- 10 8月, 2017 1 次提交
-
-
由 Viresh Kumar 提交于
CPUFREQ_ENTRY_INVALID is a special symbol which is used to specify that an entry in the cpufreq table is invalid. But using it outside of the scope of the cpufreq table looks a bit incorrect. We can represent an invalid frequency by writing it as 0 instead if we need. Note that it is already done that way for the return value of the ->get() callback. Lets do the same for ->fast_switch() and not use CPUFREQ_ENTRY_INVALID outside of the scope of cpufreq table. Also update the comment over cpufreq_driver_fast_switch() to clearly mention what this returns. None of the drivers return CPUFREQ_ENTRY_INVALID as of now from ->fast_switch() callback and so we don't need to update any of those. Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 01 8月, 2017 2 次提交
-
-
由 Viresh Kumar 提交于
On many platforms, CPUs can do DVFS across cpufreq policies. i.e CPU from policy-A can change frequency of CPUs belonging to policy-B. This is quite common in case of ARM platforms where we don't configure any per-cpu register. Add a flag to identify such platforms and update cpufreq_can_do_remote_dvfs() to allow remote callbacks if this flag is set. Also enable the flag for cpufreq-dt driver which is used only on ARM platforms currently. Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Acked-by: NSaravana Kannan <skannan@codeaurora.org> Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Viresh Kumar 提交于
With Android UI and benchmarks the latency of cpufreq response to certain scheduling events can become very critical. Currently, callbacks into cpufreq governors are only made from the scheduler if the target CPU of the event is the same as the current CPU. This means there are certain situations where a target CPU may not run the cpufreq governor for some time. One testcase to show this behavior is where a task starts running on CPU0, then a new task is also spawned on CPU0 by a task on CPU1. If the system is configured such that the new tasks should receive maximum demand initially, this should result in CPU0 increasing frequency immediately. But because of the above mentioned limitation though, this does not occur. This patch updates the scheduler core to call the cpufreq callbacks for remote CPUs as well. The schedutil, ondemand and conservative governors are updated to process cpufreq utilization update hooks called for remote CPUs where the remote CPU is managed by the cpufreq policy of the local CPU. The intel_pstate driver is updated to always reject remote callbacks. This is tested with couple of usecases (Android: hackbench, recentfling, galleryfling, vellamo, Ubuntu: hackbench) on ARM hikey board (64 bit octa-core, single policy). Only galleryfling showed minor improvements, while others didn't had much deviation. The reason being that this patch only targets a corner case, where following are required to be true to improve performance and that doesn't happen too often with these tests: - Task is migrated to another CPU. - The task has high demand, and should take the target CPU to higher OPPs. - And the target CPU doesn't call into the cpufreq governor until the next tick. Based on initial work from Steve Muckle. Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Acked-by: NSaravana Kannan <skannan@codeaurora.org> Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 14 7月, 2017 1 次提交
-
-
由 Srinivas Pandruvada 提交于
The busy percent calculated for the Knights Landing (KNL) platform is 1024 times smaller than the correct busy value. This causes performance to get stuck at the lowest ratio. The scaling algorithm used for KNL is performance-based, but it still looks at the CPU load to set the scaled busy factor to 0 when the load is less than 1 percent. In this case, since the computed load is 1024x smaller than it should be, the scaled busy factor will always be 0, irrespective of CPU business. This needs a fix similar to the turbostat one in commit b2b34dfe (tools/power turbostat: KNL workaround for %Busy and Avg_MHz). For this reason, add one more callback to processor-specific callbacks to specify an MPERF multiplier represented by a number of bit positions to shift the value of that register to the left to copmensate for its rate difference with respect to the TSC. This shift value is used during CPU busy calculations. Fixes: ffb81056 (intel_pstate: Avoid getting stuck in high P-states when idle) Reported-and-tested-by: NArtem Bityutskiy <artem.bityutskiy@linux.intel.com> Signed-off-by: NSrinivas Pandruvada <srinivas.pandruvada@linux.intel.com> Cc: 4.6+ <stable@vger.kernel.org> # 4.6+ [ rjw: Changelog ] Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 12 7月, 2017 1 次提交
-
-
由 Srinivas Pandruvada 提交于
When the minimum performance limit percentage is set to the power-up default, it is possible that minimum performance ratio is off by one. In the set_policy() callback the minimum ratio is calculated by applying global.min_perf_pct to turbo_ratio and rounding up, but the power-up default global.min_perf_pct is already rounded up to the next percent in min_perf_pct_min(). That results in two round up operations, so for the default min_perf_pct one of them is not required. It is better to remove rounding up in min_perf_pct_min() as this matches the displayed min_perf_pct prior to commit c5a2ee7d (cpufreq: intel_pstate: Active mode P-state limits rework) in 4.12. For example on a platform with max turbo ratio of 37 and minimum ratio of 10, the min_perf_pct resulted in 28 with the above commit. Before this commit it was 27 and it will be the same after this change. Fixes: 1a4fe38a (cpufreq: intel_pstate: Remove max/min fractions to limit performance) Reported-by: NArtem Bityutskiy <artem.bityutskiy@linux.intel.com> Signed-off-by: NSrinivas Pandruvada <srinivas.pandruvada@linux.intel.com> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 05 7月, 2017 2 次提交
-
-
由 Arvind Yadav 提交于
attribute_groups are not supposed to change at runtime. All functions working with attribute_groups provided by <linux/sysfs.h> work with const attribute_group. So mark the non-const structs as const. File size before: text data bss dec hex filename 15197 2552 40 17789 457d drivers/cpufreq/intel_pstate.o File size After adding 'const': text data bss dec hex filename 15261 2488 40 17789 457d drivers/cpufreq/intel_pstate.o Signed-off-by: NArvind Yadav <arvind.yadav.cs@gmail.com> Acked-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Arvind Yadav 提交于
attribute_groups are not supposed to change at runtime. All functions working with attribute_groups provided by <linux/sysfs.h> work with const attribute_group. So mark the non-const structs as const. File size before: text data bss dec hex filename 1655 256 4 1915 77b drivers/cpufreq/cpufreq_stats.o File size After adding 'const': text data bss dec hex filename 1695 192 4 1891 763 drivers/cpufreq/cpufreq_stats.o Signed-off-by: NArvind Yadav <arvind.yadav.cs@gmail.com> Acked-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 30 6月, 2017 1 次提交
-
-
由 Rafael J. Wysocki 提交于
After commit 82b4e03e (intel_pstate: skip scheduler hook when in "performance" mode) get_target_pstate_use_performance() and get_target_pstate_use_cpu_load() are never called if scaling_governor is "performance", so drop the CPUFREQ_POLICY_PERFORMANCE checks from them as they will never trigger anyway. Moreover, the documentation needs to be updated to reflect the change made by the above commit, so do that too. Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: NSrinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
-
- 27 6月, 2017 4 次提交
-
-
由 Prakash, Prashanth 提交于
Description of Lowest Perfomance in ACPI 6.1 specification states: "Lowest Performance is the absolute lowest performance level of the platform. Selecting a performance level lower than the lowest nonlinear performance level may actually cause an efficiency penalty, but should reduce the instantaneous power consumption of the processor. In traditional terms, this represents the T-state range of performance levels." Set the default value of policy->min to Lowest Nonlinear Performance to avoid any potential efficiency penalty. Signed-off-by: NPrashanth Prakash <pprakash@codeaurora.org> Acked-by: NViresh Kumar <viresh.kumar@linaro.org> Acked-by: NAlexey Klimov <alexey.klimov@arm.com> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Len Brown 提交于
When the governor is set to "performance", intel_pstate does not need the scheduler hook for doing any calculations. Under these conditions, its only purpose is to continue to maintain cpufreq/scaling_cur_freq. The cpufreq/scaling_cur_freq sysfs attribute is now provided by shared x86 cpufreq code on modern x86 systems, including all systems supported by the intel_pstate driver. So in "performance" governor mode, the scheduler hook can be skipped. This applies to both in Software and Hardware P-state control modes. Suggested-by: NSrinivas Pandruvada <srinivas.pandruvada@linux.intel.com> Signed-off-by: NLen Brown <len.brown@intel.com> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Len Brown 提交于
The cpufreq/scaling_cur_freq sysfs attribute is now provided by shared x86 cpufreq code on modern x86 systems, including all systems supported by the intel_pstate driver. In HWP mode, maintaining that value was the sole purpose of the scheduler hook, intel_pstate_update_util_hwp(), so it can now be removed. Signed-off-by: NLen Brown <len.brown@intel.com> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Len Brown 提交于
The goal of this change is to give users a uniform and meaningful result when they read /sys/...cpufreq/scaling_cur_freq on modern x86 hardware, as compared to what they get today. Modern x86 processors include the hardware needed to accurately calculate frequency over an interval -- APERF, MPERF, and the TSC. Here we provide an x86 routine to make this calculation on supported hardware, and use it in preference to any driver driver-specific cpufreq_driver.get() routine. MHz is computed like so: MHz = base_MHz * delta_APERF / delta_MPERF MHz is the average frequency of the busy processor over a measurement interval. The interval is defined to be the time between successive invocations of aperfmperf_khz_on_cpu(), which are expected to to happen on-demand when users read sysfs attribute cpufreq/scaling_cur_freq. As with previous methods of calculating MHz, idle time is excluded. base_MHz above is from TSC calibration global "cpu_khz". This x86 native method to calculate MHz returns a meaningful result no matter if P-states are controlled by hardware or firmware and/or if the Linux cpufreq sub-system is or is-not installed. When this routine is invoked more frequently, the measurement interval becomes shorter. However, the code limits re-computation to 10ms intervals so that average frequency remains meaningful. Discerning users are encouraged to take advantage of the turbostat(8) utility, which can gracefully handle concurrent measurement intervals of arbitrary length. Signed-off-by: NLen Brown <len.brown@intel.com> Reviewed-by: NThomas Gleixner <tglx@linutronix.de> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 24 6月, 2017 5 次提交
-
-
由 Srinivas Pandruvada 提交于
In the current model the max/min perf limits are a fraction of current user space limits to the allowed max_freq or 100% for global limits. This results in wrong ratio limits calculation because of rounding issues for some user space limits. Initially we tried to solve this issue by issue by having more shift bits to increase precision. Still there are isolated cases where we still have error. This can be avoided by using ratios all together. Since the way we get cpuinfo.max_freq is by multiplying scaling factor to max ratio, we can easily keep the max/min ratios in terms of ratios and not fractions. For example: if the max ratio = 36 cpuinfo.max_freq = 36 * 100000 = 3600000 Suppose user space sets a limit of 1200000, then we can calculate max ratio limit as = 36 * 1200000 / 3600000 = 12 This will be correct for any user limits. The other advantage is that, we don't need to do any calculation in the fast path as ratio limit is already calculated via set_policy() callback. Signed-off-by: NSrinivas Pandruvada <srinivas.pandruvada@linux.intel.com> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Colin Ian King 提交于
pointer freq_table can be made static as it does not need to be in global scope. Cleans up sparse warning: "symbol 'freq_table' was not declared. Should it be static?" Signed-off-by: NColin Ian King <colin.king@canonical.com> Acked-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Krzysztof Kozlowski 提交于
Fix inconsistent indenting and unneeded white space in assignment. Signed-off-by: NKrzysztof Kozlowski <krzk@kernel.org> Acked-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Octavian Purdila 提交于
This fixes an issue with imx6ull where setting the frequency to 528Mhz would actually set the ARM clock to 324Mhz. Signed-off-by: NOctavian Purdila <octavian.purdila@nxp.com> Signed-off-by: NLeonard Crestez <leonard.crestez@nxp.com> Acked-by: NViresh Kumar <viresh.kumar@linaro.org> Reviewed-by: NFabio Estevam <fabio.estevam@nxp.com> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Tao Wang 提交于
Add the compatible string for supporting the generic device tree cpufreq-dt driver on Hisilicon's 3660 SoC. Signed-off-by: NTao Wang <kevin.wangtao@hisilicon.com> Acked-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 12 6月, 2017 1 次提交
-
-
由 Tomasz Wilczyński 提交于
Commit 27ed3cd2 (cpufreq: conservative: Fix the logic in frequency decrease checking) removed the 10 point substraction when comparing the load against down_threshold but did not remove the related limit for the down_threshold value. As a result, down_threshold lower than 11 is not allowed even though values from 1 to 10 do work correctly too. The comment ("cannot be lower than 11 otherwise freq will not fall") also does not apply after removing the substraction. For this reason, allow down_threshold to take any value from 1 to 99 and fix the related comment. Fixes: 27ed3cd2 (cpufreq: conservative: Fix the logic in frequency decrease checking) Signed-off-by: NTomasz Wilczyński <twilczynski@naver.com> Acked-by: NViresh Kumar <viresh.kumar@linaro.org> Cc: 3.10+ <stable@vger.kernel.org> # 3.10+ Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 05 6月, 2017 2 次提交
-
-
由 Rafael J. Wysocki 提交于
Commit c5a2ee7d (cpufreq: intel_pstate: Active mode P-state limits rework) incorrectly assumed that pstate.turbo_pstate would always be nonzero for CPU0 in min_perf_pct_min() if cpufreq_register_driver() had succeeded which may not be the case in virtualized environments. If that assumption doesn't hold, it leads to an early crash on boot in intel_pstate_register_driver(), so add a sanity check to min_perf_pct_min() to prevent the crash from happening. Fixes: c5a2ee7d (cpufreq: intel_pstate: Active mode P-state limits rework) Reported-and-tested-by: NJongman Heo <jongman.heo@samsung.com> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Sudeep Holla 提交于
scpi_ops now provide APIs to get the transition_latency and to add OPPs to the devices making those logic redundant here. This patch makes use of those APIs and removes the redundant code in this driver. Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Acked-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NSudeep Holla <sudeep.holla@arm.com>
-
- 30 5月, 2017 2 次提交
-
-
由 Arvind Yadav 提交于
clk_prepare_enable() can fail here and we must check its return value. Signed-off-by: NArvind Yadav <arvind.yadav.cs@gmail.com> Acked-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 David Arcari 提交于
For a driver that does not set the CPUFREQ_STICKY flag, if all of the ->init() calls fail, cpufreq_register_driver() should return an error. This will prevent the driver from loading. Fixes: ce1bcfe9 (cpufreq: check cpufreq_policy_list instead of scanning policies for all CPUs) Cc: 4.0+ <stable@vger.kernel.org> # 4.0+ Signed-off-by: NDavid Arcari <darcari@redhat.com> Acked-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 28 5月, 2017 2 次提交
-
-
由 Viresh Kumar 提交于
We need such a routine at two places already, lets create one. Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Reviewed-by: NLukasz Luba <lukasz.luba@arm.com> Tested-by: NLukasz Luba <lukasz.luba@arm.com> Signed-off-by: NEduardo Valentin <edubezval@gmail.com>
-
由 Viresh Kumar 提交于
The CPU cooling driver uses the cpufreq policy, to get clip_cpus, the frequency table, etc. Most of the callers of CPU cooling driver's registration routines have the cpufreq policy with them, but they only pass the policy->related_cpus cpumask. The __cpufreq_cooling_register() routine then gets the policy by itself and uses it. It would be much better if the callers can pass the policy instead directly. This also fixes a basic design flaw, where the policy can be freed while the CPU cooling driver is still active. Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Reviewed-by: NLukasz Luba <lukasz.luba@arm.com> Tested-by: NLukasz Luba <lukasz.luba@arm.com> Signed-off-by: NEduardo Valentin <edubezval@gmail.com>
-
- 26 5月, 2017 1 次提交
-
-
cpufreq holds get_online_cpus() while invoking cpuhp_setup_state_nocalls() to make subsys_interface_register() and the registration of hotplug calls atomic versus cpu hotplug. cpuhp_setup_state_nocalls() invokes get_online_cpus() as well. This is correct, but prevents the conversion of the hotplug locking to a percpu rwsem. Use cpuhp_setup/remove_state_nocalls_cpuslocked() to avoid the nested call. Convert *_online_cpus() to the new interfaces while at it. Signed-off-by: NSebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Tested-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Acked-by: NIngo Molnar <mingo@kernel.org> Acked-by: N"Rafael J. Wysocki" <rafael.j.wysocki@intel.com> Acked-by: NViresh Kumar <viresh.kumar@linaro.org> Cc: linux-pm@vger.kernel.org Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Link: http://lkml.kernel.org/r/20170524081547.731628408@linutronix.de
-
- 23 5月, 2017 1 次提交
-
-
由 Thomas Gleixner 提交于
To enable smp_processor_id() and might_sleep() debug checks earlier, it's required to add system states between SYSTEM_BOOTING and SYSTEM_RUNNING. Adjust the system_state check in pas_cpufreq_cpu_exit() to handle the extra states. Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Acked-by: NViresh Kumar <viresh.kumar@linaro.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rafael J. Wysocki <rjw@rjwysocki.net> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: linuxppc-dev@lists.ozlabs.org Link: http://lkml.kernel.org/r/20170516184735.620023128@linutronix.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 14 5月, 2017 1 次提交
-
-
由 Arnd Bergmann 提交于
Moving the cooling code into the cpufreq driver caused a possible build failure when the cpu_thermal helper code is a loadable module or disabled: drivers/cpufreq/dbx500-cpufreq.o: In function `dbx500_cpufreq_ready': dbx500-cpufreq.c:(.text.dbx500_cpufreq_ready+0x4): undefined reference to `cpufreq_cooling_register' This adds the same dependency that we have in other cpufreq drivers, forcing the driver to be disabled when we can't possibly link it. Fixes: 19678ffb (cpufreq: dbx500: Manage cooling device from cpufreq driver) Signed-off-by: NArnd Bergmann <arnd@arndb.de> Acked-by: NViresh Kumar <viresh.kumar@linaro.org> Reviewed-by: NLinus Walleij <linus.walleij@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 12 5月, 2017 1 次提交
-
-
由 Len Brown 提交于
intel_pstate exports sysfs attributes for setting and observing HWP.EPP. These attributes use strings to describe 4 operating states, and inside the driver, these strings are mapped to numerical register values. The authorative mapping between the strings and numerical HWP.EPP values are now globally defined in msr-index.h, replacing the out-dated mapping that were open-coded into intel_pstate.c new old string --- --- ------ 0 0 performance 128 64 balance_performance 192 128 balance_power 255 192 power Note that the HW and BIOS default value on most system is 128, which intel_pstate will now call "balance_performance" while it used to call it "balance_power". Signed-off-by: NLen Brown <len.brown@intel.com>
-
- 09 5月, 2017 2 次提交
-
-
由 Kees Cook 提交于
While examining output from trial builds with -Wformat-security enabled, many strings were found that should be defined as "const", or as a char array instead of char pointer. This makes some static analysis easier, by producing fewer false positives. As these are all trivial changes, it seemed best to put them all in a single patch rather than chopping them up per maintainer. Link: http://lkml.kernel.org/r/20170405214711.GA5711@beastSigned-off-by: NKees Cook <keescook@chromium.org> Acked-by: Jes Sorensen <jes@trained-monkey.org> [runner.c] Cc: Tony Lindgren <tony@atomide.com> Cc: Russell King <linux@armlinux.org.uk> Cc: "Maciej W. Rozycki" <macro@linux-mips.org> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Viresh Kumar <viresh.kumar@linaro.org> Cc: Daniel Vetter <daniel.vetter@intel.com> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Sean Paul <seanpaul@chromium.org> Cc: David Airlie <airlied@linux.ie> Cc: Yisen Zhuang <yisen.zhuang@huawei.com> Cc: Salil Mehta <salil.mehta@huawei.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Jiri Slaby <jslaby@suse.com> Cc: Patrice Chotard <patrice.chotard@st.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: James Hogan <james.hogan@imgtec.com> Cc: Paul Burton <paul.burton@imgtec.com> Cc: Matt Redfearn <matt.redfearn@imgtec.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk> Cc: Mugunthan V N <mugunthanvnm@ti.com> Cc: Felipe Balbi <felipe.balbi@linux.intel.com> Cc: Jarod Wilson <jarod@redhat.com> Cc: Florian Westphal <fw@strlen.de> Cc: Antonio Quartulli <a@unstable.cc> Cc: Dmitry Torokhov <dmitry.torokhov@gmail.com> Cc: Kejian Yan <yankejian@huawei.com> Cc: Daode Huang <huangdaode@hisilicon.com> Cc: Qianqian Xie <xieqianqian@huawei.com> Cc: Philippe Reynes <tremyfr@gmail.com> Cc: Colin Ian King <colin.king@canonical.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Christian Gromm <christian.gromm@microchip.com> Cc: Andrey Shvetsov <andrey.shvetsov@k2l.de> Cc: Jason Litzinger <jlitzingerdev@gmail.com> Cc: WANG Cong <xiyou.wangcong@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Stephen Boyd 提交于
This typo is quite common. Fix it and add it to the spelling file so that checkpatch catches it earlier. Link: http://lkml.kernel.org/r/20170317011131.6881-2-sboyd@codeaurora.orgSigned-off-by: NStephen Boyd <sboyd@codeaurora.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 20 4月, 2017 5 次提交
-
-
由 David Howells 提交于
When the kernel is running in secure boot mode, we lock down the kernel to prevent userspace from modifying the running kernel image. Whilst this includes prohibiting access to things like /dev/mem, it must also prevent access by means of configuring driver modules in such a way as to cause a device to access or modify the kernel image. To this end, annotate module_param* statements that refer to hardware configuration and indicate for future reference what type of parameter they specify. The parameter parser in the core sees this information and can skip such parameters with an error message if the kernel is locked down. The module initialisation then runs as normal, but just sees whatever the default values for those parameters is. Note that we do still need to do the module initialisation because some drivers have viable defaults set in case parameters aren't specified and some drivers support automatic configuration (e.g. PNP or PCI) in addition to manually coded parameters. This patch annotates drivers in drivers/cpufreq/. Suggested-by: NAlan Cox <gnomes@lxorguk.ukuu.org.uk> Signed-off-by: NDavid Howells <dhowells@redhat.com> Acked-by: N"Rafael J. Wysocki" <rjw@rjwysocki.net> Acked-by: NViresh Kumar <viresh.kumar@linaro.org> cc: linux-pm@vger.kernel.org
-
由 Mikko Perttunen 提交于
Add a new cpufreq driver for Tegra186 (and likely later). The CPUs are organized into two clusters, Denver and A57, with two and four cores respectively. CPU frequency can be adjusted by writing the desired rate divisor and a voltage hint to a special per-core register. The frequency of each core can be set individually; however, this is just a hint as all CPUs in a cluster will run at the maximum rate of non-idle CPUs in the cluster. Signed-off-by: NMikko Perttunen <mperttunen@nvidia.com> Acked-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Christophe Jaillet 提交于
According to the previous error handling code, it is likely that 'goto out_free_opp' is expected here in order to avoid a memory leak in error handling path. Signed-off-by: NChristophe JAILLET <christophe.jaillet@wanadoo.fr> Acked-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Leonard Crestez 提交于
If the cpufreq driver tries to modify voltage/freq during suspend/resume it might need to control an external PMIC via I2C or SPI but those devices might be already suspended. This issue is likely to happen whenever the LDOs have their vin-supply set. To avoid this scenario we just increase cpufreq to the maximum before suspend. Signed-off-by: NLeonard Crestez <leonard.crestez@nxp.com> Reviewed-by: NLucas Stach <l.stach@pengutronix.de> Acked-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Irina Tirdea 提交于
If there are any errors in getting the cpu0 regulators, the driver returns -ENOENT. In case the regulators are not yet available, the devm_regulator_get calls will return -EPROBE_DEFER, so that the driver can be probed later. If we return -ENOENT, the driver will fail its initialization and will not try to probe again (when the regulators become available). Return the actual error received from regulator_get in probe. Print a differentiated message in case we need to probe the device later and in case we actually failed. Also add a message to inform when the driver has been successfully registered. Signed-off-by: NIrina Tirdea <irina.tirdea@nxp.com> Signed-off-by: NLeonard Crestez <leonard.crestez@nxp.com> Reviewed-by: NLucas Stach <l.stach@pengutronix.de> Acked-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 18 4月, 2017 1 次提交
-
-
由 Rafael J. Wysocki 提交于
Make the schedutil governor take the initial (default) value of the rate_limit_us sysfs attribute from the (new) transition_delay_us policy parameter (to be set by the scaling driver). That will allow scaling drivers to make schedutil use smaller default values of rate_limit_us and reduce the default average time interval between consecutive frequency changes. Make intel_pstate set transition_delay_us to 500. Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: NViresh Kumar <viresh.kumar@linaro.org>
-
- 15 4月, 2017 4 次提交
-
-
由 Thomas Gleixner 提交于
The access to the HBIRD_ESTAR_MODE register in the cpu frequency control functions must happen on the target CPU. This is achieved by temporarily setting the affinity of the calling user space thread to the requested CPU and reset it to the original affinity afterwards. That's racy vs. CPU hotplug and concurrent affinity settings for that thread resulting in code executing on the wrong CPU and overwriting the new affinity setting. Replace it by a straight forward smp function call. Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Acked-by: NViresh Kumar <viresh.kumar@linaro.org> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Sebastian Siewior <bigeasy@linutronix.de> Cc: linux-pm@vger.kernel.org Cc: Lai Jiangshan <jiangshanlai@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Tejun Heo <tj@kernel.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: Len Brown <lenb@kernel.org> Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1704131020280.2408@nanosSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
-
由 Thomas Gleixner 提交于
The access to the safari config register in the CPU frequency functions must be executed on the target CPU. This is achieved by temporarily setting the affinity of the calling user space thread to the requested CPU and reset it to the original affinity afterwards. That's racy vs. CPU hotplug and concurrent affinity settings for that thread resulting in code executing on the wrong CPU and overwriting the new affinity setting. Replace it by a straight forward smp function call. Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Acked-by: NViresh Kumar <viresh.kumar@linaro.org> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Sebastian Siewior <bigeasy@linutronix.de> Cc: linux-pm@vger.kernel.org Cc: Lai Jiangshan <jiangshanlai@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Tejun Heo <tj@kernel.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: Len Brown <lenb@kernel.org> Link: http://lkml.kernel.org/r/20170412201043.047558840@linutronix.deSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
-
由 Thomas Gleixner 提交于
The target() callback must run on the affected cpu. This is achieved by temporarily setting the affinity of the calling thread to the requested CPU and reset it to the original affinity afterwards. That's racy vs. concurrent affinity settings for that thread resulting in code executing on the wrong CPU. Replace it by work_on_cpu(). All call pathes which invoke the callbacks are already protected against CPU hotplug. Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Acked-by: NViresh Kumar <viresh.kumar@linaro.org> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Sebastian Siewior <bigeasy@linutronix.de> Cc: linux-pm@vger.kernel.org Cc: Lai Jiangshan <jiangshanlai@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Tejun Heo <tj@kernel.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: Len Brown <lenb@kernel.org> Link: http://lkml.kernel.org/r/20170412201042.958216363@linutronix.deSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
-
由 Thomas Gleixner 提交于
The get() and target() callbacks must run on the affected cpu. This is achieved by temporarily setting the affinity of the calling thread to the requested CPU and reset it to the original affinity afterwards. That's racy vs. concurrent affinity settings for that thread resulting in code executing on the wrong CPU and overwriting the new affinity setting. Replace it by work_on_cpu(). All call pathes which invoke the callbacks are already protected against CPU hotplug. Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Acked-by: NViresh Kumar <viresh.kumar@linaro.org> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Sebastian Siewior <bigeasy@linutronix.de> Cc: linux-pm@vger.kernel.org Cc: Lai Jiangshan <jiangshanlai@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Tejun Heo <tj@kernel.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: Len Brown <lenb@kernel.org> Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1704122231100.2548@nanosSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
-