提交 465ce9a5 编写于 作者: A Andrea Arcangeli 提交者: Greg Kroah-Hartman

coredump: fix race condition between collapse_huge_page() and core dumping

commit 59ea6d06cfa9247b586a695c21f94afa7183af74 upstream.

When fixing the race conditions between the coredump and the mmap_sem
holders outside the context of the process, we focused on
mmget_not_zero()/get_task_mm() callers in 04f5866e41fb70 ("coredump: fix
race condition between mmget_not_zero()/get_task_mm() and core
dumping"), but those aren't the only cases where the mmap_sem can be
taken outside of the context of the process as Michal Hocko noticed
while backporting that commit to older -stable kernels.

If mmgrab() is called in the context of the process, but then the
mm_count reference is transferred outside the context of the process,
that can also be a problem if the mmap_sem has to be taken for writing
through that mm_count reference.

khugepaged registration calls mmgrab() in the context of the process,
but the mmap_sem for writing is taken later in the context of the
khugepaged kernel thread.

collapse_huge_page() after taking the mmap_sem for writing doesn't
modify any vma, so it's not obvious that it could cause a problem to the
coredump, but it happens to modify the pmd in a way that breaks an
invariant that pmd_trans_huge_lock() relies upon.  collapse_huge_page()
needs the mmap_sem for writing just to block concurrent page faults that
call pmd_trans_huge_lock().

Specifically the invariant that "!pmd_trans_huge()" cannot become a
"pmd_trans_huge()" doesn't hold while collapse_huge_page() runs.

The coredump will call __get_user_pages() without mmap_sem for reading,
which eventually can invoke a lockless page fault which will need a
functional pmd_trans_huge_lock().

So collapse_huge_page() needs to use mmget_still_valid() to check it's
not running concurrently with the coredump...  as long as the coredump
can invoke page faults without holding the mmap_sem for reading.

This has "Fixes: khugepaged" to facilitate backporting, but in my view
it's more a bug in the coredump code that will eventually have to be
rewritten to stop invoking page faults without the mmap_sem for reading.
So the long term plan is still to drop all mmget_still_valid().

Link: http://lkml.kernel.org/r/20190607161558.32104-1-aarcange@redhat.com
Fixes: ba76149f ("thp: khugepaged")
Signed-off-by: NAndrea Arcangeli <aarcange@redhat.com>
Reported-by: NMichal Hocko <mhocko@suse.com>
Acked-by: NMichal Hocko <mhocko@suse.com>
Acked-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Jason Gunthorpe <jgg@mellanox.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
上级 c7fb6b75
......@@ -54,6 +54,10 @@ static inline void mmdrop(struct mm_struct *mm)
* followed by taking the mmap_sem for writing before modifying the
* vmas or anything the coredump pretends not to change from under it.
*
* It also has to be called when mmgrab() is used in the context of
* the process, but then the mm_count refcount is transferred outside
* the context of the process to run down_write() on that pinned mm.
*
* NOTE: find_extend_vma() called from GUP context is the only place
* that can modify the "mm" (notably the vm_start/end) under mmap_sem
* for reading and outside the context of the process, so it is also
......
......@@ -1005,6 +1005,9 @@ static void collapse_huge_page(struct mm_struct *mm,
* handled by the anon_vma lock + PG_lock.
*/
down_write(&mm->mmap_sem);
result = SCAN_ANY_PROCESS;
if (!mmget_still_valid(mm))
goto out;
result = hugepage_vma_revalidate(mm, address, &vma);
if (result)
goto out;
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册