- 14 4月, 2017 1 次提交
-
-
由 Peter Zijlstra 提交于
Paul noticed that in the (periods >= LOAD_AVG_MAX_N) case in __accumulate_sum(), the returned contribution value (LOAD_AVG_MAX) is incorrect. This is because at this point, the decay_load() on the old state -- the first step in accumulate_sum() -- will not have resulted in 0, and will therefore result in a sum larger than the maximum value of our series. Obviously broken. Note that: decay_load(LOAD_AVG_MAX, LOAD_AVG_MAX_N) = 1 (345 / 32) 47742 * - ^ = ~27 2 Not to mention that any further contribution from the d3 segment (our new period) would also push it over the maximum. Solve this by noting that we can write our c2 term: p c2 = 1024 \Sum y^n n=1 In terms of our maximum value: inf inf p max = 1024 \Sum y^n = 1024 ( \Sum y^n + \Sum y^n + y^0 ) n=0 n=p+1 n=1 Further note that: inf inf inf ( \Sum y^n ) y^p = \Sum y^(n+p) = \Sum y^n n=0 n=0 n=p Combined that gives us: p c2 = 1024 \Sum y^n n=1 inf inf = 1024 ( \Sum y^n - \Sum y^n - y^0 ) n=0 n=p+1 = max - (max y^(p+1)) - 1024 Further simplify things by dealing with p=0 early on. Reported-by: NPaul Turner <pjt@google.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Yuyang Du <yuyang.du@intel.com> Cc: linux-kernel@vger.kernel.org Fixes: a481db34 ("sched/fair: Optimize ___update_sched_avg()") Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
- 11 4月, 2017 1 次提交
-
-
由 NeilBrown 提交于
It is not safe for one thread to modify the ->flags of another thread as there is no locking that can protect the update. So tsk_restore_flags(), which takes a task pointer and modifies the flags, is an invitation to do the wrong thing. All current users pass "current" as the task, so no developers have accepted that invitation. It would be best to ensure it remains that way. So rename tsk_restore_flags() to current_restore_flags() and don't pass in a task_struct pointer. Always operate on current->flags. Signed-off-by: NNeilBrown <neilb@suse.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Hocko <mhocko@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
- 09 4月, 2017 1 次提交
-
-
由 Liping Zhang 提交于
Currently, inputting the following command will succeed but actually the value will be truncated: # echo 0x12ffffffff > /proc/sys/net/ipv4/tcp_notsent_lowat This is not friendly to the user, so instead, we should report error when the value is larger than UINT_MAX. Fixes: e7d316a0 ("sysctl: handle error writing UINT_MAX to u32 fields") Signed-off-by: NLiping Zhang <zlpnobody@gmail.com> Cc: Subash Abhinov Kasiviswanathan <subashab@codeaurora.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 08 4月, 2017 2 次提交
-
-
由 bsegall@google.com 提交于
In PT_SEIZED + LISTEN mode STOP/CONT signals cause a wakeup against __TASK_TRACED. If this races with the ptrace_unfreeze_traced at the end of a PTRACE_LISTEN, this can wake the task /after/ the check against __TASK_TRACED, but before the reset of state to TASK_TRACED. This causes it to instead clobber TASK_WAKING, allowing a subsequent wakeup against TRACED while the task is still on the rq wake_list, corrupting it. Oleg said: "The kernel can crash or this can lead to other hard-to-debug problems. In short, "task->state = TASK_TRACED" in ptrace_unfreeze_traced() assumes that nobody else can wake it up, but PTRACE_LISTEN breaks the contract. Obviusly it is very wrong to manipulate task->state if this task is already running, or WAKING, or it sleeps again" [akpm@linux-foundation.org: coding-style fixes] Fixes: 9899d11f ("ptrace: ensure arch_ptrace/ptrace_request can never race with SIGKILL") Link: http://lkml.kernel.org/r/xm26y3vfhmkp.fsf_-_@bsegall-linux.mtv.corp.google.comSigned-off-by: NBen Segall <bsegall@google.com> Acked-by: NOleg Nesterov <oleg@redhat.com> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Liping Zhang 提交于
I saw some very confusing sysctl output on my system: # cat /proc/sys/net/core/xfrm_aevent_rseqth -2 # cat /proc/sys/net/core/xfrm_aevent_etime -10 # cat /proc/sys/net/ipv4/tcp_notsent_lowat -4294967295 Because we forget to set the *negp flag in proc_douintvec, so it will become a garbage value. Since the value related to proc_douintvec is always an unsigned integer, so we can set *negp to false explictily to fix this issue. Fixes: e7d316a0 ("sysctl: handle error writing UINT_MAX to u32 fields") Signed-off-by: NLiping Zhang <zlpnobody@gmail.com> Cc: Subash Abhinov Kasiviswanathan <subashab@codeaurora.org> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 05 4月, 2017 1 次提交
-
-
由 Wei Yongjun 提交于
In case of error, the function kthread_run() returns ERR_PTR() and never returns NULL. The NULL test in the return value check should be replaced with IS_ERR(). Link: http://lkml.kernel.org/r/1466184839-14927-1-git-send-email-weiyj_lk@163.com Cc: stable@vger.kernel.org Fixes: 6c43e554 ("ring-buffer: Add ring buffer startup selftest") Signed-off-by: NWei Yongjun <yongjun_wei@trendmicro.com.cn> Signed-off-by: NSteven Rostedt (VMware) <rostedt@goodmis.org>
-
- 02 4月, 2017 2 次提交
-
-
由 Daniel Borkmann 提交于
Currently, the verifier doesn't reject unaligned access for map_value_adj register types. Commit 48461135 ("bpf: allow access into map value arrays") added logic to check_ptr_alignment() extending it from PTR_TO_PACKET to also PTR_TO_MAP_VALUE_ADJ, but for PTR_TO_MAP_VALUE_ADJ no enforcement is in place, because reg->id for PTR_TO_MAP_VALUE_ADJ reg types is never non-zero, meaning, we can cause BPF_H/_W/_DW-based unaligned access for architectures not supporting efficient unaligned access, and thus worst case could raise exceptions on some archs that are unable to correct the unaligned access or perform a different memory access to the actual requested one and such. i) Unaligned load with !CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS on r0 (map_value_adj): 0: (bf) r2 = r10 1: (07) r2 += -8 2: (7a) *(u64 *)(r2 +0) = 0 3: (18) r1 = 0x42533a00 5: (85) call bpf_map_lookup_elem#1 6: (15) if r0 == 0x0 goto pc+11 R0=map_value(ks=8,vs=48,id=0),min_value=0,max_value=0 R10=fp 7: (61) r1 = *(u32 *)(r0 +0) 8: (35) if r1 >= 0xb goto pc+9 R0=map_value(ks=8,vs=48,id=0),min_value=0,max_value=0 R1=inv,min_value=0,max_value=10 R10=fp 9: (07) r0 += 3 10: (79) r7 = *(u64 *)(r0 +0) R0=map_value_adj(ks=8,vs=48,id=0),min_value=3,max_value=3 R1=inv,min_value=0,max_value=10 R10=fp 11: (79) r7 = *(u64 *)(r0 +2) R0=map_value_adj(ks=8,vs=48,id=0),min_value=3,max_value=3 R1=inv,min_value=0,max_value=10 R7=inv R10=fp [...] ii) Unaligned store with !CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS on r0 (map_value_adj): 0: (bf) r2 = r10 1: (07) r2 += -8 2: (7a) *(u64 *)(r2 +0) = 0 3: (18) r1 = 0x4df16a00 5: (85) call bpf_map_lookup_elem#1 6: (15) if r0 == 0x0 goto pc+19 R0=map_value(ks=8,vs=48,id=0),min_value=0,max_value=0 R10=fp 7: (07) r0 += 3 8: (7a) *(u64 *)(r0 +0) = 42 R0=map_value_adj(ks=8,vs=48,id=0),min_value=3,max_value=3 R10=fp 9: (7a) *(u64 *)(r0 +2) = 43 R0=map_value_adj(ks=8,vs=48,id=0),min_value=3,max_value=3 R10=fp 10: (7a) *(u64 *)(r0 -2) = 44 R0=map_value_adj(ks=8,vs=48,id=0),min_value=3,max_value=3 R10=fp [...] For the PTR_TO_PACKET type, reg->id is initially zero when skb->data was fetched, it later receives a reg->id from env->id_gen generator once another register with UNKNOWN_VALUE type was added to it via check_packet_ptr_add(). The purpose of this reg->id is twofold: i) it is used in find_good_pkt_pointers() for setting the allowed access range for regs with PTR_TO_PACKET of same id once verifier matched on data/data_end tests, and ii) for check_ptr_alignment() to determine that when not having efficient unaligned access and register with UNKNOWN_VALUE was added to PTR_TO_PACKET, that we're only allowed to access the content bytewise due to unknown unalignment. reg->id was never intended for PTR_TO_MAP_VALUE{,_ADJ} types and thus is always zero, the only marking is in PTR_TO_MAP_VALUE_OR_NULL that was added after 48461135 via 57a09bf0 ("bpf: Detect identical PTR_TO_MAP_VALUE_OR_NULL registers"). Above tests will fail for non-root environment due to prohibited pointer arithmetic. The fix splits register-type specific checks into their own helper instead of keeping them combined, so we don't run into a similar issue in future once we extend check_ptr_alignment() further and forget to add reg->type checks for some of the checks. Fixes: 48461135 ("bpf: allow access into map value arrays") Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Reviewed-by: NJosef Bacik <jbacik@fb.com> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Daniel Borkmann 提交于
While looking into map_value_adj, I noticed that alu operations directly on the map_value() resp. map_value_adj() register (any alu operation on a map_value() register will turn it into a map_value_adj() typed register) are not sufficiently protected against some of the operations. Two non-exhaustive examples are provided that the verifier needs to reject: i) BPF_AND on r0 (map_value_adj): 0: (bf) r2 = r10 1: (07) r2 += -8 2: (7a) *(u64 *)(r2 +0) = 0 3: (18) r1 = 0xbf842a00 5: (85) call bpf_map_lookup_elem#1 6: (15) if r0 == 0x0 goto pc+2 R0=map_value(ks=8,vs=48,id=0),min_value=0,max_value=0 R10=fp 7: (57) r0 &= 8 8: (7a) *(u64 *)(r0 +0) = 22 R0=map_value_adj(ks=8,vs=48,id=0),min_value=0,max_value=8 R10=fp 9: (95) exit from 6 to 9: R0=inv,min_value=0,max_value=0 R10=fp 9: (95) exit processed 10 insns ii) BPF_ADD in 32 bit mode on r0 (map_value_adj): 0: (bf) r2 = r10 1: (07) r2 += -8 2: (7a) *(u64 *)(r2 +0) = 0 3: (18) r1 = 0xc24eee00 5: (85) call bpf_map_lookup_elem#1 6: (15) if r0 == 0x0 goto pc+2 R0=map_value(ks=8,vs=48,id=0),min_value=0,max_value=0 R10=fp 7: (04) (u32) r0 += (u32) 0 8: (7a) *(u64 *)(r0 +0) = 22 R0=map_value_adj(ks=8,vs=48,id=0),min_value=0,max_value=0 R10=fp 9: (95) exit from 6 to 9: R0=inv,min_value=0,max_value=0 R10=fp 9: (95) exit processed 10 insns Issue is, while min_value / max_value boundaries for the access are adjusted appropriately, we change the pointer value in a way that cannot be sufficiently tracked anymore from its origin. Operations like BPF_{AND,OR,DIV,MUL,etc} on a destination register that is PTR_TO_MAP_VALUE{,_ADJ} was probably unintended, in fact, all the test cases coming with 48461135 ("bpf: allow access into map value arrays") perform BPF_ADD only on the destination register that is PTR_TO_MAP_VALUE_ADJ. Only for UNKNOWN_VALUE register types such operations make sense, f.e. with unknown memory content fetched initially from a constant offset from the map value memory into a register. That register is then later tested against lower / upper bounds, so that the verifier can then do the tracking of min_value / max_value, and properly check once that UNKNOWN_VALUE register is added to the destination register with type PTR_TO_MAP_VALUE{,_ADJ}. This is also what the original use-case is solving. Note, tracking on what is being added is done through adjust_reg_min_max_vals() and later access to the map value enforced with these boundaries and the given offset from the insn through check_map_access_adj(). Tests will fail for non-root environment due to prohibited pointer arithmetic, in particular in check_alu_op(), we bail out on the is_pointer_value() check on the dst_reg (which is false in root case as we allow for pointer arithmetic via env->allow_ptr_leaks). Similarly to PTR_TO_PACKET, one way to fix it is to restrict the allowed operations on PTR_TO_MAP_VALUE{,_ADJ} registers to 64 bit mode BPF_ADD. The test_verifier suite runs fine after the patch and it also rejects mentioned test cases. Fixes: 48461135 ("bpf: allow access into map value arrays") Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Reviewed-by: NJosef Bacik <jbacik@fb.com> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 30 3月, 2017 2 次提交
-
-
由 Yuyang Du 提交于
The main PELT function ___update_load_avg(), which implements the accumulation and progression of the geometric average series, is implemented along the following lines for the scenario where the time delta spans all 3 possible sections (see figure below): 1. add the remainder of the last incomplete period 2. decay old sum 3. accumulate new sum in full periods since last_update_time 4. accumulate the current incomplete period 5. update averages Or: d1 d2 d3 ^ ^ ^ | | | |<->|<----------------->|<--->| ... |---x---|------| ... |------|-----x (now) load_sum' = (load_sum + weight * scale * d1) * y^(p+1) + (1,2) p weight * scale * 1024 * \Sum y^n + (3) n=1 weight * scale * d3 * y^0 (4) load_avg' = load_sum' / LOAD_AVG_MAX (5) Where: d1 - is the delta part completing the remainder of the last incomplete period, d2 - is the delta part spannind complete periods, and d3 - is the delta part starting the current incomplete period. We can simplify the code in two steps; the first step is to separate the first term into new and old parts like: (load_sum + weight * scale * d1) * y^(p+1) = load_sum * y^(p+1) + weight * scale * d1 * y^(p+1) Once we've done that, its easy to see that all new terms carry the common factors: weight * scale If we factor those out, we arrive at the form: load_sum' = load_sum * y^(p+1) + weight * scale * (d1 * y^(p+1) + p 1024 * \Sum y^n + n=1 d3 * y^0) Which results in a simpler, smaller and faster implementation. Signed-off-by: NYuyang Du <yuyang.du@intel.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: bsegall@google.com Cc: dietmar.eggemann@arm.com Cc: matt@codeblueprint.co.uk Cc: morten.rasmussen@arm.com Cc: pjt@google.com Cc: umgwanakikbuti@gmail.com Cc: vincent.guittot@linaro.org Link: http://lkml.kernel.org/r/1486935863-25251-3-git-send-email-yuyang.du@intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
The __update_load_avg() function is an __always_inline because its used with constant propagation to generate different variants of the code without having to duplicate it (which would be prone to bugs). Explicitly instantiate the 3 variants. Note that most of this is called from rather hot paths, so reducing branches is good. Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
- 28 3月, 2017 1 次提交
-
-
由 Paul Moore 提交于
Commit 5b52330b ("audit: fix auditd/kernel connection state tracking") made inlining audit_signal_info() a bit pointless as it was always calling into auditd_test_task() so let's remove the inline function in kernel/audit.h and convert __audit_signal_info() in kernel/auditsc.c into audit_signal_info(). Reviewed-by: NRichard Guy Briggs <rgb@redhat.com> Signed-off-by: NPaul Moore <paul@paul-moore.com>
-
- 27 3月, 2017 2 次提交
-
-
由 Pavel Tatashin 提交于
When it is determined that the clock is actually unstable, and we switch from stable to unstable, the __clear_sched_clock_stable() function is eventually called. In this function we set gtod_offset so the following holds true: sched_clock() + raw_offset == ktime_get_ns() + gtod_offset But instead of getting the latest timestamps, we use the last values from scd, so instead of sched_clock() we use scd->tick_raw, and instead of ktime_get_ns() we use scd->tick_gtod. However, later, when we use gtod_offset sched_clock_local() we do not add it to scd->tick_gtod to calculate the correct clock value when we determine the boundaries for min/max clocks. This can result in tick granularity sched_clock() values, so fix it. Signed-off-by: NPavel Tatashin <pasha.tatashin@oracle.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: hpa@zytor.com Fixes: 5680d809 ("sched/clock: Provide better clock continuity") Link: http://lkml.kernel.org/r/1490214265-899964-2-git-send-email-pasha.tatashin@oracle.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Srikar Dronamraju 提交于
If the child domain prefers tasks to go siblings, the local group could end up pulling tasks to itself even if the local group is almost equally loaded as the source group. Lets assume a 4 core,smt==2 machine running 5 thread ebizzy workload. Everytime, local group has capacity and source group has atleast 2 threads, local group tries to pull the task. This causes the threads to constantly move between different cores. This is even more profound if the cores have more threads, like in Power 8, smt 8 mode. Fix this by only allowing local group to pull a task, if the source group has more number of tasks than the local group. Here are the relevant perf stat numbers of a 22 core,smt 8 Power 8 machine. Without patch: Performance counter stats for 'ebizzy -t 22 -S 100' (5 runs): 1,440 context-switches # 0.001 K/sec ( +- 1.26% ) 366 cpu-migrations # 0.000 K/sec ( +- 5.58% ) 3,933 page-faults # 0.002 K/sec ( +- 11.08% ) Performance counter stats for 'ebizzy -t 48 -S 100' (5 runs): 6,287 context-switches # 0.001 K/sec ( +- 3.65% ) 3,776 cpu-migrations # 0.001 K/sec ( +- 4.84% ) 5,702 page-faults # 0.001 K/sec ( +- 9.36% ) Performance counter stats for 'ebizzy -t 96 -S 100' (5 runs): 8,776 context-switches # 0.001 K/sec ( +- 0.73% ) 2,790 cpu-migrations # 0.000 K/sec ( +- 0.98% ) 10,540 page-faults # 0.001 K/sec ( +- 3.12% ) With patch: Performance counter stats for 'ebizzy -t 22 -S 100' (5 runs): 1,133 context-switches # 0.001 K/sec ( +- 4.72% ) 123 cpu-migrations # 0.000 K/sec ( +- 3.42% ) 3,858 page-faults # 0.002 K/sec ( +- 8.52% ) Performance counter stats for 'ebizzy -t 48 -S 100' (5 runs): 2,169 context-switches # 0.000 K/sec ( +- 6.19% ) 189 cpu-migrations # 0.000 K/sec ( +- 12.75% ) 5,917 page-faults # 0.001 K/sec ( +- 8.09% ) Performance counter stats for 'ebizzy -t 96 -S 100' (5 runs): 5,333 context-switches # 0.001 K/sec ( +- 5.91% ) 506 cpu-migrations # 0.000 K/sec ( +- 3.35% ) 10,792 page-faults # 0.001 K/sec ( +- 7.75% ) Which show that in these workloads CPU migrations get reduced significantly. Signed-off-by: NSrikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vincent Guittot <vincent.guittot@linaro.org> Link: http://lkml.kernel.org/r/1490205470-10249-1-git-send-email-srikar@linux.vnet.ibm.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 25 3月, 2017 1 次提交
-
-
由 Alexei Starovoitov 提交于
llvm can optimize the 'if (ptr > data_end)' checks to be in the order slightly different than the original C code which will confuse verifier. Like: if (ptr + 16 > data_end) return TC_ACT_SHOT; // may be followed by if (ptr + 14 > data_end) return TC_ACT_SHOT; while llvm can see that 'ptr' is valid for all 16 bytes, the verifier could not. Fix verifier logic to account for such case and add a test. Reported-by: NHuapeng Zhou <hzhou@fb.com> Fixes: 969bf05e ("bpf: direct packet access") Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Acked-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NMartin KaFai Lau <kafai@fb.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 24 3月, 2017 1 次提交
-
-
由 Jason A. Donenfeld 提交于
Under extremely heavy uses of padata, crashes occur, and with list debugging turned on, this happens instead: [87487.298728] WARNING: CPU: 1 PID: 882 at lib/list_debug.c:33 __list_add+0xae/0x130 [87487.301868] list_add corruption. prev->next should be next (ffffb17abfc043d0), but was ffff8dba70872c80. (prev=ffff8dba70872b00). [87487.339011] [<ffffffff9a53d075>] dump_stack+0x68/0xa3 [87487.342198] [<ffffffff99e119a1>] ? console_unlock+0x281/0x6d0 [87487.345364] [<ffffffff99d6b91f>] __warn+0xff/0x140 [87487.348513] [<ffffffff99d6b9aa>] warn_slowpath_fmt+0x4a/0x50 [87487.351659] [<ffffffff9a58b5de>] __list_add+0xae/0x130 [87487.354772] [<ffffffff9add5094>] ? _raw_spin_lock+0x64/0x70 [87487.357915] [<ffffffff99eefd66>] padata_reorder+0x1e6/0x420 [87487.361084] [<ffffffff99ef0055>] padata_do_serial+0xa5/0x120 padata_reorder calls list_add_tail with the list to which its adding locked, which seems correct: spin_lock(&squeue->serial.lock); list_add_tail(&padata->list, &squeue->serial.list); spin_unlock(&squeue->serial.lock); This therefore leaves only place where such inconsistency could occur: if padata->list is added at the same time on two different threads. This pdata pointer comes from the function call to padata_get_next(pd), which has in it the following block: next_queue = per_cpu_ptr(pd->pqueue, cpu); padata = NULL; reorder = &next_queue->reorder; if (!list_empty(&reorder->list)) { padata = list_entry(reorder->list.next, struct padata_priv, list); spin_lock(&reorder->lock); list_del_init(&padata->list); atomic_dec(&pd->reorder_objects); spin_unlock(&reorder->lock); pd->processed++; goto out; } out: return padata; I strongly suspect that the problem here is that two threads can race on reorder list. Even though the deletion is locked, call to list_entry is not locked, which means it's feasible that two threads pick up the same padata object and subsequently call list_add_tail on them at the same time. The fix is thus be hoist that lock outside of that block. Signed-off-by: NJason A. Donenfeld <Jason@zx2c4.com> Acked-by: NSteffen Klassert <steffen.klassert@secunet.com> Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
-
- 23 3月, 2017 5 次提交
-
-
由 Vincent Guittot 提交于
A regression of the FTQ noise has been reported by Ying Huang, on the following hardware: 8 threads Intel(R) Core(TM)i7-4770 CPU @ 3.40GHz with 8G memory ... which was caused by this commit: commit 4e516076 ("sched/fair: Propagate asynchrous detach") The only part of the patch that can increase the noise is the update of blocked load of group entity in update_blocked_averages(). We can optimize this call and skip the update of group entity if its load and utilization are already null and there is no pending propagation of load in the task group. This optimization partly restores the noise score. A more agressive optimization has been tried but has shown worse score. Reported-by: ying.huang@linux.intel.com Signed-off-by: NVincent Guittot <vincent.guittot@linaro.org> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: dietmar.eggemann@arm.com Cc: ying.huang@intel.com Fixes: 4e516076 ("sched/fair: Propagate asynchrous detach") Link: http://lkml.kernel.org/r/1489758442-2877-1-git-send-email-vincent.guittot@linaro.org [ Fixed typos, improved layout. ] Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Wanpeng Li 提交于
This can be reproduced by running rt-migrate-test: WARNING: CPU: 2 PID: 2195 at kernel/locking/lockdep.c:3670 lock_unpin_lock() unpinning an unpinned lock ... Call Trace: dump_stack() __warn() warn_slowpath_fmt() lock_unpin_lock() __balance_callback() __schedule() schedule() futex_wait_queue_me() futex_wait() do_futex() SyS_futex() do_syscall_64() entry_SYSCALL64_slow_path() Revert the rq_lock_irqsave() usage here, the whole point of the balance_callback() was to allow dropping rq->lock. Reported-by: NFengguang Wu <fengguang.wu@intel.com> Signed-off-by: NWanpeng Li <wanpeng.li@hotmail.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Fixes: 8a8c69c3 ("sched/core: Add rq->lock wrappers") Link: http://lkml.kernel.org/r/1489718719-3951-1-git-send-email-wanpeng.li@hotmail.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
People reported that commit: 5680d809 ("sched/clock: Provide better clock continuity") broke "perf test tsc". That commit added another offset to the reported clock value; so take that into account when computing the provided offset values. Reported-by: NAdrian Hunter <adrian.hunter@intel.com> Reported-by: NArnaldo Carvalho de Melo <acme@kernel.org> Tested-by: NAlexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Fixes: 5680d809 ("sched/clock: Provide better clock continuity") Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
Paul reported a problems with clear_sched_clock_stable(). Since we run all of __clear_sched_clock_stable() from workqueue context, there's a preempt problem. Solve it by only running the static_key_disable() from workqueue. Reported-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: fweisbec@gmail.com Link: http://lkml.kernel.org/r/20170313124621.GA3328@twins.programming.kicks-ass.netSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Alexei Starovoitov 提交于
In both kmalloc and prealloc mode the bpf_map_update_elem() is using per-cpu extra_elems to do atomic update when the map is full. There are two issues with it. The logic can be misused, since it allows max_entries+num_cpus elements to be present in the map. And alloc_extra_elems() at map creation time can fail percpu alloc for large map values with a warn: WARNING: CPU: 3 PID: 2752 at ../mm/percpu.c:892 pcpu_alloc+0x119/0xa60 illegal size (32824) or align (8) for percpu allocation The fixes for both of these issues are different for kmalloc and prealloc modes. For prealloc mode allocate extra num_possible_cpus elements and store their pointers into extra_elems array instead of actual elements. Hence we can use these hidden(spare) elements not only when the map is full but during bpf_map_update_elem() that replaces existing element too. That also improves performance, since pcpu_freelist_pop/push is avoided. Unfortunately this approach cannot be used for kmalloc mode which needs to kfree elements after rcu grace period. Therefore switch it back to normal kmalloc even when full and old element exists like it was prior to commit 6c905981 ("bpf: pre-allocate hash map elements"). Add tests to check for over max_entries and large map values. Reported-by: NDave Jones <davej@codemonkey.org.uk> Fixes: 6c905981 ("bpf: pre-allocate hash map elements") Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Acked-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NMartin KaFai Lau <kafai@fb.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 21 3月, 2017 2 次提交
-
-
由 Paul Moore 提交于
What started as a rather straightforward race condition reported by Dmitry using the syzkaller fuzzer ended up revealing some major problems with how the audit subsystem managed its netlink sockets and its connection with the userspace audit daemon. Fixing this properly had quite the cascading effect and what we are left with is this rather large and complicated patch. My initial goal was to try and decompose this patch into multiple smaller patches, but the way these changes are intertwined makes it difficult to split these changes into meaningful pieces that don't break or somehow make things worse for the intermediate states. The patch makes a number of changes, but the most significant are highlighted below: * The auditd tracking variables, e.g. audit_sock, are now gone and replaced by a RCU/spin_lock protected variable auditd_conn which is a structure containing all of the auditd tracking information. * We no longer track the auditd sock directly, instead we track it via the network namespace in which it resides and we use the audit socket associated with that namespace. In spirit, this is what the code was trying to do prior to this patch (at least I think that is what the original authors intended), but it was done rather poorly and added a layer of obfuscation that only masked the underlying problems. * Big backlog queue cleanup, again. In v4.10 we made some pretty big changes to how the audit backlog queues work, here we haven't changed the queue design so much as cleaned up the implementation. Brought about by the locking changes, we've simplified kauditd_thread() quite a bit by consolidating the queue handling into a new helper function, kauditd_send_queue(), which allows us to eliminate a lot of very similar code and makes the looping logic in kauditd_thread() clearer. * All netlink messages sent to auditd are now sent via auditd_send_unicast_skb(). Other than just making sense, this makes the lock handling easier. * Change the audit_log_start() sleep behavior so that we never sleep on auditd events (unchanged) or if the caller is holding the audit_cmd_mutex (changed). Previously we didn't sleep if the caller was auditd or if the message type fell between a certain range; the type check was a poor effort of doing what the cmd_mutex check now does. Richard Guy Briggs originally proposed not sleeping the cmd_mutex owner several years ago but his patch wasn't acceptable at the time. At least the idea lives on here. * A problem with the lost record counter has been resolved. Steve Grubb and I both happened to notice this problem and according to some quick testing by Steve, this problem goes back quite some time. It's largely a harmless problem, although it may have left some careful sysadmins quite puzzled. Cc: <stable@vger.kernel.org> # 4.10.x- Reported-by: NDmitry Vyukov <dvyukov@google.com> Signed-off-by: NPaul Moore <paul@paul-moore.com>
-
由 Rafael J. Wysocki 提交于
sugov_start() only initializes struct sugov_cpu per-CPU structures for shared policies, but it should do that for single-CPU policies too. That in particular makes the IO-wait boost mechanism work in the cases when cpufreq policies correspond to individual CPUs. Fixes: 21ca6d2c (cpufreq: schedutil: Add iowait boosting) Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: NViresh Kumar <viresh.kumar@linaro.org> Cc: 4.9+ <stable@vger.kernel.org> # 4.9+
-
- 17 3月, 2017 1 次提交
-
-
由 Heiko Carstens 提交于
Commit bfc8c901 ("mem-hotplug: implement get/put_online_mems") introduced new functions get/put_online_mems() and mem_hotplug_begin/end() in order to allow similar semantics for memory hotplug like for cpu hotplug. The corresponding functions for cpu hotplug are get/put_online_cpus() and cpu_hotplug_begin/done() for cpu hotplug. The commit however missed to introduce functions that would serialize memory hotplug operations like they are done for cpu hotplug with cpu_maps_update_begin/done(). This basically leaves mem_hotplug.active_writer unprotected and allows concurrent writers to modify it, which may lead to problems as outlined by commit f931ab47 ("mm: fix devm_memremap_pages crash, use mem_hotplug_{begin, done}"). That commit was extended again with commit b5d24fda ("mm, devm_memremap_pages: hold device_hotplug lock over mem_hotplug_{begin, done}") which serializes memory hotplug operations for some call sites by using the device_hotplug lock. In addition with commit 3fc21924 ("mm: validate device_hotplug is held for memory hotplug") a sanity check was added to mem_hotplug_begin() to verify that the device_hotplug lock is held. This in turn triggers the following warning on s390: WARNING: CPU: 6 PID: 1 at drivers/base/core.c:643 assert_held_device_hotplug+0x4a/0x58 Call Trace: assert_held_device_hotplug+0x40/0x58) mem_hotplug_begin+0x34/0xc8 add_memory_resource+0x7e/0x1f8 add_memory+0xda/0x130 add_memory_merged+0x15c/0x178 sclp_detect_standby_memory+0x2ae/0x2f8 do_one_initcall+0xa2/0x150 kernel_init_freeable+0x228/0x2d8 kernel_init+0x2a/0x140 kernel_thread_starter+0x6/0xc One possible fix would be to add more lock_device_hotplug() and unlock_device_hotplug() calls around each call site of mem_hotplug_begin/end(). But that would give the device_hotplug lock additional semantics it better should not have (serialize memory hotplug operations). Instead add a new memory_add_remove_lock which has the similar semantics like cpu_add_remove_lock for cpu hotplug. To keep things hopefully a bit easier the lock will be locked and unlocked within the mem_hotplug_begin/end() functions. Link: http://lkml.kernel.org/r/20170314125226.16779-2-heiko.carstens@de.ibm.comSigned-off-by: NHeiko Carstens <heiko.carstens@de.ibm.com> Reported-by: NSebastian Ott <sebott@linux.vnet.ibm.com> Acked-by: NDan Williams <dan.j.williams@intel.com> Acked-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Ben Hutchings <ben@decadent.org.uk> Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 16 3月, 2017 17 次提交
-
-
由 Peter Zijlstra 提交于
While going through the event inheritance code Oleg got confused. Add some comments to better explain the silent dissapearance of orphaned events. So what happens is that at perf_event_release_kernel() time; when an event looses its connection to userspace (and ceases to exist from the user's perspective) we can still have an arbitrary amount of inherited copies of the event. We want to synchronously find and remove all these child events. Since that requires a bit of lock juggling, there is the possibility that concurrent clone()s will create new child events. Therefore we first mark the parent event as DEAD, which marks all the extant child events as orphaned. We then avoid copying orphaned events; in order to avoid getting more of them. Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: fweisbec@gmail.com Link: http://lkml.kernel.org/r/20170316125823.289567442@infradead.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
We have ctx->event_list that contains all events; no need to repeatedly iterate the group lists to find them all. Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: fweisbec@gmail.com Link: http://lkml.kernel.org/r/20170316125823.239678244@infradead.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
While hunting for clues to a use-after-free, Oleg spotted that perf_event_init_context() can loose an error value with the result that fork() can succeed even though we did not fully inherit the perf event context. Spotted-by: NOleg Nesterov <oleg@redhat.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: oleg@redhat.com Cc: stable@vger.kernel.org Fixes: 889ff015 ("perf/core: Split context's event group list into pinned and non-pinned lists") Link: http://lkml.kernel.org/r/20170316125823.190342547@infradead.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
Dmitry reported syzcaller tripped a use-after-free in perf_release(). After much puzzlement Oleg spotted the below scenario: Task1 Task2 fork() perf_event_init_task() /* ... */ goto bad_fork_$foo; /* ... */ perf_event_free_task() mutex_lock(ctx->lock) perf_free_event(B) perf_event_release_kernel(A) mutex_lock(A->child_mutex) list_for_each_entry(child, ...) { /* child == B */ ctx = B->ctx; get_ctx(ctx); mutex_unlock(A->child_mutex); mutex_lock(A->child_mutex) list_del_init(B->child_list) mutex_unlock(A->child_mutex) /* ... */ mutex_unlock(ctx->lock); put_ctx() /* >0 */ free_task(); mutex_lock(ctx->lock); mutex_lock(A->child_mutex); /* ... */ mutex_unlock(A->child_mutex); mutex_unlock(ctx->lock) put_ctx() /* 0 */ ctx->task && !TOMBSTONE put_task_struct() /* UAF */ This patch closes the hole by making perf_event_free_task() destroy the task <-> ctx relation such that perf_event_release_kernel() will no longer observe the now dead task. Spotted-by: NOleg Nesterov <oleg@redhat.com> Reported-by: NDmitry Vyukov <dvyukov@google.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: fweisbec@gmail.com Cc: oleg@redhat.com Cc: stable@vger.kernel.org Fixes: c6e5b732 ("perf: Synchronously clean up child events") Link: http://lkml.kernel.org/r/20170314155949.GE32474@worktop Link: http://lkml.kernel.org/r/20170316125823.140295131@infradead.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
Address this case: WARNING: CPU: 0 PID: 2070 at ../kernel/sched/core.c:109 update_rq_clock+0x74/0x80 rq->clock_update_flags & RQCF_UPDATED Call Trace: update_rq_clock() move_queued_task() __set_cpus_allowed_ptr() ... Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
Add DEQUEUE_NOCLOCK to all places where we just did an update_rq_clock() already. Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
Instead of relying on deactivate_task() to call update_rq_clock() and handling the case where it didn't happen (task_on_rq_queued), unconditionally do update_rq_clock() and skip any further updates. This also avoids a double update on deactivate_task() + ttwu_local(). Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
Since all tasks on the wake_list are woken under a single rq->lock avoid calling update_rq_clock() for each task. Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
In all cases, ENQUEUE_RESTORE should also have ENQUEUE_NOCLOCK because DEQUEUE_SAVE will have done an update_rq_clock(). Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
Currently {en,de}queue_task() do an unconditional update_rq_clock(). However since we want to avoid duplicate updates, so that each rq->lock section appears atomic in time, we need to be able to skip these clock updates. Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
The missing update_rq_clock() check can work with partial rq->lock wrappery, since a missing wrapper can cause the warning to not be emitted when it should have, but cannot cause the warning to trigger when it should not have. The duplicate update_rq_clock() check however can cause false warnings to trigger. Therefore add more comprehensive rq->lock wrappery. Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
Now that we have no missing calls, add a warning to find multiple calls. By having only a single update_rq_clock() call per rq-lock section, the section appears 'atomic' wrt time. Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Steven Rostedt (VMware) 提交于
While looking into optimizations for the RT scheduler IPI logic, I realized that the comments are lacking to describe it efficiently. It deserves a lengthy description describing its design. Signed-off-by: NSteven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Clark Williams <williams@redhat.com> Cc: Daniel Bristot de Oliveira <bristot@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20170228155030.30c69068@gandalf.local.home [ Small typographical edits. ] Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Steven Rostedt (VMware) 提交于
I was testing Daniel's changes with his test case, and tweaked it a little. Instead of having the runtime equal to the deadline, I increased the deadline ten fold. Daniel's test case had: attr.sched_runtime = 2 * 1000 * 1000; /* 2 ms */ attr.sched_deadline = 2 * 1000 * 1000; /* 2 ms */ attr.sched_period = 2 * 1000 * 1000 * 1000; /* 2 s */ To make it more interesting, I changed it to: attr.sched_runtime = 2 * 1000 * 1000; /* 2 ms */ attr.sched_deadline = 20 * 1000 * 1000; /* 20 ms */ attr.sched_period = 2 * 1000 * 1000 * 1000; /* 2 s */ The results were rather surprising. The behavior that Daniel's patch was fixing came back. The task started using much more than .1% of the CPU. More like 20%. Looking into this I found that it was due to the dl_entity_overflow() constantly returning true. That's because it uses the relative period against relative runtime vs the absolute deadline against absolute runtime. runtime / (deadline - t) > dl_runtime / dl_period There's even a comment mentioning this, and saying that when relative deadline equals relative period, that the equation is the same as using deadline instead of period. That comment is backwards! What we really want is: runtime / (deadline - t) > dl_runtime / dl_deadline We care about if the runtime can make its deadline, not its period. And then we can say "when the deadline equals the period, the equation is the same as using dl_period instead of dl_deadline". After correcting this, now when the task gets enqueued, it can throttle correctly, and Daniel's fix to the throttling of sleeping deadline tasks works even when the runtime and deadline are not the same. Signed-off-by: NSteven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: NDaniel Bristot de Oliveira <bristot@redhat.com> Cc: Juri Lelli <juri.lelli@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Luca Abeni <luca.abeni@santannapisa.it> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Romulo Silva de Oliveira <romulo.deoliveira@ufsc.br> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tommaso Cucinotta <tommaso.cucinotta@sssup.it> Link: http://lkml.kernel.org/r/02135a27f1ae3fe5fd032568a5a2f370e190e8d7.1488392936.git.bristot@redhat.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
During the activation, CBS checks if it can reuse the current task's runtime and period. If the deadline of the task is in the past, CBS cannot use the runtime, and so it replenishes the task. This rule works fine for implicit deadline tasks (deadline == period), and the CBS was designed for implicit deadline tasks. However, a task with constrained deadline (deadine < period) might be awakened after the deadline, but before the next period. In this case, replenishing the task would allow it to run for runtime / deadline. As in this case deadline < period, CBS enables a task to run for more than the runtime / period. In a very loaded system, this can cause a domino effect, making other tasks miss their deadlines. To avoid this problem, in the activation of a constrained deadline task after the deadline but before the next period, throttle the task and set the replenishing timer to the begin of the next period, unless it is boosted. Reproducer: --------------- %< --------------- int main (int argc, char **argv) { int ret; int flags = 0; unsigned long l = 0; struct timespec ts; struct sched_attr attr; memset(&attr, 0, sizeof(attr)); attr.size = sizeof(attr); attr.sched_policy = SCHED_DEADLINE; attr.sched_runtime = 2 * 1000 * 1000; /* 2 ms */ attr.sched_deadline = 2 * 1000 * 1000; /* 2 ms */ attr.sched_period = 2 * 1000 * 1000 * 1000; /* 2 s */ ts.tv_sec = 0; ts.tv_nsec = 2000 * 1000; /* 2 ms */ ret = sched_setattr(0, &attr, flags); if (ret < 0) { perror("sched_setattr"); exit(-1); } for(;;) { /* XXX: you may need to adjust the loop */ for (l = 0; l < 150000; l++); /* * The ideia is to go to sleep right before the deadline * and then wake up before the next period to receive * a new replenishment. */ nanosleep(&ts, NULL); } exit(0); } --------------- >% --------------- On my box, this reproducer uses almost 50% of the CPU time, which is obviously wrong for a task with 2/2000 reservation. Signed-off-by: NDaniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Juri Lelli <juri.lelli@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Luca Abeni <luca.abeni@santannapisa.it> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Romulo Silva de Oliveira <romulo.deoliveira@ufsc.br> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tommaso Cucinotta <tommaso.cucinotta@sssup.it> Link: http://lkml.kernel.org/r/edf58354e01db46bf42df8d2dd32418833f68c89.1488392936.git.bristot@redhat.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
Currently, the replenishment timer is set to fire at the deadline of a task. Although that works for implicit deadline tasks because the deadline is equals to the begin of the next period, that is not correct for constrained deadline tasks (deadline < period). For instance: f.c: --------------- %< --------------- int main (void) { for(;;); } --------------- >% --------------- # gcc -o f f.c # trace-cmd record -e sched:sched_switch \ -e syscalls:sys_exit_sched_setattr \ chrt -d --sched-runtime 490000000 \ --sched-deadline 500000000 \ --sched-period 1000000000 0 ./f # trace-cmd report | grep "{pid of ./f}" After setting parameters, the task is replenished and continue running until being throttled: f-11295 [003] 13322.113776: sys_exit_sched_setattr: 0x0 The task is throttled after running 492318 ms, as expected: f-11295 [003] 13322.606094: sched_switch: f:11295 [-1] R ==> watchdog/3:32 [0] But then, the task is replenished 500719 ms after the first replenishment: <idle>-0 [003] 13322.614495: sched_switch: swapper/3:0 [120] R ==> f:11295 [-1] Running for 490277 ms: f-11295 [003] 13323.104772: sched_switch: f:11295 [-1] R ==> swapper/3:0 [120] Hence, in the first period, the task runs 2 * runtime, and that is a bug. During the first replenishment, the next deadline is set one period away. So the runtime / period starts to be respected. However, as the second replenishment took place in the wrong instant, the next replenishment will also be held in a wrong instant of time. Rather than occurring in the nth period away from the first activation, it is taking place in the (nth period - relative deadline). Signed-off-by: NDaniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: NLuca Abeni <luca.abeni@santannapisa.it> Reviewed-by: NSteven Rostedt (VMware) <rostedt@goodmis.org> Reviewed-by: NJuri Lelli <juri.lelli@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Romulo Silva de Oliveira <romulo.deoliveira@ufsc.br> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tommaso Cucinotta <tommaso.cucinotta@sssup.it> Link: http://lkml.kernel.org/r/ac50d89887c25285b47465638354b63362f8adff.1488392936.git.bristot@redhat.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-