- 28 5月, 2014 4 次提交
-
-
由 Paul Burton 提交于
The core which the CPC core-other region relates to is based upon the core-local core-other addressing register. As its name suggests this register is shared between all VPEs within a core, and if there is a possibility that multiple VPEs within a core will attempt to access another core simultaneously then locking is required. This wasn't previously a problem with the only user being cpu0 during boot, but will be an issue once hotplug is implemented & may race with other users such as cpuidle. Signed-off-by: NPaul Burton <paul.burton@imgtec.com>
-
由 Paul Burton 提交于
The start of mips_cps_core_entry is patched in order to provide the code with the address of the CM register region at a point where it will be running non-coherent with the rest of the system. However the cache wasn't being flushed after that patching which could in principle lead to secondary cores using an invalid CM base address. The patching is moved to cps_prepare_cpus since local_flush_icache_range has not been initialised at the point cps_smp_setup is called. Signed-off-by: NPaul Burton <paul.burton@imgtec.com>
-
由 Paul Burton 提交于
The core power down state for cpuidle will require that the CPS SMP implementation is in use. This patch provides a mips_cps_smp_in_use function which determines whether or not the CPS SMP implementation is currently in use. Signed-off-by: NPaul Burton <paul.burton@imgtec.com>
-
由 Paul Burton 提交于
When hotplug and/or a powered down idle state are supported cases will arise where a non-zero VPE must be brought online without VPE 0, and it where multiple VPEs must be onlined simultaneously. This patch prepares for that by: - Splitting struct boot_config into core & VPE boot config structures, allocated one per core or VPE respectively. This allows for multiple VPEs to be onlined simultaneously without clobbering each others configuration. - Indicating which VPEs should be online within a core at any given time using a bitmap. This allows multiple VPEs to be brought online simultaneously and also indicates to VPE 0 whether it should halt after starting any non-zero VPEs that should be online within the core. For example if all VPEs within a core are offlined via hotplug and the user onlines the second VPE within that core: 1) The core will be powered up. 2) VPE 0 will run from the BEV (ie. mips_cps_core_entry) to initialise the core. 3) VPE 0 will start VPE 1 because its bit is set in the cores bitmap. 4) VPE 0 will halt itself because its bit is clear in the cores bitmap. - Moving the core & VPE initialisation to assembly code which does not make any use of the stack. This is because if a non-zero VPE is to be brought online in a powered down core then when VPE 0 of that core runs it may not have a valid stack, and even if it did then it's messy to run through parts of generic kernel code on VPE 0 before starting the correct VPE. Signed-off-by: NPaul Burton <paul.burton@imgtec.com>
-
- 27 3月, 2014 1 次提交
-
-
由 Paul Burton 提交于
This patch introduces a new SMP implementation for systems implementing the MIPS Coherent Processing System architecture. The kernel will make use of the Coherence Manager, Cluster Power Controller & Global Interrupt Controller in order to detect, bring up & make use of other cores in the system. SMTC is not supported, so only a single TC per VPE in the system is used. That is, this option enables an SMVP style setup but across multiple cores. Signed-off-by: NPaul Burton <paul.burton@imgtec.com> Cc: linux-mips@linux-mips.org Patchwork: https://patchwork.linux-mips.org/patch/6362/ Patchwork: https://patchwork.linux-mips.org/patch/6611/ Patchwork: https://patchwork.linux-mips.org/patch/6651/ Patchwork: https://patchwork.linux-mips.org/patch/6652/Signed-off-by: NRalf Baechle <ralf@linux-mips.org>
-