- 08 12月, 2019 8 次提交
-
-
由 Yang Shi 提交于
The commit 87eaceb3faa59b9b4d940ec9554ce251325d83fe ("mm: thp: make deferred split shrinker memcg aware") makes deferred split queue per memcg to resolve memcg pre-mature OOM problem. But, all nodes end up sharing the same queue instead of one queue per-node before the commit. It is not a big deal for memcg limit reclaim, but it may cause global kswapd shrink THPs from a different node. And, 0-day testing reported -19.6% regression of stress-ng's madvise test [1]. I didn't see that much regression on my test box (24 threads, 48GB memory, 2 nodes), with the same test (stress-ng --timeout 1 --metrics-brief --sequential 72 --class vm --exclude spawn,exec), I saw average -3% (run the same test 10 times then calculate the average since the test itself may have most 15% variation according to my test) regression sometimes (not every time, sometimes I didn't see regression at all). This might be caused by deferred split queue lock contention. With some configuration (i.e. just one root memcg) the lock contention my be worse than before (given 2 nodes, two locks are reduced to one lock). So, moving deferred split queue to memcg's nodeinfo to make it NUMA aware again. With this change stress-ng's madvise test shows average 4% improvement sometimes and I didn't see degradation anymore. [1]: https://lore.kernel.org/lkml/20190930084604.GC17687@shao2-debian/ Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Hugh Dickins <hughd@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: NYang Shi <yang.shi@linux.alibaba.com> Reviewed-by: NXunlei Pang <xlpang@linux.alibaba.com>
-
由 Yang Shi 提交于
commit 87eaceb3faa59b9b4d940ec9554ce251325d83fe upstream Currently THP deferred split shrinker is not memcg aware, this may cause premature OOM with some configuration. For example the below test would run into premature OOM easily: $ cgcreate -g memory:thp $ echo 4G > /sys/fs/cgroup/memory/thp/memory/limit_in_bytes $ cgexec -g memory:thp transhuge-stress 4000 transhuge-stress comes from kernel selftest. It is easy to hit OOM, but there are still a lot THP on the deferred split queue, memcg direct reclaim can't touch them since the deferred split shrinker is not memcg aware. Convert deferred split shrinker memcg aware by introducing per memcg deferred split queue. The THP should be on either per node or per memcg deferred split queue if it belongs to a memcg. When the page is immigrated to the other memcg, it will be immigrated to the target memcg's deferred split queue too. Reuse the second tail page's deferred_list for per memcg list since the same THP can't be on multiple deferred split queues. [yang.shi@linux.alibaba.com: simplify deferred split queue dereference per Kirill Tkhai] Link: http://lkml.kernel.org/r/1566496227-84952-5-git-send-email-yang.shi@linux.alibaba.com Link: http://lkml.kernel.org/r/1565144277-36240-5-git-send-email-yang.shi@linux.alibaba.comSigned-off-by: NYang Shi <yang.shi@linux.alibaba.com> Acked-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: NKirill Tkhai <ktkhai@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Qian Cai <cai@lca.pw> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Reviewed-by: NXunlei Pang <xlpang@linux.alibaba.com>
-
由 Yang Shi 提交于
commit 0a432dcbeb32edcd211a5d8f7847d0da7642a8b4 upstream Currently shrinker is just allocated and can work when memcg kmem is enabled. But, THP deferred split shrinker is not slab shrinker, it doesn't make too much sense to have such shrinker depend on memcg kmem. It should be able to reclaim THP even though memcg kmem is disabled. Introduce a new shrinker flag, SHRINKER_NONSLAB, for non-slab shrinker. When memcg kmem is disabled, just such shrinkers can be called in shrinking memcg slab. [yang.shi@linux.alibaba.com: add comment] Link: http://lkml.kernel.org/r/1566496227-84952-4-git-send-email-yang.shi@linux.alibaba.com Link: http://lkml.kernel.org/r/1565144277-36240-4-git-send-email-yang.shi@linux.alibaba.comSigned-off-by: NYang Shi <yang.shi@linux.alibaba.com> Acked-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: NKirill Tkhai <ktkhai@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Qian Cai <cai@lca.pw> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Reviewed-by: NXunlei Pang <xlpang@linux.alibaba.com>
-
由 Gavin Shan 提交于
This enables scanning pages in fixed interval to determine their access frequency (hot/cold). The result is exported to user land on basis of memory cgroup by "memory.idle_page_stats". The design is highlighted as below: * A kernel thread is spawn when this feature is enabled by writing non-zero value to "/sys/kernel/mm/kidled/scan_period_in_seconds". The thread sequentially scans the nodes and their pages that have been chained up in LRU list. * For each page, its corresponding age information is stored in the page flags or array in node. The age represents the scanning intervals in which the page isn't accessed. Also, the page flag (PG_idle) is leveraged. The page's age is increased by one if the idle flag isn't cleared in two consective scans. Otherwise, the page's age is cleared out. Also, the page's age information is cleared when it's free'd so that the stale age information won't be fetched when it's allocated. * Initially, the flag is set, while the access bit in its PTE is cleared out by the thread. In next scanning period, its PTE access bit is synchronized with the page flag: clear the flag if access bit is set. The flag is kept otherwise. For unmapped pages, the flag is cleared when it's accessed. * Eventually, the page's aging information is updated to the unstable bucket of its corresponding memory cgroup, taking as statistics. The unstable bucket (statistics) is copied to stable bucket when all pages in all nodes are scanned for once. The stable bucket (statistics) is exported to user land through "memory.idle_page_stats". TESTING ======= * cgroup1, unmapped pagecache # dd if=/dev/zero of=/ext4/test.data oflag=direct bs=1M count=128 # # echo 1 > /sys/kernel/mm/kidled/use_hierarchy # echo 15 > /sys/kernel/mm/kidled/scan_period_in_seconds # mkdir -p /cgroup/memory # mount -tcgroup -o memory /cgroup/memory # echo 1 > /cgroup/memory/memory.use_hierarchy # mkdir -p /cgroup/memory/test # echo 1 > /cgroup/memory/test/memory.use_hierarchy # # echo $$ > /cgroup/memory/test/cgroup.procs # dd if=/ext4/test.data of=/dev/null bs=1M count=128 # < wait a few minutes > # cat /cgroup/memory/test/memory.idle_page_stats | grep cfei # cat /cgroup/memory/test/memory.idle_page_stats | grep cfei cfei 0 0 0 134217728 0 0 0 0 # cat /cgroup/memory/memory.idle_page_stats | grep cfei cfei 0 0 0 134217728 0 0 0 0 * cgroup1, mapped pagecache # < create same file and memory cgroups as above > # # echo $$ > /cgroup/memory/test/cgroup.procs # < run program to mmap the whole created file and access the area > # < wait a few minutes > # cat /cgroup/memory/test/memory.idle_page_stats | grep cfei cfei 0 134217728 0 0 0 0 0 0 # cat /cgroup/memory/memory.idle_page_stats | grep cfei cfei 0 134217728 0 0 0 0 0 0 * cgroup1, mapped and locked pagecache # < create same file and memory cgroups as above > # # echo $$ > /cgroup/memory/test/cgroup.procs # < run program to mmap the whole created file and mlock the area > # < wait a few minutes > # cat /cgroup/memory/test/memory.idle_page_stats | grep cfui cfui 0 134217728 0 0 0 0 0 0 # cat /cgroup/memory/memory.idle_page_stats | grep cfui cfui 0 134217728 0 0 0 0 0 0 * cgroup1, anonymous and locked area # < create memory cgroups as above > # # echo $$ > /cgroup/memory/test/cgroup.procs # < run program to mmap anonymous area and mlock it > # < wait a few minutes > # cat /cgroup/memory/test/memory.idle_page_stats | grep csui csui 0 0 134217728 0 0 0 0 0 # cat /cgroup/memory/memory.idle_page_stats | grep csui csui 0 0 134217728 0 0 0 0 0 * Rerun above test cases in cgroup2 and the results are no exceptional. However, the cgroups are populated in different way as below: # mkdir -p /cgroup # mount -tcgroup2 none /cgroup # echo "+memory" > /cgroup/cgroup.subtree_control # mkdir -p /cgroup/test Signed-off-by: NGavin Shan <shan.gavin@linux.alibaba.com> Reviewed-by: NYang Shi <yang.shi@linux.alibaba.com> Reviewed-by: NXunlei Pang <xlpang@linux.alibaba.com>
-
由 Yang Shi 提交于
Introduce a new interface, wmark_scale_factor, which defines the distance between wmark_high and wmark_low. The unit is in fractions of 10,000. The default value of 50 means the distance between wmark_high and wmark_low is 0.5% of the max limit of the cgroup. The maximum value is 1000, or 10% of the max limit. The distance between wmark_low and wmark_high have impact on how hard memcg kswapd would reclaim. Reviewed-by: NGavin Shan <shan.gavin@linux.alibaba.com> Reviewed-by: NXunlei Pang <xlpang@linux.alibaba.com> Signed-off-by: NYang Shi <yang.shi@linux.alibaba.com>
-
由 Yang Shi 提交于
Since background water mark reclaim is scheduled by workqueue, it could do more work than direct reclaim, i.e. write out dirty page, etc. So, add PF_KSWAPD flag, so that current_is_kswapd() would return true for memcg background reclaim. The condition "current_is_kswapd() && !global_reclaim(sc)" is good enough to tell current is global kswapd or memcg background reclaim. And, kswapd is not allowed to break memory.low protection for now, memcg kswapd should not break it either. Reviewed-by: NGavin Shan <shan.gavin@linux.alibaba.com> Reviewed-by: NXunlei Pang <xlpang@linux.alibaba.com> Signed-off-by: NYang Shi <yang.shi@linux.alibaba.com>
-
由 Yang Shi 提交于
Like v1, add background reclaim support for cgroup v2. The interfaces are exactly same with v1. However, if high limit is setup for v2, the water mark would be calculated by high limit instead of max limit. Reviewed-by: NGavin Shan <shan.gavin@linux.alibaba.com> Reviewed-by: NXunlei Pang <xlpang@linux.alibaba.com> Signed-off-by: NYang Shi <yang.shi@linux.alibaba.com>
-
由 Yang Shi 提交于
Currently when memory usage exceeds memory cgroup limit, memory cgroup just can do sync direct reclaim. This may incur unexpected stall on some applications which are sensitive to latency. Introduce background async page reclaim mechanism, like what kswapd does. Define memcg memory usage water mark by introducing wmark_ratio interface, which is from 0 to 100 and represents percentage of max limit. The wmark_high is calculated by (max * wmark_ratio / 100), the wmark_low is (wmark_high - wmark_high >> 8), which is an empirical value. If wmark_ratio is 0, it means water mark is disabled, both wmark_low and wmark_high is max, which is the default value. If wmark_ratio is setup, when charging page, if usage is greater than wmark_high, which means the available memory of memcg is low, a work would be scheduled to do background page reclaim until memory usage is reduced to wmark_low if possible. Define a dedicated unbound workqueue for scheduling water mark reclaim works. Reviewed-by: NGavin Shan <shan.gavin@linux.alibaba.com> Reviewed-by: NXunlei Pang <xlpang@linux.alibaba.com> Signed-off-by: NYang Shi <yang.shi@linux.alibaba.com>
-
- 29 11月, 2019 1 次提交
-
-
由 Xu Yu 提交于
When events such as direct reclaim and oom occur intensively, soft lockup is very likely to happen in the instances with 1 vcpu and with kernel preempt disabled. The example soft lockup is as follows. [ 160.555984] watchdog: BUG: soft lockup - CPU#0 stuck for 112s! [malloc:2188] [ 160.557975] Modules linked in: button [ 160.559495] CPU: 0 PID: 2188 Comm: malloc Not tainted 4.19.57-15.457.al7.x86_64 #1 [ 160.561546] Hardware name: Alibaba Cloud Alibaba Cloud ECS, BIOS 3288b3c 04/01/2014 [ 160.563707] RIP: 0010:shrink_node+0x1ae/0x450 [ 160.565391] Code: 00 00 00 49 8b 4f 20 ba 01 00 00 00 4c 8b 74 24 10 4d 8b 47 28 49 8b 77 10 48 2b 4c 24 08 41 8b 7f 1c 4d8 [ 160.570747] RSP: 0000:ffff9d0ec07a3b58 EFLAGS: 00000286 ORIG_RAX: ffffffffffffff13 [ 160.572889] RAX: ffff982ab6014330 RBX: ffff982ab6014000 RCX: 0000000000000000 [ 160.574992] RDX: 0000000000000001 RSI: ffff982ab6014000 RDI: ffff982ab6014000 [ 160.577106] RBP: ffff982afffb6000 R08: 0000000000000000 R09: ffff982ab6014000 [ 160.579219] R10: 0000000000000004 R11: 0000000000aaaaaa R12: 0000000000000000 [ 160.581326] R13: 0000000000000000 R14: 0000000000000000 R15: ffff9d0ec07a3c50 [ 160.583450] FS: 00007f8b414f7740(0000) GS:ffff982afda00000(0000) knlGS:0000000000000000 [ 160.585704] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 160.587662] CR2: 00007f8adb800010 CR3: 000000007ac9e001 CR4: 00000000003606b0 [ 160.589835] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 160.591971] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 160.594133] Call Trace: [ 160.595602] do_try_to_free_pages+0xcc/0x390 [ 160.597356] try_to_free_mem_cgroup_pages+0xf9/0x1d0 [ 160.599198] ? out_of_memory+0xb5/0x4a0 [ 160.600882] try_charge+0x244/0x750 [ 160.602522] ? __pagevec_lru_add_fn+0x1d0/0x330 [ 160.604310] mem_cgroup_try_charge+0xb4/0x1d0 [ 160.606085] mem_cgroup_try_charge_delay+0x1c/0x40 [ 160.607892] do_anonymous_page+0xf7/0x540 [ 160.609574] __handle_mm_fault+0x665/0xa00 [ 160.611233] ? __switch_to_asm+0x35/0x70 [ 160.612838] handle_mm_fault+0x122/0x1e0 [ 160.614407] __do_page_fault+0x1b7/0x470 [ 160.615962] do_page_fault+0x32/0x140 [ 160.617474] ? async_page_fault+0x8/0x30 [ 160.619012] async_page_fault+0x1e/0x30 [ 160.620526] RIP: 0033:0x40068e Fix it by adding cond_resched() in try_charge(), just before goto retry after OOM_SUCCESS, in order to let OOM free some memory first. Signed-off-by: NXu Yu <xuyu@linux.alibaba.com> Reviewed-by: NYang Shi <yang.shi@linux.alibaba.com> Reviewed-by: NXunlei Pang <xlpang@linux.alibaba.com>
-
- 21 11月, 2019 1 次提交
-
-
由 Caspar Zhang 提交于
When backporting commit 0e4b01df8659 ("mm, memcg: throttle allocators when failing reclaim over memory.high"), memory stall section was inadvertently missing. Fix this issue by adding it back. Fixes: eda29cc0 ("mm, memcg: throttle allocators when failing reclaim over memory.high") Signed-off-by: NCaspar Zhang <caspar@linux.alibaba.com> Acked-by: NJoseph Qi <joseph.qi@linux.alibaba.com>
-
- 20 11月, 2019 1 次提交
-
-
由 Chris Down 提交于
commit 0e4b01df865935007bd712cbc8e7299005b28894 upstream. We're trying to use memory.high to limit workloads, but have found that containment can frequently fail completely and cause OOM situations outside of the cgroup. This happens especially with swap space -- either when none is configured, or swap is full. These failures often also don't have enough warning to allow one to react, whether for a human or for a daemon monitoring PSI. Here is output from a simple program showing how long it takes in usec (column 2) to allocate a megabyte of anonymous memory (column 1) when a cgroup is already beyond its memory high setting, and no swap is available: [root@ktst ~]# systemd-run -p MemoryHigh=100M -p MemorySwapMax=1 \ > --wait -t timeout 300 /root/mdf [...] 95 1035 96 1038 97 1000 98 1036 99 1048 100 1590 101 1968 102 1776 103 1863 104 1757 105 1921 106 1893 107 1760 108 1748 109 1843 110 1716 111 1924 112 1776 113 1831 114 1766 115 1836 116 1588 117 1912 118 1802 119 1857 120 1731 [...] [System OOM in 2-3 seconds] The delay does go up extremely marginally past the 100MB memory.high threshold, as now we spend time scanning before returning to usermode, but it's nowhere near enough to contain growth. It also doesn't get worse the more pages you have, since it only considers nr_pages. The current situation goes against both the expectations of users of memory.high, and our intentions as cgroup v2 developers. In cgroup-v2.txt, we claim that we will throttle and only under "extreme conditions" will memory.high protection be breached. Likewise, cgroup v2 users generally also expect that memory.high should throttle workloads as they exceed their high threshold. However, as seen above, this isn't always how it works in practice -- even on banal setups like those with no swap, or where swap has become exhausted, we can end up with memory.high being breached and us having no weapons left in our arsenal to combat runaway growth with, since reclaim is futile. It's also hard for system monitoring software or users to tell how bad the situation is, as "high" events for the memcg may in some cases be benign, and in others be catastrophic. The current status quo is that we fail containment in a way that doesn't provide any advance warning that things are about to go horribly wrong (for example, we are about to invoke the kernel OOM killer). This patch introduces explicit throttling when reclaim is failing to keep memcg size contained at the memory.high setting. It does so by applying an exponential delay curve derived from the memcg's overage compared to memory.high. In the normal case where the memcg is either below or only marginally over its memory.high setting, no throttling will be performed. This composes well with system health monitoring and remediation, as these allocator delays are factored into PSI's memory pressure calculations. This both creates a mechanism system administrators or applications consuming the PSI interface to trivially see that the memcg in question is struggling and use that to make more reasonable decisions, and permits them enough time to act. Either of these can act with significantly more nuance than that we can provide using the system OOM killer. This is a similar idea to memory.oom_control in cgroup v1 which would put the cgroup to sleep if the threshold was violated, but it's also significantly improved as it results in visible memory pressure, and also doesn't schedule indefinitely, which previously made tracing and other introspection difficult (ie. it's clamped at 2*HZ per allocation through MEMCG_MAX_HIGH_DELAY_JIFFIES). Contrast the previous results with a kernel with this patch: [root@ktst ~]# systemd-run -p MemoryHigh=100M -p MemorySwapMax=1 \ > --wait -t timeout 300 /root/mdf [...] 95 1002 96 1000 97 1002 98 1003 99 1000 100 1043 101 84724 102 330628 103 610511 104 1016265 105 1503969 106 2391692 107 2872061 108 3248003 109 4791904 110 5759832 111 6912509 112 8127818 113 9472203 114 12287622 115 12480079 116 14144008 117 15808029 118 16384500 119 16383242 120 16384979 [...] As you can see, in the normal case, memory allocation takes around 1000 usec. However, as we exceed our memory.high, things start to increase exponentially, but fairly leniently at first. Our first megabyte over memory.high takes us 0.16 seconds, then the next is 0.46 seconds, then the next is almost an entire second. This gets worse until we reach our eventual 2*HZ clamp per batch, resulting in 16 seconds per megabyte. However, this is still making forward progress, so permits tracing or further analysis with programs like GDB. We use an exponential curve for our delay penalty for a few reasons: 1. We run mem_cgroup_handle_over_high to potentially do reclaim after we've already performed allocations, which means that temporarily going over memory.high by a small amount may be perfectly legitimate, even for compliant workloads. We don't want to unduly penalise such cases. 2. An exponential curve (as opposed to a static or linear delay) allows ramping up memory pressure stats more gradually, which can be useful to work out that you have set memory.high too low, without destroying application performance entirely. This patch expands on earlier work by Johannes Weiner. Thanks! [akpm@linux-foundation.org: fix max() warning] [akpm@linux-foundation.org: fix __udivdi3 ref on 32-bit] [akpm@linux-foundation.org: fix it even more] [chris@chrisdown.name: fix 64-bit divide even more] Link: http://lkml.kernel.org/r/20190723180700.GA29459@chrisdown.nameSigned-off-by: NChris Down <chris@chrisdown.name> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Tejun Heo <tj@kernel.org> Cc: Roman Gushchin <guro@fb.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Nathan Chancellor <natechancellor@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NXu Yu <xuyu@linux.alibaba.com> Reviewed-by: NXunlei Pang <xlpang@linux.alibaba.com> Reviewed-by: NYang Shi <yang.shi@linux.alibaba.com>
-
- 30 10月, 2019 3 次提交
-
-
由 Joseph Qi 提交于
Wrap cgroup writeback v1 logic to prevent build errors without CONFIG_CGROUPS or CONFIG_CGROUP_WRITEBACK. Reported-by: Nkbuild test robot <lkp@intel.com> Cc: Jiufei Xue <jiufei.xue@linux.alibaba.com> Signed-off-by: NJoseph Qi <joseph.qi@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
由 Jiufei Xue 提交于
So far writeback control is supported for cgroup v1 interface. However it also has some restrictions, so introduce a new kernel boot parameter to control the behavior which is disabled by default. Users can enable the writeback control for cgroup v1 with the command line "cgwb_v1". Signed-off-by: NJiufei Xue <jiufei.xue@linux.alibaba.com> Reviewed-by: NJoseph Qi <joseph.qi@linux.alibaba.com>
-
由 Jiufei Xue 提交于
Here we add a global radix tree to link memcg and blkcg that the user attach the tasks to when using cgroup v1, which is used for writeback cgroup. Signed-off-by: NJiufei Xue <jiufei.xue@linux.alibaba.com> Reviewed-by: NJoseph Qi <joseph.qi@linux.alibaba.com>
-
- 05 10月, 2019 1 次提交
-
-
由 Michal Hocko 提交于
commit e55d9d9bfb69405bd7615c0f8d229d8fafb3e9b8 upstream. Thomas has noticed the following NULL ptr dereference when using cgroup v1 kmem limit: BUG: unable to handle kernel NULL pointer dereference at 0000000000000008 PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP PTI CPU: 3 PID: 16923 Comm: gtk-update-icon Not tainted 4.19.51 #42 Hardware name: Gigabyte Technology Co., Ltd. Z97X-Gaming G1/Z97X-Gaming G1, BIOS F9 07/31/2015 RIP: 0010:create_empty_buffers+0x24/0x100 Code: cd 0f 1f 44 00 00 0f 1f 44 00 00 41 54 49 89 d4 ba 01 00 00 00 55 53 48 89 fb e8 97 fe ff ff 48 89 c5 48 89 c2 eb 03 48 89 ca <48> 8b 4a 08 4c 09 22 48 85 c9 75 f1 48 89 6a 08 48 8b 43 18 48 8d RSP: 0018:ffff927ac1b37bf8 EFLAGS: 00010286 RAX: 0000000000000000 RBX: fffff2d4429fd740 RCX: 0000000100097149 RDX: 0000000000000000 RSI: 0000000000000082 RDI: ffff9075a99fbe00 RBP: 0000000000000000 R08: fffff2d440949cc8 R09: 00000000000960c0 R10: 0000000000000002 R11: 0000000000000000 R12: 0000000000000000 R13: ffff907601f18360 R14: 0000000000002000 R15: 0000000000001000 FS: 00007fb55b288bc0(0000) GS:ffff90761f8c0000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000008 CR3: 000000007aebc002 CR4: 00000000001606e0 Call Trace: create_page_buffers+0x4d/0x60 __block_write_begin_int+0x8e/0x5a0 ? ext4_inode_attach_jinode.part.82+0xb0/0xb0 ? jbd2__journal_start+0xd7/0x1f0 ext4_da_write_begin+0x112/0x3d0 generic_perform_write+0xf1/0x1b0 ? file_update_time+0x70/0x140 __generic_file_write_iter+0x141/0x1a0 ext4_file_write_iter+0xef/0x3b0 __vfs_write+0x17e/0x1e0 vfs_write+0xa5/0x1a0 ksys_write+0x57/0xd0 do_syscall_64+0x55/0x160 entry_SYSCALL_64_after_hwframe+0x44/0xa9 Tetsuo then noticed that this is because the __memcg_kmem_charge_memcg fails __GFP_NOFAIL charge when the kmem limit is reached. This is a wrong behavior because nofail allocations are not allowed to fail. Normal charge path simply forces the charge even if that means to cross the limit. Kmem accounting should be doing the same. Link: http://lkml.kernel.org/r/20190906125608.32129-1-mhocko@kernel.orgSigned-off-by: NMichal Hocko <mhocko@suse.com> Reported-by: NThomas Lindroth <thomas.lindroth@gmail.com> Debugged-by: NTetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Thomas Lindroth <thomas.lindroth@gmail.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 25 8月, 2019 1 次提交
-
-
由 Miles Chen 提交于
commit 54a83d6bcbf8f4700013766b974bf9190d40b689 upstream. This patch is sent to report an use after free in mem_cgroup_iter() after merging commit be2657752e9e ("mm: memcg: fix use after free in mem_cgroup_iter()"). I work with android kernel tree (4.9 & 4.14), and commit be2657752e9e ("mm: memcg: fix use after free in mem_cgroup_iter()") has been merged to the trees. However, I can still observe use after free issues addressed in the commit be2657752e9e. (on low-end devices, a few times this month) backtrace: css_tryget <- crash here mem_cgroup_iter shrink_node shrink_zones do_try_to_free_pages try_to_free_pages __perform_reclaim __alloc_pages_direct_reclaim __alloc_pages_slowpath __alloc_pages_nodemask To debug, I poisoned mem_cgroup before freeing it: static void __mem_cgroup_free(struct mem_cgroup *memcg) for_each_node(node) free_mem_cgroup_per_node_info(memcg, node); free_percpu(memcg->stat); + /* poison memcg before freeing it */ + memset(memcg, 0x78, sizeof(struct mem_cgroup)); kfree(memcg); } The coredump shows the position=0xdbbc2a00 is freed. (gdb) p/x ((struct mem_cgroup_per_node *)0xe5009e00)->iter[8] $13 = {position = 0xdbbc2a00, generation = 0x2efd} 0xdbbc2a00: 0xdbbc2e00 0x00000000 0xdbbc2800 0x00000100 0xdbbc2a10: 0x00000200 0x78787878 0x00026218 0x00000000 0xdbbc2a20: 0xdcad6000 0x00000001 0x78787800 0x00000000 0xdbbc2a30: 0x78780000 0x00000000 0x0068fb84 0x78787878 0xdbbc2a40: 0x78787878 0x78787878 0x78787878 0xe3fa5cc0 0xdbbc2a50: 0x78787878 0x78787878 0x00000000 0x00000000 0xdbbc2a60: 0x00000000 0x00000000 0x00000000 0x00000000 0xdbbc2a70: 0x00000000 0x00000000 0x00000000 0x00000000 0xdbbc2a80: 0x00000000 0x00000000 0x00000000 0x00000000 0xdbbc2a90: 0x00000001 0x00000000 0x00000000 0x00100000 0xdbbc2aa0: 0x00000001 0xdbbc2ac8 0x00000000 0x00000000 0xdbbc2ab0: 0x00000000 0x00000000 0x00000000 0x00000000 0xdbbc2ac0: 0x00000000 0x00000000 0xe5b02618 0x00001000 0xdbbc2ad0: 0x00000000 0x78787878 0x78787878 0x78787878 0xdbbc2ae0: 0x78787878 0x78787878 0x78787878 0x78787878 0xdbbc2af0: 0x78787878 0x78787878 0x78787878 0x78787878 0xdbbc2b00: 0x78787878 0x78787878 0x78787878 0x78787878 0xdbbc2b10: 0x78787878 0x78787878 0x78787878 0x78787878 0xdbbc2b20: 0x78787878 0x78787878 0x78787878 0x78787878 0xdbbc2b30: 0x78787878 0x78787878 0x78787878 0x78787878 0xdbbc2b40: 0x78787878 0x78787878 0x78787878 0x78787878 0xdbbc2b50: 0x78787878 0x78787878 0x78787878 0x78787878 0xdbbc2b60: 0x78787878 0x78787878 0x78787878 0x78787878 0xdbbc2b70: 0x78787878 0x78787878 0x78787878 0x78787878 0xdbbc2b80: 0x78787878 0x78787878 0x00000000 0x78787878 0xdbbc2b90: 0x78787878 0x78787878 0x78787878 0x78787878 0xdbbc2ba0: 0x78787878 0x78787878 0x78787878 0x78787878 In the reclaim path, try_to_free_pages() does not setup sc.target_mem_cgroup and sc is passed to do_try_to_free_pages(), ..., shrink_node(). In mem_cgroup_iter(), root is set to root_mem_cgroup because sc->target_mem_cgroup is NULL. It is possible to assign a memcg to root_mem_cgroup.nodeinfo.iter in mem_cgroup_iter(). try_to_free_pages struct scan_control sc = {...}, target_mem_cgroup is 0x0; do_try_to_free_pages shrink_zones shrink_node mem_cgroup *root = sc->target_mem_cgroup; memcg = mem_cgroup_iter(root, NULL, &reclaim); mem_cgroup_iter() if (!root) root = root_mem_cgroup; ... css = css_next_descendant_pre(css, &root->css); memcg = mem_cgroup_from_css(css); cmpxchg(&iter->position, pos, memcg); My device uses memcg non-hierarchical mode. When we release a memcg: invalidate_reclaim_iterators() reaches only dead_memcg and its parents. If non-hierarchical mode is used, invalidate_reclaim_iterators() never reaches root_mem_cgroup. static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) { struct mem_cgroup *memcg = dead_memcg; for (; memcg; memcg = parent_mem_cgroup(memcg) ... } So the use after free scenario looks like: CPU1 CPU2 try_to_free_pages do_try_to_free_pages shrink_zones shrink_node mem_cgroup_iter() if (!root) root = root_mem_cgroup; ... css = css_next_descendant_pre(css, &root->css); memcg = mem_cgroup_from_css(css); cmpxchg(&iter->position, pos, memcg); invalidate_reclaim_iterators(memcg); ... __mem_cgroup_free() kfree(memcg); try_to_free_pages do_try_to_free_pages shrink_zones shrink_node mem_cgroup_iter() if (!root) root = root_mem_cgroup; ... mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id); iter = &mz->iter[reclaim->priority]; pos = READ_ONCE(iter->position); css_tryget(&pos->css) <- use after free To avoid this, we should also invalidate root_mem_cgroup.nodeinfo.iter in invalidate_reclaim_iterators(). [cai@lca.pw: fix -Wparentheses compilation warning] Link: http://lkml.kernel.org/r/1564580753-17531-1-git-send-email-cai@lca.pw Link: http://lkml.kernel.org/r/20190730015729.4406-1-miles.chen@mediatek.com Fixes: 5ac8fb31 ("mm: memcontrol: convert reclaim iterator to simple css refcounting") Signed-off-by: NMiles Chen <miles.chen@mediatek.com> Signed-off-by: NQian Cai <cai@lca.pw> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 17 4月, 2019 1 次提交
-
-
由 Greg Thelen 提交于
commit 0b3d6e6f2dd0a7b697b1aa8c167265908940624b upstream. Since commit a983b5eb ("mm: memcontrol: fix excessive complexity in memory.stat reporting") memcg dirty and writeback counters are managed as: 1) per-memcg per-cpu values in range of [-32..32] 2) per-memcg atomic counter When a per-cpu counter cannot fit in [-32..32] it's flushed to the atomic. Stat readers only check the atomic. Thus readers such as balance_dirty_pages() may see a nontrivial error margin: 32 pages per cpu. Assuming 100 cpus: 4k x86 page_size: 13 MiB error per memcg 64k ppc page_size: 200 MiB error per memcg Considering that dirty+writeback are used together for some decisions the errors double. This inaccuracy can lead to undeserved oom kills. One nasty case is when all per-cpu counters hold positive values offsetting an atomic negative value (i.e. per_cpu[*]=32, atomic=n_cpu*-32). balance_dirty_pages() only consults the atomic and does not consider throttling the next n_cpu*32 dirty pages. If the file_lru is in the 13..200 MiB range then there's absolutely no dirty throttling, which burdens vmscan with only dirty+writeback pages thus resorting to oom kill. It could be argued that tiny containers are not supported, but it's more subtle. It's the amount the space available for file lru that matters. If a container has memory.max-200MiB of non reclaimable memory, then it will also suffer such oom kills on a 100 cpu machine. The following test reliably ooms without this patch. This patch avoids oom kills. $ cat test mount -t cgroup2 none /dev/cgroup cd /dev/cgroup echo +io +memory > cgroup.subtree_control mkdir test cd test echo 10M > memory.max (echo $BASHPID > cgroup.procs && exec /memcg-writeback-stress /foo) (echo $BASHPID > cgroup.procs && exec dd if=/dev/zero of=/foo bs=2M count=100) $ cat memcg-writeback-stress.c /* * Dirty pages from all but one cpu. * Clean pages from the non dirtying cpu. * This is to stress per cpu counter imbalance. * On a 100 cpu machine: * - per memcg per cpu dirty count is 32 pages for each of 99 cpus * - per memcg atomic is -99*32 pages * - thus the complete dirty limit: sum of all counters 0 * - balance_dirty_pages() only sees atomic count -99*32 pages, which * it max()s to 0. * - So a workload can dirty -99*32 pages before balance_dirty_pages() * cares. */ #define _GNU_SOURCE #include <err.h> #include <fcntl.h> #include <sched.h> #include <stdlib.h> #include <stdio.h> #include <sys/stat.h> #include <sys/sysinfo.h> #include <sys/types.h> #include <unistd.h> static char *buf; static int bufSize; static void set_affinity(int cpu) { cpu_set_t affinity; CPU_ZERO(&affinity); CPU_SET(cpu, &affinity); if (sched_setaffinity(0, sizeof(affinity), &affinity)) err(1, "sched_setaffinity"); } static void dirty_on(int output_fd, int cpu) { int i, wrote; set_affinity(cpu); for (i = 0; i < 32; i++) { for (wrote = 0; wrote < bufSize; ) { int ret = write(output_fd, buf+wrote, bufSize-wrote); if (ret == -1) err(1, "write"); wrote += ret; } } } int main(int argc, char **argv) { int cpu, flush_cpu = 1, output_fd; const char *output; if (argc != 2) errx(1, "usage: output_file"); output = argv[1]; bufSize = getpagesize(); buf = malloc(getpagesize()); if (buf == NULL) errx(1, "malloc failed"); output_fd = open(output, O_CREAT|O_RDWR); if (output_fd == -1) err(1, "open(%s)", output); for (cpu = 0; cpu < get_nprocs(); cpu++) { if (cpu != flush_cpu) dirty_on(output_fd, cpu); } set_affinity(flush_cpu); if (fsync(output_fd)) err(1, "fsync(%s)", output); if (close(output_fd)) err(1, "close(%s)", output); free(buf); } Make balance_dirty_pages() and wb_over_bg_thresh() work harder to collect exact per memcg counters. This avoids the aforementioned oom kills. This does not affect the overhead of memory.stat, which still reads the single atomic counter. Why not use percpu_counter? memcg already handles cpus going offline, so no need for that overhead from percpu_counter. And the percpu_counter spinlocks are more heavyweight than is required. It probably also makes sense to use exact dirty and writeback counters in memcg oom reports. But that is saved for later. Link: http://lkml.kernel.org/r/20190329174609.164344-1-gthelen@google.comSigned-off-by: NGreg Thelen <gthelen@google.com> Reviewed-by: NRoman Gushchin <guro@fb.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: <stable@vger.kernel.org> [4.16+] Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 06 4月, 2019 1 次提交
-
-
由 Tetsuo Handa 提交于
[ Upstream commit 7775face207922ea62a4e96b9cd45abfdc7b9840 ] If a memory cgroup contains a single process with many threads (including different process group sharing the mm) then it is possible to trigger a race when the oom killer complains that there are no oom elible tasks and complain into the log which is both annoying and confusing because there is no actual problem. The race looks as follows: P1 oom_reaper P2 try_charge try_charge mem_cgroup_out_of_memory mutex_lock(oom_lock) out_of_memory oom_kill_process(P1,P2) wake_oom_reaper mutex_unlock(oom_lock) oom_reap_task mutex_lock(oom_lock) select_bad_process # no victim The problem is more visible with many threads. Fix this by checking for fatal_signal_pending from mem_cgroup_out_of_memory when the oom_lock is already held. The oom bypass is safe because we do the same early in the try_charge path already. The situation migh have changed in the mean time. It should be safe to check for fatal_signal_pending and tsk_is_oom_victim but for a better code readability abstract the current charge bypass condition into should_force_charge and reuse it from that path. " Link: http://lkml.kernel.org/r/01370f70-e1f6-ebe4-b95e-0df21a0bc15e@i-love.sakura.ne.jpSigned-off-by: NTetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Acked-by: NMichal Hocko <mhocko@suse.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: David Rientjes <rientjes@google.com> Cc: Kirill Tkhai <ktkhai@virtuozzo.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
- 13 1月, 2019 1 次提交
-
-
由 Michal Hocko 提交于
commit 7056d3a37d2c6aaaab10c13e8e69adc67ec1fc65 upstream. Burt Holzman has noticed that memcg v1 doesn't notify about OOM events via eventfd anymore. The reason is that 29ef680a ("memcg, oom: move out_of_memory back to the charge path") has moved the oom handling back to the charge path. While doing so the notification was left behind in mem_cgroup_oom_synchronize. Fix the issue by replicating the oom hierarchy locking and the notification. Link: http://lkml.kernel.org/r/20181224091107.18354-1-mhocko@kernel.org Fixes: 29ef680a ("memcg, oom: move out_of_memory back to the charge path") Signed-off-by: NMichal Hocko <mhocko@suse.com> Reported-by: NBurt Holzman <burt@fnal.gov> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com Cc: <stable@vger.kernel.org> [4.19+] Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 05 9月, 2018 1 次提交
-
-
由 Johannes Weiner 提交于
When the memcg OOM killer runs out of killable tasks, it currently prints a WARN with no further OOM context. This has caused some user confusion. Warnings indicate a kernel problem. In a reported case, however, the situation was triggered by a nonsensical memcg configuration (hard limit set to 0). But without any VM context this wasn't obvious from the report, and it took some back and forth on the mailing list to identify what is actually a trivial issue. Handle this OOM condition like we handle it in the global OOM killer: dump the full OOM context and tell the user we ran out of tasks. This way the user can identify misconfigurations easily by themselves and rectify the problem - without having to go through the hassle of running into an obscure but unsettling warning, finding the appropriate kernel mailing list and waiting for a kernel developer to remote-analyze that the memcg configuration caused this. If users cannot make sense of why the OOM killer was triggered or why it failed, they will still report it to the mailing list, we know that from experience. So in case there is an actual kernel bug causing this, kernel developers will very likely hear about it. Link: http://lkml.kernel.org/r/20180821160406.22578-1-hannes@cmpxchg.orgSigned-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Dmitry Vyukov <dvyukov@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 23 8月, 2018 2 次提交
-
-
由 Roman Gushchin 提交于
For some workloads an intervention from the OOM killer can be painful. Killing a random task can bring the workload into an inconsistent state. Historically, there are two common solutions for this problem: 1) enabling panic_on_oom, 2) using a userspace daemon to monitor OOMs and kill all outstanding processes. Both approaches have their downsides: rebooting on each OOM is an obvious waste of capacity, and handling all in userspace is tricky and requires a userspace agent, which will monitor all cgroups for OOMs. In most cases an in-kernel after-OOM cleaning-up mechanism can eliminate the necessity of enabling panic_on_oom. Also, it can simplify the cgroup management for userspace applications. This commit introduces a new knob for cgroup v2 memory controller: memory.oom.group. The knob determines whether the cgroup should be treated as an indivisible workload by the OOM killer. If set, all tasks belonging to the cgroup or to its descendants (if the memory cgroup is not a leaf cgroup) are killed together or not at all. To determine which cgroup has to be killed, we do traverse the cgroup hierarchy from the victim task's cgroup up to the OOMing cgroup (or root) and looking for the highest-level cgroup with memory.oom.group set. Tasks with the OOM protection (oom_score_adj set to -1000) are treated as an exception and are never killed. This patch doesn't change the OOM victim selection algorithm. Link: http://lkml.kernel.org/r/20180802003201.817-4-guro@fb.comSigned-off-by: NRoman Gushchin <guro@fb.com> Acked-by: NMichal Hocko <mhocko@suse.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: David Rientjes <rientjes@google.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Tejun Heo <tj@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Shakeel Butt 提交于
Currently cgroup-v1's memcg_stat_show traverses the memcg tree ~17 times to collect the stats while cgroup-v2's memory_stat_show traverses the memcg tree thrice. On a large machine, a couple thousand memcgs is very normal and if the churn is high and memcgs stick around during to several reasons, tens of thousands of nodes in memcg tree can exist. This patch has refactored and shared the stat collection code between cgroup-v1 and cgroup-v2 and has reduced the tree traversal to just one. I ran a simple benchmark which reads the root_mem_cgroup's stat file 1000 times in the presense of 2500 memcgs on cgroup-v1. The results are: Without the patch: $ time ./read-root-stat-1000-times real 0m1.663s user 0m0.000s sys 0m1.660s With the patch: $ time ./read-root-stat-1000-times real 0m0.468s user 0m0.000s sys 0m0.467s Link: http://lkml.kernel.org/r/20180724224635.143944-1-shakeelb@google.comSigned-off-by: NShakeel Butt <shakeelb@google.com> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Greg Thelen <gthelen@google.com> Cc: Bruce Merry <bmerry@ska.ac.za> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 18 8月, 2018 10 次提交
-
-
由 Kirill Tkhai 提交于
To avoid further unneed calls of do_shrink_slab() for shrinkers, which already do not have any charged objects in a memcg, their bits have to be cleared. This patch introduces a lockless mechanism to do that without races without parallel list lru add. After do_shrink_slab() returns SHRINK_EMPTY the first time, we clear the bit and call it once again. Then we restore the bit, if the new return value is different. Note, that single smp_mb__after_atomic() in shrink_slab_memcg() covers two situations: 1)list_lru_add() shrink_slab_memcg list_add_tail() for_each_set_bit() <--- read bit do_shrink_slab() <--- missed list update (no barrier) <MB> <MB> set_bit() do_shrink_slab() <--- seen list update This situation, when the first do_shrink_slab() sees set bit, but it doesn't see list update (i.e., race with the first element queueing), is rare. So we don't add <MB> before the first call of do_shrink_slab() instead of this to do not slow down generic case. Also, it's need the second call as seen in below in (2). 2)list_lru_add() shrink_slab_memcg() list_add_tail() ... set_bit() ... ... for_each_set_bit() do_shrink_slab() do_shrink_slab() clear_bit() ... ... ... list_lru_add() ... list_add_tail() clear_bit() <MB> <MB> set_bit() do_shrink_slab() The barriers guarantee that the second do_shrink_slab() in the right side task sees list update if really cleared the bit. This case is drawn in the code comment. [Results/performance of the patchset] After the whole patchset applied the below test shows signify increase of performance: $echo 1 > /sys/fs/cgroup/memory/memory.use_hierarchy $mkdir /sys/fs/cgroup/memory/ct $echo 4000M > /sys/fs/cgroup/memory/ct/memory.kmem.limit_in_bytes $for i in `seq 0 4000`; do mkdir /sys/fs/cgroup/memory/ct/$i; echo $$ > /sys/fs/cgroup/memory/ct/$i/cgroup.procs; mkdir -p s/$i; mount -t tmpfs $i s/$i; touch s/$i/file; done Then, 5 sequential calls of drop caches: $time echo 3 > /proc/sys/vm/drop_caches 1)Before: 0.00user 13.78system 0:13.78elapsed 99%CPU 0.00user 5.59system 0:05.60elapsed 99%CPU 0.00user 5.48system 0:05.48elapsed 99%CPU 0.00user 8.35system 0:08.35elapsed 99%CPU 0.00user 8.34system 0:08.35elapsed 99%CPU 2)After 0.00user 1.10system 0:01.10elapsed 99%CPU 0.00user 0.00system 0:00.01elapsed 64%CPU 0.00user 0.01system 0:00.01elapsed 82%CPU 0.00user 0.00system 0:00.01elapsed 64%CPU 0.00user 0.01system 0:00.01elapsed 82%CPU The results show the performance increases at least in 548 times. Shakeel Butt tested this patchset with fork-bomb on his configuration: > I created 255 memcgs, 255 ext4 mounts and made each memcg create a > file containing few KiBs on corresponding mount. Then in a separate > memcg of 200 MiB limit ran a fork-bomb. > > I ran the "perf record -ag -- sleep 60" and below are the results: > > Without the patch series: > Samples: 4M of event 'cycles', Event count (approx.): 3279403076005 > + 36.40% fb.sh [kernel.kallsyms] [k] shrink_slab > + 18.97% fb.sh [kernel.kallsyms] [k] list_lru_count_one > + 6.75% fb.sh [kernel.kallsyms] [k] super_cache_count > + 0.49% fb.sh [kernel.kallsyms] [k] down_read_trylock > + 0.44% fb.sh [kernel.kallsyms] [k] mem_cgroup_iter > + 0.27% fb.sh [kernel.kallsyms] [k] up_read > + 0.21% fb.sh [kernel.kallsyms] [k] osq_lock > + 0.13% fb.sh [kernel.kallsyms] [k] shmem_unused_huge_count > + 0.08% fb.sh [kernel.kallsyms] [k] shrink_node_memcg > + 0.08% fb.sh [kernel.kallsyms] [k] shrink_node > > With the patch series: > Samples: 4M of event 'cycles', Event count (approx.): 2756866824946 > + 47.49% fb.sh [kernel.kallsyms] [k] down_read_trylock > + 30.72% fb.sh [kernel.kallsyms] [k] up_read > + 9.51% fb.sh [kernel.kallsyms] [k] mem_cgroup_iter > + 1.69% fb.sh [kernel.kallsyms] [k] shrink_node_memcg > + 1.35% fb.sh [kernel.kallsyms] [k] mem_cgroup_protected > + 1.05% fb.sh [kernel.kallsyms] [k] queued_spin_lock_slowpath > + 0.85% fb.sh [kernel.kallsyms] [k] _raw_spin_lock > + 0.78% fb.sh [kernel.kallsyms] [k] lruvec_lru_size > + 0.57% fb.sh [kernel.kallsyms] [k] shrink_node > + 0.54% fb.sh [kernel.kallsyms] [k] queue_work_on > + 0.46% fb.sh [kernel.kallsyms] [k] shrink_slab_memcg [ktkhai@virtuozzo.com: v9] Link: http://lkml.kernel.org/r/153112561772.4097.11011071937553113003.stgit@localhost.localdomain Link: http://lkml.kernel.org/r/153063070859.1818.11870882950920963480.stgit@localhost.localdomainSigned-off-by: NKirill Tkhai <ktkhai@virtuozzo.com> Acked-by: NVladimir Davydov <vdavydov.dev@gmail.com> Tested-by: NShakeel Butt <shakeelb@google.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guenter Roeck <linux@roeck-us.net> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Josef Bacik <jbacik@fb.com> Cc: Li RongQing <lirongqing@baidu.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matthias Kaehlcke <mka@chromium.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Roman Gushchin <guro@fb.com> Cc: Sahitya Tummala <stummala@codeaurora.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Waiman Long <longman@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Kirill Tkhai 提交于
Introduce set_shrinker_bit() function to set shrinker-related bit in memcg shrinker bitmap, and set the bit after the first item is added and in case of reparenting destroyed memcg's items. This will allow next patch to make shrinkers be called only, in case of they have charged objects at the moment, and to improve shrink_slab() performance. [ktkhai@virtuozzo.com: v9] Link: http://lkml.kernel.org/r/153112557572.4097.17315791419810749985.stgit@localhost.localdomain Link: http://lkml.kernel.org/r/153063065671.1818.15914674956134687268.stgit@localhost.localdomainSigned-off-by: NKirill Tkhai <ktkhai@virtuozzo.com> Acked-by: NVladimir Davydov <vdavydov.dev@gmail.com> Tested-by: NShakeel Butt <shakeelb@google.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guenter Roeck <linux@roeck-us.net> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Josef Bacik <jbacik@fb.com> Cc: Li RongQing <lirongqing@baidu.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matthias Kaehlcke <mka@chromium.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Roman Gushchin <guro@fb.com> Cc: Sahitya Tummala <stummala@codeaurora.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Waiman Long <longman@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Kirill Tkhai 提交于
This will be used in next patch. Link: http://lkml.kernel.org/r/153063064347.1818.1987011484100392706.stgit@localhost.localdomainSigned-off-by: NKirill Tkhai <ktkhai@virtuozzo.com> Acked-by: NVladimir Davydov <vdavydov.dev@gmail.com> Tested-by: NShakeel Butt <shakeelb@google.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guenter Roeck <linux@roeck-us.net> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Josef Bacik <jbacik@fb.com> Cc: Li RongQing <lirongqing@baidu.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matthias Kaehlcke <mka@chromium.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Roman Gushchin <guro@fb.com> Cc: Sahitya Tummala <stummala@codeaurora.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Waiman Long <longman@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Kirill Tkhai 提交于
This is just refactoring to allow the next patches to have dst_memcg pointer in memcg_drain_list_lru_node(). Link: http://lkml.kernel.org/r/153063062118.1818.2761273817739499749.stgit@localhost.localdomainSigned-off-by: NKirill Tkhai <ktkhai@virtuozzo.com> Acked-by: NVladimir Davydov <vdavydov.dev@gmail.com> Tested-by: NShakeel Butt <shakeelb@google.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guenter Roeck <linux@roeck-us.net> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Josef Bacik <jbacik@fb.com> Cc: Li RongQing <lirongqing@baidu.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matthias Kaehlcke <mka@chromium.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Roman Gushchin <guro@fb.com> Cc: Sahitya Tummala <stummala@codeaurora.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Waiman Long <longman@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Kirill Tkhai 提交于
Imagine a big node with many cpus, memory cgroups and containers. Let we have 200 containers, every container has 10 mounts, and 10 cgroups. All container tasks don't touch foreign containers mounts. If there is intensive pages write, and global reclaim happens, a writing task has to iterate over all memcgs to shrink slab, before it's able to go to shrink_page_list(). Iteration over all the memcg slabs is very expensive: the task has to visit 200 * 10 = 2000 shrinkers for every memcg, and since there are 2000 memcgs, the total calls are 2000 * 2000 = 4000000. So, the shrinker makes 4 million do_shrink_slab() calls just to try to isolate SWAP_CLUSTER_MAX pages in one of the actively writing memcg via shrink_page_list(). I've observed a node spending almost 100% in kernel, making useless iteration over already shrinked slab. This patch adds bitmap of memcg-aware shrinkers to memcg. The size of the bitmap depends on bitmap_nr_ids, and during memcg life it's maintained to be enough to fit bitmap_nr_ids shrinkers. Every bit in the map is related to corresponding shrinker id. Next patches will maintain set bit only for really charged memcg. This will allow shrink_slab() to increase its performance in significant way. See the last patch for the numbers. [ktkhai@virtuozzo.com: v9] Link: http://lkml.kernel.org/r/153112549031.4097.3576147070498769979.stgit@localhost.localdomain [ktkhai@virtuozzo.com: add comment to mem_cgroup_css_online()] Link: http://lkml.kernel.org/r/521f9e5f-c436-b388-fe83-4dc870bfb489@virtuozzo.com Link: http://lkml.kernel.org/r/153063056619.1818.12550500883688681076.stgit@localhost.localdomainSigned-off-by: NKirill Tkhai <ktkhai@virtuozzo.com> Acked-by: NVladimir Davydov <vdavydov.dev@gmail.com> Tested-by: NShakeel Butt <shakeelb@google.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guenter Roeck <linux@roeck-us.net> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Josef Bacik <jbacik@fb.com> Cc: Li RongQing <lirongqing@baidu.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matthias Kaehlcke <mka@chromium.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Roman Gushchin <guro@fb.com> Cc: Sahitya Tummala <stummala@codeaurora.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Waiman Long <longman@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Kirill Tkhai 提交于
Next patch requires these defines are above their current position, so here they are moved to declarations. Link: http://lkml.kernel.org/r/153063055665.1818.5200425793649695598.stgit@localhost.localdomainSigned-off-by: NKirill Tkhai <ktkhai@virtuozzo.com> Acked-by: NVladimir Davydov <vdavydov.dev@gmail.com> Tested-by: NShakeel Butt <shakeelb@google.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guenter Roeck <linux@roeck-us.net> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Josef Bacik <jbacik@fb.com> Cc: Li RongQing <lirongqing@baidu.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matthias Kaehlcke <mka@chromium.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Roman Gushchin <guro@fb.com> Cc: Sahitya Tummala <stummala@codeaurora.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Waiman Long <longman@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Kirill Tkhai 提交于
Introduce new config option, which is used to replace repeating CONFIG_MEMCG && !CONFIG_SLOB pattern. Next patches add a little more memcg+kmem related code, so let's keep the defines more clearly. Link: http://lkml.kernel.org/r/153063053670.1818.15013136946600481138.stgit@localhost.localdomainSigned-off-by: NKirill Tkhai <ktkhai@virtuozzo.com> Acked-by: NVladimir Davydov <vdavydov.dev@gmail.com> Tested-by: NShakeel Butt <shakeelb@google.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guenter Roeck <linux@roeck-us.net> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Josef Bacik <jbacik@fb.com> Cc: Li RongQing <lirongqing@baidu.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matthias Kaehlcke <mka@chromium.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Roman Gushchin <guro@fb.com> Cc: Sahitya Tummala <stummala@codeaurora.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Waiman Long <longman@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Michal Hocko 提交于
Commit 3812c8c8 ("mm: memcg: do not trap chargers with full callstack on OOM") has changed the ENOMEM semantic of memcg charges. Rather than invoking the oom killer from the charging context it delays the oom killer to the page fault path (pagefault_out_of_memory). This in turn means that many users (e.g. slab or g-u-p) will get ENOMEM when the corresponding memcg hits the hard limit and the memcg is is OOM. This is behavior is inconsistent with !memcg case where the oom killer is invoked from the allocation context and the allocator keeps retrying until it succeeds. The difference in the behavior is user visible. mmap(MAP_POPULATE) might result in not fully populated ranges while the mmap return code doesn't tell that to the userspace. Random syscalls might fail with ENOMEM etc. The primary motivation of the different memcg oom semantic was the deadlock avoidance. Things have changed since then, though. We have an async oom teardown by the oom reaper now and so we do not have to rely on the victim to tear down its memory anymore. Therefore we can return to the original semantic as long as the memcg oom killer is not handed over to the users space. There is still one thing to be careful about here though. If the oom killer is not able to make any forward progress - e.g. because there is no eligible task to kill - then we have to bail out of the charge path to prevent from same class of deadlocks. We have basically two options here. Either we fail the charge with ENOMEM or force the charge and allow overcharge. The first option has been considered more harmful than useful because rare inconsistencies in the ENOMEM behavior is hard to test for and error prone. Basically the same reason why the page allocator doesn't fail allocations under such conditions. The later might allow runaways but those should be really unlikely unless somebody misconfigures the system. E.g. allowing to migrate tasks away from the memcg to a different unlimited memcg with move_charge_at_immigrate disabled. Link: http://lkml.kernel.org/r/20180628151101.25307-1-mhocko@kernel.orgSigned-off-by: NMichal Hocko <mhocko@suse.com> Acked-by: NGreg Thelen <gthelen@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Shakeel Butt <shakeelb@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Shakeel Butt 提交于
The buffer_head can consume a significant amount of system memory and is directly related to the amount of page cache. In our production environment we have observed that a lot of machines are spending a significant amount of memory as buffer_head and can not be left as system memory overhead. Charging buffer_head is not as simple as adding __GFP_ACCOUNT to the allocation. The buffer_heads can be allocated in a memcg different from the memcg of the page for which buffer_heads are being allocated. One concrete example is memory reclaim. The reclaim can trigger I/O of pages of any memcg on the system. So, the right way to charge buffer_head is to extract the memcg from the page for which buffer_heads are being allocated and then use targeted memcg charging API. [shakeelb@google.com: use __GFP_ACCOUNT for directed memcg charging] Link: http://lkml.kernel.org/r/20180702220208.213380-1-shakeelb@google.com Link: http://lkml.kernel.org/r/20180627191250.209150-3-shakeelb@google.comSigned-off-by: NShakeel Butt <shakeelb@google.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Jan Kara <jack@suse.cz> Cc: Amir Goldstein <amir73il@gmail.com> Cc: Greg Thelen <gthelen@google.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Roman Gushchin <guro@fb.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Shakeel Butt 提交于
Patch series "Directed kmem charging", v8. The Linux kernel's memory cgroup allows limiting the memory usage of the jobs running on the system to provide isolation between the jobs. All the kernel memory allocated in the context of the job and marked with __GFP_ACCOUNT will also be included in the memory usage and be limited by the job's limit. The kernel memory can only be charged to the memcg of the process in whose context kernel memory was allocated. However there are cases where the allocated kernel memory should be charged to the memcg different from the current processes's memcg. This patch series contains two such concrete use-cases i.e. fsnotify and buffer_head. The fsnotify event objects can consume a lot of system memory for large or unlimited queues if there is either no or slow listener. The events are allocated in the context of the event producer. However they should be charged to the event consumer. Similarly the buffer_head objects can be allocated in a memcg different from the memcg of the page for which buffer_head objects are being allocated. To solve this issue, this patch series introduces mechanism to charge kernel memory to a given memcg. In case of fsnotify events, the memcg of the consumer can be used for charging and for buffer_head, the memcg of the page can be charged. For directed charging, the caller can use the scope API memalloc_[un]use_memcg() to specify the memcg to charge for all the __GFP_ACCOUNT allocations within the scope. This patch (of 2): A lot of memory can be consumed by the events generated for the huge or unlimited queues if there is either no or slow listener. This can cause system level memory pressure or OOMs. So, it's better to account the fsnotify kmem caches to the memcg of the listener. However the listener can be in a different memcg than the memcg of the producer and these allocations happen in the context of the event producer. This patch introduces remote memcg charging API which the producer can use to charge the allocations to the memcg of the listener. There are seven fsnotify kmem caches and among them allocations from dnotify_struct_cache, dnotify_mark_cache, fanotify_mark_cache and inotify_inode_mark_cachep happens in the context of syscall from the listener. So, SLAB_ACCOUNT is enough for these caches. The objects from fsnotify_mark_connector_cachep are not accounted as they are small compared to the notification mark or events and it is unclear whom to account connector to since it is shared by all events attached to the inode. The allocations from the event caches happen in the context of the event producer. For such caches we will need to remote charge the allocations to the listener's memcg. Thus we save the memcg reference in the fsnotify_group structure of the listener. This patch has also moved the members of fsnotify_group to keep the size same, at least for 64 bit build, even with additional member by filling the holes. [shakeelb@google.com: use GFP_KERNEL_ACCOUNT rather than open-coding it] Link: http://lkml.kernel.org/r/20180702215439.211597-1-shakeelb@google.com Link: http://lkml.kernel.org/r/20180627191250.209150-2-shakeelb@google.comSigned-off-by: NShakeel Butt <shakeelb@google.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Jan Kara <jack@suse.cz> Cc: Amir Goldstein <amir73il@gmail.com> Cc: Greg Thelen <gthelen@google.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Roman Gushchin <guro@fb.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 03 8月, 2018 1 次提交
-
-
由 Kirill Tkhai 提交于
In case of memcg_online_kmem() failure, memcg_cgroup::id remains hashed in mem_cgroup_idr even after memcg memory is freed. This leads to leak of ID in mem_cgroup_idr. This patch adds removal into mem_cgroup_css_alloc(), which fixes the problem. For better readability, it adds a generic helper which is used in mem_cgroup_alloc() and mem_cgroup_id_put_many() as well. Link: http://lkml.kernel.org/r/152354470916.22460.14397070748001974638.stgit@localhost.localdomain Fixes 73f576c0 ("mm: memcontrol: fix cgroup creation failure after many small jobs") Signed-off-by: NKirill Tkhai <ktkhai@virtuozzo.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NVladimir Davydov <vdavydov.dev@gmail.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 22 7月, 2018 1 次提交
-
-
由 Jing Xia 提交于
It was reported that a kernel crash happened in mem_cgroup_iter(), which can be triggered if the legacy cgroup-v1 non-hierarchical mode is used. Unable to handle kernel paging request at virtual address 6b6b6b6b6b6b8f ...... Call trace: mem_cgroup_iter+0x2e0/0x6d4 shrink_zone+0x8c/0x324 balance_pgdat+0x450/0x640 kswapd+0x130/0x4b8 kthread+0xe8/0xfc ret_from_fork+0x10/0x20 mem_cgroup_iter(): ...... if (css_tryget(css)) <-- crash here break; ...... The crashing reason is that mem_cgroup_iter() uses the memcg object whose pointer is stored in iter->position, which has been freed before and filled with POISON_FREE(0x6b). And the root cause of the use-after-free issue is that invalidate_reclaim_iterators() fails to reset the value of iter->position to NULL when the css of the memcg is released in non- hierarchical mode. Link: http://lkml.kernel.org/r/1531994807-25639-1-git-send-email-jing.xia@unisoc.com Fixes: 6df38689 ("mm: memcontrol: fix possible memcg leak due to interrupted reclaim") Signed-off-by: NJing Xia <jing.xia.mail@gmail.com> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: <chunyan.zhang@unisoc.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 09 7月, 2018 1 次提交
-
-
由 Tejun Heo 提交于
Memory allocations can induce swapping via kswapd or direct reclaim. If we are having IO done for us by kswapd and don't actually go into direct reclaim we may never get scheduled for throttling. So instead check to see if our cgroup is congested, and if so schedule the throttling. Before we return to user space the throttling stuff will only throttle if we actually required it. Signed-off-by: NTejun Heo <tj@kernel.org> Signed-off-by: NJosef Bacik <jbacik@fb.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
- 15 6月, 2018 2 次提交
-
-
由 Roman Gushchin 提交于
Commit e27be240 ("mm: memcg: make sure memory.events is uptodate when waking pollers") converted most of memcg event counters to per-memcg atomics, which made them less confusing for a user. The "oom_kill" counter remained untouched, so now it behaves differently than other counters (including "oom"). This adds nothing but confusion. Let's fix this by adding the MEMCG_OOM_KILL event, and follow the MEMCG_OOM approach. This also removes a hack from count_memcg_event_mm(), introduced earlier specially for the OOM_KILL counter. [akpm@linux-foundation.org: fix for droppage of memcg-replace-mm-owner-with-mm-memcg.patch] Link: http://lkml.kernel.org/r/20180508124637.29984-1-guro@fb.comSigned-off-by: NRoman Gushchin <guro@fb.com> Acked-by: NKonstantin Khlebnikov <khlebnikov@yandex-team.ru> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Roman Gushchin 提交于
Shakeel reported a crash in mem_cgroup_protected(), which can be triggered by memcg reclaim if the legacy cgroup v1 use_hierarchy=0 mode is used: BUG: unable to handle kernel NULL pointer dereference at 0000000000000120 PGD 8000001ff55da067 P4D 8000001ff55da067 PUD 1fdc7df067 PMD 0 Oops: 0000 [#4] SMP PTI CPU: 0 PID: 15581 Comm: bash Tainted: G D 4.17.0-smp-clean #5 Hardware name: ... RIP: 0010:mem_cgroup_protected+0x54/0x130 Code: 4c 8b 8e 00 01 00 00 4c 8b 86 08 01 00 00 48 8d 8a 08 ff ff ff 48 85 d2 ba 00 00 00 00 48 0f 44 ca 48 39 c8 0f 84 cf 00 00 00 <48> 8b 81 20 01 00 00 4d 89 ca 4c 39 c8 4c 0f 46 d0 4d 85 d2 74 05 RSP: 0000:ffffabe64dfafa58 EFLAGS: 00010286 RAX: ffff9fb6ff03d000 RBX: ffff9fb6f5b1b000 RCX: 0000000000000000 RDX: 0000000000000000 RSI: ffff9fb6f5b1b000 RDI: ffff9fb6f5b1b000 RBP: ffffabe64dfafb08 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 000000000000c800 R12: ffffabe64dfafb88 R13: ffff9fb6f5b1b000 R14: ffffabe64dfafb88 R15: ffff9fb77fffe000 FS: 00007fed1f8ac700(0000) GS:ffff9fb6ff400000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000120 CR3: 0000001fdcf86003 CR4: 00000000001606f0 Call Trace: ? shrink_node+0x194/0x510 do_try_to_free_pages+0xfd/0x390 try_to_free_mem_cgroup_pages+0x123/0x210 try_charge+0x19e/0x700 mem_cgroup_try_charge+0x10b/0x1a0 wp_page_copy+0x134/0x5b0 do_wp_page+0x90/0x460 __handle_mm_fault+0x8e3/0xf30 handle_mm_fault+0xfe/0x220 __do_page_fault+0x262/0x500 do_page_fault+0x28/0xd0 ? page_fault+0x8/0x30 page_fault+0x1e/0x30 RIP: 0033:0x485b72 The problem happens because parent_mem_cgroup() returns a NULL pointer, which is dereferenced later without a check. As cgroup v1 has no memory guarantee support, let's make mem_cgroup_protected() immediately return MEMCG_PROT_NONE, if the given cgroup has no parent (non-hierarchical mode is used). Link: http://lkml.kernel.org/r/20180611175418.7007-2-guro@fb.com Fixes: bf8d5d52 ("memcg: introduce memory.min") Signed-off-by: NRoman Gushchin <guro@fb.com> Reported-by: NShakeel Butt <shakeelb@google.com> Tested-by: NShakeel Butt <shakeelb@google.com> Tested-by: NJohn Stultz <john.stultz@linaro.org> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NMichal Hocko <mhocko@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 08 6月, 2018 3 次提交
-
-
由 Tejun Heo 提交于
Currently an attempt to set swap.max into a value lower than the actual swap usage fails, which causes configuration problems as there's no way of lowering the configuration below the current usage short of turning off swap entirely. This makes swap.max difficult to use and allows delegatees to lock the delegator out of reducing swap allocation. This patch updates swap_max_write() so that the limit can be lowered below the current usage. It doesn't implement active reclaiming of swap entries for the following reasons. * mem_cgroup_swap_full() already tells the swap machinary to aggressively reclaim swap entries if the usage is above 50% of limit, so simply lowering the limit automatically triggers gradual reclaim. * Forcing back swapped out pages is likely to heavily impact the workload and mess up the working set. Given that swap usually is a lot less valuable and less scarce, letting the existing usage dissipate over time through the above gradual reclaim and as they're falted back in is likely the better behavior. Link: http://lkml.kernel.org/r/20180523185041.GR1718769@devbig577.frc2.facebook.comSigned-off-by: NTejun Heo <tj@kernel.org> Acked-by: NRoman Gushchin <guro@fb.com> Acked-by: NRik van Riel <riel@surriel.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Shaohua Li <shli@fb.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Roman Gushchin 提交于
Memory controller implements the memory.low best-effort memory protection mechanism, which works perfectly in many cases and allows protecting working sets of important workloads from sudden reclaim. But its semantics has a significant limitation: it works only as long as there is a supply of reclaimable memory. This makes it pretty useless against any sort of slow memory leaks or memory usage increases. This is especially true for swapless systems. If swap is enabled, memory soft protection effectively postpones problems, allowing a leaking application to fill all swap area, which makes no sense. The only effective way to guarantee the memory protection in this case is to invoke the OOM killer. It's possible to handle this case in userspace by reacting on MEMCG_LOW events; but there is still a place for a fail-safe in-kernel mechanism to provide stronger guarantees. This patch introduces the memory.min interface for cgroup v2 memory controller. It works very similarly to memory.low (sharing the same hierarchical behavior), except that it's not disabled if there is no more reclaimable memory in the system. If cgroup is not populated, its memory.min is ignored, because otherwise even the OOM killer wouldn't be able to reclaim the protected memory, and the system can stall. [guro@fb.com: s/low/min/ in docs] Link: http://lkml.kernel.org/r/20180510130758.GA9129@castle.DHCP.thefacebook.com Link: http://lkml.kernel.org/r/20180509180734.GA4856@castle.DHCP.thefacebook.comSigned-off-by: NRoman Gushchin <guro@fb.com> Reviewed-by: NRandy Dunlap <rdunlap@infradead.org> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Junaid Shahid 提交于
The per-cpu memcg stock can retain a charge of upto 32 pages. On a machine with large number of cpus, this can amount to a decent amount of memory. Additionally force_empty interface might be triggering unneeded memcg reclaims. Link: http://lkml.kernel.org/r/20180507201651.165879-1-shakeelb@google.comSigned-off-by: NJunaid Shahid <junaids@google.com> Signed-off-by: NShakeel Butt <shakeelb@google.com> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Greg Thelen <gthelen@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-