
      d) S
      |
      ax25_uid_for_each(a,
      - b,
      c) S
      |
      ax25_for_each(a,
      - b,
      c) S
      |
      inet_bind_bucket_for_each(a,
      - b,
      c) S
      |
      sctp_for_each_hentry(a,
      - b,
      c) S
      |
      sk_for_each(a,
      - b,
      c) S
      |
      sk_for_each_rcu(a,
      - b,
      c) S
      |
      sk_for_each_from
      -(a, b)
      +(a)
      S
      + sk_for_each_from(a) S
      |
      sk_for_each_safe(a,
      - b,
      c, d) S
      |
      sk_for_each_bound(a,
      - b,
      c) S
      |
      hlist_for_each_entry_safe(a,
      - b,
      c, d, e) S
      |
      hlist_for_each_entry_continue_rcu(a,
      - b,
      c) S
      |
      nr_neigh_for_each(a,
      - b,
      c) S
      |
      nr_neigh_for_each_safe(a,
      - b,
      c, d) S
      |
      nr_node_for_each(a,
      - b,
      c) S
      |
      nr_node_for_each_safe(a,
      - b,
      c, d) S
      |
      - for_each_gfn_sp(a, c, d, b) S
      + for_each_gfn_sp(a, c, d) S
      |
      - for_each_gfn_indirect_valid_sp(a, c, d, b) S
      + for_each_gfn_indirect_valid_sp(a, c, d) S
      |
      for_each_host(a,
      - b,
      c) S
      |
      for_each_host_safe(a,
      - b,
      c, d) S
      |
      for_each_mesh_entry(a,
      - b,
      c, d) S
      )
          ...+>
      
      [akpm@linux-foundation.org: drop bogus change from net/ipv4/raw.c]
      [akpm@linux-foundation.org: drop bogus hunk from net/ipv6/raw.c]
      [akpm@linux-foundation.org: checkpatch fixes]
      [akpm@linux-foundation.org: fix warnings]
      [akpm@linux-foudnation.org: redo intrusive kvm changes]
      Tested-by: NPeter Senna Tschudin <peter.senna@gmail.com>
      Acked-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
      Signed-off-by: NSasha Levin <sasha.levin@oracle.com>
      Cc: Wu Fengguang <fengguang.wu@intel.com>
      Cc: Marcelo Tosatti <mtosatti@redhat.com>
      Cc: Gleb Natapov <gleb@redhat.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      b67bfe0d
  6. 19 1月, 2013 1 次提交
  7. 21 11月, 2012 1 次提交
  8. 08 11月, 2012 2 次提交
    • A
      batman-adv: Distributed ARP Table - implement local storage · 2f1dfbe1
      Antonio Quartulli 提交于
      Since batman-adv cannot inter-operate with the host ARP table, this patch
      introduces a batman-adv private storage for ARP entries exchanged within DAT.
      This storage will represent the node local cache in the DAT protocol.
      Signed-off-by: NAntonio Quartulli <ordex@autistici.org>
      2f1dfbe1
    • A
      batman-adv: add UNICAST_4ADDR packet type · 7cdcf6dd
      Antonio Quartulli 提交于
      The current unicast packet type does not contain the orig source address. This
      patches add a new unicast packet (called UNICAST_4ADDR) which provides two new
      fields: the originator source address and the subtype (the type of the data
      contained in the packet payload). The former is useful to identify the node
      which injected the packet into the network and the latter is useful to avoid
      creating new unicast packet types in the future: a macro defining a new subtype
      will be enough.
      Signed-off-by: NAntonio Quartulli <ordex@autistici.org>
      7cdcf6dd
  9. 29 10月, 2012 2 次提交
  10. 23 8月, 2012 2 次提交
  11. 02 7月, 2012 6 次提交
  12. 28 6月, 2012 3 次提交
  13. 25 6月, 2012 1 次提交
  14. 21 6月, 2012 13 次提交
  15. 19 6月, 2012 2 次提交