- 01 12月, 2019 3 次提交
-
-
由 Uros Bizjak 提交于
[ Upstream commit 5ebb272b2ea7e02911a03a893f8d922d49f9bb4a ] Register operand size of invvpid and invept instruction in 64-bit mode has always 64 bits. Adjust inline function argument type to reflect correct size. Signed-off-by: NUros Bizjak <ubizjak@gmail.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
由 Sean Christopherson 提交于
[ Upstream commit 7671ce21b13b9596163a29f4712cb2451a9b97dc ] In preparation of supporting checkpoint/restore for nested state, commit ca0bde28 ("kvm: nVMX: Split VMCS checks from nested_vmx_run()") modified check_vmentry_postreqs() to only perform the guest EFER consistency checks when nested_run_pending is true. But, in the normal nested VMEntry flow, nested_run_pending is only set after check_vmentry_postreqs(), i.e. the consistency check is being skipped. Alternatively, nested_run_pending could be set prior to calling check_vmentry_postreqs() in nested_vmx_run(), but placing the consistency checks in nested_vmx_enter_non_root_mode() allows us to split prepare_vmcs02() and interleave the preparation with the consistency checks without having to change the call sites of nested_vmx_enter_non_root_mode(). In other words, the rest of the consistency check code in nested_vmx_run() will be joining the postreqs checks in future patches. Fixes: ca0bde28 ("kvm: nVMX: Split VMCS checks from nested_vmx_run()") Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Cc: Jim Mattson <jmattson@google.com> Reviewed-by: NJim Mattson <jmattson@google.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
由 Sean Christopherson 提交于
[ Upstream commit b7031fd40fcc741b0f9b0c04c8d844e445858b84 ] Reset the vm_{entry,exit}_controls_shadow variables as well as the segment cache after loading a new VMCS in vmx_switch_vmcs(). The shadows/cache track VMCS data, i.e. they're stale every time we switch to a new VMCS regardless of reason. This fixes a bug where stale control shadows would be consumed after a nested VMExit due to a failed consistency check. Suggested-by: NJim Mattson <jmattson@google.com> Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Reviewed-by: NJim Mattson <jmattson@google.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
- 21 11月, 2019 1 次提交
-
-
由 Paolo Bonzini 提交于
[ Upstream commit bf03d4f9334728bf7c8ffc7de787df48abd6340e ] Checking for 32-bit PAE is quite common around code that fiddles with the PDPTRs. Add a function to compress all checks into a single invocation. Moving to the common helper also fixes a subtle bug in kvm_set_cr3() where it fails to check is_long_mode() and results in KVM incorrectly attempting to load PDPTRs for a 64-bit guest. Reviewed-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> [sean: backport to 4.x; handle vmx.c split in 5.x, call out the bugfix] Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Acked-by: NPaolo Bonzini <pbonzini@redhat.com> Tested-by: NThomas Lamprecht <t.lamprecht@proxmox.com> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
- 13 11月, 2019 1 次提交
-
-
由 Paolo Bonzini 提交于
commit 9167ab79936206118cc60e47dcb926c3489f3bd5 upstream. VMX already does so if the host has SMEP, in order to support the combination of CR0.WP=1 and CR4.SMEP=1. However, it is perfectly safe to always do so, and in fact VMX also ends up running with EFER.NXE=1 on old processors that lack the "load EFER" controls, because it may help avoiding a slow MSR write. SVM does not have similar code, but it should since recent AMD processors do support SMEP. So this patch makes the code for the two vendors simpler and more similar, while fixing an issue with CR0.WP=1 and CR4.SMEP=1 on AMD. Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: Joerg Roedel <jroedel@suse.de> Cc: stable@vger.kernel.org Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 12 10月, 2019 2 次提交
-
-
由 Sean Christopherson 提交于
[ Upstream commit 567926cca99ba1750be8aae9c4178796bf9bb90b ] Current versions of Intel's SDM incorrectly state that "bits 31:15 of the VM-Entry exception error-code field" must be zero. In reality, bits 31:16 must be zero, i.e. error codes are 16-bit values. The bogus error code check manifests as an unexpected VM-Entry failure due to an invalid code field (error number 7) in L1, e.g. when injecting a #GP with error_code=0x9f00. Nadav previously reported the bug[*], both to KVM and Intel, and fixed the associated kvm-unit-test. [*] https://patchwork.kernel.org/patch/11124749/Reported-by: NNadav Amit <namit@vmware.com> Cc: stable@vger.kernel.org Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Reviewed-by: NJim Mattson <jmattson@google.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
由 Jack Wang 提交于
During backport f7eea636c3d5 ("KVM: nVMX: handle page fault in vmread"), there was a mistake the exception reference should be passed to function kvm_write_guest_virt_system, instead of NULL, other wise, we will get NULL pointer deref, eg kvm-unit-test triggered a NULL pointer deref below: [ 948.518437] kvm [24114]: vcpu0, guest rIP: 0x407ef9 kvm_set_msr_common: MSR_IA32_DEBUGCTLMSR 0x3, nop [ 949.106464] BUG: unable to handle kernel NULL pointer dereference at 0000000000000000 [ 949.106707] PGD 0 P4D 0 [ 949.106872] Oops: 0002 [#1] SMP [ 949.107038] CPU: 2 PID: 24126 Comm: qemu-2.7 Not tainted 4.19.77-pserver #4.19.77-1+feature+daily+update+20191005.1625+a4168bb~deb9 [ 949.107283] Hardware name: Dell Inc. Precision Tower 3620/09WH54, BIOS 2.7.3 01/31/2018 [ 949.107549] RIP: 0010:kvm_write_guest_virt_system+0x12/0x40 [kvm] [ 949.107719] Code: c0 5d 41 5c 41 5d 41 5e 83 f8 03 41 0f 94 c0 41 c1 e0 02 e9 b0 ed ff ff 0f 1f 44 00 00 48 89 f0 c6 87 59 56 00 00 01 48 89 d6 <49> c7 00 00 00 00 00 89 ca 49 c7 40 08 00 00 00 00 49 c7 40 10 00 [ 949.108044] RSP: 0018:ffffb31b0a953cb0 EFLAGS: 00010202 [ 949.108216] RAX: 000000000046b4d8 RBX: ffff9e9f415b0000 RCX: 0000000000000008 [ 949.108389] RDX: ffffb31b0a953cc0 RSI: ffffb31b0a953cc0 RDI: ffff9e9f415b0000 [ 949.108562] RBP: 00000000d2e14928 R08: 0000000000000000 R09: 0000000000000000 [ 949.108733] R10: 0000000000000000 R11: 0000000000000000 R12: ffffffffffffffc8 [ 949.108907] R13: 0000000000000002 R14: ffff9e9f4f26f2e8 R15: 0000000000000000 [ 949.109079] FS: 00007eff8694c700(0000) GS:ffff9e9f51a80000(0000) knlGS:0000000031415928 [ 949.109318] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 949.109495] CR2: 0000000000000000 CR3: 00000003be53b002 CR4: 00000000003626e0 [ 949.109671] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 949.109845] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 949.110017] Call Trace: [ 949.110186] handle_vmread+0x22b/0x2f0 [kvm_intel] [ 949.110356] ? vmexit_fill_RSB+0xc/0x30 [kvm_intel] [ 949.110549] kvm_arch_vcpu_ioctl_run+0xa98/0x1b30 [kvm] [ 949.110725] ? kvm_vcpu_ioctl+0x388/0x5d0 [kvm] [ 949.110901] kvm_vcpu_ioctl+0x388/0x5d0 [kvm] [ 949.111072] do_vfs_ioctl+0xa2/0x620 Signed-off-by: NJack Wang <jinpu.wang@cloud.ionos.com> Acked-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 19 9月, 2019 1 次提交
-
-
由 Paolo Bonzini 提交于
commit f7eea636c3d505fe6f1d1066234f1aaf7171b681 upstream. The implementation of vmread to memory is still incomplete, as it lacks the ability to do vmread to I/O memory just like vmptrst. Cc: stable@vger.kernel.org Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 16 9月, 2019 6 次提交
-
-
由 Wanpeng Li 提交于
[ Upstream commit 4d763b168e9c5c366b05812c7bba7662e5ea3669 ] Raise #GP when guest read/write IA32_XSS, but the CPUID bits say that it shouldn't exist. Fixes: 20300099 (kvm: vmx: add MSR logic for XSAVES) Reported-by: NXiaoyao Li <xiaoyao.li@linux.intel.com> Reported-by: NTao Xu <tao3.xu@intel.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: stable@vger.kernel.org Signed-off-by: NWanpeng Li <wanpengli@tencent.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
由 Sean Christopherson 提交于
[ Upstream commit beb8d93b3e423043e079ef3dda19dad7b28467a8 ] A previous fix to prevent KVM from consuming stale VMCS state after a failed VM-Entry inadvertantly blocked KVM's handling of machine checks that occur during VM-Entry. Per Intel's SDM, a #MC during VM-Entry is handled in one of three ways, depending on when the #MC is recognoized. As it pertains to this bug fix, the third case explicitly states EXIT_REASON_MCE_DURING_VMENTRY is handled like any other VM-Exit during VM-Entry, i.e. sets bit 31 to indicate the VM-Entry failed. If a machine-check event occurs during a VM entry, one of the following occurs: - The machine-check event is handled as if it occurred before the VM entry: ... - The machine-check event is handled after VM entry completes: ... - A VM-entry failure occurs as described in Section 26.7. The basic exit reason is 41, for "VM-entry failure due to machine-check event". Explicitly handle EXIT_REASON_MCE_DURING_VMENTRY as a one-off case in vmx_vcpu_run() instead of binning it into vmx_complete_atomic_exit(). Doing so allows vmx_vcpu_run() to handle VMX_EXIT_REASONS_FAILED_VMENTRY in a sane fashion and also simplifies vmx_complete_atomic_exit() since VMCS.VM_EXIT_INTR_INFO is guaranteed to be fresh. Fixes: b060ca3b ("kvm: vmx: Handle VMLAUNCH/VMRESUME failure properly") Cc: stable@vger.kernel.org Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Reviewed-by: NJim Mattson <jmattson@google.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
由 Sean Christopherson 提交于
[ Upstream commit d28f4290b53a157191ed9991ad05dffe9e8c0c89 ] The behavior of WRMSR is in no way dependent on whether or not KVM consumes the value. Fixes: 4566654b ("KVM: vmx: Inject #GP on invalid PAT CR") Cc: stable@vger.kernel.org Cc: Nadav Amit <nadav.amit@gmail.com> Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
由 Paolo Bonzini 提交于
[ Upstream commit 674ea351cdeb01d2740edce31db7f2d79ce6095d ] This check will soon be done on every nested vmentry and vmexit, "parallelize" it using bitwise operations. Reviewed-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
由 WANG Chao 提交于
[ Upstream commit 1811d979c71621aafc7b879477202d286f7e863b ] guest xcr0 could leak into host when MCE happens in guest mode. Because do_machine_check() could schedule out at a few places. For example: kvm_load_guest_xcr0 ... kvm_x86_ops->run(vcpu) { vmx_vcpu_run vmx_complete_atomic_exit kvm_machine_check do_machine_check do_memory_failure memory_failure lock_page In this case, host_xcr0 is 0x2ff, guest vcpu xcr0 is 0xff. After schedule out, host cpu has guest xcr0 loaded (0xff). In __switch_to { switch_fpu_finish copy_kernel_to_fpregs XRSTORS If any bit i in XSTATE_BV[i] == 1 and xcr0[i] == 0, XRSTORS will generate #GP (In this case, bit 9). Then ex_handler_fprestore kicks in and tries to reinitialize fpu by restoring init fpu state. Same story as last #GP, except we get DOUBLE FAULT this time. Cc: stable@vger.kernel.org Signed-off-by: NWANG Chao <chao.wang@ucloud.cn> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
由 Sean Christopherson 提交于
[ Upstream commit 61c08aa9606d4e48a8a50639c956448a720174c3 ] The vCPU-run asm blob does a manual comparison of a VMCS' launched status to execute the correct VM-Enter instruction, i.e. VMLAUNCH vs. VMRESUME. The launched flag is a bool, which is a typedef of _Bool. C99 does not define an exact size for _Bool, stating only that is must be large enough to hold '0' and '1'. Most, if not all, compilers use a single byte for _Bool, including gcc[1]. Originally, 'launched' was of type 'int' and so the asm blob used 'cmpl' to check the launch status. When 'launched' was moved to be stored on a per-VMCS basis, struct vcpu_vmx's "temporary" __launched flag was added in order to avoid having to pass the current VMCS into the asm blob. The new '__launched' was defined as a 'bool' and not an 'int', but the 'cmp' instruction was not updated. This has not caused any known problems, likely due to compilers aligning variables to 4-byte or 8-byte boundaries and KVM zeroing out struct vcpu_vmx during allocation. I.e. vCPU-run accesses "junk" data, it just happens to always be zero and so doesn't affect the result. [1] https://gcc.gnu.org/ml/gcc-patches/2000-10/msg01127.html Fixes: d462b819 ("KVM: VMX: Keep list of loaded VMCSs, instead of vcpus") Cc: <stable@vger.kernel.org> Reviewed-by: NJim Mattson <jmattson@google.com> Reviewed-by: NKonrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
- 16 8月, 2019 1 次提交
-
-
由 Wanpeng Li 提交于
commit 17e433b54393a6269acbcb792da97791fe1592d8 upstream. After commit d73eb57b80b (KVM: Boost vCPUs that are delivering interrupts), a five years old bug is exposed. Running ebizzy benchmark in three 80 vCPUs VMs on one 80 pCPUs Skylake server, a lot of rcu_sched stall warning splatting in the VMs after stress testing: INFO: rcu_sched detected stalls on CPUs/tasks: { 4 41 57 62 77} (detected by 15, t=60004 jiffies, g=899, c=898, q=15073) Call Trace: flush_tlb_mm_range+0x68/0x140 tlb_flush_mmu.part.75+0x37/0xe0 tlb_finish_mmu+0x55/0x60 zap_page_range+0x142/0x190 SyS_madvise+0x3cd/0x9c0 system_call_fastpath+0x1c/0x21 swait_active() sustains to be true before finish_swait() is called in kvm_vcpu_block(), voluntarily preempted vCPUs are taken into account by kvm_vcpu_on_spin() loop greatly increases the probability condition kvm_arch_vcpu_runnable(vcpu) is checked and can be true, when APICv is enabled the yield-candidate vCPU's VMCS RVI field leaks(by vmx_sync_pir_to_irr()) into spinning-on-a-taken-lock vCPU's current VMCS. This patch fixes it by checking conservatively a subset of events. Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Marc Zyngier <Marc.Zyngier@arm.com> Cc: stable@vger.kernel.org Fixes: 98f4a146 (KVM: add kvm_arch_vcpu_runnable() test to kvm_vcpu_on_spin() loop) Signed-off-by: NWanpeng Li <wanpengli@tencent.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 28 7月, 2019 2 次提交
-
-
由 Jan Kiszka 提交于
commit cf64527bb33f6cec2ed50f89182fc4688d0056b6 upstream. Letting this pend may cause nested_get_vmcs12_pages to run against an invalid state, corrupting the effective vmcs of L1. This was triggerable in QEMU after a guest corruption in L2, followed by a L1 reset. Signed-off-by: NJan Kiszka <jan.kiszka@siemens.com> Reviewed-by: NLiran Alon <liran.alon@oracle.com> Cc: stable@vger.kernel.org Fixes: 7f7f1ba3 ("KVM: x86: do not load vmcs12 pages while still in SMM") Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Paolo Bonzini 提交于
commit 88dddc11a8d6b09201b4db9d255b3394d9bc9e57 upstream. If a KVM guest is reset while running a nested guest, free_nested will disable the shadow VMCS execution control in the vmcs01. However, on the next KVM_RUN vmx_vcpu_run would nevertheless try to sync the VMCS12 to the shadow VMCS which has since been freed. This causes a vmptrld of a NULL pointer on my machime, but Jan reports the host to hang altogether. Let's see how much this trivial patch fixes. Reported-by: NJan Kiszka <jan.kiszka@siemens.com> Cc: Liran Alon <liran.alon@oracle.com> Cc: stable@vger.kernel.org Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 15 5月, 2019 2 次提交
-
-
由 Thomas Gleixner 提交于
commit 65fd4cb65b2dad97feb8330b6690445910b56d6a upstream Move L!TF to a separate directory so the MDS stuff can be added at the side. Otherwise the all hardware vulnerabilites have their own top level entry. Should have done that right away. Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Reviewed-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: NJon Masters <jcm@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Thomas Gleixner 提交于
commit 650b68a0622f933444a6d66936abb3103029413b upstream CPUs which are affected by L1TF and MDS mitigate MDS with the L1D Flush on VMENTER when updated microcode is installed. If a CPU is not affected by L1TF or if the L1D Flush is not in use, then MDS mitigation needs to be invoked explicitly. For these cases, follow the host mitigation state and invoke the MDS mitigation before VMENTER. Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Reviewed-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: NFrederic Weisbecker <frederic@kernel.org> Reviewed-by: NBorislav Petkov <bp@suse.de> Reviewed-by: NJon Masters <jcm@redhat.com> Tested-by: NJon Masters <jcm@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 05 5月, 2019 1 次提交
-
-
由 Jim Mattson 提交于
commit e8ab8d24b488632d07ce5ddb261f1d454114415b upstream. The size checks in vmx_nested_state are wrong because the calculations are made based on the size of a pointer to a struct kvm_nested_state rather than the size of a struct kvm_nested_state. Reported-by: NFelix Wilhelm <fwilhelm@google.com> Signed-off-by: NJim Mattson <jmattson@google.com> Reviewed-by: NDrew Schmitt <dasch@google.com> Reviewed-by: NMarc Orr <marcorr@google.com> Reviewed-by: NPeter Shier <pshier@google.com> Reviewed-by: NKrish Sadhukhan <krish.sadhukhan@oracle.com> Fixes: 8fcc4b59 Cc: stable@ver.kernel.org Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 20 4月, 2019 1 次提交
-
-
由 Sean Christopherson 提交于
[ Upstream commit bd18bffca35397214ae68d85cf7203aca25c3c1d ] A VMEnter that VMFails (as opposed to VMExits) does not touch host state beyond registers that are explicitly noted in the VMFail path, e.g. EFLAGS. Host state does not need to be loaded because VMFail is only signaled for consistency checks that occur before the CPU starts to load guest state, i.e. there is no need to restore any state as nothing has been modified. But in the case where a VMFail is detected by hardware and not by KVM (due to deferring consistency checks to hardware), KVM has already loaded some amount of guest state. Luckily, "loaded" only means loaded to KVM's software model, i.e. vmcs01 has not been modified. So, unwind our software model to the pre-VMEntry host state. Not restoring host state in this VMFail path leads to a variety of failures because we end up with stale data in vcpu->arch, e.g. CR0, CR4, EFER, etc... will all be out of sync relative to vmcs01. Any significant delta in the stale data is all but guaranteed to crash L1, e.g. emulation of SMEP, SMAP, UMIP, WP, etc... will be wrong. An alternative to this "soft" reload would be to load host state from vmcs12 as if we triggered a VMExit (as opposed to VMFail), but that is wildly inconsistent with respect to the VMX architecture, e.g. an L1 VMM with separate VMExit and VMFail paths would explode. Note that this approach does not mean KVM is 100% accurate with respect to VMX hardware behavior, even at an architectural level (the exact order of consistency checks is microarchitecture specific). But 100% emulation accuracy isn't the goal (with this patch), rather the goal is to be consistent in the information delivered to L1, e.g. a VMExit should not fall-through VMENTER, and a VMFail should not jump to HOST_RIP. This technically reverts commit "5af41573 (KVM: nVMX: Fix mmu context after VMLAUNCH/VMRESUME failure)", but retains the core aspects of that patch, just in an open coded form due to the need to pull state from vmcs01 instead of vmcs12. Restoring host state resolves a variety of issues introduced by commit "4f350c6d (kvm: nVMX: Handle deferred early VMLAUNCH/VMRESUME failure properly)", which remedied the incorrect behavior of treating VMFail like VMExit but in doing so neglected to restore arch state that had been modified prior to attempting nested VMEnter. A sample failure that occurs due to stale vcpu.arch state is a fault of some form while emulating an LGDT (due to emulated UMIP) from L1 after a failed VMEntry to L3, in this case when running the KVM unit test test_tpr_threshold_values in L1. L0 also hits a WARN in this case due to a stale arch.cr4.UMIP. L1: BUG: unable to handle kernel paging request at ffffc90000663b9e PGD 276512067 P4D 276512067 PUD 276513067 PMD 274efa067 PTE 8000000271de2163 Oops: 0009 [#1] SMP CPU: 5 PID: 12495 Comm: qemu-system-x86 Tainted: G W 4.18.0-rc2+ #2 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 RIP: 0010:native_load_gdt+0x0/0x10 ... Call Trace: load_fixmap_gdt+0x22/0x30 __vmx_load_host_state+0x10e/0x1c0 [kvm_intel] vmx_switch_vmcs+0x2d/0x50 [kvm_intel] nested_vmx_vmexit+0x222/0x9c0 [kvm_intel] vmx_handle_exit+0x246/0x15a0 [kvm_intel] kvm_arch_vcpu_ioctl_run+0x850/0x1830 [kvm] kvm_vcpu_ioctl+0x3a1/0x5c0 [kvm] do_vfs_ioctl+0x9f/0x600 ksys_ioctl+0x66/0x70 __x64_sys_ioctl+0x16/0x20 do_syscall_64+0x4f/0x100 entry_SYSCALL_64_after_hwframe+0x44/0xa9 L0: WARNING: CPU: 2 PID: 3529 at arch/x86/kvm/vmx.c:6618 handle_desc+0x28/0x30 [kvm_intel] ... CPU: 2 PID: 3529 Comm: qemu-system-x86 Not tainted 4.17.2-coffee+ #76 Hardware name: Intel Corporation Kabylake Client platform/KBL S RIP: 0010:handle_desc+0x28/0x30 [kvm_intel] ... Call Trace: kvm_arch_vcpu_ioctl_run+0x863/0x1840 [kvm] kvm_vcpu_ioctl+0x3a1/0x5c0 [kvm] do_vfs_ioctl+0x9f/0x5e0 ksys_ioctl+0x66/0x70 __x64_sys_ioctl+0x16/0x20 do_syscall_64+0x49/0xf0 entry_SYSCALL_64_after_hwframe+0x44/0xa9 Fixes: 5af41573 (KVM: nVMX: Fix mmu context after VMLAUNCH/VMRESUME failure) Fixes: 4f350c6d (kvm: nVMX: Handle deferred early VMLAUNCH/VMRESUME failure properly) Cc: Jim Mattson <jmattson@google.com> Cc: Krish Sadhukhan <krish.sadhukhan@oracle.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim KrÄmář <rkrcmar@redhat.com> Cc: Wanpeng Li <wanpeng.li@hotmail.com> Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
- 17 4月, 2019 3 次提交
-
-
由 Marc Orr 提交于
commit c73f4c998e1fd4249b9edfa39e23f4fda2b9b041 upstream. Referring to the "VIRTUALIZING MSR-BASED APIC ACCESSES" chapter of the SDM, when "virtualize x2APIC mode" is 1 and "APIC-register virtualization" is 0, a RDMSR of 808H should return the VTPR from the virtual APIC page. However, for nested, KVM currently fails to disable the read intercept for this MSR. This means that a RDMSR exit takes precedence over "virtualize x2APIC mode", and KVM passes through L1's TPR to L2, instead of sourcing the value from L2's virtual APIC page. This patch fixes the issue by disabling the read intercept, in VMCS02, for the VTPR when "APIC-register virtualization" is 0. The issue described above and fix prescribed here, were verified with a related patch in kvm-unit-tests titled "Test VMX's virtualize x2APIC mode w/ nested". Signed-off-by: NMarc Orr <marcorr@google.com> Reviewed-by: NJim Mattson <jmattson@google.com> Fixes: c992384b ("KVM: vmx: speed up MSR bitmap merge") Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Marc Orr 提交于
commit acff78477b9b4f26ecdf65733a4ed77fe837e9dc upstream. The nested_vmx_prepare_msr_bitmap() function doesn't directly guard the x2APIC MSR intercepts with the "virtualize x2APIC mode" MSR. As a result, we discovered the potential for a buggy or malicious L1 to get access to L0's x2APIC MSRs, via an L2, as follows. 1. L1 executes WRMSR(IA32_SPEC_CTRL, 1). This causes the spec_ctrl variable, in nested_vmx_prepare_msr_bitmap() to become true. 2. L1 disables "virtualize x2APIC mode" in VMCS12. 3. L1 enables "APIC-register virtualization" in VMCS12. Now, KVM will set VMCS02's x2APIC MSR intercepts from VMCS12, and then set "virtualize x2APIC mode" to 0 in VMCS02. Oops. This patch closes the leak by explicitly guarding VMCS02's x2APIC MSR intercepts with VMCS12's "virtualize x2APIC mode" control. The scenario outlined above and fix prescribed here, were verified with a related patch in kvm-unit-tests titled "Add leak scenario to virt_x2apic_mode_test". Note, it looks like this issue may have been introduced inadvertently during a merge---see 15303ba5. Signed-off-by: NMarc Orr <marcorr@google.com> Reviewed-by: NJim Mattson <jmattson@google.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Jim Mattson 提交于
[ Upstream commit 9ebdfe5230f2e50e3ba05c57723a06e90946815a ] According to the SDM, "NMI-window exiting" VM-exits wake a logical processor from the same inactive states as would an NMI and "interrupt-window exiting" VM-exits wake a logical processor from the same inactive states as would an external interrupt. Specifically, they wake a logical processor from the shutdown state and from the states entered using the HLT and MWAIT instructions. Fixes: 6dfacadd ("KVM: nVMX: Add support for activity state HLT") Signed-off-by: NJim Mattson <jmattson@google.com> Reviewed-by: NPeter Shier <pshier@google.com> Suggested-by: NSean Christopherson <sean.j.christopherson@intel.com> [Squashed comments of two Jim's patches and used the simplified code hunk provided by Sean. - Radim] Signed-off-by: NRadim Krčmář <rkrcmar@redhat.com> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
- 03 4月, 2019 1 次提交
-
-
由 Sean Christopherson 提交于
commit 0cf9135b773bf32fba9dd8e6699c1b331ee4b749 upstream. The CPUID flag ARCH_CAPABILITIES is unconditioinally exposed to host userspace for all x86 hosts, i.e. KVM advertises ARCH_CAPABILITIES regardless of hardware support under the pretense that KVM fully emulates MSR_IA32_ARCH_CAPABILITIES. Unfortunately, only VMX hosts handle accesses to MSR_IA32_ARCH_CAPABILITIES (despite KVM_GET_MSRS also reporting MSR_IA32_ARCH_CAPABILITIES for all hosts). Move the MSR_IA32_ARCH_CAPABILITIES handling to common x86 code so that it's emulated on AMD hosts. Fixes: 1eaafe91 ("kvm: x86: IA32_ARCH_CAPABILITIES is always supported") Cc: stable@vger.kernel.org Reported-by: NXiaoyao Li <xiaoyao.li@linux.intel.com> Cc: Jim Mattson <jmattson@google.com> Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 24 3月, 2019 3 次提交
-
-
由 Sean Christopherson 提交于
commit 34333cc6c2cb021662fd32e24e618d1b86de95bf upstream. Regarding segments with a limit==0xffffffff, the SDM officially states: When the effective limit is FFFFFFFFH (4 GBytes), these accesses may or may not cause the indicated exceptions. Behavior is implementation-specific and may vary from one execution to another. In practice, all CPUs that support VMX ignore limit checks for "flat segments", i.e. an expand-up data or code segment with base=0 and limit=0xffffffff. This is subtly different than wrapping the effective address calculation based on the address size, as the flat segment behavior also applies to accesses that would wrap the 4g boundary, e.g. a 4-byte access starting at 0xffffffff will access linear addresses 0xffffffff, 0x0, 0x1 and 0x2. Fixes: f9eb4af6 ("KVM: nVMX: VMX instructions: add checks for #GP/#SS exceptions") Cc: stable@vger.kernel.org Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Sean Christopherson 提交于
commit 8570f9e881e3fde98801bb3a47eef84dd934d405 upstream. The address size of an instruction affects the effective address, not the virtual/linear address. The final address may still be truncated, e.g. to 32-bits outside of long mode, but that happens irrespective of the address size, e.g. a 32-bit address size can yield a 64-bit virtual address when using FS/GS with a non-zero base. Fixes: 064aea77 ("KVM: nVMX: Decoding memory operands of VMX instructions") Cc: stable@vger.kernel.org Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Sean Christopherson 提交于
commit 946c522b603f281195af1df91837a1d4d1eb3bc9 upstream. The VMCS.EXIT_QUALIFCATION field reports the displacements of memory operands for various instructions, including VMX instructions, as a naturally sized unsigned value, but masks the value by the addr size, e.g. given a ModRM encoded as -0x28(%ebp), the -0x28 displacement is reported as 0xffffffd8 for a 32-bit address size. Despite some weird wording regarding sign extension, the SDM explicitly states that bits beyond the instructions address size are undefined: In all cases, bits of this field beyond the instruction’s address size are undefined. Failure to sign extend the displacement results in KVM incorrectly treating a negative displacement as a large positive displacement when the address size of the VMX instruction is smaller than KVM's native size, e.g. a 32-bit address size on a 64-bit KVM. The very original decoding, added by commit 064aea77 ("KVM: nVMX: Decoding memory operands of VMX instructions"), sort of modeled sign extension by truncating the final virtual/linear address for a 32-bit address size. I.e. it messed up the effective address but made it work by adjusting the final address. When segmentation checks were added, the truncation logic was kept as-is and no sign extension logic was introduced. In other words, it kept calculating the wrong effective address while mostly generating the correct virtual/linear address. As the effective address is what's used in the segment limit checks, this results in KVM incorreclty injecting #GP/#SS faults due to non-existent segment violations when a nested VMM uses negative displacements with an address size smaller than KVM's native address size. Using the -0x28(%ebp) example, an EBP value of 0x1000 will result in KVM using 0x100000fd8 as the effective address when checking for a segment limit violation. This causes a 100% failure rate when running a 32-bit KVM build as L1 on top of a 64-bit KVM L0. Fixes: f9eb4af6 ("KVM: nVMX: VMX instructions: add checks for #GP/#SS exceptions") Cc: stable@vger.kernel.org Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 20 2月, 2019 2 次提交
-
-
由 Xiaoyao Li 提交于
commit 98ae70cc476e833332a2c6bb72f941a25f0de226 upstream. Commit ca83b4a7 ("x86/KVM/VMX: Add find_msr() helper function") introduces the helper function find_msr(), which returns -ENOENT when not find the msr in vmx->msr_autoload.guest/host. Correct checking contion of no more available entry in vmx->msr_autoload. Fixes: ca83b4a7 ("x86/KVM/VMX: Add find_msr() helper function") Cc: stable@vger.kernel.org Signed-off-by: NXiaoyao Li <xiaoyao.li@linux.intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Vitaly Kuznetsov 提交于
commit 6b1971c694975e49af302229202c0043568b1791 upstream. SDM says MSR_IA32_VMX_PROCBASED_CTLS2 is only available "If (CPUID.01H:ECX.[5] && IA32_VMX_PROCBASED_CTLS[63])". It was found that some old cpus (namely "Intel(R) Core(TM)2 CPU 6600 @ 2.40GHz (family: 0x6, model: 0xf, stepping: 0x6") don't have it. Add the missing check. Reported-by: NZdenek Kaspar <zkaspar82@gmail.com> Tested-by: NZdenek Kaspar <zkaspar82@gmail.com> Signed-off-by: NVitaly Kuznetsov <vkuznets@redhat.com> Reviewed-by: NJim Mattson <jmattson@google.com> Cc: stable@vger.kernel.org Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 13 2月, 2019 2 次提交
-
-
由 Josh Poimboeuf 提交于
commit b284909abad48b07d3071a9fc9b5692b3e64914b upstream. With the following commit: 73d5e2b4 ("cpu/hotplug: detect SMT disabled by BIOS") ... the hotplug code attempted to detect when SMT was disabled by BIOS, in which case it reported SMT as permanently disabled. However, that code broke a virt hotplug scenario, where the guest is booted with only primary CPU threads, and a sibling is brought online later. The problem is that there doesn't seem to be a way to reliably distinguish between the HW "SMT disabled by BIOS" case and the virt "sibling not yet brought online" case. So the above-mentioned commit was a bit misguided, as it permanently disabled SMT for both cases, preventing future virt sibling hotplugs. Going back and reviewing the original problems which were attempted to be solved by that commit, when SMT was disabled in BIOS: 1) /sys/devices/system/cpu/smt/control showed "on" instead of "notsupported"; and 2) vmx_vm_init() was incorrectly showing the L1TF_MSG_SMT warning. I'd propose that we instead consider #1 above to not actually be a problem. Because, at least in the virt case, it's possible that SMT wasn't disabled by BIOS and a sibling thread could be brought online later. So it makes sense to just always default the smt control to "on" to allow for that possibility (assuming cpuid indicates that the CPU supports SMT). The real problem is #2, which has a simple fix: change vmx_vm_init() to query the actual current SMT state -- i.e., whether any siblings are currently online -- instead of looking at the SMT "control" sysfs value. So fix it by: a) reverting the original "fix" and its followup fix: 73d5e2b4 ("cpu/hotplug: detect SMT disabled by BIOS") bc2d8d26 ("cpu/hotplug: Fix SMT supported evaluation") and b) changing vmx_vm_init() to query the actual current SMT state -- instead of the sysfs control value -- to determine whether the L1TF warning is needed. This also requires the 'sched_smt_present' variable to exported, instead of 'cpu_smt_control'. Fixes: 73d5e2b4 ("cpu/hotplug: detect SMT disabled by BIOS") Reported-by: NIgor Mammedov <imammedo@redhat.com> Signed-off-by: NJosh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: Joe Mario <jmario@redhat.com> Cc: Jiri Kosina <jikos@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: kvm@vger.kernel.org Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/e3a85d585da28cc333ecbc1e78ee9216e6da9396.1548794349.git.jpoimboe@redhat.comSigned-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Peter Shier 提交于
commit ecec76885bcfe3294685dc363fd1273df0d5d65f upstream. Bugzilla: 1671904 There are multiple code paths where an hrtimer may have been started to emulate an L1 VMX preemption timer that can result in a call to free_nested without an intervening L2 exit where the hrtimer is normally cancelled. Unconditionally cancel in free_nested to cover all cases. Embargoed until Feb 7th 2019. Signed-off-by: NPeter Shier <pshier@google.com> Reported-by: NJim Mattson <jmattson@google.com> Reviewed-by: NJim Mattson <jmattson@google.com> Reported-by: NFelix Wilhelm <fwilhelm@google.com> Cc: stable@kernel.org Message-Id: <20181011184646.154065-1-pshier@google.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 31 1月, 2019 2 次提交
-
-
由 KarimAllah Ahmed 提交于
commit 22a7cdcae6a4a3c8974899e62851d270956f58ce upstream. The spec only requires the posted interrupt descriptor address to be 64-bytes aligned (i.e. bits[0:5] == 0). Using page_address_valid also forces the address to be page aligned. Only validate that the address does not cross the maximum physical address without enforcing a page alignment. Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: x86@kernel.org Cc: kvm@vger.kernel.org Cc: linux-kernel@vger.kernel.org Fixes: 6de84e58 ("nVMX x86: check posted-interrupt descriptor addresss on vmentry of L2") Signed-off-by: NKarimAllah Ahmed <karahmed@amazon.de> Reviewed-by: NJim Mattson <jmattson@google.com> Reviewed-by: NKrish Sadhuhan <krish.sadhukhan@oracle.com> Signed-off-by: NRadim Krčmář <rkrcmar@redhat.com> From: Mark Mielke <mark.mielke@gmail.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Tom Roeder 提交于
commit 3a33d030daaa7c507e1c12d5adcf828248429593 upstream. This changes the allocation of cached_vmcs12 to use kzalloc instead of kmalloc. This removes the information leak found by Syzkaller (see Reported-by) in this case and prevents similar leaks from happening based on cached_vmcs12. It also changes vmx_get_nested_state to copy out the full 4k VMCS12_SIZE in copy_to_user rather than only the size of the struct. Tested: rebuilt against head, booted, and ran the syszkaller repro https://syzkaller.appspot.com/text?tag=ReproC&x=174efca3400000 without observing any problems. Reported-by: syzbot+ded1696f6b50b615b630@syzkaller.appspotmail.com Fixes: 8fcc4b59 Cc: stable@vger.kernel.org Signed-off-by: NTom Roeder <tmroeder@google.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 10 1月, 2019 1 次提交
-
-
由 Sean Christopherson 提交于
commit 1b3ab5ad1b8ad99bae76ec583809c5f5a31c707c upstream. Fixes: 34a1cd60 ("kvm: x86: vmx: move some vmx setting from vmx_init() to hardware_setup()") Cc: stable@vger.kernel.org Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 29 12月, 2018 1 次提交
-
-
由 Cfir Cohen 提交于
commit c2dd5146e9fe1f22c77c1b011adf84eea0245806 upstream. nested_get_vmcs12_pages() processes the posted_intr address in vmcs12. It caches the kmap()ed page object and pointer, however, it doesn't handle errors correctly: it's possible to cache a valid pointer, then release the page and later dereference the dangling pointer. I was able to reproduce with the following steps: 1. Call vmlaunch with valid posted_intr_desc_addr but an invalid MSR_EFER. This causes nested_get_vmcs12_pages() to cache the kmap()ed pi_desc_page and pi_desc. Later the invalid EFER value fails check_vmentry_postreqs() which fails the first vmlaunch. 2. Call vmlanuch with a valid EFER but an invalid posted_intr_desc_addr (I set it to 2G - 0x80). The second time we call nested_get_vmcs12_pages pi_desc_page is unmapped and released and pi_desc_page is set to NULL (the "shouldn't happen" clause). Due to the invalid posted_intr_desc_addr, kvm_vcpu_gpa_to_page() fails and nested_get_vmcs12_pages() returns. It doesn't return an error value so vmlaunch proceeds. Note that at this time we have a dangling pointer in vmx->nested.pi_desc and POSTED_INTR_DESC_ADDR in L0's vmcs. 3. Issue an IPI in L2 guest code. This triggers a call to vmx_complete_nested_posted_interrupt() and pi_test_and_clear_on() which dereferences the dangling pointer. Vulnerable code requires nested and enable_apicv variables to be set to true. The host CPU must also support posted interrupts. Fixes: 5e2f30b7 "KVM: nVMX: get rid of nested_get_page()" Cc: stable@vger.kernel.org Reviewed-by: NAndy Honig <ahonig@google.com> Signed-off-by: NCfir Cohen <cfir@google.com> Reviewed-by: NLiran Alon <liran.alon@oracle.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 17 12月, 2018 2 次提交
-
-
由 Yi Wang 提交于
[ Upstream commit 1e4329ee ] The inline keyword which is not at the beginning of the function declaration may trigger the following build warnings, so let's fix it: arch/x86/kvm/vmx.c:1309:1: warning: ‘inline’ is not at beginning of declaration [-Wold-style-declaration] arch/x86/kvm/vmx.c:5947:1: warning: ‘inline’ is not at beginning of declaration [-Wold-style-declaration] arch/x86/kvm/vmx.c:5985:1: warning: ‘inline’ is not at beginning of declaration [-Wold-style-declaration] arch/x86/kvm/vmx.c:6023:1: warning: ‘inline’ is not at beginning of declaration [-Wold-style-declaration] Signed-off-by: NYi Wang <wang.yi59@zte.com.cn> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
由 Liran Alon 提交于
[ Upstream commit f48b4711 ] When guest transitions from/to long-mode by modifying MSR_EFER.LMA, the list of shared MSRs to be saved/restored on guest<->host transitions is updated (See vmx_set_efer() call to setup_msrs()). On every entry to guest, vcpu_enter_guest() calls vmx_prepare_switch_to_guest(). This function should also take care of setting the shared MSRs to be saved/restored. However, the function does nothing in case we are already running with loaded guest state (vmx->loaded_cpu_state != NULL). This means that even when guest modifies MSR_EFER.LMA which results in updating the list of shared MSRs, it isn't being taken into account by vmx_prepare_switch_to_guest() because it happens while we are running with loaded guest state. To fix above mentioned issue, add a flag to mark that the list of shared MSRs has been updated and modify vmx_prepare_switch_to_guest() to set shared MSRs when running with host state *OR* list of shared MSRs has been updated. Note that this issue was mistakenly introduced by commit 678e315e ("KVM: vmx: add dedicated utility to access guest's kernel_gs_base") because previously vmx_set_efer() always called vmx_load_host_state() which resulted in vmx_prepare_switch_to_guest() to set shared MSRs. Fixes: 678e315e ("KVM: vmx: add dedicated utility to access guest's kernel_gs_base") Reported-by: NEyal Moscovici <eyal.moscovici@oracle.com> Reviewed-by: NMihai Carabas <mihai.carabas@oracle.com> Reviewed-by: NLiam Merwick <liam.merwick@oracle.com> Reviewed-by: NJim Mattson <jmattson@google.com> Signed-off-by: NLiran Alon <liran.alon@oracle.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
- 06 12月, 2018 2 次提交
-
-
由 Luiz Capitulino 提交于
commit a87c99e61236ba8ca962ce97a19fab5ebd588d35 upstream. Apparently, the ple_gap parameter was accidentally removed by commit c8e88717. Add it back. Signed-off-by: NLuiz Capitulino <lcapitulino@redhat.com> Cc: stable@vger.kernel.org Fixes: c8e88717Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Leonid Shatz 提交于
commit 326e7425 upstream. Since commit e79f245d ("X86/KVM: Properly update 'tsc_offset' to represent the running guest"), vcpu->arch.tsc_offset meaning was changed to always reflect the tsc_offset value set on active VMCS. Regardless if vCPU is currently running L1 or L2. However, above mentioned commit failed to also change kvm_vcpu_write_tsc_offset() to set vcpu->arch.tsc_offset correctly. This is because vmx_write_tsc_offset() could set the tsc_offset value in active VMCS to given offset parameter *plus vmcs12->tsc_offset*. However, kvm_vcpu_write_tsc_offset() just sets vcpu->arch.tsc_offset to given offset parameter. Without taking into account the possible addition of vmcs12->tsc_offset. (Same is true for SVM case). Fix this issue by changing kvm_x86_ops->write_tsc_offset() to return actually set tsc_offset in active VMCS and modify kvm_vcpu_write_tsc_offset() to set returned value in vcpu->arch.tsc_offset. In addition, rename write_tsc_offset() callback to write_l1_tsc_offset() to make it clear that it is meant to set L1 TSC offset. Fixes: e79f245d ("X86/KVM: Properly update 'tsc_offset' to represent the running guest") Reviewed-by: NLiran Alon <liran.alon@oracle.com> Reviewed-by: NMihai Carabas <mihai.carabas@oracle.com> Reviewed-by: NKrish Sadhukhan <krish.sadhukhan@oracle.com> Signed-off-by: NLeonid Shatz <leonid.shatz@oracle.com> Cc: stable@vger.kernel.org Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-