- 29 9月, 2019 1 次提交
-
-
由 Hui Zhu 提交于
commit c165f25d23ecb2f9f121ced20435415b931219e2 upstream As a zpool_driver, zsmalloc can allocate movable memory because it support migate pages. But zbud and z3fold cannot allocate movable memory. Add malloc_support_movable to zpool_driver. If a zpool_driver support allocate movable memory, set it to true. And add zpool_malloc_support_movable check malloc_support_movable to make sure if a zpool support allocate movable memory. Link: http://lkml.kernel.org/r/20190605100630.13293-1-teawaterz@linux.alibaba.comSigned-off-by: NHui Zhu <teawaterz@linux.alibaba.com> Reviewed-by: NShakeel Butt <shakeelb@google.com> Cc: Dan Streetman <ddstreet@ieee.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com> Cc: Seth Jennings <sjenning@redhat.com> Cc: Vitaly Wool <vitalywool@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Reviewed-by: NYang Shi <yang.shi@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
- 19 8月, 2019 2 次提交
-
-
由 Dave Chinner 提交于
commit 64081362e8ff4587b4554087f3cfc73d3e0a4cd7 upstream. We've recently seen a workload on XFS filesystems with a repeatable deadlock between background writeback and a multi-process application doing concurrent writes and fsyncs to a small range of a file. range_cyclic writeback Process 1 Process 2 xfs_vm_writepages write_cache_pages writeback_index = 2 cycled = 0 .... find page 2 dirty lock Page 2 ->writepage page 2 writeback page 2 clean page 2 added to bio no more pages write() locks page 1 dirties page 1 locks page 2 dirties page 1 fsync() .... xfs_vm_writepages write_cache_pages start index 0 find page 1 towrite lock Page 1 ->writepage page 1 writeback page 1 clean page 1 added to bio find page 2 towrite lock Page 2 page 2 is writeback <blocks> write() locks page 1 dirties page 1 fsync() .... xfs_vm_writepages write_cache_pages start index 0 !done && !cycled sets index to 0, restarts lookup find page 1 dirty find page 1 towrite lock Page 1 page 1 is writeback <blocks> lock Page 1 <blocks> DEADLOCK because: - process 1 needs page 2 writeback to complete to make enough progress to issue IO pending for page 1 - writeback needs page 1 writeback to complete so process 2 can progress and unlock the page it is blocked on, then it can issue the IO pending for page 2 - process 2 can't make progress until process 1 issues IO for page 1 The underlying cause of the problem here is that range_cyclic writeback is processing pages in descending index order as we hold higher index pages in a structure controlled from above write_cache_pages(). The write_cache_pages() caller needs to be able to submit these pages for IO before write_cache_pages restarts writeback at mapping index 0 to avoid wcp inverting the page lock/writeback wait order. generic_writepages() is not susceptible to this bug as it has no private context held across write_cache_pages() - filesystems using this infrastructure always submit pages in ->writepage immediately and so there is no problem with range_cyclic going back to mapping index 0. However: mpage_writepages() has a private bio context, exofs_writepages() has page_collect fuse_writepages() has fuse_fill_wb_data nfs_writepages() has nfs_pageio_descriptor xfs_vm_writepages() has xfs_writepage_ctx All of these ->writepages implementations can hold pages under writeback in their private structures until write_cache_pages() returns, and hence they are all susceptible to this deadlock. Also worth noting is that ext4 has it's own bastardised version of write_cache_pages() and so it /may/ have an equivalent deadlock. I looked at the code long enough to understand that it has a similar retry loop for range_cyclic writeback reaching the end of the file and then promptly ran away before my eyes bled too much. I'll leave it for the ext4 developers to determine if their code is actually has this deadlock and how to fix it if it has. There's a few ways I can see avoid this deadlock. There's probably more, but these are the first I've though of: 1. get rid of range_cyclic altogether 2. range_cyclic always stops at EOF, and we start again from writeback index 0 on the next call into write_cache_pages() 2a. wcp also returns EAGAIN to ->writepages implementations to indicate range cyclic has hit EOF. writepages implementations can then flush the current context and call wpc again to continue. i.e. lift the retry into the ->writepages implementation 3. range_cyclic uses trylock_page() rather than lock_page(), and it skips pages it can't lock without blocking. It will already do this for pages under writeback, so this seems like a no-brainer 3a. all non-WB_SYNC_ALL writeback uses trylock_page() to avoid blocking as per pages under writeback. I don't think #1 is an option - range_cyclic prevents frequently dirtied lower file offset from starving background writeback of rarely touched higher file offsets. performance as going back to the start of the file implies an immediate seek. We'll have exactly the same number of seeks if we switch writeback to another inode, and then come back to this one later and restart from index 0. retry loop up into the wcp caller means we can issue IO on the pending pages before calling wcp again, and so avoid locking or waiting on pages in the wrong order. I'm not convinced we need to do this given that we get the same thing from #2 on the next writeback call from the writeback infrastructure. inversion problem, just prevents it from becoming a deadlock situation. I'd prefer we fix the inversion, not sweep it under the carpet like this. band-aid fix of #3. So it seems that the simplest way to fix this issue is to implement solution #2 Link: http://lkml.kernel.org/r/20181005054526.21507-1-david@fromorbit.comSigned-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NJan Kara <jack@suse.de> Cc: Nicholas Piggin <npiggin@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NJoseph Qi <joseph.qi@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
由 Andrea Arcangeli 提交于
commit 3b9aadf7278d16d7bed4d5d808501065f70898d8 upstream. get_mempolicy(MPOL_F_NODE|MPOL_F_ADDR) called a get_user_pages that would not be waiting for userfaults before failing and it would hit on a SIGBUS instead. Using get_user_pages_locked/unlocked instead will allow get_mempolicy to allow userfaults to resolve the fault and fill the hole, before grabbing the node id of the page. If the user calls get_mempolicy() with MPOL_F_ADDR | MPOL_F_NODE for an address inside an area managed by uffd and there is no page at that address, the page allocation from within get_mempolicy() will fail because get_user_pages() does not allow for page fault retry required for uffd; the user will get SIGBUS. With this patch, the page fault will be resolved by the uffd and the get_mempolicy() will continue normally. Background: Via code review, previously the syscall would have returned -EFAULT (vm_fault_to_errno), now it will block and wait for an userfault (if it's waken before the fault is resolved it'll still -EFAULT). This way get_mempolicy will give a chance to an "unaware" app to be compliant with userfaults. The reason this visible change is that becoming "userfault compliant" cannot regress anything: all other syscalls including read(2)/write(2) had to become "userfault compliant" long time ago (that's one of the things userfaultfd can do that PROT_NONE and trapping segfaults can't). So this is just one more syscall that become "userfault compliant" like all other major ones already were. This has been happening on virtio-bridge dpdk process which just called get_mempolicy on the guest space post live migration, but before the memory had a chance to be migrated to destination. I didn't run an strace to be able to show the -EFAULT going away, but I've the confirmation of the below debug aid information (only visible with CONFIG_DEBUG_VM=y) going away with the patch: [20116.371461] FAULT_FLAG_ALLOW_RETRY missing 0 [20116.371464] CPU: 1 PID: 13381 Comm: vhost-events Not tainted 4.17.12-200.fc28.x86_64 #1 [20116.371465] Hardware name: LENOVO 20FAS2BN0A/20FAS2BN0A, BIOS N1CET54W (1.22 ) 02/10/2017 [20116.371466] Call Trace: [20116.371473] dump_stack+0x5c/0x80 [20116.371476] handle_userfault.cold.37+0x1b/0x22 [20116.371479] ? remove_wait_queue+0x20/0x60 [20116.371481] ? poll_freewait+0x45/0xa0 [20116.371483] ? do_sys_poll+0x31c/0x520 [20116.371485] ? radix_tree_lookup_slot+0x1e/0x50 [20116.371488] shmem_getpage_gfp+0xce7/0xe50 [20116.371491] ? page_add_file_rmap+0x1a/0x2c0 [20116.371493] shmem_fault+0x78/0x1e0 [20116.371495] ? filemap_map_pages+0x3a1/0x450 [20116.371498] __do_fault+0x1f/0xc0 [20116.371500] __handle_mm_fault+0xe2e/0x12f0 [20116.371502] handle_mm_fault+0xda/0x200 [20116.371504] __get_user_pages+0x238/0x790 [20116.371506] get_user_pages+0x3e/0x50 [20116.371510] kernel_get_mempolicy+0x40b/0x700 [20116.371512] ? vfs_write+0x170/0x1a0 [20116.371515] __x64_sys_get_mempolicy+0x21/0x30 [20116.371517] do_syscall_64+0x5b/0x160 [20116.371520] entry_SYSCALL_64_after_hwframe+0x44/0xa9 The above harmless debug message (not a kernel crash, just a dump_stack()) is shown with CONFIG_DEBUG_VM=y to more quickly identify and improve kernel spots that may have to become "userfaultfd compliant" like this one (without having to run an strace and search for syscall misbehavior). Spots like the above are more closer to a kernel bug for the non-cooperative usages that Mike focuses on, than for for dpdk qemu-cooperative usages that reproduced it, but it's still nicer to get this fixed for dpdk too. The part of the patch that caused me to think is only the implementation issue of mpol_get, but it looks like it should work safe no matter the kind of mempolicy structure that is (the default static policy also starts at 1 so it'll go to 2 and back to 1 without crashing everything at 0). [rppt@linux.vnet.ibm.com: changelog addition] http://lkml.kernel.org/r/20180904073718.GA26916@rapoport-lnx Link: http://lkml.kernel.org/r/20180831214848.23676-1-aarcange@redhat.comSigned-off-by: NAndrea Arcangeli <aarcange@redhat.com> Reported-by: NMaxime Coquelin <maxime.coquelin@redhat.com> Tested-by: NDr. David Alan Gilbert <dgilbert@redhat.com> Reviewed-by: NMike Rapoport <rppt@linux.vnet.ibm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NShile Zhang <shile.zhang@linux.alibaba.com> Acked-by: NJoseph Qi <joseph.qi@linux.alibaba.com>
-
- 17 8月, 2019 10 次提交
-
-
由 Johannes Weiner 提交于
commit eb414681d5a07d28d2ff90dc05f69ec6b232ebd2 upstream. When systems are overcommitted and resources become contended, it's hard to tell exactly the impact this has on workload productivity, or how close the system is to lockups and OOM kills. In particular, when machines work multiple jobs concurrently, the impact of overcommit in terms of latency and throughput on the individual job can be enormous. In order to maximize hardware utilization without sacrificing individual job health or risk complete machine lockups, this patch implements a way to quantify resource pressure in the system. A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that expose the percentage of time the system is stalled on CPU, memory, or IO, respectively. Stall states are aggregate versions of the per-task delay accounting delays: cpu: some tasks are runnable but not executing on a CPU memory: tasks are reclaiming, or waiting for swapin or thrashing cache io: tasks are waiting for io completions These percentages of walltime can be thought of as pressure percentages, and they give a general sense of system health and productivity loss incurred by resource overcommit. They can also indicate when the system is approaching lockup scenarios and OOMs. To do this, psi keeps track of the task states associated with each CPU and samples the time they spend in stall states. Every 2 seconds, the samples are averaged across CPUs - weighted by the CPUs' non-idle time to eliminate artifacts from unused CPUs - and translated into percentages of walltime. A running average of those percentages is maintained over 10s, 1m, and 5m periods (similar to the loadaverage). [hannes@cmpxchg.org: doc fixlet, per Randy] Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org [hannes@cmpxchg.org: code optimization] Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org [hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter] Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org [hannes@cmpxchg.org: fix build] Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.orgSigned-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Tested-by: NDaniel Drake <drake@endlessm.com> Tested-by: NSuren Baghdasaryan <surenb@google.com> Cc: Christopher Lameter <cl@linux.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Johannes Weiner <jweiner@fb.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Enderborg <peter.enderborg@sony.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vinayak Menon <vinmenon@codeaurora.org> Cc: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> [Joseph: fix apply conflicts in task_struct] Signed-off-by: NJoseph Qi <joseph.qi@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
由 Johannes Weiner 提交于
commit b1d29ba82cf2bc784f4c963ddd6a2cf29e229b33 upstream. Delay accounting already measures the time a task spends in direct reclaim and waiting for swapin, but in low memory situations tasks spend can spend a significant amount of their time waiting on thrashing page cache. This isn't tracked right now. To know the full impact of memory contention on an individual task, measure the delay when waiting for a recently evicted active cache page to read back into memory. Also update tools/accounting/getdelays.c: [hannes@computer accounting]$ sudo ./getdelays -d -p 1 print delayacct stats ON PID 1 CPU count real total virtual total delay total delay average 50318 745000000 847346785 400533713 0.008ms IO count delay total delay average 435 122601218 0ms SWAP count delay total delay average 0 0 0ms RECLAIM count delay total delay average 0 0 0ms THRASHING count delay total delay average 19 12621439 0ms Link: http://lkml.kernel.org/r/20180828172258.3185-4-hannes@cmpxchg.orgSigned-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Tested-by: NDaniel Drake <drake@endlessm.com> Tested-by: NSuren Baghdasaryan <surenb@google.com> Cc: Christopher Lameter <cl@linux.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Johannes Weiner <jweiner@fb.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Enderborg <peter.enderborg@sony.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vinayak Menon <vinmenon@codeaurora.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NJoseph Qi <joseph.qi@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
由 Johannes Weiner 提交于
commit 1899ad18c6072d689896badafb81267b0a1092a4 upstream. Refaults happen during transitions between workingsets as well as in-place thrashing. Knowing the difference between the two has a range of applications, including measuring the impact of memory shortage on the system performance, as well as the ability to smarter balance pressure between the filesystem cache and the swap-backed workingset. During workingset transitions, inactive cache refaults and pushes out established active cache. When that active cache isn't stale, however, and also ends up refaulting, that's bonafide thrashing. Introduce a new page flag that tells on eviction whether the page has been active or not in its lifetime. This bit is then stored in the shadow entry, to classify refaults as transitioning or thrashing. How many page->flags does this leave us with on 32-bit? 20 bits are always page flags 21 if you have an MMU 23 with the zone bits for DMA, Normal, HighMem, Movable 29 with the sparsemem section bits 30 if PAE is enabled 31 with this patch. So on 32-bit PAE, that leaves 1 bit for distinguishing two NUMA nodes. If that's not enough, the system can switch to discontigmem and re-gain the 6 or 7 sparsemem section bits. Link: http://lkml.kernel.org/r/20180828172258.3185-3-hannes@cmpxchg.orgSigned-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Tested-by: NDaniel Drake <drake@endlessm.com> Tested-by: NSuren Baghdasaryan <surenb@google.com> Cc: Christopher Lameter <cl@linux.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Johannes Weiner <jweiner@fb.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Enderborg <peter.enderborg@sony.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vinayak Menon <vinmenon@codeaurora.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NJoseph Qi <joseph.qi@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
由 Johannes Weiner 提交于
commit 95f9ab2d596e8cbb388315e78c82b9a131bf2928 upstream. Patch series "psi: pressure stall information for CPU, memory, and IO", v4. Overview PSI reports the overall wallclock time in which the tasks in a system (or cgroup) wait for (contended) hardware resources. This helps users understand the resource pressure their workloads are under, which allows them to rootcause and fix throughput and latency problems caused by overcommitting, underprovisioning, suboptimal job placement in a grid; as well as anticipate major disruptions like OOM. Real-world applications We're using the data collected by PSI (and its previous incarnation, memdelay) quite extensively at Facebook, and with several success stories. One usecase is avoiding OOM hangs/livelocks. The reason these happen is because the OOM killer is triggered by reclaim not being able to free pages, but with fast flash devices there is *always* some clean and uptodate cache to reclaim; the OOM killer never kicks in, even as tasks spend 90% of the time thrashing the cache pages of their own executables. There is no situation where this ever makes sense in practice. We wrote a <100 line POC python script to monitor memory pressure and kill stuff way before such pathological thrashing leads to full system losses that would require forcible hard resets. We've since extended and deployed this code into other places to guarantee latency and throughput SLAs, since they're usually violated way before the kernel OOM killer would ever kick in. It is available here: https://github.com/facebookincubator/oomd Eventually we probably want to trigger the in-kernel OOM killer based on extreme sustained pressure as well, so that Linux can avoid memory livelocks - which technically aren't deadlocks, but to the user indistinguishable from them - out of the box. We'd continue using OOMD as the first line of defense to ensure workload health and implement complex kill policies that are beyond the scope of the kernel. We also use PSI memory pressure for loadshedding. Our batch job infrastructure used to use heuristics based on various VM stats to anticipate OOM situations, with lackluster success. We switched it to PSI and managed to anticipate and avoid OOM kills and lockups fairly reliably. The reduction of OOM outages in the worker pool raised the pool's aggregate productivity, and we were able to switch that service to smaller machines. Lastly, we use cgroups to isolate a machine's main workload from maintenance crap like package upgrades, logging, configuration, as well as to prevent multiple workloads on a machine from stepping on each others' toes. We were not able to configure this properly without the pressure metrics; we would see latency or bandwidth drops, but it would often be hard to impossible to rootcause it post-mortem. We now log and graph pressure for the containers in our fleet and can trivially link latency spikes and throughput drops to shortages of specific resources after the fact, and fix the job config/scheduling. PSI has also received testing, feedback, and feature requests from Android and EndlessOS for the purpose of low-latency OOM killing, to intervene in pressure situations before the UI starts hanging. How do you use this feature? A kernel with CONFIG_PSI=y will create a /proc/pressure directory with 3 files: cpu, memory, and io. If using cgroup2, cgroups will also have cpu.pressure, memory.pressure and io.pressure files, which simply aggregate task stalls at the cgroup level instead of system-wide. The cpu file contains one line: some avg10=2.04 avg60=0.75 avg300=0.40 total=157656722 The averages give the percentage of walltime in which one or more tasks are delayed on the runqueue while another task has the CPU. They're recent averages over 10s, 1m, 5m windows, so you can tell short term trends from long term ones, similarly to the load average. The total= value gives the absolute stall time in microseconds. This allows detecting latency spikes that might be too short to sway the running averages. It also allows custom time averaging in case the 10s/1m/5m windows aren't adequate for the usecase (or are too coarse with future hardware). What to make of this "some" metric? If CPU utilization is at 100% and CPU pressure is 0, it means the system is perfectly utilized, with one runnable thread per CPU and nobody waiting. At two or more runnable tasks per CPU, the system is 100% overcommitted and the pressure average will indicate as much. From a utilization perspective this is a great state of course: no CPU cycles are being wasted, even when 50% of the threads were to go idle (as most workloads do vary). From the perspective of the individual job it's not great, however, and they would do better with more resources. Depending on what your priority and options are, raised "some" numbers may or may not require action. The memory file contains two lines: some avg10=70.24 avg60=68.52 avg300=69.91 total=3559632828 full avg10=57.59 avg60=58.06 avg300=60.38 total=3300487258 The some line is the same as for cpu, the time in which at least one task is stalled on the resource. In the case of memory, this includes waiting on swap-in, page cache refaults and page reclaim. The full line, however, indicates time in which *nobody* is using the CPU productively due to pressure: all non-idle tasks are waiting for memory in one form or another. Significant time spent in there is a good trigger for killing things, moving jobs to other machines, or dropping incoming requests, since neither the jobs nor the machine overall are making too much headway. The io file is similar to memory. Because the block layer doesn't have a concept of hardware contention right now (how much longer is my IO request taking due to other tasks?), it reports CPU potential lost on all IO delays, not just the potential lost due to competition. FAQ Q: How is PSI's CPU component different from the load average? A: There are several quirks in the load average that make it hard to impossible to tell how overcommitted the CPU really is. 1. The load average is reported as a raw number of active tasks. You need to know how many CPUs there are in the system, how many CPUs the workload is allowed to use, then think about what the proportion between load and the number of CPUs mean for the tasks trying to run. PSI reports the percentage of wallclock time in which tasks are waiting for a CPU to run on. It doesn't matter how many CPUs are present or usable. The number always tells the quality of life of tasks in the system or in a particular cgroup. 2. The shortest averaging window is 1m, which is extremely coarse, and it's sampled in 5s intervals. A *lot* can happen on a CPU in 5 seconds. This *may* be able to identify persistent long-term trends and very clear and obvious overloads, but it's unusable for latency spikes and more subtle overutilization. PSI's shortest window is 10s. It also exports the cumulative stall times (in microseconds) of synchronously recorded events. 3. On Linux, the load average for historical reasons includes all TASK_UNINTERRUPTIBLE tasks. This gives a broader sense of how busy the system is, but on the flipside it doesn't distinguish whether tasks are likely to contend over the CPU or IO - which obviously requires very different interventions from a sys admin or a job scheduler. PSI reports independent metrics for CPU and IO. You can tell which resource is making the tasks wait, but in conjunction still see how overloaded the system is overall. Q: What's the cost / performance impact of this feature? A: PSI's primary cost is in the scheduler, in particular task wakeups and sleeps. I benchmarked this code using Facebook's two most scheduling sensitive workloads: memcache and webserver. They handle a ton of small requests - lots of wakeups and sleeps with little actual work in between - so they tend to be canaries for scheduler regressions. In the tests, the boxes were handling live traffic over the course of several hours. Half the machines, the control, ran with CONFIG_PSI=n. For memcache I used eight machines total. They're 2-socket, 14 core, 56 thread boxes. The test runs for half the test period, flips the test and control kernels on the hardware to rule out HW factors, DC location etc., then runs the other half of the test. For the webservers, I used 32 machines total. They're single socket, 16 core, 32 thread machines. During the memcache test, CPU load was nopsi=78.05% psi=78.98% in the first half and nopsi=77.52% psi=78.25%, so PSI added between 0.7 and 0.9 percentage points to the CPU load, a difference of about 1%. UPDATE: I re-ran this test with the v3 version of this patch set and the CPU utilization was equivalent between test and control. UPDATE: v4 is on par with v3. As far as end-to-end request latency from the client perspective goes, we don't sample those finely enough to capture the requests going to those particular machines during the test, but we know the p50 turnaround time in this workload is 54us, and perf bench sched pipe on those machines show nopsi=5.232666 us/op and psi=5.587347 us/op, so this doesn't add much here either. The profile for the pipe benchmark shows: 0.87% sched-pipe [kernel.vmlinux] [k] psi_group_change 0.83% perf.real [kernel.vmlinux] [k] psi_group_change 0.82% perf.real [kernel.vmlinux] [k] psi_task_change 0.58% sched-pipe [kernel.vmlinux] [k] psi_task_change The webserver load is running inside 4 nested cgroup levels. The CPU load with both nopsi and psi kernels was indistinguishable at 81%. For comparison, we had to disable the cgroup cpu controller on the webservers because it added 4 percentage points to the CPU% during this same exact test. Versions of this accounting code now run on 80% of our fleet. None of our workloads have reported regressions during the rollout. Daniel Drake said: : I just retested the latest version at : http://git.cmpxchg.org/cgit.cgi/linux-psi.git (Linux 4.18) and the results : are great. : : Test setup: : Endless OS : GeminiLake N4200 low end laptop : 2GB RAM : swap (and zram swap) disabled : : Baseline test: open a handful of large-ish apps and several website : tabs in Google Chrome. : : Results: after a couple of minutes, system is excessively thrashing, mouse : cursor can barely be moved, UI is not responding to mouse clicks, so it's : impractical to recover from this situation as an ordinary user : : Add my simple killer: : https://gist.github.com/dsd/a8988bf0b81a6163475988120fe8d9cd : : Results: when the thrashing causes the UI to become sluggish, the killer : steps in and kills something (usually a chrome tab), and the system : remains usable. I repeatedly opened more apps and more websites over a 15 : minute period but I wasn't able to get the system to a point of UI : unresponsiveness. Suren said: : Backported to 4.9 and retested on ARMv8 8 code system running Android. : Signals behave as expected reacting to memory pressure, no jumps in : "total" counters that would indicate an overflow/underflow issues. Nicely : done! This patch (of 9): If we keep just enough refault information to match the *current* page cache during reclaim time, we could lose a lot of events when there is only a temporary spike in non-cache memory consumption that pushes out all the cache. Once cache comes back, we won't see those refaults. They might not be actionable for LRU aging, but we want to know about them for measuring memory pressure. [hannes@cmpxchg.org: switch to NUMA-aware lru and slab counters] Link: http://lkml.kernel.org/r/20181009184732.762-2-hannes@cmpxchg.org Link: http://lkml.kernel.org/r/20180828172258.3185-2-hannes@cmpxchg.orgSigned-off-by: NJohannes Weiner <jweiner@fb.com> Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: NRik van Riel <riel@surriel.com> Tested-by: NDaniel Drake <drake@endlessm.com> Tested-by: NSuren Baghdasaryan <surenb@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vinayak Menon <vinmenon@codeaurora.org> Cc: Christopher Lameter <cl@linux.com> Cc: Peter Enderborg <peter.enderborg@sony.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NJoseph Qi <joseph.qi@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
由 kbuild test robot 提交于
Fixes: 60448d43 ("writeback: add memcg_blkcg_link tree") Signed-off-by: Nkbuild test robot <lkp@intel.com> Signed-off-by: NJiufei Xue <jiufei.xue@linux.alibaba.com>
-
由 Joseph Qi 提交于
Wrap cgroup writeback v1 logic to prevent build errors without CONFIG_CGROUPS or CONFIG_CGROUP_WRITEBACK. Reported-by: Nkbuild test robot <lkp@intel.com> Cc: Jiufei Xue <jiufei.xue@linux.alibaba.com> Signed-off-by: NJoseph Qi <joseph.qi@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
由 Jiufei Xue 提交于
So far writeback control is supported for cgroup v1 interface. However it also has some restrictions, so introduce a new kernel boot parameter to control the behavior which is disabled by default. Users can enable the writeback control for cgroup v1 with the command line "cgwb_v1". Signed-off-by: NJiufei Xue <jiufei.xue@linux.alibaba.com> Reviewed-by: NJoseph Qi <joseph.qi@linux.alibaba.com>
-
由 Jiufei Xue 提交于
We have gotten a WARNNING when releasing blkcg_css: [332489.681635] WARNING: CPU: 55 PID: 14859 at lib/list_debug.c:56 __list_del_entry+0x81/0xc0 [332489.682191] list_del corruption, ffff883e6b94d450->prev is LIST_POISON2 (dead000000000200) ...... [332489.683895] CPU: 55 PID: 14859 Comm: kworker/55:2 Tainted: G [332489.684477] Hardware name: Inspur SA5248M4/X10DRT-PS, BIOS 4.05A 10/11/2016 [332489.685061] Workqueue: cgroup_destroy css_release_work_fn [332489.685654] ffffc9001d92bd28 ffffffff81380042 ffffc9001d92bd78 0000000000000000 [332489.686269] ffffc9001d92bd68 ffffffff81088f8b 0000003800000000 ffff883e6b94d4a0 [332489.686867] ffff883e6b94d400 ffffffff81ce8fe0 ffff88375b24f400 ffff883e6b94d4a0 [332489.687479] Call Trace: [332489.688078] [<ffffffff81380042>] dump_stack+0x63/0x81 [332489.688681] [<ffffffff81088f8b>] __warn+0xcb/0xf0 [332489.689276] [<ffffffff8108900f>] warn_slowpath_fmt+0x5f/0x80 [332489.689877] [<ffffffff8139e7c1>] __list_del_entry+0x81/0xc0 [332489.690481] [<ffffffff81125552>] css_release_work_fn+0x42/0x140 [332489.691090] [<ffffffff810a2db9>] process_one_work+0x189/0x420 [332489.691693] [<ffffffff810a309e>] worker_thread+0x4e/0x4b0 [332489.692293] [<ffffffff810a3050>] ? process_one_work+0x420/0x420 [332489.692905] [<ffffffff810a9616>] kthread+0xe6/0x100 [332489.693504] [<ffffffff810a9530>] ? kthread_park+0x60/0x60 [332489.694099] [<ffffffff817184e1>] ret_from_fork+0x41/0x50 [332489.694722] ---[ end trace 0cf869c4a5cfba87 ]--- ...... This is caused by calling css_get after the css is killed by another thread described below: Thread 1 Thread 2 cgroup_rmdir -> kill_css -> percpu_ref_kill_and_confirm -> css_killed_ref_fn css_killed_work_fn -> css_put -> css_release wb_get_create -> find_blkcg_css -> css_get -> css_put -> css_release (double free) -> css_release_workfn -> css_free_work_fn -> blkcg_css_free When doublefree happened, it may free the memory still used by other threads and cause a kernel panic. Fix this by using css_tryget_online in find_blkcg_css while will return false if the css is killed. Signed-off-by: NJiufei Xue <jiufei.xue@linux.alibaba.com> Reviewed-by: NJoseph Qi <joseph.qi@linux.alibaba.com>
-
由 Jiufei Xue 提交于
Signed-off-by: NJiufei Xue <jiufei.xue@linux.alibaba.com> Reviewed-by: NJoseph Qi <joseph.qi@linux.alibaba.com>
-
由 Jiufei Xue 提交于
Here we add a global radix tree to link memcg and blkcg that the user attach the tasks to when using cgroup v1, which is used for writeback cgroup. Signed-off-by: NJiufei Xue <jiufei.xue@linux.alibaba.com> Reviewed-by: NJoseph Qi <joseph.qi@linux.alibaba.com>
-
- 16 8月, 2019 1 次提交
-
-
由 Joerg Roedel 提交于
commit 3f8fd02b1bf1d7ba964485a56f2f4b53ae88c167 upstream. On x86-32 with PTI enabled, parts of the kernel page-tables are not shared between processes. This can cause mappings in the vmalloc/ioremap area to persist in some page-tables after the region is unmapped and released. When the region is re-used the processes with the old mappings do not fault in the new mappings but still access the old ones. This causes undefined behavior, in reality often data corruption, kernel oopses and panics and even spontaneous reboots. Fix this problem by activly syncing unmaps in the vmalloc/ioremap area to all page-tables in the system before the regions can be re-used. References: https://bugzilla.suse.com/show_bug.cgi?id=1118689 Fixes: 5d72b4fb ('x86, mm: support huge I/O mapping capability I/F') Signed-off-by: NJoerg Roedel <jroedel@suse.de> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Reviewed-by: NDave Hansen <dave.hansen@linux.intel.com> Link: https://lkml.kernel.org/r/20190719184652.11391-4-joro@8bytes.orgSigned-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 07 8月, 2019 2 次提交
-
-
由 Yang Shi 提交于
commit fa1e512fac717f34e7c12d7a384c46e90a647392 upstream. Shakeel Butt reported premature oom on kernel with "cgroup_disable=memory" since mem_cgroup_is_root() returns false even though memcg is actually NULL. The drop_caches is also broken. It is because commit aeed1d32 ("mm/vmscan.c: generalize shrink_slab() calls in shrink_node()") removed the !memcg check before !mem_cgroup_is_root(). And, surprisingly root memcg is allocated even though memory cgroup is disabled by kernel boot parameter. Add mem_cgroup_disabled() check to make reclaimer work as expected. Link: http://lkml.kernel.org/r/1563385526-20805-1-git-send-email-yang.shi@linux.alibaba.com Fixes: aeed1d32 ("mm/vmscan.c: generalize shrink_slab() calls in shrink_node()") Signed-off-by: NYang Shi <yang.shi@linux.alibaba.com> Reported-by: NShakeel Butt <shakeelb@google.com> Reviewed-by: NShakeel Butt <shakeelb@google.com> Reviewed-by: NKirill Tkhai <ktkhai@virtuozzo.com> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Jan Hadrava <had@kam.mff.cuni.cz> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Roman Gushchin <guro@fb.com> Cc: Hugh Dickins <hughd@google.com> Cc: Qian Cai <cai@lca.pw> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: <stable@vger.kernel.org> [4.19+] Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Doug Berger 提交于
[ Upstream commit c633324e311243586675e732249339685e5d6faa ] The description of cma_declare_contiguous() indicates that if the 'fixed' argument is true the reserved contiguous area must be exactly at the address of the 'base' argument. However, the function currently allows the 'base', 'size', and 'limit' arguments to be silently adjusted to meet alignment constraints. This commit enforces the documented behavior through explicit checks that return an error if the region does not fit within a specified region. Link: http://lkml.kernel.org/r/1561422051-16142-1-git-send-email-opendmb@gmail.com Fixes: 5ea3b1b2 ("cma: add placement specifier for "cma=" kernel parameter") Signed-off-by: NDoug Berger <opendmb@gmail.com> Acked-by: NMichal Nazarewicz <mina86@mina86.com> Cc: Yue Hu <huyue2@yulong.com> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Laura Abbott <labbott@redhat.com> Cc: Peng Fan <peng.fan@nxp.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Andrey Konovalov <andreyknvl@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
- 31 7月, 2019 6 次提交
-
-
由 Konstantin Khlebnikov 提交于
[ Upstream commit 1e426fe28261b03f297992e89da3320b42816f4e ] This function is used by ptrace and proc files like /proc/pid/cmdline and /proc/pid/environ. Access_remote_vm never returns error codes, all errors are ignored and only size of successfully read data is returned. So, if current task was killed we'll simply return 0 (bytes read). Mmap_sem could be locked for a long time or forever if something goes wrong. Using a killable lock permits cleanup of stuck tasks and simplifies investigation. Link: http://lkml.kernel.org/r/156007494202.3335.16782303099589302087.stgit@buzzSigned-off-by: NKonstantin Khlebnikov <khlebnikov@yandex-team.ru> Reviewed-by: NMichal Koutný <mkoutny@suse.com> Acked-by: NOleg Nesterov <oleg@redhat.com> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Roman Gushchin <guro@fb.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
由 Jean-Philippe Brucker 提交于
[ Upstream commit 543bdb2d825fe2400d6e951f1786d92139a16931 ] Make mmu_notifier_register() safer by issuing a memory barrier before registering a new notifier. This fixes a theoretical bug on weakly ordered CPUs. For example, take this simplified use of notifiers by a driver: my_struct->mn.ops = &my_ops; /* (1) */ mmu_notifier_register(&my_struct->mn, mm) ... hlist_add_head(&mn->hlist, &mm->mmu_notifiers); /* (2) */ ... Once mmu_notifier_register() releases the mm locks, another thread can invalidate a range: mmu_notifier_invalidate_range() ... hlist_for_each_entry_rcu(mn, &mm->mmu_notifiers, hlist) { if (mn->ops->invalidate_range) The read side relies on the data dependency between mn and ops to ensure that the pointer is properly initialized. But the write side doesn't have any dependency between (1) and (2), so they could be reordered and the readers could dereference an invalid mn->ops. mmu_notifier_register() does take all the mm locks before adding to the hlist, but those have acquire semantics which isn't sufficient. By calling hlist_add_head_rcu() instead of hlist_add_head() we update the hlist using a store-release, ensuring that readers see prior initialization of my_struct. This situation is better illustated by litmus test MP+onceassign+derefonce. Link: http://lkml.kernel.org/r/20190502133532.24981-1-jean-philippe.brucker@arm.com Fixes: cddb8a5c ("mmu-notifiers: core") Signed-off-by: NJean-Philippe Brucker <jean-philippe.brucker@arm.com> Cc: Jérôme Glisse <jglisse@redhat.com> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
由 Andy Lutomirski 提交于
[ Upstream commit b5d1c39f34d1c9bca0c4b9ae2e339fbbe264a9c7 ] If we end up without a PGD or PUD entry backing the gate area, don't BUG -- just fail gracefully. It's not entirely implausible that this could happen some day on x86. It doesn't right now even with an execute-only emulated vsyscall page because the fixmap shares the PUD, but the core mm code shouldn't rely on that particular detail to avoid OOPSing. Link: http://lkml.kernel.org/r/a1d9f4efb75b9d464e59fd6af00104b21c58f6f7.1561610798.git.luto@kernel.orgSigned-off-by: NAndy Lutomirski <luto@kernel.org> Reviewed-by: NKees Cook <keescook@chromium.org> Reviewed-by: NAndrew Morton <akpm@linux-foundation.org> Cc: Florian Weimer <fweimer@redhat.com> Cc: Jann Horn <jannh@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
由 Guenter Roeck 提交于
[ Upstream commit 790c73690c2bbecb3f6f8becbdb11ddc9bcff8cc ] Several mips builds generate the following build warning. mm/gup.c:1788:13: warning: 'undo_dev_pagemap' defined but not used The function is declared unconditionally but only called from behind various ifdefs. Mark it __maybe_unused. Link: http://lkml.kernel.org/r/1562072523-22311-1-git-send-email-linux@roeck-us.netSigned-off-by: NGuenter Roeck <linux@roeck-us.net> Reviewed-by: NAndrew Morton <akpm@linux-foundation.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Robin Murphy <robin.murphy@arm.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
由 Dmitry Vyukov 提交于
[ Upstream commit 6ef9056952532c3b746de46aa10d45b4d7797bd8 ] in_softirq() is a wrong predicate to check if we are in a softirq context. It also returns true if we have BH disabled, so objects are falsely stamped with "softirq" comm. The correct predicate is in_serving_softirq(). If user does cat from /sys/kernel/debug/kmemleak previously they would see this, which is clearly wrong, this is system call context (see the comm): unreferenced object 0xffff88805bd661c0 (size 64): comm "softirq", pid 0, jiffies 4294942959 (age 12.400s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 ff ff ff ff 00 00 00 00 ................ 00 00 00 00 00 00 00 00 01 00 00 00 00 00 00 00 ................ backtrace: [<0000000007dcb30c>] kmemleak_alloc_recursive include/linux/kmemleak.h:55 [inline] [<0000000007dcb30c>] slab_post_alloc_hook mm/slab.h:439 [inline] [<0000000007dcb30c>] slab_alloc mm/slab.c:3326 [inline] [<0000000007dcb30c>] kmem_cache_alloc_trace+0x13d/0x280 mm/slab.c:3553 [<00000000969722b7>] kmalloc include/linux/slab.h:547 [inline] [<00000000969722b7>] kzalloc include/linux/slab.h:742 [inline] [<00000000969722b7>] ip_mc_add1_src net/ipv4/igmp.c:1961 [inline] [<00000000969722b7>] ip_mc_add_src+0x36b/0x400 net/ipv4/igmp.c:2085 [<00000000a4134b5f>] ip_mc_msfilter+0x22d/0x310 net/ipv4/igmp.c:2475 [<00000000d20248ad>] do_ip_setsockopt.isra.0+0x19fe/0x1c00 net/ipv4/ip_sockglue.c:957 [<000000003d367be7>] ip_setsockopt+0x3b/0xb0 net/ipv4/ip_sockglue.c:1246 [<000000003c7c76af>] udp_setsockopt+0x4e/0x90 net/ipv4/udp.c:2616 [<000000000c1aeb23>] sock_common_setsockopt+0x3e/0x50 net/core/sock.c:3130 [<000000000157b92b>] __sys_setsockopt+0x9e/0x120 net/socket.c:2078 [<00000000a9f3d058>] __do_sys_setsockopt net/socket.c:2089 [inline] [<00000000a9f3d058>] __se_sys_setsockopt net/socket.c:2086 [inline] [<00000000a9f3d058>] __x64_sys_setsockopt+0x26/0x30 net/socket.c:2086 [<000000001b8da885>] do_syscall_64+0x7c/0x1a0 arch/x86/entry/common.c:301 [<00000000ba770c62>] entry_SYSCALL_64_after_hwframe+0x44/0xa9 now they will see this: unreferenced object 0xffff88805413c800 (size 64): comm "syz-executor.4", pid 8960, jiffies 4294994003 (age 14.350s) hex dump (first 32 bytes): 00 7a 8a 57 80 88 ff ff e0 00 00 01 00 00 00 00 .z.W............ 00 00 00 00 00 00 00 00 01 00 00 00 00 00 00 00 ................ backtrace: [<00000000c5d3be64>] kmemleak_alloc_recursive include/linux/kmemleak.h:55 [inline] [<00000000c5d3be64>] slab_post_alloc_hook mm/slab.h:439 [inline] [<00000000c5d3be64>] slab_alloc mm/slab.c:3326 [inline] [<00000000c5d3be64>] kmem_cache_alloc_trace+0x13d/0x280 mm/slab.c:3553 [<0000000023865be2>] kmalloc include/linux/slab.h:547 [inline] [<0000000023865be2>] kzalloc include/linux/slab.h:742 [inline] [<0000000023865be2>] ip_mc_add1_src net/ipv4/igmp.c:1961 [inline] [<0000000023865be2>] ip_mc_add_src+0x36b/0x400 net/ipv4/igmp.c:2085 [<000000003029a9d4>] ip_mc_msfilter+0x22d/0x310 net/ipv4/igmp.c:2475 [<00000000ccd0a87c>] do_ip_setsockopt.isra.0+0x19fe/0x1c00 net/ipv4/ip_sockglue.c:957 [<00000000a85a3785>] ip_setsockopt+0x3b/0xb0 net/ipv4/ip_sockglue.c:1246 [<00000000ec13c18d>] udp_setsockopt+0x4e/0x90 net/ipv4/udp.c:2616 [<0000000052d748e3>] sock_common_setsockopt+0x3e/0x50 net/core/sock.c:3130 [<00000000512f1014>] __sys_setsockopt+0x9e/0x120 net/socket.c:2078 [<00000000181758bc>] __do_sys_setsockopt net/socket.c:2089 [inline] [<00000000181758bc>] __se_sys_setsockopt net/socket.c:2086 [inline] [<00000000181758bc>] __x64_sys_setsockopt+0x26/0x30 net/socket.c:2086 [<00000000d4b73623>] do_syscall_64+0x7c/0x1a0 arch/x86/entry/common.c:301 [<00000000c1098bec>] entry_SYSCALL_64_after_hwframe+0x44/0xa9 Link: http://lkml.kernel.org/r/20190517171507.96046-1-dvyukov@gmail.comSigned-off-by: NDmitry Vyukov <dvyukov@google.com> Acked-by: NCatalin Marinas <catalin.marinas@arm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
由 Ira Weiny 提交于
[ Upstream commit c5d6c45e90c49150670346967971e14576afd7f1 ] release_pages() is an optimized version of a loop around put_page(). Unfortunately for devmap pages the logic is not entirely correct in release_pages(). This is because device pages can be more than type MEMORY_DEVICE_PUBLIC. There are in fact 4 types, private, public, FS DAX, and PCI P2PDMA. Some of these have specific needs to "put" the page while others do not. This logic to handle any special needs is contained in put_devmap_managed_page(). Therefore all devmap pages should be processed by this function where we can contain the correct logic for a page put. Handle all device type pages within release_pages() by calling put_devmap_managed_page() on all devmap pages. If put_devmap_managed_page() returns true the page has been put and we continue with the next page. A false return of put_devmap_managed_page() means the page did not require special processing and should fall to "normal" processing. This was found via code inspection while determining if release_pages() and the new put_user_pages() could be interchangeable.[1] [1] https://lkml.kernel.org/r/20190523172852.GA27175@iweiny-DESK2.sc.intel.com Link: https://lkml.kernel.org/r/20190605214922.17684-1-ira.weiny@intel.com Cc: Jérôme Glisse <jglisse@redhat.com> Cc: Michal Hocko <mhocko@suse.com> Reviewed-by: NDan Williams <dan.j.williams@intel.com> Reviewed-by: NJohn Hubbard <jhubbard@nvidia.com> Signed-off-by: NIra Weiny <ira.weiny@intel.com> Signed-off-by: NJason Gunthorpe <jgg@mellanox.com> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
- 28 7月, 2019 2 次提交
-
-
由 Kuo-Hsin Yang 提交于
commit 2c012a4ad1a2cd3fb5a0f9307b9d219f84eda1fa upstream. When file refaults are detected and there are many inactive file pages, the system never reclaim anonymous pages, the file pages are dropped aggressively when there are still a lot of cold anonymous pages and system thrashes. This issue impacts the performance of applications with large executable, e.g. chrome. With this patch, when file refault is detected, inactive_list_is_low() always returns true for file pages in get_scan_count() to enable scanning anonymous pages. The problem can be reproduced by the following test program. ---8<--- void fallocate_file(const char *filename, off_t size) { struct stat st; int fd; if (!stat(filename, &st) && st.st_size >= size) return; fd = open(filename, O_WRONLY | O_CREAT, 0600); if (fd < 0) { perror("create file"); exit(1); } if (posix_fallocate(fd, 0, size)) { perror("fallocate"); exit(1); } close(fd); } long *alloc_anon(long size) { long *start = malloc(size); memset(start, 1, size); return start; } long access_file(const char *filename, long size, long rounds) { int fd, i; volatile char *start1, *end1, *start2; const int page_size = getpagesize(); long sum = 0; fd = open(filename, O_RDONLY); if (fd == -1) { perror("open"); exit(1); } /* * Some applications, e.g. chrome, use a lot of executable file * pages, map some of the pages with PROT_EXEC flag to simulate * the behavior. */ start1 = mmap(NULL, size / 2, PROT_READ | PROT_EXEC, MAP_SHARED, fd, 0); if (start1 == MAP_FAILED) { perror("mmap"); exit(1); } end1 = start1 + size / 2; start2 = mmap(NULL, size / 2, PROT_READ, MAP_SHARED, fd, size / 2); if (start2 == MAP_FAILED) { perror("mmap"); exit(1); } for (i = 0; i < rounds; ++i) { struct timeval before, after; volatile char *ptr1 = start1, *ptr2 = start2; gettimeofday(&before, NULL); for (; ptr1 < end1; ptr1 += page_size, ptr2 += page_size) sum += *ptr1 + *ptr2; gettimeofday(&after, NULL); printf("File access time, round %d: %f (sec) ", i, (after.tv_sec - before.tv_sec) + (after.tv_usec - before.tv_usec) / 1000000.0); } return sum; } int main(int argc, char *argv[]) { const long MB = 1024 * 1024; long anon_mb, file_mb, file_rounds; const char filename[] = "large"; long *ret1; long ret2; if (argc != 4) { printf("usage: thrash ANON_MB FILE_MB FILE_ROUNDS "); exit(0); } anon_mb = atoi(argv[1]); file_mb = atoi(argv[2]); file_rounds = atoi(argv[3]); fallocate_file(filename, file_mb * MB); printf("Allocate %ld MB anonymous pages ", anon_mb); ret1 = alloc_anon(anon_mb * MB); printf("Access %ld MB file pages ", file_mb); ret2 = access_file(filename, file_mb * MB, file_rounds); printf("Print result to prevent optimization: %ld ", *ret1 + ret2); return 0; } ---8<--- Running the test program on 2GB RAM VM with kernel 5.2.0-rc5, the program fills ram with 2048 MB memory, access a 200 MB file for 10 times. Without this patch, the file cache is dropped aggresively and every access to the file is from disk. $ ./thrash 2048 200 10 Allocate 2048 MB anonymous pages Access 200 MB file pages File access time, round 0: 2.489316 (sec) File access time, round 1: 2.581277 (sec) File access time, round 2: 2.487624 (sec) File access time, round 3: 2.449100 (sec) File access time, round 4: 2.420423 (sec) File access time, round 5: 2.343411 (sec) File access time, round 6: 2.454833 (sec) File access time, round 7: 2.483398 (sec) File access time, round 8: 2.572701 (sec) File access time, round 9: 2.493014 (sec) With this patch, these file pages can be cached. $ ./thrash 2048 200 10 Allocate 2048 MB anonymous pages Access 200 MB file pages File access time, round 0: 2.475189 (sec) File access time, round 1: 2.440777 (sec) File access time, round 2: 2.411671 (sec) File access time, round 3: 1.955267 (sec) File access time, round 4: 0.029924 (sec) File access time, round 5: 0.000808 (sec) File access time, round 6: 0.000771 (sec) File access time, round 7: 0.000746 (sec) File access time, round 8: 0.000738 (sec) File access time, round 9: 0.000747 (sec) Checked the swap out stats during the test [1], 19006 pages swapped out with this patch, 3418 pages swapped out without this patch. There are more swap out, but I think it's within reasonable range when file backed data set doesn't fit into the memory. $ ./thrash 2000 100 2100 5 1 # ANON_MB FILE_EXEC FILE_NOEXEC ROUNDS PROCESSES Allocate 2000 MB anonymous pages active_anon: 1613644, inactive_anon: 348656, active_file: 892, inactive_file: 1384 (kB) pswpout: 7972443, pgpgin: 478615246 Access 100 MB executable file pages Access 2100 MB regular file pages File access time, round 0: 12.165, (sec) active_anon: 1433788, inactive_anon: 478116, active_file: 17896, inactive_file: 24328 (kB) File access time, round 1: 11.493, (sec) active_anon: 1430576, inactive_anon: 477144, active_file: 25440, inactive_file: 26172 (kB) File access time, round 2: 11.455, (sec) active_anon: 1427436, inactive_anon: 476060, active_file: 21112, inactive_file: 28808 (kB) File access time, round 3: 11.454, (sec) active_anon: 1420444, inactive_anon: 473632, active_file: 23216, inactive_file: 35036 (kB) File access time, round 4: 11.479, (sec) active_anon: 1413964, inactive_anon: 471460, active_file: 31728, inactive_file: 32224 (kB) pswpout: 7991449 (+ 19006), pgpgin: 489924366 (+ 11309120) With 4 processes accessing non-overlapping parts of a large file, 30316 pages swapped out with this patch, 5152 pages swapped out without this patch. The swapout number is small comparing to pgpgin. [1]: https://github.com/vovo/testing/blob/master/mem_thrash.c Link: http://lkml.kernel.org/r/20190701081038.GA83398@google.com Fixes: e9868505 ("mm,vmscan: only evict file pages when we have plenty") Fixes: 7c5bd705 ("mm: memcg: only evict file pages when we have plenty") Signed-off-by: NKuo-Hsin Yang <vovoy@chromium.org> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Sonny Rao <sonnyrao@chromium.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Rik van Riel <riel@redhat.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Minchan Kim <minchan@kernel.org> Cc: <stable@vger.kernel.org> [4.12+] Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> [backported to 4.14.y, 4.19.y, 5.1.y: adjust context] Signed-off-by: NKuo-Hsin Yang <vovoy@chromium.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Ross Zwisler 提交于
commit aa0bfcd939c30617385ffa28682c062d78050eba upstream. In the spirit of filemap_fdatawait_range() and filemap_fdatawait_keep_errors(), introduce filemap_fdatawait_range_keep_errors() which both takes a range upon which to wait and does not clear errors from the address space. Signed-off-by: NRoss Zwisler <zwisler@google.com> Signed-off-by: NTheodore Ts'o <tytso@mit.edu> Reviewed-by: NJan Kara <jack@suse.cz> Cc: stable@vger.kernel.org Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 10 7月, 2019 2 次提交
-
-
由 Shakeel Butt 提交于
commit dffcac2cb88e4ec5906235d64a83d802580b119e upstream. In production we have noticed hard lockups on large machines running large jobs due to kswaps hoarding lru lock within isolate_lru_pages when sc->reclaim_idx is 0 which is a small zone. The lru was couple hundred GiBs and the condition (page_zonenum(page) > sc->reclaim_idx) in isolate_lru_pages() was basically skipping GiBs of pages while holding the LRU spinlock with interrupt disabled. On further inspection, it seems like there are two issues: (1) If kswapd on the return from balance_pgdat() could not sleep (i.e. node is still unbalanced), the classzone_idx is unintentionally set to 0 and the whole reclaim cycle of kswapd will try to reclaim only the lowest and smallest zone while traversing the whole memory. (2) Fundamentally isolate_lru_pages() is really bad when the allocation has woken kswapd for a smaller zone on a very large machine running very large jobs. It can hoard the LRU spinlock while skipping over 100s of GiBs of pages. This patch only fixes (1). (2) needs a more fundamental solution. To fix (1), in the kswapd context, if pgdat->kswapd_classzone_idx is invalid use the classzone_idx of the previous kswapd loop otherwise use the one the waker has requested. Link: http://lkml.kernel.org/r/20190701201847.251028-1-shakeelb@google.com Fixes: e716f2eb ("mm, vmscan: prevent kswapd sleeping prematurely due to mismatched classzone_idx") Signed-off-by: NShakeel Butt <shakeelb@google.com> Reviewed-by: NYang Shi <yang.shi@linux.alibaba.com> Acked-by: NMel Gorman <mgorman@techsingularity.net> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hdanton@sina.com> Cc: Roman Gushchin <guro@fb.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 swkhack 提交于
[ Upstream commit 0874bb49bb21bf24deda853e8bf61b8325e24bcb ] On a 64-bit machine the value of "vma->vm_end - vma->vm_start" may be negative when using 32 bit ints and the "count >> PAGE_SHIFT"'s result will be wrong. So change the local variable and return value to unsigned long to fix the problem. Link: http://lkml.kernel.org/r/20190513023701.83056-1-swkhack@gmail.com Fixes: 0cf2f6f6 ("mm: mlock: check against vma for actual mlock() size") Signed-off-by: Nswkhack <swkhack@gmail.com> Acked-by: NMichal Hocko <mhocko@suse.com> Reviewed-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
- 03 7月, 2019 4 次提交
-
-
由 Colin Ian King 提交于
commit 7298e3b0a149c91323b3205d325e942c3b3b9ef6 upstream. Currently the calcuation of end_pfn can round up the pfn number to more than the actual maximum number of pfns, causing an Oops. Fix this by ensuring end_pfn is never more than max_pfn. This can be easily triggered when on systems where the end_pfn gets rounded up to more than max_pfn using the idle-page stress-ng stress test: sudo stress-ng --idle-page 0 BUG: unable to handle kernel paging request at 00000000000020d8 #PF error: [normal kernel read fault] PGD 0 P4D 0 Oops: 0000 [#1] SMP PTI CPU: 1 PID: 11039 Comm: stress-ng-idle- Not tainted 5.0.0-5-generic #6-Ubuntu Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1ubuntu1 04/01/2014 RIP: 0010:page_idle_get_page+0xc8/0x1a0 Code: 0f b1 0a 75 7d 48 8b 03 48 89 c2 48 c1 e8 33 83 e0 07 48 c1 ea 36 48 8d 0c 40 4c 8d 24 88 49 c1 e4 07 4c 03 24 d5 00 89 c3 be <49> 8b 44 24 58 48 8d b8 80 a1 02 00 e8 07 d5 77 00 48 8b 53 08 48 RSP: 0018:ffffafd7c672fde8 EFLAGS: 00010202 RAX: 0000000000000005 RBX: ffffe36341fff700 RCX: 000000000000000f RDX: 0000000000000284 RSI: 0000000000000275 RDI: 0000000001fff700 RBP: ffffafd7c672fe00 R08: ffffa0bc34056410 R09: 0000000000000276 R10: ffffa0bc754e9b40 R11: ffffa0bc330f6400 R12: 0000000000002080 R13: ffffe36341fff700 R14: 0000000000080000 R15: ffffa0bc330f6400 FS: 00007f0ec1ea5740(0000) GS:ffffa0bc7db00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00000000000020d8 CR3: 0000000077d68000 CR4: 00000000000006e0 Call Trace: page_idle_bitmap_write+0x8c/0x140 sysfs_kf_bin_write+0x5c/0x70 kernfs_fop_write+0x12e/0x1b0 __vfs_write+0x1b/0x40 vfs_write+0xab/0x1b0 ksys_write+0x55/0xc0 __x64_sys_write+0x1a/0x20 do_syscall_64+0x5a/0x110 entry_SYSCALL_64_after_hwframe+0x44/0xa9 Link: http://lkml.kernel.org/r/20190618124352.28307-1-colin.king@canonical.com Fixes: 33c3fc71 ("mm: introduce idle page tracking") Signed-off-by: NColin Ian King <colin.king@canonical.com> Reviewed-by: NAndrew Morton <akpm@linux-foundation.org> Acked-by: NVladimir Davydov <vdavydov.dev@gmail.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Naoya Horiguchi 提交于
commit faf53def3b143df11062d87c12afe6afeb6f8cc7 upstream. madvise(MADV_SOFT_OFFLINE) often returns -EBUSY when calling soft offline for hugepages with overcommitting enabled. That was caused by the suboptimal code in current soft-offline code. See the following part: ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL, MIGRATE_SYNC, MR_MEMORY_FAILURE); if (ret) { ... } else { /* * We set PG_hwpoison only when the migration source hugepage * was successfully dissolved, because otherwise hwpoisoned * hugepage remains on free hugepage list, then userspace will * find it as SIGBUS by allocation failure. That's not expected * in soft-offlining. */ ret = dissolve_free_huge_page(page); if (!ret) { if (set_hwpoison_free_buddy_page(page)) num_poisoned_pages_inc(); } } return ret; Here dissolve_free_huge_page() returns -EBUSY if the migration source page was freed into buddy in migrate_pages(), but even in that case we actually has a chance that set_hwpoison_free_buddy_page() succeeds. So that means current code gives up offlining too early now. dissolve_free_huge_page() checks that a given hugepage is suitable for dissolving, where we should return success for !PageHuge() case because the given hugepage is considered as already dissolved. This change also affects other callers of dissolve_free_huge_page(), which are cleaned up together. [n-horiguchi@ah.jp.nec.com: v3] Link: http://lkml.kernel.org/r/1560761476-4651-3-git-send-email-n-horiguchi@ah.jp.nec.comLink: http://lkml.kernel.org/r/1560154686-18497-3-git-send-email-n-horiguchi@ah.jp.nec.com Fixes: 6bc9b564 ("mm: fix race on soft-offlining") Signed-off-by: NNaoya Horiguchi <n-horiguchi@ah.jp.nec.com> Reported-by: NChen, Jerry T <jerry.t.chen@intel.com> Tested-by: NChen, Jerry T <jerry.t.chen@intel.com> Reviewed-by: NMike Kravetz <mike.kravetz@oracle.com> Reviewed-by: NOscar Salvador <osalvador@suse.de> Cc: Michal Hocko <mhocko@kernel.org> Cc: Xishi Qiu <xishi.qiuxishi@alibaba-inc.com> Cc: "Chen, Jerry T" <jerry.t.chen@intel.com> Cc: "Zhuo, Qiuxu" <qiuxu.zhuo@intel.com> Cc: <stable@vger.kernel.org> [4.19+] Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Naoya Horiguchi 提交于
commit b38e5962f8ed0d2a2b28a887fc2221f7f41db119 upstream. The pass/fail of soft offline should be judged by checking whether the raw error page was finally contained or not (i.e. the result of set_hwpoison_free_buddy_page()), but current code do not work like that. It might lead us to misjudge the test result when set_hwpoison_free_buddy_page() fails. Without this fix, there are cases where madvise(MADV_SOFT_OFFLINE) may not offline the original page and will not return an error. Link: http://lkml.kernel.org/r/1560154686-18497-2-git-send-email-n-horiguchi@ah.jp.nec.comSigned-off-by: NNaoya Horiguchi <n-horiguchi@ah.jp.nec.com> Fixes: 6bc9b564 ("mm: fix race on soft-offlining") Reviewed-by: NMike Kravetz <mike.kravetz@oracle.com> Reviewed-by: NOscar Salvador <osalvador@suse.de> Cc: Michal Hocko <mhocko@kernel.org> Cc: Xishi Qiu <xishi.qiuxishi@alibaba-inc.com> Cc: "Chen, Jerry T" <jerry.t.chen@intel.com> Cc: "Zhuo, Qiuxu" <qiuxu.zhuo@intel.com> Cc: <stable@vger.kernel.org> [4.19+] Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 zhong jiang 提交于
commit 29b190fa774dd1b72a1a6f19687d55dc72ea83be upstream. mpol_rebind_nodemask() is called for MPOL_BIND and MPOL_INTERLEAVE mempoclicies when the tasks's cpuset's mems_allowed changes. For policies created without MPOL_F_STATIC_NODES or MPOL_F_RELATIVE_NODES, it works by remapping the policy's allowed nodes (stored in v.nodes) using the previous value of mems_allowed (stored in w.cpuset_mems_allowed) as the domain of map and the new mems_allowed (passed as nodes) as the range of the map (see the comment of bitmap_remap() for details). The result of remapping is stored back as policy's nodemask in v.nodes, and the new value of mems_allowed should be stored in w.cpuset_mems_allowed to facilitate the next rebind, if it happens. However, 213980c0 ("mm, mempolicy: simplify rebinding mempolicies when updating cpusets") introduced a bug where the result of remapping is stored in w.cpuset_mems_allowed instead. Thus, a mempolicy's allowed nodes can evolve in an unexpected way after a series of rebinding due to cpuset mems_allowed changes, possibly binding to a wrong node or a smaller number of nodes which may e.g. overload them. This patch fixes the bug so rebinding again works as intended. [vbabka@suse.cz: new changlog] Link: http://lkml.kernel.org/r/ef6a69c6-c052-b067-8f2c-9d615c619bb9@suse.cz Link: http://lkml.kernel.org/r/1558768043-23184-1-git-send-email-zhongjiang@huawei.com Fixes: 213980c0 ("mm, mempolicy: simplify rebinding mempolicies when updating cpusets") Signed-off-by: Nzhong jiang <zhongjiang@huawei.com> Reviewed-by: NVlastimil Babka <vbabka@suse.cz> Cc: Oscar Salvador <osalvador@suse.de> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 22 6月, 2019 1 次提交
-
-
由 Andrea Arcangeli 提交于
commit 59ea6d06cfa9247b586a695c21f94afa7183af74 upstream. When fixing the race conditions between the coredump and the mmap_sem holders outside the context of the process, we focused on mmget_not_zero()/get_task_mm() callers in 04f5866e41fb70 ("coredump: fix race condition between mmget_not_zero()/get_task_mm() and core dumping"), but those aren't the only cases where the mmap_sem can be taken outside of the context of the process as Michal Hocko noticed while backporting that commit to older -stable kernels. If mmgrab() is called in the context of the process, but then the mm_count reference is transferred outside the context of the process, that can also be a problem if the mmap_sem has to be taken for writing through that mm_count reference. khugepaged registration calls mmgrab() in the context of the process, but the mmap_sem for writing is taken later in the context of the khugepaged kernel thread. collapse_huge_page() after taking the mmap_sem for writing doesn't modify any vma, so it's not obvious that it could cause a problem to the coredump, but it happens to modify the pmd in a way that breaks an invariant that pmd_trans_huge_lock() relies upon. collapse_huge_page() needs the mmap_sem for writing just to block concurrent page faults that call pmd_trans_huge_lock(). Specifically the invariant that "!pmd_trans_huge()" cannot become a "pmd_trans_huge()" doesn't hold while collapse_huge_page() runs. The coredump will call __get_user_pages() without mmap_sem for reading, which eventually can invoke a lockless page fault which will need a functional pmd_trans_huge_lock(). So collapse_huge_page() needs to use mmget_still_valid() to check it's not running concurrently with the coredump... as long as the coredump can invoke page faults without holding the mmap_sem for reading. This has "Fixes: khugepaged" to facilitate backporting, but in my view it's more a bug in the coredump code that will eventually have to be rewritten to stop invoking page faults without the mmap_sem for reading. So the long term plan is still to drop all mmget_still_valid(). Link: http://lkml.kernel.org/r/20190607161558.32104-1-aarcange@redhat.com Fixes: ba76149f ("thp: khugepaged") Signed-off-by: NAndrea Arcangeli <aarcange@redhat.com> Reported-by: NMichal Hocko <mhocko@suse.com> Acked-by: NMichal Hocko <mhocko@suse.com> Acked-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Peter Xu <peterx@redhat.com> Cc: Jason Gunthorpe <jgg@mellanox.com> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 19 6月, 2019 2 次提交
-
-
由 Minchan Kim 提交于
commit a58f2cef26e1ca44182c8b22f4f4395e702a5795 upstream. There was the below bug report from Wu Fangsuo. On the CMA allocation path, isolate_migratepages_range() could isolate unevictable LRU pages and reclaim_clean_page_from_list() can try to reclaim them if they are clean file-backed pages. page:ffffffbf02f33b40 count:86 mapcount:84 mapping:ffffffc08fa7a810 index:0x24 flags: 0x19040c(referenced|uptodate|arch_1|mappedtodisk|unevictable|mlocked) raw: 000000000019040c ffffffc08fa7a810 0000000000000024 0000005600000053 raw: ffffffc009b05b20 ffffffc009b05b20 0000000000000000 ffffffc09bf3ee80 page dumped because: VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page)) page->mem_cgroup:ffffffc09bf3ee80 ------------[ cut here ]------------ kernel BUG at /home/build/farmland/adroid9.0/kernel/linux/mm/vmscan.c:1350! Internal error: Oops - BUG: 0 [#1] PREEMPT SMP Modules linked in: CPU: 0 PID: 7125 Comm: syz-executor Tainted: G S 4.14.81 #3 Hardware name: ASR AQUILAC EVB (DT) task: ffffffc00a54cd00 task.stack: ffffffc009b00000 PC is at shrink_page_list+0x1998/0x3240 LR is at shrink_page_list+0x1998/0x3240 pc : [<ffffff90083a2158>] lr : [<ffffff90083a2158>] pstate: 60400045 sp : ffffffc009b05940 .. shrink_page_list+0x1998/0x3240 reclaim_clean_pages_from_list+0x3c0/0x4f0 alloc_contig_range+0x3bc/0x650 cma_alloc+0x214/0x668 ion_cma_allocate+0x98/0x1d8 ion_alloc+0x200/0x7e0 ion_ioctl+0x18c/0x378 do_vfs_ioctl+0x17c/0x1780 SyS_ioctl+0xac/0xc0 Wu found it's due to commit ad6b6704 ("mm: remove SWAP_MLOCK in ttu"). Before that, unevictable pages go to cull_mlocked so that we can't reach the VM_BUG_ON_PAGE line. To fix the issue, this patch filters out unevictable LRU pages from the reclaim_clean_pages_from_list in CMA. Link: http://lkml.kernel.org/r/20190524071114.74202-1-minchan@kernel.org Fixes: ad6b6704 ("mm: remove SWAP_MLOCK in ttu") Signed-off-by: NMinchan Kim <minchan@kernel.org> Reported-by: NWu Fangsuo <fangsuowu@asrmicro.com> Debugged-by: NWu Fangsuo <fangsuowu@asrmicro.com> Tested-by: NWu Fangsuo <fangsuowu@asrmicro.com> Reviewed-by: NAndrew Morton <akpm@linux-foundation.org> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Pankaj Suryawanshi <pankaj.suryawanshi@einfochips.com> Cc: <stable@vger.kernel.org> [4.12+] Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Shakeel Butt 提交于
commit 3510955b327176fd4cbab5baa75b449f077722a2 upstream. Syzbot reported following memory leak: ffffffffda RBX: 0000000000000003 RCX: 0000000000441f79 BUG: memory leak unreferenced object 0xffff888114f26040 (size 32): comm "syz-executor626", pid 7056, jiffies 4294948701 (age 39.410s) hex dump (first 32 bytes): 40 60 f2 14 81 88 ff ff 40 60 f2 14 81 88 ff ff @`......@`...... 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace: slab_post_alloc_hook mm/slab.h:439 [inline] slab_alloc mm/slab.c:3326 [inline] kmem_cache_alloc_trace+0x13d/0x280 mm/slab.c:3553 kmalloc include/linux/slab.h:547 [inline] __memcg_init_list_lru_node+0x58/0xf0 mm/list_lru.c:352 memcg_init_list_lru_node mm/list_lru.c:375 [inline] memcg_init_list_lru mm/list_lru.c:459 [inline] __list_lru_init+0x193/0x2a0 mm/list_lru.c:626 alloc_super+0x2e0/0x310 fs/super.c:269 sget_userns+0x94/0x2a0 fs/super.c:609 sget+0x8d/0xb0 fs/super.c:660 mount_nodev+0x31/0xb0 fs/super.c:1387 fuse_mount+0x2d/0x40 fs/fuse/inode.c:1236 legacy_get_tree+0x27/0x80 fs/fs_context.c:661 vfs_get_tree+0x2e/0x120 fs/super.c:1476 do_new_mount fs/namespace.c:2790 [inline] do_mount+0x932/0xc50 fs/namespace.c:3110 ksys_mount+0xab/0x120 fs/namespace.c:3319 __do_sys_mount fs/namespace.c:3333 [inline] __se_sys_mount fs/namespace.c:3330 [inline] __x64_sys_mount+0x26/0x30 fs/namespace.c:3330 do_syscall_64+0x76/0x1a0 arch/x86/entry/common.c:301 entry_SYSCALL_64_after_hwframe+0x44/0xa9 This is a simple off by one bug on the error path. Link: http://lkml.kernel.org/r/20190528043202.99980-1-shakeelb@google.com Fixes: 60d3fd32 ("list_lru: introduce per-memcg lists") Reported-by: syzbot+f90a420dfe2b1b03cb2c@syzkaller.appspotmail.com Signed-off-by: NShakeel Butt <shakeelb@google.com> Acked-by: NMichal Hocko <mhocko@suse.com> Reviewed-by: NKirill Tkhai <ktkhai@virtuozzo.com> Cc: <stable@vger.kernel.org> [4.0+] Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 15 6月, 2019 7 次提交
-
-
由 Dennis Zhou 提交于
[ Upstream commit 8c43004af01635cc9fbb11031d070e5e0d327ef2 ] pcpu_find_block_fit() guarantees that a fit is found within PCPU_BITMAP_BLOCK_BITS. Iteration is used to determine the first fit as it compares against the block's contig_hint. This can lead to incorrectly scanning past the end of the bitmap. The behavior was okay given the check after for bit_off >= end and the correctness of the hints from pcpu_find_block_fit(). This patch fixes this by bounding the end offset by the number of bits in a chunk. Signed-off-by: NDennis Zhou <dennis@kernel.org> Reviewed-by: NPeng Fan <peng.fan@nxp.com> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
由 John Sperbeck 提交于
[ Upstream commit 198790d9a3aeaef5792d33a560020861126edc22 ] In free_percpu() we sometimes call pcpu_schedule_balance_work() to queue a work item (which does a wakeup) while holding pcpu_lock. This creates an unnecessary lock dependency between pcpu_lock and the scheduler's pi_lock. There are other places where we call pcpu_schedule_balance_work() without hold pcpu_lock, and this case doesn't need to be different. Moving the call outside the lock prevents the following lockdep splat when running tools/testing/selftests/bpf/{test_maps,test_progs} in sequence with lockdep enabled: ====================================================== WARNING: possible circular locking dependency detected 5.1.0-dbg-DEV #1 Not tainted ------------------------------------------------------ kworker/23:255/18872 is trying to acquire lock: 000000000bc79290 (&(&pool->lock)->rlock){-.-.}, at: __queue_work+0xb2/0x520 but task is already holding lock: 00000000e3e7a6aa (pcpu_lock){..-.}, at: free_percpu+0x36/0x260 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #4 (pcpu_lock){..-.}: lock_acquire+0x9e/0x180 _raw_spin_lock_irqsave+0x3a/0x50 pcpu_alloc+0xfa/0x780 __alloc_percpu_gfp+0x12/0x20 alloc_htab_elem+0x184/0x2b0 __htab_percpu_map_update_elem+0x252/0x290 bpf_percpu_hash_update+0x7c/0x130 __do_sys_bpf+0x1912/0x1be0 __x64_sys_bpf+0x1a/0x20 do_syscall_64+0x59/0x400 entry_SYSCALL_64_after_hwframe+0x49/0xbe -> #3 (&htab->buckets[i].lock){....}: lock_acquire+0x9e/0x180 _raw_spin_lock_irqsave+0x3a/0x50 htab_map_update_elem+0x1af/0x3a0 -> #2 (&rq->lock){-.-.}: lock_acquire+0x9e/0x180 _raw_spin_lock+0x2f/0x40 task_fork_fair+0x37/0x160 sched_fork+0x211/0x310 copy_process.part.43+0x7b1/0x2160 _do_fork+0xda/0x6b0 kernel_thread+0x29/0x30 rest_init+0x22/0x260 arch_call_rest_init+0xe/0x10 start_kernel+0x4fd/0x520 x86_64_start_reservations+0x24/0x26 x86_64_start_kernel+0x6f/0x72 secondary_startup_64+0xa4/0xb0 -> #1 (&p->pi_lock){-.-.}: lock_acquire+0x9e/0x180 _raw_spin_lock_irqsave+0x3a/0x50 try_to_wake_up+0x41/0x600 wake_up_process+0x15/0x20 create_worker+0x16b/0x1e0 workqueue_init+0x279/0x2ee kernel_init_freeable+0xf7/0x288 kernel_init+0xf/0x180 ret_from_fork+0x24/0x30 -> #0 (&(&pool->lock)->rlock){-.-.}: __lock_acquire+0x101f/0x12a0 lock_acquire+0x9e/0x180 _raw_spin_lock+0x2f/0x40 __queue_work+0xb2/0x520 queue_work_on+0x38/0x80 free_percpu+0x221/0x260 pcpu_freelist_destroy+0x11/0x20 stack_map_free+0x2a/0x40 bpf_map_free_deferred+0x3c/0x50 process_one_work+0x1f7/0x580 worker_thread+0x54/0x410 kthread+0x10f/0x150 ret_from_fork+0x24/0x30 other info that might help us debug this: Chain exists of: &(&pool->lock)->rlock --> &htab->buckets[i].lock --> pcpu_lock Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(pcpu_lock); lock(&htab->buckets[i].lock); lock(pcpu_lock); lock(&(&pool->lock)->rlock); *** DEADLOCK *** 3 locks held by kworker/23:255/18872: #0: 00000000b36a6e16 ((wq_completion)events){+.+.}, at: process_one_work+0x17a/0x580 #1: 00000000dfd966f0 ((work_completion)(&map->work)){+.+.}, at: process_one_work+0x17a/0x580 #2: 00000000e3e7a6aa (pcpu_lock){..-.}, at: free_percpu+0x36/0x260 stack backtrace: CPU: 23 PID: 18872 Comm: kworker/23:255 Not tainted 5.1.0-dbg-DEV #1 Hardware name: ... Workqueue: events bpf_map_free_deferred Call Trace: dump_stack+0x67/0x95 print_circular_bug.isra.38+0x1c6/0x220 check_prev_add.constprop.50+0x9f6/0xd20 __lock_acquire+0x101f/0x12a0 lock_acquire+0x9e/0x180 _raw_spin_lock+0x2f/0x40 __queue_work+0xb2/0x520 queue_work_on+0x38/0x80 free_percpu+0x221/0x260 pcpu_freelist_destroy+0x11/0x20 stack_map_free+0x2a/0x40 bpf_map_free_deferred+0x3c/0x50 process_one_work+0x1f7/0x580 worker_thread+0x54/0x410 kthread+0x10f/0x150 ret_from_fork+0x24/0x30 Signed-off-by: NJohn Sperbeck <jsperbeck@google.com> Signed-off-by: NDennis Zhou <dennis@kernel.org> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
由 Qian Cai 提交于
[ Upstream commit 745e10146c31b1c6ed3326286704ae251b17f663 ] "cat /proc/slab_allocators" could hang forever on SMP machines with kmemleak or object debugging enabled due to other CPUs running do_drain() will keep making kmemleak_object or debug_objects_cache dirty and unable to escape the first loop in leaks_show(), do { set_store_user_clean(cachep); drain_cpu_caches(cachep); ... } while (!is_store_user_clean(cachep)); For example, do_drain slabs_destroy slab_destroy kmem_cache_free __cache_free ___cache_free kmemleak_free_recursive delete_object_full __delete_object put_object free_object_rcu kmem_cache_free cache_free_debugcheck --> dirty kmemleak_object One approach is to check cachep->name and skip both kmemleak_object and debug_objects_cache in leaks_show(). The other is to set store_user_clean after drain_cpu_caches() which leaves a small window between drain_cpu_caches() and set_store_user_clean() where per-CPU caches could be dirty again lead to slightly wrong information has been stored but could also speed up things significantly which sounds like a good compromise. For example, # cat /proc/slab_allocators 0m42.778s # 1st approach 0m0.737s # 2nd approach [akpm@linux-foundation.org: tweak comment] Link: http://lkml.kernel.org/r/20190411032635.10325-1-cai@lca.pw Fixes: d31676df ("mm/slab: alternative implementation for DEBUG_SLAB_LEAK") Signed-off-by: NQian Cai <cai@lca.pw> Reviewed-by: NAndrew Morton <akpm@linux-foundation.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
由 Yue Hu 提交于
[ Upstream commit f0fd50504a54f5548eb666dc16ddf8394e44e4b7 ] If not find zero bit in find_next_zero_bit(), it will return the size parameter passed in, so the start bit should be compared with bitmap_maxno rather than cma->count. Although getting maxchunk is working fine due to zero value of order_per_bit currently, the operation will be stuck if order_per_bit is set as non-zero. Link: http://lkml.kernel.org/r/20190319092734.276-1-zbestahu@gmail.comSigned-off-by: NYue Hu <huyue2@yulong.com> Reviewed-by: NAndrew Morton <akpm@linux-foundation.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Joe Perches <joe@perches.com> Cc: David Rientjes <rientjes@google.com> Cc: Dmitry Safonov <d.safonov@partner.samsung.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
由 Aneesh Kumar K.V 提交于
[ Upstream commit 024eee0e83f0df52317be607ca521e0fc572aa07 ] MADV_DONTNEED is handled with mmap_sem taken in read mode. We call page_mkclean without holding mmap_sem. MADV_DONTNEED implies that pages in the region are unmapped and subsequent access to the pages in that range is handled as a new page fault. This implies that if we don't have parallel access to the region when MADV_DONTNEED is run we expect those range to be unallocated. w.r.t page_mkclean() we need to make sure that we don't break the MADV_DONTNEED semantics. MADV_DONTNEED check for pmd_none without holding pmd_lock. This implies we skip the pmd if we temporarily mark pmd none. Avoid doing that while marking the page clean. Keep the sequence same for dax too even though we don't support MADV_DONTNEED for dax mapping The bug was noticed by code review and I didn't observe any failures w.r.t test run. This is similar to commit 58ceeb6b Author: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Date: Thu Apr 13 14:56:26 2017 -0700 thp: fix MADV_DONTNEED vs. MADV_FREE race commit ced10803 Author: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Date: Thu Apr 13 14:56:20 2017 -0700 thp: fix MADV_DONTNEED vs. numa balancing race Link: http://lkml.kernel.org/r/20190321040610.14226-1-aneesh.kumar@linux.ibm.comSigned-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Reviewed-by: NAndrew Morton <akpm@linux-foundation.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc:"Kirill A . Shutemov" <kirill@shutemov.name> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
由 Yue Hu 提交于
[ Upstream commit 2b59e01a3aa665f751d1410b99fae9336bd424e1 ] Currently one bit in cma bitmap represents number of pages rather than one page, cma->count means cma size in pages. So to find available pages via find_next_zero_bit()/find_next_bit() we should use cma size not in pages but in bits although current free pages number is correct due to zero value of order_per_bit. Once order_per_bit is changed the bitmap status will be incorrect. The size input in cma_debug_show_areas() is not correct. It will affect the available pages at some position to debug the failure issue. This is an example with order_per_bit = 1 Before this change: [ 4.120060] cma: number of available pages: 1@93+4@108+7@121+7@137+7@153+7@169+7@185+7@201+3@213+3@221+3@229+3@237+3@245+3@253+3@261+3@269+3@277+3@285+3@293+3@301+3@309+3@317+3@325+19@333+15@369+512@512=> 638 free of 1024 total pages After this change: [ 4.143234] cma: number of available pages: 2@93+8@108+14@121+14@137+14@153+14@169+14@185+14@201+6@213+6@221+6@229+6@237+6@245+6@253+6@261+6@269+6@277+6@285+6@293+6@301+6@309+6@317+6@325+38@333+30@369=> 252 free of 1024 total pages Obviously the bitmap status before is incorrect. Link: http://lkml.kernel.org/r/20190320060829.9144-1-zbestahu@gmail.comSigned-off-by: NYue Hu <huyue2@yulong.com> Reviewed-by: NAndrew Morton <akpm@linux-foundation.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Laura Abbott <labbott@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
由 Yue Hu 提交于
[ Upstream commit 1df3a339074e31db95c4790ea9236874b13ccd87 ] f022d8cb ("mm: cma: Don't crash on allocation if CMA area can't be activated") fixes the crash issue when activation fails via setting cma->count as 0, same logic exists if bitmap allocation fails. Link: http://lkml.kernel.org/r/20190325081309.6004-1-zbestahu@gmail.comSigned-off-by: NYue Hu <huyue2@yulong.com> Reviewed-by: NAnshuman Khandual <anshuman.khandual@arm.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Laura Abbott <labbott@redhat.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NSasha Levin <sashal@kernel.org>
-