1. 24 5月, 2016 1 次提交
    • M
      mm: make mmap_sem for write waits killable for mm syscalls · dc0ef0df
      Michal Hocko 提交于
      This is a follow up work for oom_reaper [1].  As the async OOM killing
      depends on oom_sem for read we would really appreciate if a holder for
      write didn't stood in the way.  This patchset is changing many of
      down_write calls to be killable to help those cases when the writer is
      blocked and waiting for readers to release the lock and so help
      __oom_reap_task to process the oom victim.
      
      Most of the patches are really trivial because the lock is help from a
      shallow syscall paths where we can return EINTR trivially and allow the
      current task to die (note that EINTR will never get to the userspace as
      the task has fatal signal pending).  Others seem to be easy as well as
      the callers are already handling fatal errors and bail and return to
      userspace which should be sufficient to handle the failure gracefully.
      I am not familiar with all those code paths so a deeper review is really
      appreciated.
      
      As this work is touching more areas which are not directly connected I
      have tried to keep the CC list as small as possible and people who I
      believed would be familiar are CCed only to the specific patches (all
      should have received the cover though).
      
      This patchset is based on linux-next and it depends on
      down_write_killable for rw_semaphores which got merged into tip
      locking/rwsem branch and it is merged into this next tree.  I guess it
      would be easiest to route these patches via mmotm because of the
      dependency on the tip tree but if respective maintainers prefer other
      way I have no objections.
      
      I haven't covered all the mmap_write(mm->mmap_sem) instances here
      
        $ git grep "down_write(.*\<mmap_sem\>)" next/master | wc -l
        98
        $ git grep "down_write(.*\<mmap_sem\>)" | wc -l
        62
      
      I have tried to cover those which should be relatively easy to review in
      this series because this alone should be a nice improvement.  Other
      places can be changed on top.
      
      [0] http://lkml.kernel.org/r/1456752417-9626-1-git-send-email-mhocko@kernel.org
      [1] http://lkml.kernel.org/r/1452094975-551-1-git-send-email-mhocko@kernel.org
      [2] http://lkml.kernel.org/r/1456750705-7141-1-git-send-email-mhocko@kernel.org
      
      This patch (of 18):
      
      This is the first step in making mmap_sem write waiters killable.  It
      focuses on the trivial ones which are taking the lock early after
      entering the syscall and they are not changing state before.
      
      Therefore it is very easy to change them to use down_write_killable and
      immediately return with -EINTR.  This will allow the waiter to pass away
      without blocking the mmap_sem which might be required to make a forward
      progress.  E.g.  the oom reaper will need the lock for reading to
      dismantle the OOM victim address space.
      
      The only tricky function in this patch is vm_mmap_pgoff which has many
      call sites via vm_mmap.  To reduce the risk keep vm_mmap with the
      original non-killable semantic for now.
      
      vm_munmap callers do not bother checking the return value so open code
      it into the munmap syscall path for now for simplicity.
      Signed-off-by: NMichal Hocko <mhocko@suse.com>
      Acked-by: NVlastimil Babka <vbabka@suse.cz>
      Cc: Mel Gorman <mgorman@suse.de>
      Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
      Cc: Konstantin Khlebnikov <koct9i@gmail.com>
      Cc: Hugh Dickins <hughd@google.com>
      Cc: Andrea Arcangeli <aarcange@redhat.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Dave Hansen <dave.hansen@linux.intel.com>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      dc0ef0df
  2. 21 5月, 2016 1 次提交
    • M
      mm, compaction: distinguish between full and partial COMPACT_COMPLETE · c8f7de0b
      Michal Hocko 提交于
      COMPACT_COMPLETE now means that compaction and free scanner met.  This
      is not very useful information if somebody just wants to use this
      feedback and make any decisions based on that.  The current caller might
      be a poor guy who just happened to scan tiny portion of the zone and
      that could be the reason no suitable pages were compacted.  Make sure we
      distinguish the full and partial zone walks.
      
      Consumers should treat COMPACT_PARTIAL_SKIPPED as a potential success
      and be optimistic in retrying.
      
      The existing users of COMPACT_COMPLETE are conservatively changed to use
      COMPACT_PARTIAL_SKIPPED as well but some of them should be probably
      reconsidered and only defer the compaction only for COMPACT_COMPLETE
      with the new semantic.
      
      This patch shouldn't introduce any functional changes.
      Signed-off-by: NMichal Hocko <mhocko@suse.com>
      Acked-by: NVlastimil Babka <vbabka@suse.cz>
      Acked-by: NHillf Danton <hillf.zj@alibaba-inc.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: Joonsoo Kim <js1304@gmail.com>
      Cc: Mel Gorman <mgorman@techsingularity.net>
      Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
      Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      c8f7de0b
  3. 20 5月, 2016 4 次提交
  4. 26 3月, 2016 1 次提交
    • M
      mm, oom: introduce oom reaper · aac45363
      Michal Hocko 提交于
      This patch (of 5):
      
      This is based on the idea from Mel Gorman discussed during LSFMM 2015
      and independently brought up by Oleg Nesterov.
      
      The OOM killer currently allows to kill only a single task in a good
      hope that the task will terminate in a reasonable time and frees up its
      memory.  Such a task (oom victim) will get an access to memory reserves
      via mark_oom_victim to allow a forward progress should there be a need
      for additional memory during exit path.
      
      It has been shown (e.g.  by Tetsuo Handa) that it is not that hard to
      construct workloads which break the core assumption mentioned above and
      the OOM victim might take unbounded amount of time to exit because it
      might be blocked in the uninterruptible state waiting for an event (e.g.
      lock) which is blocked by another task looping in the page allocator.
      
      This patch reduces the probability of such a lockup by introducing a
      specialized kernel thread (oom_reaper) which tries to reclaim additional
      memory by preemptively reaping the anonymous or swapped out memory owned
      by the oom victim under an assumption that such a memory won't be needed
      when its owner is killed and kicked from the userspace anyway.  There is
      one notable exception to this, though, if the OOM victim was in the
      process of coredumping the result would be incomplete.  This is
      considered a reasonable constrain because the overall system health is
      more important than debugability of a particular application.
      
      A kernel thread has been chosen because we need a reliable way of
      invocation so workqueue context is not appropriate because all the
      workers might be busy (e.g.  allocating memory).  Kswapd which sounds
      like another good fit is not appropriate as well because it might get
      blocked on locks during reclaim as well.
      
      oom_reaper has to take mmap_sem on the target task for reading so the
      solution is not 100% because the semaphore might be held or blocked for
      write but the probability is reduced considerably wrt.  basically any
      lock blocking forward progress as described above.  In order to prevent
      from blocking on the lock without any forward progress we are using only
      a trylock and retry 10 times with a short sleep in between.  Users of
      mmap_sem which need it for write should be carefully reviewed to use
      _killable waiting as much as possible and reduce allocations requests
      done with the lock held to absolute minimum to reduce the risk even
      further.
      
      The API between oom killer and oom reaper is quite trivial.
      wake_oom_reaper updates mm_to_reap with cmpxchg to guarantee only
      NULL->mm transition and oom_reaper clear this atomically once it is done
      with the work.  This means that only a single mm_struct can be reaped at
      the time.  As the operation is potentially disruptive we are trying to
      limit it to the ncessary minimum and the reaper blocks any updates while
      it operates on an mm.  mm_struct is pinned by mm_count to allow parallel
      exit_mmap and a race is detected by atomic_inc_not_zero(mm_users).
      Signed-off-by: NMichal Hocko <mhocko@suse.com>
      Suggested-by: NOleg Nesterov <oleg@redhat.com>
      Suggested-by: NMel Gorman <mgorman@suse.de>
      Acked-by: NMel Gorman <mgorman@suse.de>
      Acked-by: NDavid Rientjes <rientjes@google.com>
      Cc: Mel Gorman <mgorman@suse.de>
      Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
      Cc: Oleg Nesterov <oleg@redhat.com>
      Cc: Hugh Dickins <hughd@google.com>
      Cc: Andrea Argangeli <andrea@kernel.org>
      Cc: Rik van Riel <riel@redhat.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      aac45363
  5. 18 3月, 2016 4 次提交
    • J
      mm: convert printk(KERN_<LEVEL> to pr_<level> · 1170532b
      Joe Perches 提交于
      Most of the mm subsystem uses pr_<level> so make it consistent.
      
      Miscellanea:
      
       - Realign arguments
       - Add missing newline to format
       - kmemleak-test.c has a "kmemleak: " prefix added to the
         "Kmemleak testing" logging message via pr_fmt
      Signed-off-by: NJoe Perches <joe@perches.com>
      Acked-by: Tejun Heo <tj@kernel.org>	[percpu]
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      1170532b
    • J
      mm: introduce page reference manipulation functions · fe896d18
      Joonsoo Kim 提交于
      The success of CMA allocation largely depends on the success of
      migration and key factor of it is page reference count.  Until now, page
      reference is manipulated by direct calling atomic functions so we cannot
      follow up who and where manipulate it.  Then, it is hard to find actual
      reason of CMA allocation failure.  CMA allocation should be guaranteed
      to succeed so finding offending place is really important.
      
      In this patch, call sites where page reference is manipulated are
      converted to introduced wrapper function.  This is preparation step to
      add tracepoint to each page reference manipulation function.  With this
      facility, we can easily find reason of CMA allocation failure.  There is
      no functional change in this patch.
      
      In addition, this patch also converts reference read sites.  It will
      help a second step that renames page._count to something else and
      prevents later attempt to direct access to it (Suggested by Andrew).
      Signed-off-by: NJoonsoo Kim <iamjoonsoo.kim@lge.com>
      Acked-by: NMichal Nazarewicz <mina86@mina86.com>
      Acked-by: NVlastimil Babka <vbabka@suse.cz>
      Cc: Minchan Kim <minchan@kernel.org>
      Cc: Mel Gorman <mgorman@techsingularity.net>
      Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
      Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
      Cc: Steven Rostedt <rostedt@goodmis.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      fe896d18
    • V
      mm, kswapd: replace kswapd compaction with waking up kcompactd · accf6242
      Vlastimil Babka 提交于
      Similarly to direct reclaim/compaction, kswapd attempts to combine
      reclaim and compaction to attempt making memory allocation of given
      order available.
      
      The details differ from direct reclaim e.g. in having high watermark as
      a goal.  The code involved in kswapd's reclaim/compaction decisions has
      evolved to be quite complex.
      
      Testing reveals that it doesn't actually work in at least one scenario,
      and closer inspection suggests that it could be greatly simplified
      without compromising on the goal (make high-order page available) or
      efficiency (don't reclaim too much).  The simplification relieas of
      doing all compaction in kcompactd, which is simply woken up when high
      watermarks are reached by kswapd's reclaim.
      
      The scenario where kswapd compaction doesn't work was found with mmtests
      test stress-highalloc configured to attempt order-9 allocations without
      direct reclaim, just waking up kswapd.  There was no compaction attempt
      from kswapd during the whole test.  Some added instrumentation shows
      what happens:
      
       - balance_pgdat() sets end_zone to Normal, as it's not balanced
       - reclaim is attempted on DMA zone, which sets nr_attempted to 99, but
         it cannot reclaim anything, so sc.nr_reclaimed is 0
       - for zones DMA32 and Normal, kswapd_shrink_zone uses testorder=0, so
         it merely checks if high watermarks were reached for base pages.
         This is true, so no reclaim is attempted.  For DMA, testorder=0
         wasn't used, as compaction_suitable() returned COMPACT_SKIPPED
       - even though the pgdat_needs_compaction flag wasn't set to false, no
         compaction happens due to the condition sc.nr_reclaimed >
         nr_attempted being false (as 0 < 99)
       - priority-- due to nr_reclaimed being 0, repeat until priority reaches
         0 pgdat_balanced() is false as only the small zone DMA appears
         balanced (curiously in that check, watermark appears OK and
         compaction_suitable() returns COMPACT_PARTIAL, because a lower
         classzone_idx is used there)
      
      Now, even if it was decided that reclaim shouldn't be attempted on the
      DMA zone, the scenario would be the same, as (sc.nr_reclaimed=0 >
      nr_attempted=0) is also false.  The condition really should use >= as
      the comment suggests.  Then there is a mismatch in the check for setting
      pgdat_needs_compaction to false using low watermark, while the rest uses
      high watermark, and who knows what other subtlety.  Hopefully this
      demonstrates that this is unsustainable.
      
      Luckily we can simplify this a lot.  The reclaim/compaction decisions
      make sense for direct reclaim scenario, but in kswapd, our primary goal
      is to reach high watermark in order-0 pages.  Afterwards we can attempt
      compaction just once.  Unlike direct reclaim, we don't reclaim extra
      pages (over the high watermark), the current code already disallows it
      for good reasons.
      
      After this patch, we simply wake up kcompactd to process the pgdat,
      after we have either succeeded or failed to reach the high watermarks in
      kswapd, which goes to sleep.  We pass kswapd's order and classzone_idx,
      so kcompactd can apply the same criteria to determine which zones are
      worth compacting.  Note that we use the classzone_idx from
      wakeup_kswapd(), not balanced_classzone_idx which can include higher
      zones that kswapd tried to balance too, but didn't consider them in
      pgdat_balanced().
      
      Since kswapd now cannot create high-order pages itself, we need to
      adjust how it determines the zones to be balanced.  The key element here
      is adding a "highorder" parameter to zone_balanced, which, when set to
      false, makes it consider only order-0 watermark instead of the desired
      higher order (this was done previously by kswapd_shrink_zone(), but not
      elsewhere).  This false is passed for example in pgdat_balanced().
      Importantly, wakeup_kswapd() uses true to make sure kswapd and thus
      kcompactd are woken up for a high-order allocation failure.
      
      The last thing is to decide what to do with pageblock_skip bitmap
      handling.  Compaction maintains a pageblock_skip bitmap to record
      pageblocks where isolation recently failed.  This bitmap can be reset by
      three ways:
      
      1) direct compaction is restarting after going through the full deferred cycle
      
      2) kswapd goes to sleep, and some other direct compaction has previously
         finished scanning the whole zone and set zone->compact_blockskip_flush.
         Note that a successful direct compaction clears this flag.
      
      3) compaction was invoked manually via trigger in /proc
      
      The case 2) is somewhat fuzzy to begin with, but after introducing
      kcompactd we should update it.  The check for direct compaction in 1),
      and to set the flush flag in 2) use current_is_kswapd(), which doesn't
      work for kcompactd.  Thus, this patch adds bool direct_compaction to
      compact_control to use in 2).  For the case 1) we remove the check
      completely - unlike the former kswapd compaction, kcompactd does use the
      deferred compaction functionality, so flushing tied to restarting from
      deferred compaction makes sense here.
      
      Note that when kswapd goes to sleep, kcompactd is woken up, so it will
      see the flushed pageblock_skip bits.  This is different from when the
      former kswapd compaction observed the bits and I believe it makes more
      sense.  Kcompactd can afford to be more thorough than a direct
      compaction trying to limit allocation latency, or kswapd whose primary
      goal is to reclaim.
      
      For testing, I used stress-highalloc configured to do order-9
      allocations with GFP_NOWAIT|__GFP_HIGH|__GFP_COMP, so they relied just
      on kswapd/kcompactd reclaim/compaction (the interfering kernel builds in
      phases 1 and 2 work as usual):
      
      stress-highalloc
                              4.5-rc1+before          4.5-rc1+after
                                   -nodirect              -nodirect
      Success 1 Min          1.00 (  0.00%)         5.00 (-66.67%)
      Success 1 Mean         1.40 (  0.00%)         6.20 (-55.00%)
      Success 1 Max          2.00 (  0.00%)         7.00 (-16.67%)
      Success 2 Min          1.00 (  0.00%)         5.00 (-66.67%)
      Success 2 Mean         1.80 (  0.00%)         6.40 (-52.38%)
      Success 2 Max          3.00 (  0.00%)         7.00 (-16.67%)
      Success 3 Min         34.00 (  0.00%)        62.00 (  1.59%)
      Success 3 Mean        41.80 (  0.00%)        63.80 (  1.24%)
      Success 3 Max         53.00 (  0.00%)        65.00 (  2.99%)
      
      User                          3166.67        3181.09
      System                        1153.37        1158.25
      Elapsed                       1768.53        1799.37
      
                                  4.5-rc1+before   4.5-rc1+after
                                       -nodirect    -nodirect
      Direct pages scanned                32938        32797
      Kswapd pages scanned              2183166      2202613
      Kswapd pages reclaimed            2152359      2143524
      Direct pages reclaimed              32735        32545
      Percentage direct scans                1%           1%
      THP fault alloc                       579          612
      THP collapse alloc                    304          316
      THP splits                              0            0
      THP fault fallback                    793          778
      THP collapse fail                      11           16
      Compaction stalls                    1013         1007
      Compaction success                     92           67
      Compaction failures                   920          939
      Page migrate success               238457       721374
      Page migrate failure                23021        23469
      Compaction pages isolated          504695      1479924
      Compaction migrate scanned         661390      8812554
      Compaction free scanned          13476658     84327916
      Compaction cost                       262          838
      
      After this patch we see improvements in allocation success rate
      (especially for phase 3) along with increased compaction activity.  The
      compaction stalls (direct compaction) in the interfering kernel builds
      (probably THP's) also decreased somewhat thanks to kcompactd activity,
      yet THP alloc successes improved a bit.
      
      Note that elapsed and user time isn't so useful for this benchmark,
      because of the background interference being unpredictable.  It's just
      to quickly spot some major unexpected differences.  System time is
      somewhat more useful and that didn't increase.
      
      Also (after adjusting mmtests' ftrace monitor):
      
      Time kswapd awake               2547781     2269241
      Time kcompactd awake                  0      119253
      Time direct compacting           939937      557649
      Time kswapd compacting                0           0
      Time kcompactd compacting             0      119099
      
      The decrease of overal time spent compacting appears to not match the
      increased compaction stats.  I suspect the tasks get rescheduled and
      since the ftrace monitor doesn't see that, the reported time is wall
      time, not CPU time.  But arguably direct compactors care about overall
      latency anyway, whether busy compacting or waiting for CPU doesn't
      matter.  And that latency seems to almost halved.
      
      It's also interesting how much time kswapd spent awake just going
      through all the priorities and failing to even try compacting, over and
      over.
      
      We can also configure stress-highalloc to perform both direct
      reclaim/compaction and wakeup kswapd/kcompactd, by using
      GFP_KERNEL|__GFP_HIGH|__GFP_COMP:
      
      stress-highalloc
                              4.5-rc1+before         4.5-rc1+after
                                     -direct               -direct
      Success 1 Min          4.00 (  0.00%)        9.00 (-50.00%)
      Success 1 Mean         8.00 (  0.00%)       10.00 (-19.05%)
      Success 1 Max         12.00 (  0.00%)       11.00 ( 15.38%)
      Success 2 Min          4.00 (  0.00%)        9.00 (-50.00%)
      Success 2 Mean         8.20 (  0.00%)       10.00 (-16.28%)
      Success 2 Max         13.00 (  0.00%)       11.00 (  8.33%)
      Success 3 Min         75.00 (  0.00%)       74.00 (  1.33%)
      Success 3 Mean        75.60 (  0.00%)       75.20 (  0.53%)
      Success 3 Max         77.00 (  0.00%)       76.00 (  0.00%)
      
      User                          3344.73       3246.04
      System                        1194.24       1172.29
      Elapsed                       1838.04       1836.76
      
                                  4.5-rc1+before  4.5-rc1+after
                                         -direct     -direct
      Direct pages scanned               125146      120966
      Kswapd pages scanned              2119757     2135012
      Kswapd pages reclaimed            2073183     2108388
      Direct pages reclaimed             124909      120577
      Percentage direct scans                5%          5%
      THP fault alloc                       599         652
      THP collapse alloc                    323         354
      THP splits                              0           0
      THP fault fallback                    806         793
      THP collapse fail                      17          16
      Compaction stalls                    2457        2025
      Compaction success                    906         518
      Compaction failures                  1551        1507
      Page migrate success              2031423     2360608
      Page migrate failure                32845       40852
      Compaction pages isolated         4129761     4802025
      Compaction migrate scanned       11996712    21750613
      Compaction free scanned         214970969   344372001
      Compaction cost                      2271        2694
      
      In this scenario, this patch doesn't change the overall success rate as
      direct compaction already tries all it can.  There's however significant
      reduction in direct compaction stalls (that is, the number of
      allocations that went into direct compaction).  The number of successes
      (i.e.  direct compaction stalls that ended up with successful
      allocation) is reduced by the same number.  This means the offload to
      kcompactd is working as expected, and direct compaction is reduced
      either due to detecting contention, or compaction deferred by kcompactd.
      In the previous version of this patchset there was some apparent
      reduction of success rate, but the changes in this version (such as
      using sync compaction only), new baseline kernel, and/or averaging
      results from 5 executions (my bet), made this go away.
      
      Ftrace-based stats seem to roughly agree:
      
      Time kswapd awake               2532984     2326824
      Time kcompactd awake                  0      257916
      Time direct compacting           864839      735130
      Time kswapd compacting                0           0
      Time kcompactd compacting             0      257585
      Signed-off-by: NVlastimil Babka <vbabka@suse.cz>
      Cc: Andrea Arcangeli <aarcange@redhat.com>
      Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
      Cc: Mel Gorman <mgorman@techsingularity.net>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Michal Hocko <mhocko@suse.com>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      accf6242
    • N
      /proc/kpageflags: return KPF_BUDDY for "tail" buddy pages · 832fc1de
      Naoya Horiguchi 提交于
      Currently /proc/kpageflags returns nothing for "tail" buddy pages, which
      is inconvenient when grasping how free pages are distributed.  This
      patch sets KPF_BUDDY for such pages.
      
      With this patch:
      
        $ grep MemFree /proc/meminfo ; tools/vm/page-types -b buddy
        MemFree:         3134992 kB
                     flags      page-count       MB  symbolic-flags                     long-symbolic-flags
        0x0000000000000400          779272     3044  __________B_______________________________ buddy
        0x0000000000000c00            4385       17  __________BM______________________________ buddy,mmap
                     total          783657     3061
      
      783657 pages is 3134628 kB (roughly consistent with the global counter,)
      so it's OK.
      
      [akpm@linux-foundation.org: update comment, per Naoya]
      Signed-off-by: NNaoya Horiguchi <n-horiguchi@ah.jp.nec.com>
      Reviewed-by: NVladimir Davydov <vdavydov@virtuozzo.com&gt;>
      Cc: Konstantin Khlebnikov <koct9i@gmail.com>
      Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      832fc1de
  6. 16 3月, 2016 2 次提交
    • J
      mm/compaction: speed up pageblock_pfn_to_page() when zone is contiguous · 7cf91a98
      Joonsoo Kim 提交于
      There is a performance drop report due to hugepage allocation and in
      there half of cpu time are spent on pageblock_pfn_to_page() in
      compaction [1].
      
      In that workload, compaction is triggered to make hugepage but most of
      pageblocks are un-available for compaction due to pageblock type and
      skip bit so compaction usually fails.  Most costly operations in this
      case is to find valid pageblock while scanning whole zone range.  To
      check if pageblock is valid to compact, valid pfn within pageblock is
      required and we can obtain it by calling pageblock_pfn_to_page().  This
      function checks whether pageblock is in a single zone and return valid
      pfn if possible.  Problem is that we need to check it every time before
      scanning pageblock even if we re-visit it and this turns out to be very
      expensive in this workload.
      
      Although we have no way to skip this pageblock check in the system where
      hole exists at arbitrary position, we can use cached value for zone
      continuity and just do pfn_to_page() in the system where hole doesn't
      exist.  This optimization considerably speeds up in above workload.
      
      Before vs After
        Max: 1096 MB/s vs 1325 MB/s
        Min: 635 MB/s 1015 MB/s
        Avg: 899 MB/s 1194 MB/s
      
      Avg is improved by roughly 30% [2].
      
      [1]: http://www.spinics.net/lists/linux-mm/msg97378.html
      [2]: https://lkml.org/lkml/2015/12/9/23
      
      [akpm@linux-foundation.org: don't forget to restore zone->contiguous on error path, per Vlastimil]
      Signed-off-by: NJoonsoo Kim <iamjoonsoo.kim@lge.com>
      Reported-by: NAaron Lu <aaron.lu@intel.com>
      Acked-by: NVlastimil Babka <vbabka@suse.cz>
      Tested-by: NAaron Lu <aaron.lu@intel.com>
      Cc: Mel Gorman <mgorman@suse.de>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: David Rientjes <rientjes@google.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      7cf91a98
    • V
      mm, printk: introduce new format string for flags · edf14cdb
      Vlastimil Babka 提交于
      In mm we use several kinds of flags bitfields that are sometimes printed
      for debugging purposes, or exported to userspace via sysfs.  To make
      them easier to interpret independently on kernel version and config, we
      want to dump also the symbolic flag names.  So far this has been done
      with repeated calls to pr_cont(), which is unreliable on SMP, and not
      usable for e.g.  sysfs export.
      
      To get a more reliable and universal solution, this patch extends
      printk() format string for pointers to handle the page flags (%pGp),
      gfp_flags (%pGg) and vma flags (%pGv).  Existing users of
      dump_flag_names() are converted and simplified.
      
      It would be possible to pass flags by value instead of pointer, but the
      %p format string for pointers already has extensions for various kernel
      structures, so it's a good fit, and the extra indirection in a
      non-critical path is negligible.
      
      [linux@rasmusvillemoes.dk: lots of good implementation suggestions]
      Signed-off-by: NVlastimil Babka <vbabka@suse.cz>
      Acked-by: NMichal Hocko <mhocko@suse.com>
      Cc: Steven Rostedt <rostedt@goodmis.org>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
      Cc: Ingo Molnar <mingo@redhat.com>
      Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
      Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
      Cc: Minchan Kim <minchan@kernel.org>
      Cc: Sasha Levin <sasha.levin@oracle.com>
      Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
      Cc: Mel Gorman <mgorman@suse.de>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      edf14cdb
  7. 04 2月, 2016 2 次提交
  8. 16 1月, 2016 2 次提交
    • K
      thp: reintroduce split_huge_page() · e9b61f19
      Kirill A. Shutemov 提交于
      This patch adds implementation of split_huge_page() for new
      refcountings.
      
      Unlike previous implementation, new split_huge_page() can fail if
      somebody holds GUP pin on the page.  It also means that pin on page
      would prevent it from bening split under you.  It makes situation in
      many places much cleaner.
      
      The basic scheme of split_huge_page():
      
        - Check that sum of mapcounts of all subpage is equal to page_count()
          plus one (caller pin). Foll off with -EBUSY. This way we can avoid
          useless PMD-splits.
      
        - Freeze the page counters by splitting all PMD and setup migration
          PTEs.
      
        - Re-check sum of mapcounts against page_count(). Page's counts are
          stable now. -EBUSY if page is pinned.
      
        - Split compound page.
      
        - Unfreeze the page by removing migration entries.
      Signed-off-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com>
      Tested-by: NSasha Levin <sasha.levin@oracle.com>
      Tested-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
      Acked-by: NJerome Marchand <jmarchan@redhat.com>
      Cc: Vlastimil Babka <vbabka@suse.cz>
      Cc: Andrea Arcangeli <aarcange@redhat.com>
      Cc: Hugh Dickins <hughd@google.com>
      Cc: Dave Hansen <dave.hansen@intel.com>
      Cc: Mel Gorman <mgorman@suse.de>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
      Cc: Steve Capper <steve.capper@linaro.org>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: Michal Hocko <mhocko@suse.cz>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: David Rientjes <rientjes@google.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      e9b61f19
    • K
      mm: drop tail page refcounting · ddc58f27
      Kirill A. Shutemov 提交于
      Tail page refcounting is utterly complicated and painful to support.
      
      It uses ->_mapcount on tail pages to store how many times this page is
      pinned.  get_page() bumps ->_mapcount on tail page in addition to
      ->_count on head.  This information is required by split_huge_page() to
      be able to distribute pins from head of compound page to tails during
      the split.
      
      We will need ->_mapcount to account PTE mappings of subpages of the
      compound page.  We eliminate need in current meaning of ->_mapcount in
      tail pages by forbidding split entirely if the page is pinned.
      
      The only user of tail page refcounting is THP which is marked BROKEN for
      now.
      
      Let's drop all this mess.  It makes get_page() and put_page() much
      simpler.
      Signed-off-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com>
      Tested-by: NSasha Levin <sasha.levin@oracle.com>
      Tested-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
      Acked-by: NVlastimil Babka <vbabka@suse.cz>
      Acked-by: NJerome Marchand <jmarchan@redhat.com>
      Cc: Andrea Arcangeli <aarcange@redhat.com>
      Cc: Hugh Dickins <hughd@google.com>
      Cc: Dave Hansen <dave.hansen@intel.com>
      Cc: Mel Gorman <mgorman@suse.de>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
      Cc: Steve Capper <steve.capper@linaro.org>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: Michal Hocko <mhocko@suse.cz>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: David Rientjes <rientjes@google.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      ddc58f27
  9. 15 1月, 2016 2 次提交
  10. 07 11月, 2015 4 次提交
  11. 06 11月, 2015 1 次提交
    • H
      mm: page migration fix PageMlocked on migrated pages · 51afb12b
      Hugh Dickins 提交于
      Commit e6c509f8 ("mm: use clear_page_mlock() in page_remove_rmap()")
      in v3.7 inadvertently made mlock_migrate_page() impotent: page migration
      unmaps the page from userspace before migrating, and that commit clears
      PageMlocked on the final unmap, leaving mlock_migrate_page() with
      nothing to do.  Not a serious bug, the next attempt at reclaiming the
      page would fix it up; but a betrayal of page migration's intent - the
      new page ought to emerge as PageMlocked.
      
      I don't see how to fix it for mlock_migrate_page() itself; but easily
      fixed in remove_migration_pte(), by calling mlock_vma_page() when the vma
      is VM_LOCKED - under pte lock as in try_to_unmap_one().
      
      Delete mlock_migrate_page()?  Not quite, it does still serve a purpose for
      migrate_misplaced_transhuge_page(): where we could replace it by a test,
      clear_page_mlock(), mlock_vma_page() sequence; but would that be an
      improvement?  mlock_migrate_page() is fairly lean, and let's make it
      leaner by skipping the irq save/restore now clearly not needed.
      Signed-off-by: NHugh Dickins <hughd@google.com>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
      Cc: Rik van Riel <riel@redhat.com>
      Acked-by: NVlastimil Babka <vbabka@suse.cz>
      Cc: Davidlohr Bueso <dave@stgolabs.net>
      Cc: Oleg Nesterov <oleg@redhat.com>
      Cc: Sasha Levin <sasha.levin@oracle.com>
      Cc: Dmitry Vyukov <dvyukov@google.com>
      Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      51afb12b
  12. 09 9月, 2015 1 次提交
    • J
      mm/compaction: correct to flush migrated pages if pageblock skip happens · 1a16718c
      Joonsoo Kim 提交于
      We cache isolate_start_pfn before entering isolate_migratepages().  If
      pageblock is skipped in isolate_migratepages() due to whatever reason,
      cc->migrate_pfn can be far from isolate_start_pfn hence we flush pages
      that were freed.  For example, the following scenario can be possible:
      
      - assume order-9 compaction, pageblock order is 9
      - start_isolate_pfn is 0x200
      - isolate_migratepages()
        - skip a number of pageblocks
        - start to isolate from pfn 0x600
        - cc->migrate_pfn = 0x620
        - return
      - last_migrated_pfn is set to 0x200
      - check flushing condition
        - current_block_start is set to 0x600
        - last_migrated_pfn < current_block_start then do useless flush
      
      This wrong flush would not help the performance and success rate so this
      patch tries to fix it.  One simple way to know the exact position where
      we start to isolate migratable pages is that we cache it in
      isolate_migratepages() before entering actual isolation.  This patch
      implements that and fixes the problem.
      Signed-off-by: NJoonsoo Kim <iamjoonsoo.kim@lge.com>
      Acked-by: NVlastimil Babka <vbabka@suse.cz>
      Cc: Mel Gorman <mgorman@suse.de>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Minchan Kim <minchan@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      1a16718c
  13. 05 9月, 2015 2 次提交
    • M
      mm: defer flush of writable TLB entries · d950c947
      Mel Gorman 提交于
      If a PTE is unmapped and it's dirty then it was writable recently.  Due to
      deferred TLB flushing, it's best to assume a writable TLB cache entry
      exists.  With that assumption, the TLB must be flushed before any IO can
      start or the page is freed to avoid lost writes or data corruption.  This
      patch defers flushing of potentially writable TLBs as long as possible.
      Signed-off-by: NMel Gorman <mgorman@suse.de>
      Reviewed-by: NRik van Riel <riel@redhat.com>
      Cc: Dave Hansen <dave.hansen@intel.com>
      Acked-by: NIngo Molnar <mingo@kernel.org>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      d950c947
    • M
      mm: send one IPI per CPU to TLB flush all entries after unmapping pages · 72b252ae
      Mel Gorman 提交于
      An IPI is sent to flush remote TLBs when a page is unmapped that was
      potentially accesssed by other CPUs.  There are many circumstances where
      this happens but the obvious one is kswapd reclaiming pages belonging to a
      running process as kswapd and the task are likely running on separate
      CPUs.
      
      On small machines, this is not a significant problem but as machine gets
      larger with more cores and more memory, the cost of these IPIs can be
      high.  This patch uses a simple structure that tracks CPUs that
      potentially have TLB entries for pages being unmapped.  When the unmapping
      is complete, the full TLB is flushed on the assumption that a refill cost
      is lower than flushing individual entries.
      
      Architectures wishing to do this must give the following guarantee.
      
              If a clean page is unmapped and not immediately flushed, the
              architecture must guarantee that a write to that linear address
              from a CPU with a cached TLB entry will trap a page fault.
      
      This is essentially what the kernel already depends on but the window is
      much larger with this patch applied and is worth highlighting.  The
      architecture should consider whether the cost of the full TLB flush is
      higher than sending an IPI to flush each individual entry.  An additional
      architecture helper called flush_tlb_local is required.  It's a trivial
      wrapper with some accounting in the x86 case.
      
      The impact of this patch depends on the workload as measuring any benefit
      requires both mapped pages co-located on the LRU and memory pressure.  The
      case with the biggest impact is multiple processes reading mapped pages
      taken from the vm-scalability test suite.  The test case uses NR_CPU
      readers of mapped files that consume 10*RAM.
      
      Linear mapped reader on a 4-node machine with 64G RAM and 48 CPUs
      
                                                 4.2.0-rc1          4.2.0-rc1
                                                   vanilla       flushfull-v7
      Ops lru-file-mmap-read-elapsed      159.62 (  0.00%)   120.68 ( 24.40%)
      Ops lru-file-mmap-read-time_range    30.59 (  0.00%)     2.80 ( 90.85%)
      Ops lru-file-mmap-read-time_stddv     6.70 (  0.00%)     0.64 ( 90.38%)
      
                 4.2.0-rc1    4.2.0-rc1
                   vanilla flushfull-v7
      User          581.00       611.43
      System       5804.93      4111.76
      Elapsed       161.03       122.12
      
      This is showing that the readers completed 24.40% faster with 29% less
      system CPU time.  From vmstats, it is known that the vanilla kernel was
      interrupted roughly 900K times per second during the steady phase of the
      test and the patched kernel was interrupts 180K times per second.
      
      The impact is lower on a single socket machine.
      
                                                 4.2.0-rc1          4.2.0-rc1
                                                   vanilla       flushfull-v7
      Ops lru-file-mmap-read-elapsed       25.33 (  0.00%)    20.38 ( 19.54%)
      Ops lru-file-mmap-read-time_range     0.91 (  0.00%)     1.44 (-58.24%)
      Ops lru-file-mmap-read-time_stddv     0.28 (  0.00%)     0.47 (-65.34%)
      
                 4.2.0-rc1    4.2.0-rc1
                   vanilla flushfull-v7
      User           58.09        57.64
      System        111.82        76.56
      Elapsed        27.29        22.55
      
      It's still a noticeable improvement with vmstat showing interrupts went
      from roughly 500K per second to 45K per second.
      
      The patch will have no impact on workloads with no memory pressure or have
      relatively few mapped pages.  It will have an unpredictable impact on the
      workload running on the CPU being flushed as it'll depend on how many TLB
      entries need to be refilled and how long that takes.  Worst case, the TLB
      will be completely cleared of active entries when the target PFNs were not
      resident at all.
      
      [sasha.levin@oracle.com: trace tlb flush after disabling preemption in try_to_unmap_flush]
      Signed-off-by: NMel Gorman <mgorman@suse.de>
      Reviewed-by: NRik van Riel <riel@redhat.com>
      Cc: Dave Hansen <dave.hansen@intel.com>
      Acked-by: NIngo Molnar <mingo@kernel.org>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Signed-off-by: NSasha Levin <sasha.levin@oracle.com>
      Cc: Michal Hocko <mhocko@suse.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      72b252ae
  14. 01 7月, 2015 5 次提交
  15. 16 4月, 2015 1 次提交
  16. 15 4月, 2015 2 次提交
    • J
      mm/compaction: enhance compaction finish condition · 2149cdae
      Joonsoo Kim 提交于
      Compaction has anti fragmentation algorithm.  It is that freepage should
      be more than pageblock order to finish the compaction if we don't find any
      freepage in requested migratetype buddy list.  This is for mitigating
      fragmentation, but, there is a lack of migratetype consideration and it is
      too excessive compared to page allocator's anti fragmentation algorithm.
      
      Not considering migratetype would cause premature finish of compaction.
      For example, if allocation request is for unmovable migratetype, freepage
      with CMA migratetype doesn't help that allocation and compaction should
      not be stopped.  But, current logic regards this situation as compaction
      is no longer needed, so finish the compaction.
      
      Secondly, condition is too excessive compared to page allocator's logic.
      We can steal freepage from other migratetype and change pageblock
      migratetype on more relaxed conditions in page allocator.  This is
      designed to prevent fragmentation and we can use it here.  Imposing hard
      constraint only to the compaction doesn't help much in this case since
      page allocator would cause fragmentation again.
      
      To solve these problems, this patch borrows anti fragmentation logic from
      page allocator.  It will reduce premature compaction finish in some cases
      and reduce excessive compaction work.
      
      stress-highalloc test in mmtests with non movable order 7 allocation shows
      considerable increase of compaction success rate.
      
      Compaction success rate (Compaction success * 100 / Compaction stalls, %)
      31.82 : 42.20
      
      I tested it on non-reboot 5 runs stress-highalloc benchmark and found that
      there is no more degradation on allocation success rate than before.  That
      roughly means that this patch doesn't result in more fragmentations.
      
      Vlastimil suggests additional idea that we only test for fallbacks when
      migration scanner has scanned a whole pageblock.  It looked good for
      fragmentation because chance of stealing increase due to making more free
      pages in certain pageblock.  So, I tested it, but, it results in decreased
      compaction success rate, roughly 38.00.  I guess the reason that if system
      is low memory condition, watermark check could be failed due to not enough
      order 0 free page and so, sometimes, we can't reach a fallback check
      although migrate_pfn is aligned to pageblock_nr_pages.  I can insert code
      to cope with this situation but it makes code more complicated so I don't
      include his idea at this patch.
      
      [akpm@linux-foundation.org: fix CONFIG_CMA=n build]
      Signed-off-by: NJoonsoo Kim <iamjoonsoo.kim@lge.com>
      Acked-by: NVlastimil Babka <vbabka@suse.cz>
      Cc: Mel Gorman <mgorman@suse.de>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      2149cdae
    • K
      mm: rename __mlock_vma_pages_range() to populate_vma_page_range() · fc05f566
      Kirill A. Shutemov 提交于
      __mlock_vma_pages_range() doesn't necessarily mlock pages.  It depends on
      vma flags.  The same codepath is used for MAP_POPULATE.
      
      Let's rename __mlock_vma_pages_range() to populate_vma_page_range().
      
      This patch also drops mlock_vma_pages_range() references from
      documentation.  It has gone in cea10a19 ("mm: directly use
      __mlock_vma_pages_range() in find_extend_vma()").
      Signed-off-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com>
      Acked-by: NLinus Torvalds <torvalds@linux-foundation.org>
      Acked-by: NDavid Rientjes <rientjes@google.com>
      Cc: Michel Lespinasse <walken@google.com>
      Cc: Rik van Riel <riel@redhat.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      fc05f566
  17. 13 2月, 2015 1 次提交
    • R
      mm/internal.h: don't split printk call in two · fc5199d1
      Rasmus Villemoes 提交于
      All users of mminit_dprintk pass a compile-time constant as level, so this
      just makes gcc emit a single printk call instead of two.
      Signed-off-by: NRasmus Villemoes <linux@rasmusvillemoes.dk>
      Cc: Vlastimil Babka <vbabka@suse.cz>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Vishnu Pratap Singh <vishnu.ps@samsung.com>
      Cc: Pintu Kumar <pintu.k@samsung.com>
      Cc: Michal Nazarewicz <mina86@mina86.com>
      Cc: Mel Gorman <mgorman@suse.de>
      Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Tim Chen <tim.c.chen@linux.intel.com>
      Cc: Hugh Dickins <hughd@google.com>
      Cc: Li Zefan <lizefan@huawei.com>
      Cc: Tejun Heo <tj@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      fc5199d1
  18. 12 2月, 2015 1 次提交
    • V
      mm: reduce try_to_compact_pages parameters · 1a6d53a1
      Vlastimil Babka 提交于
      Expand the usage of the struct alloc_context introduced in the previous
      patch also for calling try_to_compact_pages(), to reduce the number of its
      parameters.  Since the function is in different compilation unit, we need
      to move alloc_context definition in the shared mm/internal.h header.
      
      With this change we get simpler code and small savings of code size and stack
      usage:
      
      add/remove: 0/0 grow/shrink: 0/1 up/down: 0/-27 (-27)
      function                                     old     new   delta
      __alloc_pages_direct_compact                 283     256     -27
      add/remove: 0/0 grow/shrink: 0/1 up/down: 0/-13 (-13)
      function                                     old     new   delta
      try_to_compact_pages                         582     569     -13
      
      Stack usage of __alloc_pages_direct_compact goes from 24 to none (per
      scripts/checkstack.pl).
      Signed-off-by: NVlastimil Babka <vbabka@suse.cz>
      Acked-by: NMichal Hocko <mhocko@suse.cz>
      Cc: Mel Gorman <mgorman@suse.de>
      Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
      Cc: Minchan Kim <minchan@kernel.org>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
      Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      1a6d53a1
  19. 11 12月, 2014 2 次提交
    • V
      mm, compaction: always update cached scanner positions · 6bace090
      Vlastimil Babka 提交于
      Compaction caches the migration and free scanner positions between
      compaction invocations, so that the whole zone gets eventually scanned and
      there is no bias towards the initial scanner positions at the
      beginning/end of the zone.
      
      The cached positions are continuously updated as scanners progress and the
      updating stops as soon as a page is successfully isolated.  The reasoning
      behind this is that a pageblock where isolation succeeded is likely to
      succeed again in near future and it should be worth revisiting it.
      
      However, the downside is that potentially many pages are rescanned without
      successful isolation.  At worst, there might be a page where isolation
      from LRU succeeds but migration fails (potentially always).  So upon
      encountering this page, cached position would always stop being updated
      for no good reason.  It might have been useful to let such page be
      rescanned with sync compaction after async one failed, but this is now
      handled by caching scanner position for async and sync mode separately
      since commit 35979ef3 ("mm, compaction: add per-zone migration pfn
      cache for async compaction").
      
      After this patch, cached positions are updated unconditionally.  In
      stress-highalloc benchmark, this has decreased the numbers of scanned
      pages by few percent, without affecting allocation success rates.
      
      To prevent free scanner from leaving free pages behind after they are
      returned due to page migration failure, the cached scanner pfn is changed
      to point to the pageblock of the returned free page with the highest pfn,
      before leaving compact_zone().
      
      [akpm@linux-foundation.org: coding-style fixes]
      Signed-off-by: NVlastimil Babka <vbabka@suse.cz>
      Cc: Minchan Kim <minchan@kernel.org>
      Cc: Mel Gorman <mgorman@suse.de>
      Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
      Cc: Michal Nazarewicz <mina86@mina86.com>
      Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
      Cc: Christoph Lameter <cl@linux.com>
      Acked-by: NRik van Riel <riel@redhat.com>
      Cc: David Rientjes <rientjes@google.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      6bace090
    • V
      mm, compaction: pass classzone_idx and alloc_flags to watermark checking · ebff3980
      Vlastimil Babka 提交于
      Compaction relies on zone watermark checks for decisions such as if it's
      worth to start compacting in compaction_suitable() or whether compaction
      should stop in compact_finished().  The watermark checks take
      classzone_idx and alloc_flags parameters, which are related to the memory
      allocation request.  But from the context of compaction they are currently
      passed as 0, including the direct compaction which is invoked to satisfy
      the allocation request, and could therefore know the proper values.
      
      The lack of proper values can lead to mismatch between decisions taken
      during compaction and decisions related to the allocation request.  Lack
      of proper classzone_idx value means that lowmem_reserve is not taken into
      account.  This has manifested (during recent changes to deferred
      compaction) when DMA zone was used as fallback for preferred Normal zone.
      compaction_suitable() without proper classzone_idx would think that the
      watermarks are already satisfied, but watermark check in
      get_page_from_freelist() would fail.  Because of this problem, deferring
      compaction has extra complexity that can be removed in the following
      patch.
      
      The issue (not confirmed in practice) with missing alloc_flags is opposite
      in nature.  For allocations that include ALLOC_HIGH, ALLOC_HIGHER or
      ALLOC_CMA in alloc_flags (the last includes all MOVABLE allocations on
      CMA-enabled systems) the watermark checking in compaction with 0 passed
      will be stricter than in get_page_from_freelist().  In these cases
      compaction might be running for a longer time than is really needed.
      
      Another issue compaction_suitable() is that the check for "does the zone
      need compaction at all?" comes only after the check "does the zone have
      enough free free pages to succeed compaction".  The latter considers extra
      pages for migration and can therefore in some situations fail and return
      COMPACT_SKIPPED, although the high-order allocation would succeed and we
      should return COMPACT_PARTIAL.
      
      This patch fixes these problems by adding alloc_flags and classzone_idx to
      struct compact_control and related functions involved in direct compaction
      and watermark checking.  Where possible, all other callers of
      compaction_suitable() pass proper values where those are known.  This is
      currently limited to classzone_idx, which is sometimes known in kswapd
      context.  However, the direct reclaim callers should_continue_reclaim()
      and compaction_ready() do not currently know the proper values, so the
      coordination between reclaim and compaction may still not be as accurate
      as it could.  This can be fixed later, if it's shown to be an issue.
      
      Additionaly the checks in compact_suitable() are reordered to address the
      second issue described above.
      
      The effect of this patch should be slightly better high-order allocation
      success rates and/or less compaction overhead, depending on the type of
      allocations and presence of CMA.  It allows simplifying deferred
      compaction code in a followup patch.
      
      When testing with stress-highalloc, there was some slight improvement
      (which might be just due to variance) in success rates of non-THP-like
      allocations.
      Signed-off-by: NVlastimil Babka <vbabka@suse.cz>
      Cc: Minchan Kim <minchan@kernel.org>
      Cc: Mel Gorman <mgorman@suse.de>
      Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
      Cc: Michal Nazarewicz <mina86@mina86.com>
      Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
      Cc: Christoph Lameter <cl@linux.com>
      Acked-by: NRik van Riel <riel@redhat.com>
      Cc: David Rientjes <rientjes@google.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      ebff3980
  20. 14 11月, 2014 1 次提交
    • J
      mm/page_alloc: restrict max order of merging on isolated pageblock · 3c605096
      Joonsoo Kim 提交于
      Current pageblock isolation logic could isolate each pageblock
      individually.  This causes freepage accounting problem if freepage with
      pageblock order on isolate pageblock is merged with other freepage on
      normal pageblock.  We can prevent merging by restricting max order of
      merging to pageblock order if freepage is on isolate pageblock.
      
      A side-effect of this change is that there could be non-merged buddy
      freepage even if finishing pageblock isolation, because undoing
      pageblock isolation is just to move freepage from isolate buddy list to
      normal buddy list rather than to consider merging.  So, the patch also
      makes undoing pageblock isolation consider freepage merge.  When
      un-isolation, freepage with more than pageblock order and it's buddy are
      checked.  If they are on normal pageblock, instead of just moving, we
      isolate the freepage and free it in order to get merged.
      Signed-off-by: NJoonsoo Kim <iamjoonsoo.kim@lge.com>
      Acked-by: NVlastimil Babka <vbabka@suse.cz>
      Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
      Cc: Mel Gorman <mgorman@suse.de>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: Minchan Kim <minchan@kernel.org>
      Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
      Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
      Cc: Tang Chen <tangchen@cn.fujitsu.com>
      Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
      Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
      Cc: Wen Congyang <wency@cn.fujitsu.com>
      Cc: Marek Szyprowski <m.szyprowski@samsung.com>
      Cc: Michal Nazarewicz <mina86@mina86.com>
      Cc: Laura Abbott <lauraa@codeaurora.org>
      Cc: Heesub Shin <heesub.shin@samsung.com>
      Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
      Cc: Ritesh Harjani <ritesh.list@gmail.com>
      Cc: Gioh Kim <gioh.kim@lge.com>
      Cc: <stable@vger.kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      3c605096