1. 02 9月, 2020 1 次提交
    • M
      mm: reclaim small amounts of memory when an external fragmentation event occurs · 9bcadc70
      Mel Gorman 提交于
      to #28825456
      
      commit 1c30844d2dfe272d58c8fc000960b835d13aa2ac upstream.
      
      An external fragmentation event was previously described as
      
          When the page allocator fragments memory, it records the event using
          the mm_page_alloc_extfrag event. If the fallback_order is smaller
          than a pageblock order (order-9 on 64-bit x86) then it's considered
          an event that will cause external fragmentation issues in the future.
      
      The kernel reduces the probability of such events by increasing the
      watermark sizes by calling set_recommended_min_free_kbytes early in the
      lifetime of the system.  This works reasonably well in general but if
      there are enough sparsely populated pageblocks then the problem can still
      occur as enough memory is free overall and kswapd stays asleep.
      
      This patch introduces a watermark_boost_factor sysctl that allows a zone
      watermark to be temporarily boosted when an external fragmentation causing
      events occurs.  The boosting will stall allocations that would decrease
      free memory below the boosted low watermark and kswapd is woken if the
      calling context allows to reclaim an amount of memory relative to the size
      of the high watermark and the watermark_boost_factor until the boost is
      cleared.  When kswapd finishes, it wakes kcompactd at the pageblock order
      to clean some of the pageblocks that may have been affected by the
      fragmentation event.  kswapd avoids any writeback, slab shrinkage and swap
      from reclaim context during this operation to avoid excessive system
      disruption in the name of fragmentation avoidance.  Care is taken so that
      kswapd will do normal reclaim work if the system is really low on memory.
      
      This was evaluated using the same workloads as "mm, page_alloc: Spread
      allocations across zones before introducing fragmentation".
      
      1-socket Skylake machine
      config-global-dhp__workload_thpfioscale XFS (no special madvise)
      4 fio threads, 1 THP allocating thread
      --------------------------------------
      
      4.20-rc3 extfrag events < order 9:   804694
      4.20-rc3+patch:                      408912 (49% reduction)
      4.20-rc3+patch1-4:                    18421 (98% reduction)
      
                                         4.20.0-rc3             4.20.0-rc3
                                       lowzone-v5r8             boost-v5r8
      Amean     fault-base-1      653.58 (   0.00%)      652.71 (   0.13%)
      Amean     fault-huge-1        0.00 (   0.00%)      178.93 * -99.00%*
      
                                    4.20.0-rc3             4.20.0-rc3
                                  lowzone-v5r8             boost-v5r8
      Percentage huge-1        0.00 (   0.00%)        5.12 ( 100.00%)
      
      Note that external fragmentation causing events are massively reduced by
      this path whether in comparison to the previous kernel or the vanilla
      kernel.  The fault latency for huge pages appears to be increased but that
      is only because THP allocations were successful with the patch applied.
      
      1-socket Skylake machine
      global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
      -----------------------------------------------------------------
      
      4.20-rc3 extfrag events < order 9:  291392
      4.20-rc3+patch:                     191187 (34% reduction)
      4.20-rc3+patch1-4:                   13464 (95% reduction)
      
      thpfioscale Fault Latencies
                                         4.20.0-rc3             4.20.0-rc3
                                       lowzone-v5r8             boost-v5r8
      Min       fault-base-1      912.00 (   0.00%)      905.00 (   0.77%)
      Min       fault-huge-1      127.00 (   0.00%)      135.00 (  -6.30%)
      Amean     fault-base-1     1467.55 (   0.00%)     1481.67 (  -0.96%)
      Amean     fault-huge-1     1127.11 (   0.00%)     1063.88 *   5.61%*
      
                                    4.20.0-rc3             4.20.0-rc3
                                  lowzone-v5r8             boost-v5r8
      Percentage huge-1       77.64 (   0.00%)       83.46 (   7.49%)
      
      As before, massive reduction in external fragmentation events, some jitter
      on latencies and an increase in THP allocation success rates.
      
      2-socket Haswell machine
      config-global-dhp__workload_thpfioscale XFS (no special madvise)
      4 fio threads, 5 THP allocating threads
      ----------------------------------------------------------------
      
      4.20-rc3 extfrag events < order 9:  215698
      4.20-rc3+patch:                     200210 (7% reduction)
      4.20-rc3+patch1-4:                   14263 (93% reduction)
      
                                         4.20.0-rc3             4.20.0-rc3
                                       lowzone-v5r8             boost-v5r8
      Amean     fault-base-5     1346.45 (   0.00%)     1306.87 (   2.94%)
      Amean     fault-huge-5     3418.60 (   0.00%)     1348.94 (  60.54%)
      
                                    4.20.0-rc3             4.20.0-rc3
                                  lowzone-v5r8             boost-v5r8
      Percentage huge-5        0.78 (   0.00%)        7.91 ( 910.64%)
      
      There is a 93% reduction in fragmentation causing events, there is a big
      reduction in the huge page fault latency and allocation success rate is
      higher.
      
      2-socket Haswell machine
      global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
      -----------------------------------------------------------------
      
      4.20-rc3 extfrag events < order 9: 166352
      4.20-rc3+patch:                    147463 (11% reduction)
      4.20-rc3+patch1-4:                  11095 (93% reduction)
      
      thpfioscale Fault Latencies
                                         4.20.0-rc3             4.20.0-rc3
                                       lowzone-v5r8             boost-v5r8
      Amean     fault-base-5     6217.43 (   0.00%)     7419.67 * -19.34%*
      Amean     fault-huge-5     3163.33 (   0.00%)     3263.80 (  -3.18%)
      
                                    4.20.0-rc3             4.20.0-rc3
                                  lowzone-v5r8             boost-v5r8
      Percentage huge-5       95.14 (   0.00%)       87.98 (  -7.53%)
      
      There is a large reduction in fragmentation events with some jitter around
      the latencies and success rates.  As before, the high THP allocation
      success rate does mean the system is under a lot of pressure.  However, as
      the fragmentation events are reduced, it would be expected that the
      long-term allocation success rate would be higher.
      
      Link: http://lkml.kernel.org/r/20181123114528.28802-5-mgorman@techsingularity.netSigned-off-by: NMel Gorman <mgorman@techsingularity.net>
      Acked-by: NVlastimil Babka <vbabka@suse.cz>
      Cc: Andrea Arcangeli <aarcange@redhat.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Michal Hocko <mhocko@kernel.org>
      Cc: Zi Yan <zi.yan@cs.rutgers.edu>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      Signed-off-by: NXu Yu <xuyu@linux.alibaba.com>
      Reviewed-by: NYang Shi <yang.shi@linux.alibaba.com>
      9bcadc70
  2. 18 3月, 2020 1 次提交
    • X
      alinux: mm: add proc interface to control context readahead · 2e38a0f2
      Xiaoguang Wang 提交于
      For some workloads whose io activities are mostly random, context
      readahead feature can introduce unnecessary io read operations, which
      will impact app's performance. Context readahead's algorithm is
      straightforward and not that smart.
      
      This patch adds "/proc/sys/vm/enable_context_readahead" to control
      whether to disable or enable this feature. Currently we enable context
      readahead default, user can echo 0 to /proc/sys/vm/enable_context_readahead
      to disable context readahead.
      
      We also have tested mongodb's performance in 'random point select' case,
      With context readahead enabled:
        mongodb eps 12409
      With context readahead disabled:
        mongodb eps 14443
      About 16% performance improvement.
      Signed-off-by: NXiaoguang Wang <xiaoguang.wang@linux.alibaba.com>
      Reviewed-by: NJoseph Qi <joseph.qi@linux.alibaba.com>
      2e38a0f2
  3. 23 8月, 2018 1 次提交
  4. 27 7月, 2018 1 次提交
  5. 26 6月, 2018 1 次提交
  6. 28 4月, 2018 1 次提交
  7. 17 4月, 2018 1 次提交
  8. 12 4月, 2018 1 次提交
  9. 01 2月, 2018 1 次提交
    • M
      mm, hugetlb: remove hugepages_treat_as_movable sysctl · d6cb41cc
      Michal Hocko 提交于
      hugepages_treat_as_movable has been introduced by 396faf03 ("Allow
      huge page allocations to use GFP_HIGH_MOVABLE") to allow hugetlb
      allocations from ZONE_MOVABLE even when hugetlb pages were not
      migrateable.  The purpose of the movable zone was different at the time.
      It aimed at reducing memory fragmentation and hugetlb pages being long
      lived and large werre not contributing to the fragmentation so it was
      acceptable to use the zone back then.
      
      Things have changed though and the primary purpose of the zone became
      migratability guarantee.  If we allow non migrateable hugetlb pages to
      be in ZONE_MOVABLE memory hotplug might fail to offline the memory.
      
      Remove the knob and only rely on hugepage_migration_supported to allow
      movable zones.
      
      Mel said:
      
      : Primarily it was aimed at allowing the hugetlb pool to safely shrink with
      : the ability to grow it again.  The use case was for batched jobs, some of
      : which needed huge pages and others that did not but didn't want the memory
      : useless pinned in the huge pages pool.
      :
      : I suspect that more users rely on THP than hugetlbfs for flexible use of
      : huge pages with fallback options so I think that removing the option
      : should be ok.
      
      Link: http://lkml.kernel.org/r/20171003072619.8654-1-mhocko@kernel.orgSigned-off-by: NMichal Hocko <mhocko@suse.com>
      Reported-by: NAlexandru Moise <00moses.alexander00@gmail.com>
      Acked-by: NMel Gorman <mgorman@suse.de>
      Cc: Alexandru Moise <00moses.alexander00@gmail.com>
      Cc: Mike Kravetz <mike.kravetz@oracle.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      d6cb41cc
  10. 30 11月, 2017 1 次提交
    • M
      Revert "mm/page-writeback.c: print a warning if the vm dirtiness settings are illogical" · 90daf306
      Michal Hocko 提交于
      This reverts commit 0f6d24f8 ("mm/page-writeback.c: print a warning
      if the vm dirtiness settings are illogical") because it causes false
      positive warnings during OOM situations as noticed by Tetsuo Handa:
      
        Node 0 active_anon:3525940kB inactive_anon:8372kB active_file:216kB inactive_file:1872kB unevictable:0kB isolated(anon):0kB isolated(file):0kB mapped:2504kB dirty:52kB writeback:0kB shmem:8660kB shmem_thp: 0kB shmem_pmdmapped: 0kB anon_thp: 636928kB writeback_tmp:0kB unstable:0kB all_unreclaimable? yes
        Node 0 DMA free:14848kB min:284kB low:352kB high:420kB active_anon:992kB inactive_anon:0kB active_file:0kB inactive_file:0kB unevictable:0kB writepending:0kB present:15988kB managed:15904kB mlocked:0kB kernel_stack:0kB pagetables:24kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB
        lowmem_reserve[]: 0 2687 3645 3645
        Node 0 DMA32 free:53004kB min:49608kB low:62008kB high:74408kB active_anon:2712648kB inactive_anon:0kB active_file:0kB inactive_file:0kB unevictable:0kB writepending:0kB present:3129216kB managed:2773132kB mlocked:0kB kernel_stack:96kB pagetables:5096kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB
        lowmem_reserve[]: 0 0 958 958
        Node 0 Normal free:17140kB min:17684kB low:22104kB high:26524kB active_anon:812300kB inactive_anon:8372kB active_file:1228kB inactive_file:1868kB unevictable:0kB writepending:52kB present:1048576kB managed:981224kB mlocked:0kB kernel_stack:3520kB pagetables:8552kB bounce:0kB free_pcp:120kB local_pcp:120kB free_cma:0kB
        lowmem_reserve[]: 0 0 0 0
        [...]
        Out of memory: Kill process 8459 (a.out) score 999 or sacrifice child
        Killed process 8459 (a.out) total-vm:4180kB, anon-rss:88kB, file-rss:0kB, shmem-rss:0kB
        oom_reaper: reaped process 8459 (a.out), now anon-rss:0kB, file-rss:0kB, shmem-rss:0kB
        vm direct limit must be set greater than background limit.
      
      The problem is that both thresh and bg_thresh will be 0 if
      available_memory is less than 4 pages when evaluating
      global_dirtyable_memory.
      
      While this might be worked around the whole point of the warning is
      dubious at best.  We do rely on admins to do sensible things when
      changing tunable knobs.  Dirty memory writeback knobs are not any
      special in that regards so revert the warning rather than adding more
      hacks to work this around.
      
      Debugged by Yafang Shao.
      
      Link: http://lkml.kernel.org/r/20171127091939.tahb77nznytcxw55@dhcp22.suse.cz
      Fixes: 0f6d24f8 ("mm/page-writeback.c: print a warning if the vm dirtiness settings are illogical")
      Signed-off-by: NMichal Hocko <mhocko@suse.com>
      Reported-by: NTetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
      Cc: Yafang Shao <laoar.shao@gmail.com>
      Cc: Jan Kara <jack@suse.cz>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      90daf306
  11. 18 11月, 2017 1 次提交
  12. 16 11月, 2017 4 次提交
  13. 07 9月, 2017 1 次提交
    • M
      mm, page_alloc: rip out ZONELIST_ORDER_ZONE · c9bff3ee
      Michal Hocko 提交于
      Patch series "cleanup zonelists initialization", v1.
      
      This is aimed at cleaning up the zonelists initialization code we have
      but the primary motivation was bug report [2] which got resolved but the
      usage of stop_machine is just too ugly to live.  Most patches are
      straightforward but 3 of them need a special consideration.
      
      Patch 1 removes zone ordered zonelists completely.  I am CCing linux-api
      because this is a user visible change.  As I argue in the patch
      description I do not think we have a strong usecase for it these days.
      I have kept sysctl in place and warn into the log if somebody tries to
      configure zone lists ordering.  If somebody has a real usecase for it we
      can revert this patch but I do not expect anybody will actually notice
      runtime differences.  This patch is not strictly needed for the rest but
      it made patch 6 easier to implement.
      
      Patch 7 removes stop_machine from build_all_zonelists without adding any
      special synchronization between iterators and updater which I _believe_
      is acceptable as explained in the changelog.  I hope I am not missing
      anything.
      
      Patch 8 then removes zonelists_mutex which is kind of ugly as well and
      not really needed AFAICS but a care should be taken when double checking
      my thinking.
      
      This patch (of 9):
      
      Supporting zone ordered zonelists costs us just a lot of code while the
      usefulness is arguable if existent at all.  Mel has already made node
      ordering default on 64b systems.  32b systems are still using
      ZONELIST_ORDER_ZONE because it is considered better to fallback to a
      different NUMA node rather than consume precious lowmem zones.
      
      This argument is, however, weaken by the fact that the memory reclaim
      has been reworked to be node rather than zone oriented.  This means that
      lowmem requests have to skip over all highmem pages on LRUs already and
      so zone ordering doesn't save the reclaim time much.  So the only
      advantage of the zone ordering is under a light memory pressure when
      highmem requests do not ever hit into lowmem zones and the lowmem
      pressure doesn't need to reclaim.
      
      Considering that 32b NUMA systems are rather suboptimal already and it
      is generally advisable to use 64b kernel on such a HW I believe we
      should rather care about the code maintainability and just get rid of
      ZONELIST_ORDER_ZONE altogether.  Keep systcl in place and warn if
      somebody tries to set zone ordering either from kernel command line or
      the sysctl.
      
      [mhocko@suse.com: reading vm.numa_zonelist_order will never terminate]
      Link: http://lkml.kernel.org/r/20170721143915.14161-2-mhocko@kernel.orgSigned-off-by: NMichal Hocko <mhocko@suse.com>
      Acked-by: NMel Gorman <mgorman@suse.de>
      Acked-by: NVlastimil Babka <vbabka@suse.cz>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: Joonsoo Kim <js1304@gmail.com>
      Cc: Shaohua Li <shaohua.li@intel.com>
      Cc: Toshi Kani <toshi.kani@hpe.com>
      Cc: Abdul Haleem <abdhalee@linux.vnet.ibm.com>
      Cc: <linux-api@vger.kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      c9bff3ee
  14. 11 7月, 2017 1 次提交
  15. 25 2月, 2017 1 次提交
    • D
      mm, madvise: fail with ENOMEM when splitting vma will hit max_map_count · def5efe0
      David Rientjes 提交于
      If madvise(2) advice will result in the underlying vma being split and
      the number of areas mapped by the process will exceed
      /proc/sys/vm/max_map_count as a result, return ENOMEM instead of EAGAIN.
      
      EAGAIN is returned by madvise(2) when a kernel resource, such as slab,
      is temporarily unavailable.  It indicates that userspace should retry
      the advice in the near future.  This is important for advice such as
      MADV_DONTNEED which is often used by malloc implementations to free
      memory back to the system: we really do want to free memory back when
      madvise(2) returns EAGAIN because slab allocations (for vmas, anon_vmas,
      or mempolicies) cannot be allocated.
      
      Encountering /proc/sys/vm/max_map_count is not a temporary failure,
      however, so return ENOMEM to indicate this is a more serious issue.  A
      followup patch to the man page will specify this behavior.
      
      Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1701241431120.42507@chino.kir.corp.google.comSigned-off-by: NDavid Rientjes <rientjes@google.com>
      Cc: Jonathan Corbet <corbet@lwn.net>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: Jerome Marchand <jmarchan@redhat.com>
      Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
      Cc: Michael Kerrisk <mtk.manpages@googlemail.com>
      Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      def5efe0
  16. 18 7月, 2016 1 次提交
  17. 20 5月, 2016 1 次提交
    • H
      mm: /proc/sys/vm/stat_refresh to force vmstat update · 52b6f46b
      Hugh Dickins 提交于
      Provide /proc/sys/vm/stat_refresh to force an immediate update of
      per-cpu into global vmstats: useful to avoid a sleep(2) or whatever
      before checking counts when testing.  Originally added to work around a
      bug which left counts stranded indefinitely on a cpu going idle (an
      inaccuracy magnified when small below-batch numbers represent "huge"
      amounts of memory), but I believe that bug is now fixed: nonetheless,
      this is still a useful knob.
      
      Its schedule_on_each_cpu() is probably too expensive just to fold into
      reading /proc/meminfo itself: give this mode 0600 to prevent abuse.
      Allow a write or a read to do the same: nothing to read, but "grep -h
      Shmem /proc/sys/vm/stat_refresh /proc/meminfo" is convenient.  Oh, and
      since global_page_state() itself is careful to disguise any underflow as
      0, hack in an "Invalid argument" and pr_warn() if a counter is negative
      after the refresh - this helped to fix a misaccounting of
      NR_ISOLATED_FILE in my migration code.
      
      But on recent kernels, I find that NR_ALLOC_BATCH and NR_PAGES_SCANNED
      often go negative some of the time.  I have not yet worked out why, but
      have no evidence that it's actually harmful.  Punt for the moment by
      just ignoring the anomaly on those.
      Signed-off-by: NHugh Dickins <hughd@google.com>
      Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
      Cc: Andrea Arcangeli <aarcange@redhat.com>
      Cc: Andres Lagar-Cavilla <andreslc@google.com>
      Cc: Yang Shi <yang.shi@linaro.org>
      Cc: Ning Qu <quning@gmail.com>
      Cc: Mel Gorman <mgorman@techsingularity.net>
      Cc: Andres Lagar-Cavilla <andreslc@google.com>
      Cc: Konstantin Khlebnikov <koct9i@gmail.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      52b6f46b
  18. 29 4月, 2016 1 次提交
  19. 18 3月, 2016 1 次提交
    • J
      mm: scale kswapd watermarks in proportion to memory · 795ae7a0
      Johannes Weiner 提交于
      In machines with 140G of memory and enterprise flash storage, we have
      seen read and write bursts routinely exceed the kswapd watermarks and
      cause thundering herds in direct reclaim.  Unfortunately, the only way
      to tune kswapd aggressiveness is through adjusting min_free_kbytes - the
      system's emergency reserves - which is entirely unrelated to the
      system's latency requirements.  In order to get kswapd to maintain a
      250M buffer of free memory, the emergency reserves need to be set to 1G.
      That is a lot of memory wasted for no good reason.
      
      On the other hand, it's reasonable to assume that allocation bursts and
      overall allocation concurrency scale with memory capacity, so it makes
      sense to make kswapd aggressiveness a function of that as well.
      
      Change the kswapd watermark scale factor from the currently fixed 25% of
      the tunable emergency reserve to a tunable 0.1% of memory.
      
      Beyond 1G of memory, this will produce bigger watermark steps than the
      current formula in default settings.  Ensure that the new formula never
      chooses steps smaller than that, i.e.  25% of the emergency reserve.
      
      On a 140G machine, this raises the default watermark steps - the
      distance between min and low, and low and high - from 16M to 143M.
      Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org>
      Acked-by: NMel Gorman <mgorman@suse.de>
      Acked-by: NRik van Riel <riel@redhat.com>
      Acked-by: NDavid Rientjes <rientjes@google.com>
      Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      795ae7a0
  20. 15 1月, 2016 1 次提交
    • D
      mm: mmap: add new /proc tunable for mmap_base ASLR · d07e2259
      Daniel Cashman 提交于
      Address Space Layout Randomization (ASLR) provides a barrier to
      exploitation of user-space processes in the presence of security
      vulnerabilities by making it more difficult to find desired code/data
      which could help an attack.  This is done by adding a random offset to
      the location of regions in the process address space, with a greater
      range of potential offset values corresponding to better protection/a
      larger search-space for brute force, but also to greater potential for
      fragmentation.
      
      The offset added to the mmap_base address, which provides the basis for
      the majority of the mappings for a process, is set once on process exec
      in arch_pick_mmap_layout() and is done via hard-coded per-arch values,
      which reflect, hopefully, the best compromise for all systems.  The
      trade-off between increased entropy in the offset value generation and
      the corresponding increased variability in address space fragmentation
      is not absolute, however, and some platforms may tolerate higher amounts
      of entropy.  This patch introduces both new Kconfig values and a sysctl
      interface which may be used to change the amount of entropy used for
      offset generation on a system.
      
      The direct motivation for this change was in response to the
      libstagefright vulnerabilities that affected Android, specifically to
      information provided by Google's project zero at:
      
        http://googleprojectzero.blogspot.com/2015/09/stagefrightened.html
      
      The attack presented therein, by Google's project zero, specifically
      targeted the limited randomness used to generate the offset added to the
      mmap_base address in order to craft a brute-force-based attack.
      Concretely, the attack was against the mediaserver process, which was
      limited to respawning every 5 seconds, on an arm device.  The hard-coded
      8 bits used resulted in an average expected success rate of defeating
      the mmap ASLR after just over 10 minutes (128 tries at 5 seconds a
      piece).  With this patch, and an accompanying increase in the entropy
      value to 16 bits, the same attack would take an average expected time of
      over 45 hours (32768 tries), which makes it both less feasible and more
      likely to be noticed.
      
      The introduced Kconfig and sysctl options are limited by per-arch
      minimum and maximum values, the minimum of which was chosen to match the
      current hard-coded value and the maximum of which was chosen so as to
      give the greatest flexibility without generating an invalid mmap_base
      address, generally a 3-4 bits less than the number of bits in the
      user-space accessible virtual address space.
      
      When decided whether or not to change the default value, a system
      developer should consider that mmap_base address could be placed
      anywhere up to 2^(value) bits away from the non-randomized location,
      which would introduce variable-sized areas above and below the mmap_base
      address such that the maximum vm_area_struct size may be reduced,
      preventing very large allocations.
      
      This patch (of 4):
      
      ASLR only uses as few as 8 bits to generate the random offset for the
      mmap base address on 32 bit architectures.  This value was chosen to
      prevent a poorly chosen value from dividing the address space in such a
      way as to prevent large allocations.  This may not be an issue on all
      platforms.  Allow the specification of a minimum number of bits so that
      platforms desiring greater ASLR protection may determine where to place
      the trade-off.
      Signed-off-by: NDaniel Cashman <dcashman@google.com>
      Cc: Russell King <linux@arm.linux.org.uk>
      Acked-by: NKees Cook <keescook@chromium.org>
      Cc: Ingo Molnar <mingo@kernel.org>
      Cc: Jonathan Corbet <corbet@lwn.net>
      Cc: Don Zickus <dzickus@redhat.com>
      Cc: Eric W. Biederman <ebiederm@xmission.com>
      Cc: Heinrich Schuchardt <xypron.glpk@gmx.de>
      Cc: Josh Poimboeuf <jpoimboe@redhat.com>
      Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
      Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
      Cc: Andrea Arcangeli <aarcange@redhat.com>
      Cc: Mel Gorman <mgorman@suse.de>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Mark Salyzyn <salyzyn@android.com>
      Cc: Jeff Vander Stoep <jeffv@google.com>
      Cc: Nick Kralevich <nnk@google.com>
      Cc: Catalin Marinas <catalin.marinas@arm.com>
      Cc: Will Deacon <will.deacon@arm.com>
      Cc: "H. Peter Anvin" <hpa@zytor.com>
      Cc: Hector Marco-Gisbert <hecmargi@upv.es>
      Cc: Borislav Petkov <bp@suse.de>
      Cc: Ralf Baechle <ralf@linux-mips.org>
      Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
      Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
      Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      d07e2259
  21. 08 12月, 2015 1 次提交
  22. 10 11月, 2015 1 次提交
  23. 09 9月, 2015 1 次提交
  24. 24 7月, 2015 1 次提交
  25. 16 4月, 2015 1 次提交
    • E
      mm: allow compaction of unevictable pages · 5bbe3547
      Eric B Munson 提交于
      Currently, pages which are marked as unevictable are protected from
      compaction, but not from other types of migration.  The POSIX real time
      extension explicitly states that mlock() will prevent a major page
      fault, but the spirit of this is that mlock() should give a process the
      ability to control sources of latency, including minor page faults.
      However, the mlock manpage only explicitly says that a locked page will
      not be written to swap and this can cause some confusion.  The
      compaction code today does not give a developer who wants to avoid swap
      but wants to have large contiguous areas available any method to achieve
      this state.  This patch introduces a sysctl for controlling compaction
      behavior with respect to the unevictable lru.  Users who demand no page
      faults after a page is present can set compact_unevictable_allowed to 0
      and users who need the large contiguous areas can enable compaction on
      locked memory by leaving the default value of 1.
      
      To illustrate this problem I wrote a quick test program that mmaps a
      large number of 1MB files filled with random data.  These maps are
      created locked and read only.  Then every other mmap is unmapped and I
      attempt to allocate huge pages to the static huge page pool.  When the
      compact_unevictable_allowed sysctl is 0, I cannot allocate hugepages
      after fragmenting memory.  When the value is set to 1, allocations
      succeed.
      Signed-off-by: NEric B Munson <emunson@akamai.com>
      Acked-by: NMichal Hocko <mhocko@suse.cz>
      Acked-by: NVlastimil Babka <vbabka@suse.cz>
      Acked-by: NChristoph Lameter <cl@linux.com>
      Acked-by: NDavid Rientjes <rientjes@google.com>
      Acked-by: NRik van Riel <riel@redhat.com>
      Cc: Vlastimil Babka <vbabka@suse.cz>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Mel Gorman <mgorman@suse.de>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Michal Hocko <mhocko@suse.cz>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      5bbe3547
  26. 12 2月, 2015 1 次提交
    • K
      mm: account pmd page tables to the process · dc6c9a35
      Kirill A. Shutemov 提交于
      Dave noticed that unprivileged process can allocate significant amount of
      memory -- >500 MiB on x86_64 -- and stay unnoticed by oom-killer and
      memory cgroup.  The trick is to allocate a lot of PMD page tables.  Linux
      kernel doesn't account PMD tables to the process, only PTE.
      
      The use-cases below use few tricks to allocate a lot of PMD page tables
      while keeping VmRSS and VmPTE low.  oom_score for the process will be 0.
      
      	#include <errno.h>
      	#include <stdio.h>
      	#include <stdlib.h>
      	#include <unistd.h>
      	#include <sys/mman.h>
      	#include <sys/prctl.h>
      
      	#define PUD_SIZE (1UL << 30)
      	#define PMD_SIZE (1UL << 21)
      
      	#define NR_PUD 130000
      
      	int main(void)
      	{
      		char *addr = NULL;
      		unsigned long i;
      
      		prctl(PR_SET_THP_DISABLE);
      		for (i = 0; i < NR_PUD ; i++) {
      			addr = mmap(addr + PUD_SIZE, PUD_SIZE, PROT_WRITE|PROT_READ,
      					MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
      			if (addr == MAP_FAILED) {
      				perror("mmap");
      				break;
      			}
      			*addr = 'x';
      			munmap(addr, PMD_SIZE);
      			mmap(addr, PMD_SIZE, PROT_WRITE|PROT_READ,
      					MAP_ANONYMOUS|MAP_PRIVATE|MAP_FIXED, -1, 0);
      			if (addr == MAP_FAILED)
      				perror("re-mmap"), exit(1);
      		}
      		printf("PID %d consumed %lu KiB in PMD page tables\n",
      				getpid(), i * 4096 >> 10);
      		return pause();
      	}
      
      The patch addresses the issue by account PMD tables to the process the
      same way we account PTE.
      
      The main place where PMD tables is accounted is __pmd_alloc() and
      free_pmd_range(). But there're few corner cases:
      
       - HugeTLB can share PMD page tables. The patch handles by accounting
         the table to all processes who share it.
      
       - x86 PAE pre-allocates few PMD tables on fork.
      
       - Architectures with FIRST_USER_ADDRESS > 0. We need to adjust sanity
         check on exit(2).
      
      Accounting only happens on configuration where PMD page table's level is
      present (PMD is not folded).  As with nr_ptes we use per-mm counter.  The
      counter value is used to calculate baseline for badness score by
      oom-killer.
      Signed-off-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com>
      Reported-by: NDave Hansen <dave.hansen@linux.intel.com>
      Cc: Hugh Dickins <hughd@google.com>
      Reviewed-by: NCyrill Gorcunov <gorcunov@openvz.org>
      Cc: Pavel Emelyanov <xemul@openvz.org>
      Cc: David Rientjes <rientjes@google.com>
      Tested-by: NSedat Dilek <sedat.dilek@gmail.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      dc6c9a35
  27. 29 1月, 2015 1 次提交
  28. 24 6月, 2014 1 次提交
    • D
      mm, pcp: allow restoring percpu_pagelist_fraction default · 7cd2b0a3
      David Rientjes 提交于
      Oleg reports a division by zero error on zero-length write() to the
      percpu_pagelist_fraction sysctl:
      
          divide error: 0000 [#1] SMP DEBUG_PAGEALLOC
          CPU: 1 PID: 9142 Comm: badarea_io Not tainted 3.15.0-rc2-vm-nfs+ #19
          Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011
          task: ffff8800d5aeb6e0 ti: ffff8800d87a2000 task.ti: ffff8800d87a2000
          RIP: 0010: percpu_pagelist_fraction_sysctl_handler+0x84/0x120
          RSP: 0018:ffff8800d87a3e78  EFLAGS: 00010246
          RAX: 0000000000000f89 RBX: ffff88011f7fd000 RCX: 0000000000000000
          RDX: 0000000000000000 RSI: 0000000000000001 RDI: 0000000000000010
          RBP: ffff8800d87a3e98 R08: ffffffff81d002c8 R09: ffff8800d87a3f50
          R10: 000000000000000b R11: 0000000000000246 R12: 0000000000000060
          R13: ffffffff81c3c3e0 R14: ffffffff81cfddf8 R15: ffff8801193b0800
          FS:  00007f614f1e9740(0000) GS:ffff88011f440000(0000) knlGS:0000000000000000
          CS:  0010 DS: 0000 ES: 0000 CR0: 000000008005003b
          CR2: 00007f614f1fa000 CR3: 00000000d9291000 CR4: 00000000000006e0
          Call Trace:
            proc_sys_call_handler+0xb3/0xc0
            proc_sys_write+0x14/0x20
            vfs_write+0xba/0x1e0
            SyS_write+0x46/0xb0
            tracesys+0xe1/0xe6
      
      However, if the percpu_pagelist_fraction sysctl is set by the user, it
      is also impossible to restore it to the kernel default since the user
      cannot write 0 to the sysctl.
      
      This patch allows the user to write 0 to restore the default behavior.
      It still requires a fraction equal to or larger than 8, however, as
      stated by the documentation for sanity.  If a value in the range [1, 7]
      is written, the sysctl will return EINVAL.
      
      This successfully solves the divide by zero issue at the same time.
      Signed-off-by: NDavid Rientjes <rientjes@google.com>
      Reported-by: NOleg Drokin <green@linuxhacker.ru>
      Cc: <stable@vger.kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      7cd2b0a3
  29. 05 6月, 2014 2 次提交
    • D
      Documentation/sysctl/vm.txt: clarify vfs_cache_pressure description · 4a0da71b
      Denys Vlasenko 提交于
      Existing description is worded in a way which almost encourages setting of
      vfs_cache_pressure above 100, possibly way above it.
      
      Users are left in a dark what this numeric value is - an int?  a
      percentage?  what the scale is?
      
      As a result, we are getting reports about noticeable performance
      degradation from users who have set vfs_cache_pressure to ridiculously
      high values - because they thought there is no downside to it.
      
      Via code inspection it's obvious that this value is treated as a
      percentage.  This patch changes text to reflect this fact, and adds a
      cautionary paragraph advising against setting vfs_cache_pressure sky high.
      Signed-off-by: NDenys Vlasenko <dvlasenk@redhat.com>
      Cc: Alexander Viro <viro@zeniv.linux.org.uk>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      4a0da71b
    • M
      mm: disable zone_reclaim_mode by default · 4f9b16a6
      Mel Gorman 提交于
      When it was introduced, zone_reclaim_mode made sense as NUMA distances
      punished and workloads were generally partitioned to fit into a NUMA
      node.  NUMA machines are now common but few of the workloads are
      NUMA-aware and it's routine to see major performance degradation due to
      zone_reclaim_mode being enabled but relatively few can identify the
      problem.
      
      Those that require zone_reclaim_mode are likely to be able to detect
      when it needs to be enabled and tune appropriately so lets have a
      sensible default for the bulk of users.
      
      This patch (of 2):
      
      zone_reclaim_mode causes processes to prefer reclaiming memory from
      local node instead of spilling over to other nodes.  This made sense
      initially when NUMA machines were almost exclusively HPC and the
      workload was partitioned into nodes.  The NUMA penalties were
      sufficiently high to justify reclaiming the memory.  On current machines
      and workloads it is often the case that zone_reclaim_mode destroys
      performance but not all users know how to detect this.  Favour the
      common case and disable it by default.  Users that are sophisticated
      enough to know they need zone_reclaim_mode will detect it.
      Signed-off-by: NMel Gorman <mgorman@suse.de>
      Acked-by: NJohannes Weiner <hannes@cmpxchg.org>
      Reviewed-by: NZhang Yanfei <zhangyanfei@cn.fujitsu.com>
      Acked-by: NMichal Hocko <mhocko@suse.cz>
      Reviewed-by: NChristoph Lameter <cl@linux.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      4f9b16a6
  30. 04 4月, 2014 1 次提交
  31. 30 1月, 2014 1 次提交
  32. 22 1月, 2014 1 次提交
    • J
      mm: add overcommit_kbytes sysctl variable · 49f0ce5f
      Jerome Marchand 提交于
      Some applications that run on HPC clusters are designed around the
      availability of RAM and the overcommit ratio is fine tuned to get the
      maximum usage of memory without swapping.  With growing memory, the
      1%-of-all-RAM grain provided by overcommit_ratio has become too coarse
      for these workload (on a 2TB machine it represents no less than 20GB).
      
      This patch adds the new overcommit_kbytes sysctl variable that allow a
      much finer grain.
      
      [akpm@linux-foundation.org: coding-style fixes]
      [akpm@linux-foundation.org: fix nommu build]
      Signed-off-by: NJerome Marchand <jmarchan@redhat.com>
      Cc: Dave Hansen <dave.hansen@linux.intel.com>
      Cc: Alan Cox <alan@lxorguk.ukuu.org.uk>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      49f0ce5f
  33. 13 11月, 2013 1 次提交
  34. 12 9月, 2013 1 次提交
  35. 10 7月, 2013 1 次提交
  36. 30 4月, 2013 1 次提交
    • A
      mm: replace hardcoded 3% with admin_reserve_pages knob · 4eeab4f5
      Andrew Shewmaker 提交于
      Add an admin_reserve_kbytes knob to allow admins to change the hardcoded
      memory reserve to something other than 3%, which may be multiple
      gigabytes on large memory systems.  Only about 8MB is necessary to
      enable recovery in the default mode, and only a few hundred MB are
      required even when overcommit is disabled.
      
      This affects OVERCOMMIT_GUESS and OVERCOMMIT_NEVER.
      
      admin_reserve_kbytes is initialized to min(3% free pages, 8MB)
      
      I arrived at 8MB by summing the RSS of sshd or login, bash, and top.
      
      Please see first patch in this series for full background, motivation,
      testing, and full changelog.
      
      [akpm@linux-foundation.org: coding-style fixes]
      [akpm@linux-foundation.org: make init_admin_reserve() static]
      Signed-off-by: NAndrew Shewmaker <agshew@gmail.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      4eeab4f5