- 04 11月, 2015 8 次提交
-
-
由 Radim Krčmář 提交于
GET_SMSTATE depends on real mode to ensure that smbase+offset is treated as a physical address, which has already caused a bug after shuffling the code. Enforce physical addressing. Signed-off-by: NRadim Krčmář <rkrcmar@redhat.com> Reported-by: NLaszlo Ersek <lersek@redhat.com> Tested-by: NLaszlo Ersek <lersek@redhat.com> Cc: stable@vger.kernel.org Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Radim Krčmář 提交于
We want to read the physical memory when emulating RSM. X86EMUL_IO_NEEDED is returned on all errors for consistency with other helpers. Signed-off-by: NRadim Krčmář <rkrcmar@redhat.com> Tested-by: NLaszlo Ersek <lersek@redhat.com> Cc: stable@vger.kernel.org Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Saurabh Sengar 提交于
removing unused variables, found by coccinelle Signed-off-by: NSaurabh Sengar <saurabh.truth@gmail.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Jan Beulich 提交于
The symbol was missing a KVM dependency. Signed-off-by: NJan Beulich <jbeulich@suse.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Paolo Bonzini 提交于
Merge tag 'kvm-arm-for-4.4' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD KVM/ARM Changes for v4.4-rc1 Includes a number of fixes for the arch-timer, introducing proper level-triggered semantics for the arch-timers, a series of patches to synchronously halt a guest (prerequisite for IRQ forwarding), some tracepoint improvements, a tweak for the EL2 panic handlers, some more VGIC cleanups getting rid of redundant state, and finally a stylistic change that gets rid of some ctags warnings. Conflicts: arch/x86/include/asm/kvm_host.h
-
由 Pavel Fedin 提交于
Now we see that vgic_set_lr() and vgic_sync_lr_elrsr() are always used together. Merge them into one function, saving from second vgic_ops dereferencing every time. Signed-off-by: NPavel Fedin <p.fedin@samsung.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
由 Pavel Fedin 提交于
1. Remove unnecessary 'irq' argument, because irq number can be retrieved from the LR. 2. Since cff9211e ("arm/arm64: KVM: Fix arch timer behavior for disabled interrupts ") LR_STATE_PENDING is queued back by vgic_retire_lr() itself. Also, it clears vlr.state itself. Therefore, we remove the same, now duplicated, check with all accompanying bit manipulations from vgic_unqueue_irqs(). 3. vgic_retire_lr() is always accompanied by vgic_irq_clear_queued(). Since it already does more than just clearing the LR, move vgic_irq_clear_queued() inside of it. Signed-off-by: NPavel Fedin <p.fedin@samsung.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
由 Pavel Fedin 提交于
Currently we use vgic_irq_lr_map in order to track which LRs hold which IRQs, and lr_used bitmap in order to track which LRs are used or free. vgic_irq_lr_map is actually used only for piggy-back optimization, and can be easily replaced by iteration over lr_used. This is good because in future, when LPI support is introduced, number of IRQs will grow up to at least 16384, while numbers from 1024 to 8192 are never going to be used. This would be a huge memory waste. In its turn, lr_used is also completely redundant since ae705930 ("arm/arm64: KVM: Keep elrsr/aisr in sync with software model"), because together with lr_used we also update elrsr. This allows to easily replace lr_used with elrsr, inverting all conditions (because in elrsr '1' means 'free'). Signed-off-by: NPavel Fedin <p.fedin@samsung.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
- 02 11月, 2015 2 次提交
-
-
由 Paolo Bonzini 提交于
Merge branch 'kvm-ppc-next' of git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc into HEAD There's nothing much in the way of new features this time; it's mostly bug fixes, plus Nikunj has implemented support for KVM_CAP_NR_MEMSLOTS.
-
由 Paolo Bonzini 提交于
Merge tag 'kvm-s390-next-20151028' of git://git.kernel.org/pub/scm/linux/kernel/git/kvms390/linux into HEAD KVM: s390: Bugfix and cleanups There is one important bug fix for a potential memory corruption and/or guest errors for guests with 63 or 64 vCPUs. This fix would qualify for 4.3 but is some days too late giving that we are about to release 4.3. Given that this patch is cc stable >= 3.15 anyway, we can handle it via 4.4. merge window. This pull request also contains two cleanups.
-
- 29 10月, 2015 3 次提交
-
-
由 Christian Borntraeger 提交于
We currently do some magic shifting (by exploiting that exit codes are always a multiple of 4) and a table lookup to jump into the exit handlers. This causes some calculations and checks, just to do an potentially expensive function call. Changing that to a switch statement gives the compiler the chance to inline and dynamically decide between jump tables or inline compare and branches. In addition it makes the code more readable. bloat-o-meter gives me a small reduction in code size: add/remove: 0/7 grow/shrink: 1/1 up/down: 986/-1334 (-348) function old new delta kvm_handle_sie_intercept 72 1058 +986 handle_prog 704 696 -8 handle_noop 54 - -54 handle_partial_execution 60 - -60 intercept_funcs 120 - -120 handle_instruction 198 - -198 handle_validity 210 - -210 handle_stop 316 - -316 handle_external_interrupt 368 - -368 Right now my gcc does conditional branches instead of jump tables. The inlining seems to give us enough cycles as some micro-benchmarking shows minimal improvements, but still in noise. Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com> Reviewed-by: NCornelia Huck <cornelia.huck@de.ibm.com>
-
由 Christian Borntraeger 提交于
the s390 debug feature does not need newlines. In fact it will result in empty lines. Get rid of 4 leftovers. Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com> Acked-by: NCornelia Huck <cornelia.huck@de.ibm.com>
-
由 David Hildenbrand 提交于
We seemed to have missed a few corner cases in commit f6c137ff ("KVM: s390: randomize sca address"). The SCA has a maximum size of 2112 bytes. By setting the sca_offset to some unlucky numbers, we exceed the page. 0x7c0 (1984) -> Fits exactly 0x7d0 (2000) -> 16 bytes out 0x7e0 (2016) -> 32 bytes out 0x7f0 (2032) -> 48 bytes out One VCPU entry is 32 bytes long. For the last two cases, we actually write data to the other page. 1. The address of the VCPU. 2. Injection/delivery/clearing of SIGP externall calls via SIGP IF. Especially the 2. happens regularly. So this could produce two problems: 1. The guest losing/getting external calls. 2. Random memory overwrites in the host. So this problem happens on every 127 + 128 created VM with 64 VCPUs. Cc: stable@vger.kernel.org # v3.15+ Acked-by: NChristian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
- 23 10月, 2015 18 次提交
-
-
由 Michal Marek 提交于
Besides being a coding style issue, it confuses make tags: ctags: Warning: include/kvm/arm_vgic.h:307: null expansion of name pattern "\1" ctags: Warning: include/kvm/arm_vgic.h:308: null expansion of name pattern "\1" ctags: Warning: include/kvm/arm_vgic.h:309: null expansion of name pattern "\1" ctags: Warning: include/kvm/arm_vgic.h:317: null expansion of name pattern "\1" Cc: kvmarm@lists.cs.columbia.edu Signed-off-by: NMichal Marek <mmarek@suse.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
由 Mark Rutland 提交于
If we panic in hyp mode, we inject a call to panic() into the EL1N host kernel. If a guest context is active, we first attempt to restore the minimal amount of state necessary to execute the host kernel with restore_sysregs. However, the SP is restored as part of restore_common_regs, and so we may return to the host's panic() function with the SP of the guest. Any calculations based on the SP will be bogus, and any attempt to access the stack will result in recursive data aborts. When running Linux as a guest, the guest's EL1N SP is like to be some valid kernel address. In this case, the host kernel may use that region as a stack for panic(), corrupting it in the process. Avoid the problem by restoring the host SP prior to returning to the host. To prevent misleading backtraces in the host, the FP is zeroed at the same time. We don't need any of the other "common" registers in order to panic successfully. Signed-off-by: NMark Rutland <mark.rutland@arm.com> Acked-by: NMarc Zyngier <marc.zyngier@arm.com> Cc: Christoffer Dall <christoffer.dall@linaro.org> Cc: <kvmarm@lists.cs.columbia.edu> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
由 Christoffer Dall 提交于
The VGIC and timer code for KVM arm/arm64 doesn't have any tracepoints or tracepoint infrastructure defined. Rewriting some of the timer code handling showed me how much we need this, so let's add these simple trace points once and for all and we can easily expand with additional trace points in these files as we go along. Cc: Wei Huang <wei@redhat.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
由 Christoffer Dall 提交于
The ARM architecture only saves the exit class to the HSR (ESR_EL2 for arm64) on synchronous exceptions, not on asynchronous exceptions like an IRQ. However, we only report the exception class on kvm_exit, which is confusing because an IRQ looks like it exited at some PC with the same reason as the previous exit. Add a lookup table for the exception index and prepend the kvm_exit tracepoint text with the exception type to clarify this situation. Also resolve the exception class (EC) to a human-friendly text version so the trace output becomes immediately usable for debugging this code. Cc: Wei Huang <wei@redhat.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
由 Pavel Fedin 提交于
Correct some old mistakes in the API documentation: 1. VCPU is identified by index (using kvm_get_vcpu() function), but "cpu id" can be mistaken for affinity ID. 2. Some error codes are wrong. [ Slightly tweaked some grammer and did some s/CPU index/vcpu_index/ in the descriptions. -Christoffer ] Signed-off-by: NPavel Fedin <p.fedin@samsung.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
由 Eric Auger 提交于
We introduce kvm_arm_halt_guest and resume functions. They will be used for IRQ forward state change. Halt is synchronous and prevents the guest from being re-entered. We use the same mechanism put in place for PSCI former pause, now renamed power_off. A new flag is introduced in arch vcpu state, pause, only meant to be used by those functions. Signed-off-by: NEric Auger <eric.auger@linaro.org> Reviewed-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
由 Eric Auger 提交于
In case a vcpu off PSCI call is called just after we executed the vcpu_sleep check, we can enter the guest although power_off is set. Let's check the power_off state in the critical section, just before entering the guest. Signed-off-by: NEric Auger <eric.auger@linaro.org> Reported-by: NChristoffer Dall <christoffer.dall@linaro.org> Reviewed-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
由 Eric Auger 提交于
kvm_arch_vcpu_runnable now also checks whether the power_off flag is set. Signed-off-by: NEric Auger <eric.auger@linaro.org> Reviewed-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
由 Eric Auger 提交于
The kvm_vcpu_arch pause field is renamed into power_off to prepare for the introduction of a new pause field. Also vcpu_pause is renamed into vcpu_sleep since we will sleep until both power_off and pause are false. Signed-off-by: NEric Auger <eric.auger@linaro.org> Reviewed-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
由 Wei Huang 提交于
vhost drivers provide guest VMs with better I/O performance and lower CPU utilization. This patch allows users to select vhost devices under KVM configuration menu on ARM. This makes vhost support on arm/arm64 on a par with other architectures (e.g. x86, ppc). Signed-off-by: NWei Huang <wei@redhat.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
由 Christoffer Dall 提交于
We mark edge-triggered interrupts with the HW bit set as queued to prevent the VGIC code from injecting LRs with both the Active and Pending bits set at the same time while also setting the HW bit, because the hardware does not support this. However, this means that we must also clear the queued flag when we sync back a LR where the state on the physical distributor went from active to inactive because the guest deactivated the interrupt. At this point we must also check if the interrupt is pending on the distributor, and tell the VGIC to queue it again if it is. Since these actions on the sync path are extremely close to those for level-triggered interrupts, rename process_level_irq to process_queued_irq, allowing it to cater for both cases. Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
由 Christoffer Dall 提交于
The arch timer currently uses edge-triggered semantics in the sense that the line is never sampled by the vgic and lowering the line from the timer to the vgic doesn't have any effect on the pending state of virtual interrupts in the vgic. This means that we do not support a guest with the otherwise valid behavior of (1) disable interrupts (2) enable the timer (3) disable the timer (4) enable interrupts. Such a guest would validly not expect to see any interrupts on real hardware, but will see interrupts on KVM. This patch fixes this shortcoming through the following series of changes. First, we change the flow of the timer/vgic sync/flush operations. Now the timer is always flushed/synced before the vgic, because the vgic samples the state of the timer output. This has the implication that we move the timer operations in to non-preempible sections, but that is fine after the previous commit getting rid of hrtimer schedules on every entry/exit. Second, we change the internal behavior of the timer, letting the timer keep track of its previous output state, and only lower/raise the line to the vgic when the state changes. Note that in theory this could have been accomplished more simply by signalling the vgic every time the state *potentially* changed, but we don't want to be hitting the vgic more often than necessary. Third, we get rid of the use of the map->active field in the vgic and instead simply set the interrupt as active on the physical distributor whenever the input to the GIC is asserted and conversely clear the physical active state when the input to the GIC is deasserted. Fourth, and finally, we now initialize the timer PPIs (and all the other unused PPIs for now), to be level-triggered, and modify the sync code to sample the line state on HW sync and re-inject a new interrupt if it is still pending at that time. Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
由 Christoffer Dall 提交于
Forwarded physical interrupts on arm/arm64 is a tricky concept and the way we deal with them is not apparently easy to understand by reading various specs. Therefore, add a proper documentation file explaining the flow and rationale of the behavior of the vgic. Some of this text was contributed by Marc Zyngier and edited by me. Omissions and errors are all mine. Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
由 Christoffer Dall 提交于
We currently initialize the SGIs to be enabled in the VGIC code, but we use the VGIC_NR_PPIS define for this purpose, instead of the the more natural VGIC_NR_SGIS. Change this slightly confusing use of the defines. Note: This should have no functional change, as both names are defined to the number 16. Acked-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
由 Christoffer Dall 提交于
The GICD_ICFGR allows the bits for the SGIs and PPIs to be read only. We currently simulate this behavior by writing a hardcoded value to the register for the SGIs and PPIs on every write of these bits to the register (ignoring what the guest actually wrote), and by writing the same value as the reset value to the register. This is a bit counter-intuitive, as the register is RO for these bits, and we can just implement it that way, allowing us to control the value of the bits purely in the reset code. Reviewed-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
由 Christoffer Dall 提交于
Currently vgic_process_maintenance() processes dealing with a completed level-triggered interrupt directly, but we are soon going to reuse this logic for level-triggered mapped interrupts with the HW bit set, so move this logic into a separate static function. Probably the most scary part of this commit is convincing yourself that the current flow is safe compared to the old one. In the following I try to list the changes and why they are harmless: Move vgic_irq_clear_queued after kvm_notify_acked_irq: Harmless because the only potential effect of clearing the queued flag wrt. kvm_set_irq is that vgic_update_irq_pending does not set the pending bit on the emulated CPU interface or in the pending_on_cpu bitmask if the function is called with level=1. However, the point of kvm_notify_acked_irq is to call kvm_set_irq with level=0, and we set the queued flag again in __kvm_vgic_sync_hwstate later on if the level is stil high. Move vgic_set_lr before kvm_notify_acked_irq: Also, harmless because the LR are cpu-local operations and kvm_notify_acked only affects the dist Move vgic_dist_irq_clear_soft_pend after kvm_notify_acked_irq: Also harmless, because now we check the level state in the clear_soft_pend function and lower the pending bits if the level is low. Reviewed-by: NEric Auger <eric.auger@linaro.org> Reviewed-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
由 Christoffer Dall 提交于
We currently schedule a soft timer every time we exit the guest if the timer did not expire while running the guest. This is really not necessary, because the only work we do in the timer work function is to kick the vcpu. Kicking the vcpu does two things: (1) If the vpcu thread is on a waitqueue, make it runnable and remove it from the waitqueue. (2) If the vcpu is running on a different physical CPU from the one doing the kick, it sends a reschedule IPI. The second case cannot happen, because the soft timer is only ever scheduled when the vcpu is not running. The first case is only relevant when the vcpu thread is on a waitqueue, which is only the case when the vcpu thread has called kvm_vcpu_block(). Therefore, we only need to make sure a timer is scheduled for kvm_vcpu_block(), which we do by encapsulating all calls to kvm_vcpu_block() with kvm_timer_{un}schedule calls. Additionally, we only schedule a soft timer if the timer is enabled and unmasked, since it is useless otherwise. Note that theoretically userspace can use the SET_ONE_REG interface to change registers that should cause the timer to fire, even if the vcpu is blocked without a scheduled timer, but this case was not supported before this patch and we leave it for future work for now. Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
由 Christoffer Dall 提交于
Some times it is useful for architecture implementations of KVM to know when the VCPU thread is about to block or when it comes back from blocking (arm/arm64 needs to know this to properly implement timers, for example). Therefore provide a generic architecture callback function in line with what we do elsewhere for KVM generic-arch interactions. Reviewed-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
- 21 10月, 2015 9 次提交
-
-
由 Gautham R. Shenoy 提交于
Currently a CPU running a guest can receive a H_DOORBELL in the following two cases: 1) When the CPU is napping due to CEDE or there not being a guest vcpu. 2) The CPU is running the guest vcpu. Case 1), the doorbell message is not cleared since we were waking up from nap. Hence when the EE bit gets set on transition from guest to host, the H_DOORBELL interrupt is delivered to the host and the corresponding handler is invoked. However in Case 2), the message gets cleared by the action of taking the H_DOORBELL interrupt. Since the CPU was running a guest, instead of invoking the doorbell handler, the code invokes the second-level interrupt handler to switch the context from the guest to the host. At this point the setting of the EE bit doesn't result in the CPU getting the doorbell interrupt since it has already been delivered once. So, the handler for this doorbell is never invoked! This causes softlockups if the missed DOORBELL was an IPI sent from a sibling subcore on the same CPU. This patch fixes it by explitly invoking the doorbell handler on the exit path if the exit reason is H_DOORBELL similar to the way an EXTERNAL interrupt is handled. Since this will also handle Case 1), we can unconditionally clear the doorbell message in kvmppc_check_wake_reason. Signed-off-by: NGautham R. Shenoy <ego@linux.vnet.ibm.com> Signed-off-by: NPaul Mackerras <paulus@samba.org>
-
由 Nikunj A Dadhania 提交于
QEMU assumes 32 memslots if this extension is not implemented. Although, current value of KVM_USER_MEM_SLOTS is 32, once KVM_USER_MEM_SLOTS changes QEMU would take a wrong value. Signed-off-by: NNikunj A Dadhania <nikunj@linux.vnet.ibm.com> Reviewed-by: NThomas Huth <thuth@redhat.com> Signed-off-by: NPaul Mackerras <paulus@samba.org>
-
由 Paul Mackerras 提交于
This fixes a bug where the old HPTE value returned by H_REMOVE has the valid bit clear if the HPTE was an absent HPTE, as happens for HPTEs for emulated MMIO pages and for RAM pages that have been paged out by the host. If the absent bit is set, we clear it and set the valid bit, because from the guest's point of view, the HPTE is valid. Signed-off-by: NPaul Mackerras <paulus@samba.org>
-
由 Paul Mackerras 提交于
Currently the KVM_PPC_ALLOCATE_HTAB will try to allocate the requested size of HPT, and if that is not possible, then try to allocate smaller sizes (by factors of 2) until either a minimum is reached or the allocation succeeds. This is not ideal for userspace, particularly in migration scenarios, where the destination VM really does require the size requested. Also, the minimum HPT size of 256kB may be insufficient for the guest to run successfully. This removes the fallback to smaller sizes on allocation failure for the KVM_PPC_ALLOCATE_HTAB ioctl. The fallback still exists for the case where the HPT is allocated at the time the first VCPU is run, if no HPT has been allocated by ioctl by that time. Signed-off-by: NPaul Mackerras <paulus@samba.org>
-
由 Christoffer Dall 提交于
We currently do a single update of the vgic state when the distributor enable/disable control register is accessed and then bypass updating the state for as long as the distributor remains disabled. This is incorrect, because updating the state does not consider the distributor enable bit, and this you can end up in a situation where an interrupt is marked as pending on the CPU interface, but not pending on the distributor, which is an impossible state to be in, and triggers a warning. Consider for example the following sequence of events: 1. An interrupt is marked as pending on the distributor - the interrupt is also forwarded to the CPU interface 2. The guest turns off the distributor (it's about to do a reboot) - we stop updating the CPU interface state from now on 3. The guest disables the pending interrupt - we remove the pending state from the distributor, but don't touch the CPU interface, see point 2. Since the distributor disable bit really means that no interrupts should be forwarded to the CPU interface, we modify the code to keep updating the internal VGIC state, but always set the CPU interface pending bits to zero when the distributor is disabled. Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
由 Christoffer Dall 提交于
When a guest reboots or offlines/onlines CPUs, it is not uncommon for it to clear the pending and active states of an interrupt through the emulated VGIC distributor. However, since the architected timers are defined by the architecture to be level triggered and the guest rightfully expects them to be that, but we emulate them as edge-triggered, we have to mimic level-triggered behavior for an edge-triggered virtual implementation. We currently do not signal the VGIC when the map->active field is true, because it indicates that the guest has already been signalled of the interrupt as required. Normally this field is set to false when the guest deactivates the virtual interrupt through the sync path. We also need to catch the case where the guest deactivates the interrupt through the emulated distributor, again allowing guests to boot even if the original virtual timer signal hit before the guest's GIC initialization sequence is run. Reviewed-by: NEric Auger <eric.auger@linaro.org> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
由 Christoffer Dall 提交于
We have an interesting issue when the guest disables the timer interrupt on the VGIC, which happens when turning VCPUs off using PSCI, for example. The problem is that because the guest disables the virtual interrupt at the VGIC level, we never inject interrupts to the guest and therefore never mark the interrupt as active on the physical distributor. The host also never takes the timer interrupt (we only use the timer device to trigger a guest exit and everything else is done in software), so the interrupt does not become active through normal means. The result is that we keep entering the guest with a programmed timer that will always fire as soon as we context switch the hardware timer state and run the guest, preventing forward progress for the VCPU. Since the active state on the physical distributor is really part of the timer logic, it is the job of our virtual arch timer driver to manage this state. The timer->map->active boolean field indicates whether we have signalled this interrupt to the vgic and if that interrupt is still pending or active. As long as that is the case, the hardware doesn't have to generate physical interrupts and therefore we mark the interrupt as active on the physical distributor. We also have to restore the pending state of an interrupt that was queued to an LR but was retired from the LR for some reason, while remaining pending in the LR. Cc: Marc Zyngier <marc.zyngier@arm.com> Reported-by: NLorenzo Pieralisi <lorenzo.pieralisi@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
由 Arnd Bergmann 提交于
The vgic code on ARM is built for all configurations that enable KVM, but the parent_data field that it references is only present when CONFIG_IRQ_DOMAIN_HIERARCHY is set: virt/kvm/arm/vgic.c: In function 'kvm_vgic_map_phys_irq': virt/kvm/arm/vgic.c:1781:13: error: 'struct irq_data' has no member named 'parent_data' This flag is implied by the GIC driver, and indeed the VGIC code only makes sense if a GIC is present. This changes the CONFIG_KVM symbol to always select GIC, which avoids the issue. Fixes: 662d9715 ("arm/arm64: KVM: Kill CONFIG_KVM_ARM_{VGIC,TIMER}") Signed-off-by: NArnd Bergmann <arnd@arndb.de> Acked-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
由 Pavel Fedin 提交于
Jump to correct label and free kvm_host_cpu_state Reviewed-by: NWei Huang <wei@redhat.com> Signed-off-by: NPavel Fedin <p.fedin@samsung.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-