- 03 6月, 2018 2 次提交
-
-
由 Daniel Borkmann 提交于
While some of the BPF map lookup helpers provide a ->map_gen_lookup() callback for inlining the map lookup altogether it is not available for every map, so the remaining ones have to call bpf_map_lookup_elem() helper which does a dispatch to map->ops->map_lookup_elem(). In times of retpolines, this will control and trap speculative execution rather than letting it do its work for the indirect call and will therefore cause a slowdown. Likewise, bpf_map_update_elem() and bpf_map_delete_elem() do not have an inlined version and need to call into their map->ops->map_update_elem() resp. map->ops->map_delete_elem() handlers. Before: # bpftool prog dump xlated id 1 0: (bf) r2 = r10 1: (07) r2 += -8 2: (7a) *(u64 *)(r2 +0) = 0 3: (18) r1 = map[id:1] 5: (85) call __htab_map_lookup_elem#232656 6: (15) if r0 == 0x0 goto pc+4 7: (71) r1 = *(u8 *)(r0 +35) 8: (55) if r1 != 0x0 goto pc+1 9: (72) *(u8 *)(r0 +35) = 1 10: (07) r0 += 56 11: (15) if r0 == 0x0 goto pc+4 12: (bf) r2 = r0 13: (18) r1 = map[id:1] 15: (85) call bpf_map_delete_elem#215008 <-- indirect call via 16: (95) exit helper After: # bpftool prog dump xlated id 1 0: (bf) r2 = r10 1: (07) r2 += -8 2: (7a) *(u64 *)(r2 +0) = 0 3: (18) r1 = map[id:1] 5: (85) call __htab_map_lookup_elem#233328 6: (15) if r0 == 0x0 goto pc+4 7: (71) r1 = *(u8 *)(r0 +35) 8: (55) if r1 != 0x0 goto pc+1 9: (72) *(u8 *)(r0 +35) = 1 10: (07) r0 += 56 11: (15) if r0 == 0x0 goto pc+4 12: (bf) r2 = r0 13: (18) r1 = map[id:1] 15: (85) call htab_lru_map_delete_elem#238240 <-- direct call 16: (95) exit In all three lookup/update/delete cases however we can use the actual address of the map callback directly if we find that there's only a single path with a map pointer leading to the helper call, meaning when the map pointer has not been poisoned from verifier side. Example code can be seen above for the delete case. Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Acked-by: NSong Liu <songliubraving@fb.com> Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
-
由 Daniel Borkmann 提交于
Stating 'proprietary program' in the error is just silly since it can also be a different open source license than that which is just not compatible. Reference: https://twitter.com/majek04/status/998531268039102465Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Acked-by: NJesper Dangaard Brouer <brouer@redhat.com> Acked-by: NSong Liu <songliubraving@fb.com> Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
-
- 24 5月, 2018 4 次提交
-
-
由 Daniel Borkmann 提交于
While reviewing the verifier code, I recently noticed that the following two program variants in relation to tail calls can be loaded. Variant 1: # bpftool p d x i 15 0: (15) if r1 == 0x0 goto pc+3 1: (18) r2 = map[id:5] 3: (05) goto pc+2 4: (18) r2 = map[id:6] 6: (b7) r3 = 7 7: (35) if r3 >= 0xa0 goto pc+2 8: (54) (u32) r3 &= (u32) 255 9: (85) call bpf_tail_call#12 10: (b7) r0 = 1 11: (95) exit # bpftool m s i 5 5: prog_array flags 0x0 key 4B value 4B max_entries 4 memlock 4096B # bpftool m s i 6 6: prog_array flags 0x0 key 4B value 4B max_entries 160 memlock 4096B Variant 2: # bpftool p d x i 20 0: (15) if r1 == 0x0 goto pc+3 1: (18) r2 = map[id:8] 3: (05) goto pc+2 4: (18) r2 = map[id:7] 6: (b7) r3 = 7 7: (35) if r3 >= 0x4 goto pc+2 8: (54) (u32) r3 &= (u32) 3 9: (85) call bpf_tail_call#12 10: (b7) r0 = 1 11: (95) exit # bpftool m s i 8 8: prog_array flags 0x0 key 4B value 4B max_entries 160 memlock 4096B # bpftool m s i 7 7: prog_array flags 0x0 key 4B value 4B max_entries 4 memlock 4096B In both cases the index masking inserted by the verifier in order to control out of bounds speculation from a CPU via b2157399 ("bpf: prevent out-of-bounds speculation") seems to be incorrect in what it is enforcing. In the 1st variant, the mask is applied from the map with the significantly larger number of entries where we would allow to a certain degree out of bounds speculation for the smaller map, and in the 2nd variant where the mask is applied from the map with the smaller number of entries, we get buggy behavior since we truncate the index of the larger map. The original intent from commit b2157399 is to reject such occasions where two or more different tail call maps are used in the same tail call helper invocation. However, the check on the BPF_MAP_PTR_POISON is never hit since we never poisoned the saved pointer in the first place! We do this explicitly for map lookups but in case of tail calls we basically used the tail call map in insn_aux_data that was processed in the most recent path which the verifier walked. Thus any prior path that stored a pointer in insn_aux_data at the helper location was always overridden. Fix it by moving the map pointer poison logic into a small helper that covers both BPF helpers with the same logic. After that in fixup_bpf_calls() the poison check is then hit for tail calls and the program rejected. Latter only happens in unprivileged case since this is the *only* occasion where a rewrite needs to happen, and where such rewrite is specific to the map (max_entries, index_mask). In the privileged case the rewrite is generic for the insn->imm / insn->code update so multiple maps from different paths can be handled just fine since all the remaining logic happens in the instruction processing itself. This is similar to the case of map lookups: in case there is a collision of maps in fixup_bpf_calls() we must skip the inlined rewrite since this will turn the generic instruction sequence into a non- generic one. Thus the patch_call_imm will simply update the insn->imm location where the bpf_map_lookup_elem() will later take care of the dispatch. Given we need this 'poison' state as a check, the information of whether a map is an unpriv_array gets lost, so enforcing it prior to that needs an additional state. In general this check is needed since there are some complex and tail call intensive BPF programs out there where LLVM tends to generate such code occasionally. We therefore convert the map_ptr rather into map_state to store all this w/o extra memory overhead, and the bit whether one of the maps involved in the collision was from an unpriv_array thus needs to be retained as well there. Fixes: b2157399 ("bpf: prevent out-of-bounds speculation") Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
-
由 Mathieu Xhonneux 提交于
This patch adds the End.BPF action to the LWT seg6local infrastructure. This action works like any other seg6local End action, meaning that an IPv6 header with SRH is needed, whose DA has to be equal to the SID of the action. It will also advance the SRH to the next segment, the BPF program does not have to take care of this. Since the BPF program may not be a source of instability in the kernel, it is important to ensure that the integrity of the packet is maintained before yielding it back to the IPv6 layer. The hook hence keeps track if the SRH has been altered through the helpers, and re-validates its content if needed with seg6_validate_srh. The state kept for validation is stored in a per-CPU buffer. The BPF program is not allowed to directly write into the packet, and only some fields of the SRH can be altered through the helper bpf_lwt_seg6_store_bytes. Performances profiling has shown that the SRH re-validation does not induce a significant overhead. If the altered SRH is deemed as invalid, the packet is dropped. This validation is also done before executing any action through bpf_lwt_seg6_action, and will not be performed again if the SRH is not modified after calling the action. The BPF program may return 3 types of return codes: - BPF_OK: the End.BPF action will look up the next destination through seg6_lookup_nexthop. - BPF_REDIRECT: if an action has been executed through the bpf_lwt_seg6_action helper, the BPF program should return this value, as the skb's destination is already set and the default lookup should not be performed. - BPF_DROP : the packet will be dropped. Signed-off-by: NMathieu Xhonneux <m.xhonneux@gmail.com> Acked-by: NDavid Lebrun <dlebrun@google.com> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
-
由 Sandipan Das 提交于
This adds new two new fields to struct bpf_prog_info. For multi-function programs, these fields can be used to pass a list of kernel symbol addresses for all functions in a given program to userspace using the bpf system call with the BPF_OBJ_GET_INFO_BY_FD command. When bpf_jit_kallsyms is enabled, we can get the address of the corresponding kernel symbol for a callee function and resolve the symbol's name. The address is determined by adding the value of the call instruction's imm field to __bpf_call_base. This offset gets assigned to the imm field by the verifier. For some architectures, such as powerpc64, the imm field is not large enough to hold this offset. We resolve this by: [1] Assigning the subprog id to the imm field of a call instruction in the verifier instead of the offset of the callee's symbol's address from __bpf_call_base. [2] Determining the address of a callee's corresponding symbol by using the imm field as an index for the list of kernel symbol addresses now available from the program info. Suggested-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NSandipan Das <sandipan@linux.vnet.ibm.com> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
-
由 Sandipan Das 提交于
The imm field of a bpf instruction is a signed 32-bit integer. For JITed bpf-to-bpf function calls, it holds the offset of the start address of the callee's JITed image from __bpf_call_base. For some architectures, such as powerpc64, this offset may be as large as 64 bits and cannot be accomodated in the imm field without truncation. We resolve this by: [1] Additionally using the auxiliary data of each function to keep a list of start addresses of the JITed images for all functions determined by the verifier. [2] Retaining the subprog id inside the off field of the call instructions and using it to index into the list mentioned above and lookup the callee's address. To make sure that the existing JIT compilers continue to work without requiring changes, we keep the imm field as it is. Signed-off-by: NSandipan Das <sandipan@linux.vnet.ibm.com> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
-
- 20 5月, 2018 1 次提交
-
-
由 Alexei Starovoitov 提交于
Detect code patterns where malicious 'speculative store bypass' can be used and sanitize such patterns. 39: (bf) r3 = r10 40: (07) r3 += -216 41: (79) r8 = *(u64 *)(r7 +0) // slow read 42: (7a) *(u64 *)(r10 -72) = 0 // verifier inserts this instruction 43: (7b) *(u64 *)(r8 +0) = r3 // this store becomes slow due to r8 44: (79) r1 = *(u64 *)(r6 +0) // cpu speculatively executes this load 45: (71) r2 = *(u8 *)(r1 +0) // speculatively arbitrary 'load byte' // is now sanitized Above code after x86 JIT becomes: e5: mov %rbp,%rdx e8: add $0xffffffffffffff28,%rdx ef: mov 0x0(%r13),%r14 f3: movq $0x0,-0x48(%rbp) fb: mov %rdx,0x0(%r14) ff: mov 0x0(%rbx),%rdi 103: movzbq 0x0(%rdi),%rsi Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
-
- 16 5月, 2018 1 次提交
-
-
由 John Fastabend 提交于
Sockmap is currently backed by an array and enforces keys to be four bytes. This works well for many use cases and was originally modeled after devmap which also uses four bytes keys. However, this has become limiting in larger use cases where a hash would be more appropriate. For example users may want to use the 5-tuple of the socket as the lookup key. To support this add hash support. Signed-off-by: NJohn Fastabend <john.fastabend@gmail.com> Acked-by: NDavid S. Miller <davem@davemloft.net> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
-
- 10 5月, 2018 1 次提交
-
-
由 Jakub Kicinski 提交于
It's fairly easy for offloaded XDP programs to select the RX queue packets go to. We need a way of expressing this in the software. Allow write to the rx_queue_index field of struct xdp_md for device-bound programs. Skip convert_ctx_access callback entirely for offloads. Signed-off-by: NJakub Kicinski <jakub.kicinski@netronome.com> Reviewed-by: NQuentin Monnet <quentin.monnet@netronome.com> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
-
- 05 5月, 2018 2 次提交
-
-
由 Jakub Kicinski 提交于
Comments in the verifier refer to free_bpf_prog_info() which seems to have never existed in tree. Replace it with free_used_maps(). Signed-off-by: NJakub Kicinski <jakub.kicinski@netronome.com> Reviewed-by: NQuentin Monnet <quentin.monnet@netronome.com> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
-
由 Jakub Kicinski 提交于
Offloads may find host map pointers more useful than map fds. Map pointers can be used to identify the map, while fds are only valid within the context of loading process. Jump to skip_full_check on error in case verifier log overflow has to be handled (replace_map_fd_with_map_ptr() prints to the log, driver prep may do that too in the future). Signed-off-by: NJakub Kicinski <jakub.kicinski@netronome.com> Reviewed-by: NQuentin Monnet <quentin.monnet@netronome.com> Reviewed-by: NJiong Wang <jiong.wang@netronome.com> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
-
- 04 5月, 2018 5 次提交
-
-
由 Jiong Wang 提交于
There are quite a few code snippet like the following in verifier: subprog_start = 0; if (env->subprog_cnt == cur_subprog + 1) subprog_end = insn_cnt; else subprog_end = env->subprog_info[cur_subprog + 1].start; The reason is there is no marker in subprog_info array to tell the end of it. We could resolve this issue by introducing a faked "ending" subprog. The special "ending" subprog is with "insn_cnt" as start offset, so it is serving as the end mark whenever we iterate over all subprogs. Signed-off-by: NJiong Wang <jiong.wang@netronome.com> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
-
由 Jiong Wang 提交于
It is better to centre all subprog information fields into one structure. This structure could later serve as function node in call graph. Signed-off-by: NJiong Wang <jiong.wang@netronome.com> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
-
由 Jiong Wang 提交于
Currently, verifier treat main prog and subprog differently. All subprogs detected are kept in env->subprog_starts while main prog is not kept there. Instead, main prog is implicitly defined as the prog start at 0. There is actually no difference between main prog and subprog, it is better to unify them, and register all progs detected into env->subprog_starts. This could also help simplifying some code logic. Signed-off-by: NJiong Wang <jiong.wang@netronome.com> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
-
由 Daniel Borkmann 提交于
The main part of this work is to finally allow removal of LD_ABS and LD_IND from the BPF core by reimplementing them through native eBPF instead. Both LD_ABS/LD_IND were carried over from cBPF and keeping them around in native eBPF caused way more trouble than actually worth it. To just list some of the security issues in the past: * fdfaf64e ("x86: bpf_jit: support negative offsets") * 35607b02 ("sparc: bpf_jit: fix loads from negative offsets") * e0ee9c12 ("x86: bpf_jit: fix two bugs in eBPF JIT compiler") * 07aee943 ("bpf, sparc: fix usage of wrong reg for load_skb_regs after call") * 6d59b7db ("bpf, s390x: do not reload skb pointers in non-skb context") * 87338c8e ("bpf, ppc64: do not reload skb pointers in non-skb context") For programs in native eBPF, LD_ABS/LD_IND are pretty much legacy these days due to their limitations and more efficient/flexible alternatives that have been developed over time such as direct packet access. LD_ABS/LD_IND only cover 1/2/4 byte loads into a register, the load happens in host endianness and its exception handling can yield unexpected behavior. The latter is explained in depth in f6b1b3bf ("bpf: fix subprog verifier bypass by div/mod by 0 exception") with similar cases of exceptions we had. In native eBPF more recent program types will disable LD_ABS/LD_IND altogether through may_access_skb() in verifier, and given the limitations in terms of exception handling, it's also disabled in programs that use BPF to BPF calls. In terms of cBPF, the LD_ABS/LD_IND is used in networking programs to access packet data. It is not used in seccomp-BPF but programs that use it for socket filtering or reuseport for demuxing with cBPF. This is mostly relevant for applications that have not yet migrated to native eBPF. The main complexity and source of bugs in LD_ABS/LD_IND is coming from their implementation in the various JITs. Most of them keep the model around from cBPF times by implementing a fastpath written in asm. They use typically two from the BPF program hidden CPU registers for caching the skb's headlen (skb->len - skb->data_len) and skb->data. Throughout the JIT phase this requires to keep track whether LD_ABS/LD_IND are used and if so, the two registers need to be recached each time a BPF helper would change the underlying packet data in native eBPF case. At least in eBPF case, available CPU registers are rare and the additional exit path out of the asm written JIT helper makes it also inflexible since not all parts of the JITer are in control from plain C. A LD_ABS/LD_IND implementation in eBPF therefore allows to significantly reduce the complexity in JITs with comparable performance results for them, e.g.: test_bpf tcpdump port 22 tcpdump complex x64 - before 15 21 10 14 19 18 - after 7 10 10 7 10 15 arm64 - before 40 91 92 40 91 151 - after 51 64 73 51 62 113 For cBPF we now track any usage of LD_ABS/LD_IND in bpf_convert_filter() and cache the skb's headlen and data in the cBPF prologue. The BPF_REG_TMP gets remapped from R8 to R2 since it's mainly just used as a local temporary variable. This allows to shrink the image on x86_64 also for seccomp programs slightly since mapping to %rsi is not an ereg. In callee-saved R8 and R9 we now track skb data and headlen, respectively. For normal prologue emission in the JITs this does not add any extra instructions since R8, R9 are pushed to stack in any case from eBPF side. cBPF uses the convert_bpf_ld_abs() emitter which probes the fast path inline already and falls back to bpf_skb_load_helper_{8,16,32}() helper relying on the cached skb data and headlen as well. R8 and R9 never need to be reloaded due to bpf_helper_changes_pkt_data() since all skb access in cBPF is read-only. Then, for the case of native eBPF, we use the bpf_gen_ld_abs() emitter, which calls the bpf_skb_load_helper_{8,16,32}_no_cache() helper unconditionally, does neither cache skb data and headlen nor has an inlined fast path. The reason for the latter is that native eBPF does not have any extra registers available anyway, but even if there were, it avoids any reload of skb data and headlen in the first place. Additionally, for the negative offsets, we provide an alternative bpf_skb_load_bytes_relative() helper in eBPF which operates similarly as bpf_skb_load_bytes() and allows for more flexibility. Tested myself on x64, arm64, s390x, from Sandipan on ppc64. Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
-
由 Björn Töpel 提交于
The xskmap is yet another BPF map, very much inspired by dev/cpu/sockmap, and is a holder of AF_XDP sockets. A user application adds AF_XDP sockets into the map, and by using the bpf_redirect_map helper, an XDP program can redirect XDP frames to an AF_XDP socket. Note that a socket that is bound to certain ifindex/queue index will *only* accept XDP frames from that netdev/queue index. If an XDP program tries to redirect from a netdev/queue index other than what the socket is bound to, the frame will not be received on the socket. A socket can reside in multiple maps. v3: Fixed race and simplified code. v2: Removed one indirection in map lookup. Signed-off-by: NBjörn Töpel <bjorn.topel@intel.com> Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
-
- 29 4月, 2018 4 次提交
-
-
由 Yonghong Song 提交于
When helpers like bpf_get_stack returns an int value and later on used for arithmetic computation, the LSH and ARSH operations are often required to get proper sign extension into 64-bit. For example, without this patch: 54: R0=inv(id=0,umax_value=800) 54: (bf) r8 = r0 55: R0=inv(id=0,umax_value=800) R8_w=inv(id=0,umax_value=800) 55: (67) r8 <<= 32 56: R8_w=inv(id=0,umax_value=3435973836800,var_off=(0x0; 0x3ff00000000)) 56: (c7) r8 s>>= 32 57: R8=inv(id=0) With this patch: 54: R0=inv(id=0,umax_value=800) 54: (bf) r8 = r0 55: R0=inv(id=0,umax_value=800) R8_w=inv(id=0,umax_value=800) 55: (67) r8 <<= 32 56: R8_w=inv(id=0,umax_value=3435973836800,var_off=(0x0; 0x3ff00000000)) 56: (c7) r8 s>>= 32 57: R8=inv(id=0, umax_value=800,var_off=(0x0; 0x3ff)) With better range of "R8", later on when "R8" is added to other register, e.g., a map pointer or scalar-value register, the better register range can be derived and verifier failure may be avoided. In our later example, ...... usize = bpf_get_stack(ctx, raw_data, max_len, BPF_F_USER_STACK); if (usize < 0) return 0; ksize = bpf_get_stack(ctx, raw_data + usize, max_len - usize, 0); ...... Without improving ARSH value range tracking, the register representing "max_len - usize" will have smin_value equal to S64_MIN and will be rejected by verifier. Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NYonghong Song <yhs@fb.com> Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
-
由 Yonghong Song 提交于
In verifier function adjust_scalar_min_max_vals, when src_known is false and the opcode is BPF_LSH/BPF_RSH, early return will happen in the function. So remove the branch in handling BPF_LSH/BPF_RSH when src_known is false. Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NYonghong Song <yhs@fb.com> Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
-
由 Yonghong Song 提交于
The special property of return values for helpers bpf_get_stack and bpf_probe_read_str are captured in verifier. Both helpers return a negative error code or a length, which is equal to or smaller than the buffer size argument. This additional information in the verifier can avoid the condition such as "retval > bufsize" in the bpf program. For example, for the code blow, usize = bpf_get_stack(ctx, raw_data, max_len, BPF_F_USER_STACK); if (usize < 0 || usize > max_len) return 0; The verifier may have the following errors: 52: (85) call bpf_get_stack#65 R0=map_value(id=0,off=0,ks=4,vs=1600,imm=0) R1_w=ctx(id=0,off=0,imm=0) R2_w=map_value(id=0,off=0,ks=4,vs=1600,imm=0) R3_w=inv800 R4_w=inv256 R6=ctx(id=0,off=0,imm=0) R7=map_value(id=0,off=0,ks=4,vs=1600,imm=0) R9_w=inv800 R10=fp0,call_-1 53: (bf) r8 = r0 54: (bf) r1 = r8 55: (67) r1 <<= 32 56: (bf) r2 = r1 57: (77) r2 >>= 32 58: (25) if r2 > 0x31f goto pc+33 R0=inv(id=0) R1=inv(id=0,smax_value=9223372032559808512, umax_value=18446744069414584320, var_off=(0x0; 0xffffffff00000000)) R2=inv(id=0,umax_value=799,var_off=(0x0; 0x3ff)) R6=ctx(id=0,off=0,imm=0) R7=map_value(id=0,off=0,ks=4,vs=1600,imm=0) R8=inv(id=0) R9=inv800 R10=fp0,call_-1 59: (1f) r9 -= r8 60: (c7) r1 s>>= 32 61: (bf) r2 = r7 62: (0f) r2 += r1 math between map_value pointer and register with unbounded min value is not allowed The failure is due to llvm compiler optimization where register "r2", which is a copy of "r1", is tested for condition while later on "r1" is used for map_ptr operation. The verifier is not able to track such inst sequence effectively. Without the "usize > max_len" condition, there is no llvm optimization and the below generated code passed verifier: 52: (85) call bpf_get_stack#65 R0=map_value(id=0,off=0,ks=4,vs=1600,imm=0) R1_w=ctx(id=0,off=0,imm=0) R2_w=map_value(id=0,off=0,ks=4,vs=1600,imm=0) R3_w=inv800 R4_w=inv256 R6=ctx(id=0,off=0,imm=0) R7=map_value(id=0,off=0,ks=4,vs=1600,imm=0) R9_w=inv800 R10=fp0,call_-1 53: (b7) r1 = 0 54: (bf) r8 = r0 55: (67) r8 <<= 32 56: (c7) r8 s>>= 32 57: (6d) if r1 s> r8 goto pc+24 R0=inv(id=0,umax_value=800,var_off=(0x0; 0x3ff)) R1=inv0 R6=ctx(id=0,off=0,imm=0) R7=map_value(id=0,off=0,ks=4,vs=1600,imm=0) R8=inv(id=0,umax_value=800,var_off=(0x0; 0x3ff)) R9=inv800 R10=fp0,call_-1 58: (bf) r2 = r7 59: (0f) r2 += r8 60: (1f) r9 -= r8 61: (bf) r1 = r6 Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NYonghong Song <yhs@fb.com> Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
-
由 Yonghong Song 提交于
Currently, stackmap and bpf_get_stackid helper are provided for bpf program to get the stack trace. This approach has a limitation though. If two stack traces have the same hash, only one will get stored in the stackmap table, so some stack traces are missing from user perspective. This patch implements a new helper, bpf_get_stack, will send stack traces directly to bpf program. The bpf program is able to see all stack traces, and then can do in-kernel processing or send stack traces to user space through shared map or bpf_perf_event_output. Acked-by: NAlexei Starovoitov <ast@fb.com> Signed-off-by: NYonghong Song <yhs@fb.com> Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
-
- 25 4月, 2018 1 次提交
-
-
由 Paul Chaignon 提交于
Helpers that expect ARG_PTR_TO_MAP_KEY and ARG_PTR_TO_MAP_VALUE can only access stack and packet memory. Allow these helpers to directly access map values by passing registers of type PTR_TO_MAP_VALUE. This change removes the need for an extra copy to the stack when using a map value to perform a second map lookup, as in the following: struct bpf_map_def SEC("maps") infobyreq = { .type = BPF_MAP_TYPE_HASHMAP, .key_size = sizeof(struct request *), .value_size = sizeof(struct info_t), .max_entries = 1024, }; struct bpf_map_def SEC("maps") counts = { .type = BPF_MAP_TYPE_HASHMAP, .key_size = sizeof(struct info_t), .value_size = sizeof(u64), .max_entries = 1024, }; SEC("kprobe/blk_account_io_start") int bpf_blk_account_io_start(struct pt_regs *ctx) { struct info_t *info = bpf_map_lookup_elem(&infobyreq, &ctx->di); u64 *count = bpf_map_lookup_elem(&counts, info); (*count)++; } Signed-off-by: NPaul Chaignon <paul.chaignon@orange.com> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
-
- 31 3月, 2018 2 次提交
-
-
由 Andrey Ignatov 提交于
== The problem == There is a use-case when all processes inside a cgroup should use one single IP address on a host that has multiple IP configured. Those processes should use the IP for both ingress and egress, for TCP and UDP traffic. So TCP/UDP servers should be bound to that IP to accept incoming connections on it, and TCP/UDP clients should make outgoing connections from that IP. It should not require changing application code since it's often not possible. Currently it's solved by intercepting glibc wrappers around syscalls such as `bind(2)` and `connect(2)`. It's done by a shared library that is preloaded for every process in a cgroup so that whenever TCP/UDP server calls `bind(2)`, the library replaces IP in sockaddr before passing arguments to syscall. When application calls `connect(2)` the library transparently binds the local end of connection to that IP (`bind(2)` with `IP_BIND_ADDRESS_NO_PORT` to avoid performance penalty). Shared library approach is fragile though, e.g.: * some applications clear env vars (incl. `LD_PRELOAD`); * `/etc/ld.so.preload` doesn't help since some applications are linked with option `-z nodefaultlib`; * other applications don't use glibc and there is nothing to intercept. == The solution == The patch provides much more reliable in-kernel solution for the 1st part of the problem: binding TCP/UDP servers on desired IP. It does not depend on application environment and implementation details (whether glibc is used or not). It adds new eBPF program type `BPF_PROG_TYPE_CGROUP_SOCK_ADDR` and attach types `BPF_CGROUP_INET4_BIND` and `BPF_CGROUP_INET6_BIND` (similar to already existing `BPF_CGROUP_INET_SOCK_CREATE`). The new program type is intended to be used with sockets (`struct sock`) in a cgroup and provided by user `struct sockaddr`. Pointers to both of them are parts of the context passed to programs of newly added types. The new attach types provides hooks in `bind(2)` system call for both IPv4 and IPv6 so that one can write a program to override IP addresses and ports user program tries to bind to and apply such a program for whole cgroup. == Implementation notes == [1] Separate attach types for `AF_INET` and `AF_INET6` are added intentionally to prevent reading/writing to offsets that don't make sense for corresponding socket family. E.g. if user passes `sockaddr_in` it doesn't make sense to read from / write to `user_ip6[]` context fields. [2] The write access to `struct bpf_sock_addr_kern` is implemented using special field as an additional "register". There are just two registers in `sock_addr_convert_ctx_access`: `src` with value to write and `dst` with pointer to context that can't be changed not to break later instructions. But the fields, allowed to write to, are not available directly and to access them address of corresponding pointer has to be loaded first. To get additional register the 1st not used by `src` and `dst` one is taken, its content is saved to `bpf_sock_addr_kern.tmp_reg`, then the register is used to load address of pointer field, and finally the register's content is restored from the temporary field after writing `src` value. Signed-off-by: NAndrey Ignatov <rdna@fb.com> Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
-
由 Andrey Ignatov 提交于
== The problem == There are use-cases when a program of some type can be attached to multiple attach points and those attach points must have different permissions to access context or to call helpers. E.g. context structure may have fields for both IPv4 and IPv6 but it doesn't make sense to read from / write to IPv6 field when attach point is somewhere in IPv4 stack. Same applies to BPF-helpers: it may make sense to call some helper from some attach point, but not from other for same prog type. == The solution == Introduce `expected_attach_type` field in in `struct bpf_attr` for `BPF_PROG_LOAD` command. If scenario described in "The problem" section is the case for some prog type, the field will be checked twice: 1) At load time prog type is checked to see if attach type for it must be known to validate program permissions correctly. Prog will be rejected with EINVAL if it's the case and `expected_attach_type` is not specified or has invalid value. 2) At attach time `attach_type` is compared with `expected_attach_type`, if prog type requires to have one, and, if they differ, attach will be rejected with EINVAL. The `expected_attach_type` is now available as part of `struct bpf_prog` in both `bpf_verifier_ops->is_valid_access()` and `bpf_verifier_ops->get_func_proto()` () and can be used to check context accesses and calls to helpers correspondingly. Initially the idea was discussed by Alexei Starovoitov <ast@fb.com> and Daniel Borkmann <daniel@iogearbox.net> here: https://marc.info/?l=linux-netdev&m=152107378717201&w=2Signed-off-by: NAndrey Ignatov <rdna@fb.com> Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
-
- 26 3月, 2018 2 次提交
-
-
由 Martin KaFai Lau 提交于
The BTF (BPF Type Format) verifier needs to reuse the current BPF verifier log. Hence, it requires the following changes: (1) Expose log_write() in verifier.c for other users. Its name is renamed to bpf_verifier_vlog(). (2) The BTF verifier also needs to check 'log->level && log->ubuf && !bpf_verifier_log_full(log);' independently outside of the current log_write(). It is because the BTF verifier will do one-check before making multiple calls to btf_verifier_vlog to log the details of a type. Hence, this check is also re-factored to a new function bpf_verifier_log_needed(). Since it is re-factored, we can check it before va_start() in the current bpf_verifier_log_write() and verbose(). Signed-off-by: NMartin KaFai Lau <kafai@fb.com> Acked-by: NAlexei Starovoitov <ast@fb.com> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
-
由 Martin KaFai Lau 提交于
bpf_verifer_log => bpf_verifier_log Signed-off-by: NMartin KaFai Lau <kafai@fb.com> Acked-by: NAlexei Starovoitov <ast@fb.com> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
-
- 24 3月, 2018 1 次提交
-
-
由 Jiri Olsa 提交于
We use print_bpf_insn in user space (bpftool and soon perf), so it'd be nice to keep it generic and strip it off the kernel struct bpf_verifier_env argument. This argument can be safely removed, because its users can use the struct bpf_insn_cbs::private_data to pass it. By changing the argument type we can no longer have clean 'verbose' alias to 'bpf_verifier_log_write' in verifier.c. Instead we're adding the 'verbose' cb_print callback and removing the alias. This way we have new cb_print callback in place, and all the 'verbose(env, ...) calls in verifier.c will cleanly cast to 'verbose(void *, ...)' so no other change is needed. Signed-off-by: NJiri Olsa <jolsa@kernel.org> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
-
- 20 3月, 2018 1 次提交
-
-
由 John Fastabend 提交于
This implements a BPF ULP layer to allow policy enforcement and monitoring at the socket layer. In order to support this a new program type BPF_PROG_TYPE_SK_MSG is used to run the policy at the sendmsg/sendpage hook. To attach the policy to sockets a sockmap is used with a new program attach type BPF_SK_MSG_VERDICT. Similar to previous sockmap usages when a sock is added to a sockmap, via a map update, if the map contains a BPF_SK_MSG_VERDICT program type attached then the BPF ULP layer is created on the socket and the attached BPF_PROG_TYPE_SK_MSG program is run for every msg in sendmsg case and page/offset in sendpage case. BPF_PROG_TYPE_SK_MSG Semantics/API: BPF_PROG_TYPE_SK_MSG supports only two return codes SK_PASS and SK_DROP. Returning SK_DROP free's the copied data in the sendmsg case and in the sendpage case leaves the data untouched. Both cases return -EACESS to the user. Returning SK_PASS will allow the msg to be sent. In the sendmsg case data is copied into kernel space buffers before running the BPF program. The kernel space buffers are stored in a scatterlist object where each element is a kernel memory buffer. Some effort is made to coalesce data from the sendmsg call here. For example a sendmsg call with many one byte iov entries will likely be pushed into a single entry. The BPF program is run with data pointers (start/end) pointing to the first sg element. In the sendpage case data is not copied. We opt not to copy the data by default here, because the BPF infrastructure does not know what bytes will be needed nor when they will be needed. So copying all bytes may be wasteful. Because of this the initial start/end data pointers are (0,0). Meaning no data can be read or written. This avoids reading data that may be modified by the user. A new helper is added later in this series if reading and writing the data is needed. The helper call will do a copy by default so that the page is exclusively owned by the BPF call. The verdict from the BPF_PROG_TYPE_SK_MSG applies to the entire msg in the sendmsg() case and the entire page/offset in the sendpage case. This avoids ambiguity on how to handle mixed return codes in the sendmsg case. Again a helper is added later in the series if a verdict needs to apply to multiple system calls and/or only a subpart of the currently being processed message. The helper msg_redirect_map() can be used to select the socket to send the data on. This is used similar to existing redirect use cases. This allows policy to redirect msgs. Pseudo code simple example: The basic logic to attach a program to a socket is as follows, // load the programs bpf_prog_load(SOCKMAP_TCP_MSG_PROG, BPF_PROG_TYPE_SK_MSG, &obj, &msg_prog); // lookup the sockmap bpf_map_msg = bpf_object__find_map_by_name(obj, "my_sock_map"); // get fd for sockmap map_fd_msg = bpf_map__fd(bpf_map_msg); // attach program to sockmap bpf_prog_attach(msg_prog, map_fd_msg, BPF_SK_MSG_VERDICT, 0); Adding sockets to the map is done in the normal way, // Add a socket 'fd' to sockmap at location 'i' bpf_map_update_elem(map_fd_msg, &i, fd, BPF_ANY); After the above any socket attached to "my_sock_map", in this case 'fd', will run the BPF msg verdict program (msg_prog) on every sendmsg and sendpage system call. For a complete example see BPF selftests or sockmap samples. Implementation notes: It seemed the simplest, to me at least, to use a refcnt to ensure psock is not lost across the sendmsg copy into the sg, the bpf program running on the data in sg_data, and the final pass to the TCP stack. Some performance testing may show a better method to do this and avoid the refcnt cost, but for now use the simpler method. Another item that will come after basic support is in place is supporting MSG_MORE flag. At the moment we call sendpages even if the MSG_MORE flag is set. An enhancement would be to collect the pages into a larger scatterlist and pass down the stack. Notice that bpf_tcp_sendmsg() could support this with some additional state saved across sendmsg calls. I built the code to support this without having to do refactoring work. Other features TBD include ZEROCOPY and the TCP_RECV_QUEUE/TCP_NO_QUEUE support. This will follow initial series shortly. Future work could improve size limits on the scatterlist rings used here. Currently, we use MAX_SKB_FRAGS simply because this was being used already in the TLS case. Future work could extend the kernel sk APIs to tune this depending on workload. This is a trade-off between memory usage and throughput performance. Signed-off-by: NJohn Fastabend <john.fastabend@gmail.com> Acked-by: NDavid S. Miller <davem@davemloft.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
-
- 24 2月, 2018 1 次提交
-
-
由 Daniel Borkmann 提交于
The requirements around atomic_add() / atomic64_add() resp. their JIT implementations differ across architectures. E.g. while x86_64 seems just fine with BPF's xadd on unaligned memory, on arm64 it triggers via interpreter but also JIT the following crash: [ 830.864985] Unable to handle kernel paging request at virtual address ffff8097d7ed6703 [...] [ 830.916161] Internal error: Oops: 96000021 [#1] SMP [ 830.984755] CPU: 37 PID: 2788 Comm: test_verifier Not tainted 4.16.0-rc2+ #8 [ 830.991790] Hardware name: Huawei TaiShan 2280 /BC11SPCD, BIOS 1.29 07/17/2017 [ 830.998998] pstate: 80400005 (Nzcv daif +PAN -UAO) [ 831.003793] pc : __ll_sc_atomic_add+0x4/0x18 [ 831.008055] lr : ___bpf_prog_run+0x1198/0x1588 [ 831.012485] sp : ffff00001ccabc20 [ 831.015786] x29: ffff00001ccabc20 x28: ffff8017d56a0f00 [ 831.021087] x27: 0000000000000001 x26: 0000000000000000 [ 831.026387] x25: 000000c168d9db98 x24: 0000000000000000 [ 831.031686] x23: ffff000008203878 x22: ffff000009488000 [ 831.036986] x21: ffff000008b14e28 x20: ffff00001ccabcb0 [ 831.042286] x19: ffff0000097b5080 x18: 0000000000000a03 [ 831.047585] x17: 0000000000000000 x16: 0000000000000000 [ 831.052885] x15: 0000ffffaeca8000 x14: 0000000000000000 [ 831.058184] x13: 0000000000000000 x12: 0000000000000000 [ 831.063484] x11: 0000000000000001 x10: 0000000000000000 [ 831.068783] x9 : 0000000000000000 x8 : 0000000000000000 [ 831.074083] x7 : 0000000000000000 x6 : 000580d428000000 [ 831.079383] x5 : 0000000000000018 x4 : 0000000000000000 [ 831.084682] x3 : ffff00001ccabcb0 x2 : 0000000000000001 [ 831.089982] x1 : ffff8097d7ed6703 x0 : 0000000000000001 [ 831.095282] Process test_verifier (pid: 2788, stack limit = 0x0000000018370044) [ 831.102577] Call trace: [ 831.105012] __ll_sc_atomic_add+0x4/0x18 [ 831.108923] __bpf_prog_run32+0x4c/0x70 [ 831.112748] bpf_test_run+0x78/0xf8 [ 831.116224] bpf_prog_test_run_xdp+0xb4/0x120 [ 831.120567] SyS_bpf+0x77c/0x1110 [ 831.123873] el0_svc_naked+0x30/0x34 [ 831.127437] Code: 97fffe97 17ffffec 00000000 f9800031 (885f7c31) Reason for this is because memory is required to be aligned. In case of BPF, we always enforce alignment in terms of stack access, but not when accessing map values or packet data when the underlying arch (e.g. arm64) has CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS set. xadd on packet data that is local to us anyway is just wrong, so forbid this case entirely. The only place where xadd makes sense in fact are map values; xadd on stack is wrong as well, but it's been around for much longer. Specifically enforce strict alignment in case of xadd, so that we handle this case generically and avoid such crashes in the first place. Fixes: 17a52670 ("bpf: verifier (add verifier core)") Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
-
- 15 2月, 2018 1 次提交
-
-
由 Joe Stringer 提交于
This array appears to be completely unused, remove it. Signed-off-by: NJoe Stringer <joe@wand.net.nz> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
-
- 27 1月, 2018 3 次提交
-
-
由 Daniel Borkmann 提交于
One of the ugly leftovers from the early eBPF days is that div/mod operations based on registers have a hard-coded src_reg == 0 test in the interpreter as well as in JIT code generators that would return from the BPF program with exit code 0. This was basically adopted from cBPF interpreter for historical reasons. There are multiple reasons why this is very suboptimal and prone to bugs. To name one: the return code mapping for such abnormal program exit of 0 does not always match with a suitable program type's exit code mapping. For example, '0' in tc means action 'ok' where the packet gets passed further up the stack, which is just undesirable for such cases (e.g. when implementing policy) and also does not match with other program types. While trying to work out an exception handling scheme, I also noticed that programs crafted like the following will currently pass the verifier: 0: (bf) r6 = r1 1: (85) call pc+8 caller: R6=ctx(id=0,off=0,imm=0) R10=fp0,call_-1 callee: frame1: R1=ctx(id=0,off=0,imm=0) R10=fp0,call_1 10: (b4) (u32) r2 = (u32) 0 11: (b4) (u32) r3 = (u32) 1 12: (3c) (u32) r3 /= (u32) r2 13: (61) r0 = *(u32 *)(r1 +76) 14: (95) exit returning from callee: frame1: R0_w=pkt(id=0,off=0,r=0,imm=0) R1=ctx(id=0,off=0,imm=0) R2_w=inv0 R3_w=inv(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff)) R10=fp0,call_1 to caller at 2: R0_w=pkt(id=0,off=0,r=0,imm=0) R6=ctx(id=0,off=0,imm=0) R10=fp0,call_-1 from 14 to 2: R0=pkt(id=0,off=0,r=0,imm=0) R6=ctx(id=0,off=0,imm=0) R10=fp0,call_-1 2: (bf) r1 = r6 3: (61) r1 = *(u32 *)(r1 +80) 4: (bf) r2 = r0 5: (07) r2 += 8 6: (2d) if r2 > r1 goto pc+1 R0=pkt(id=0,off=0,r=8,imm=0) R1=pkt_end(id=0,off=0,imm=0) R2=pkt(id=0,off=8,r=8,imm=0) R6=ctx(id=0,off=0,imm=0) R10=fp0,call_-1 7: (71) r0 = *(u8 *)(r0 +0) 8: (b7) r0 = 1 9: (95) exit from 6 to 8: safe processed 16 insns (limit 131072), stack depth 0+0 Basically what happens is that in the subprog we make use of a div/mod by 0 exception and in the 'normal' subprog's exit path we just return skb->data back to the main prog. This has the implication that the verifier thinks we always get a pkt pointer in R0 while we still have the implicit 'return 0' from the div as an alternative unconditional return path earlier. Thus, R0 then contains 0, meaning back in the parent prog we get the address range of [0x0, skb->data_end] as read and writeable. Similar can be crafted with other pointer register types. Since i) BPF_ABS/IND is not allowed in programs that contain BPF to BPF calls (and generally it's also disadvised to use in native eBPF context), ii) unknown opcodes don't return zero anymore, iii) we don't return an exception code in dead branches, the only last missing case affected and to fix is the div/mod handling. What we would really need is some infrastructure to propagate exceptions all the way to the original prog unwinding the current stack and returning that code to the caller of the BPF program. In user space such exception handling for similar runtimes is typically implemented with setjmp(3) and longjmp(3) as one possibility which is not available in the kernel, though (kgdb used to implement it in kernel long time ago). I implemented a PoC exception handling mechanism into the BPF interpreter with porting setjmp()/longjmp() into x86_64 and adding a new internal BPF_ABRT opcode that can use a program specific exception code for all exception cases we have (e.g. div/mod by 0, unknown opcodes, etc). While this seems to work in the constrained BPF environment (meaning, here, we don't need to deal with state e.g. from memory allocations that we would need to undo before going into exception state), it still has various drawbacks: i) we would need to implement the setjmp()/longjmp() for every arch supported in the kernel and for x86_64, arm64, sparc64 JITs currently supporting calls, ii) it has unconditional additional cost on main program entry to store CPU register state in initial setjmp() call, and we would need some way to pass the jmp_buf down into ___bpf_prog_run() for main prog and all subprogs, but also storing on stack is not really nice (other option would be per-cpu storage for this, but it also has the drawback that we need to disable preemption for every BPF program types). All in all this approach would add a lot of complexity. Another poor-man's solution would be to have some sort of additional shared register or scratch buffer to hold state for exceptions, and test that after every call return to chain returns and pass R0 all the way down to BPF prog caller. This is also problematic in various ways: i) an additional register doesn't map well into JITs, and some other scratch space could only be on per-cpu storage, which, again has the side-effect that this only works when we disable preemption, or somewhere in the input context which is not available everywhere either, and ii) this adds significant runtime overhead by putting conditionals after each and every call, as well as implementation complexity. Yet another option is to teach verifier that div/mod can return an integer, which however is also complex to implement as verifier would need to walk such fake 'mov r0,<code>; exit;' sequeuence and there would still be no guarantee for having propagation of this further down to the BPF caller as proper exception code. For parent prog, it is also is not distinguishable from a normal return of a constant scalar value. The approach taken here is a completely different one with little complexity and no additional overhead involved in that we make use of the fact that a div/mod by 0 is undefined behavior. Instead of bailing out, we adapt the same behavior as on some major archs like ARMv8 [0] into eBPF as well: X div 0 results in 0, and X mod 0 results in X. aarch64 and aarch32 ISA do not generate any traps or otherwise aborts of program execution for unsigned divides. I verified this also with a test program compiled by gcc and clang, and the behavior matches with the spec. Going forward we adapt the eBPF verifier to emit such rewrites once div/mod by register was seen. cBPF is not touched and will keep existing 'return 0' semantics. Given the options, it seems the most suitable from all of them, also since major archs have similar schemes in place. Given this is all in the realm of undefined behavior, we still have the option to adapt if deemed necessary and this way we would also have the option of more flexibility from LLVM code generation side (which is then fully visible to verifier). Thus, this patch i) fixes the panic seen in above program and ii) doesn't bypass the verifier observations. [0] ARM Architecture Reference Manual, ARMv8 [ARM DDI 0487B.b] http://infocenter.arm.com/help/topic/com.arm.doc.ddi0487b.b/DDI0487B_b_armv8_arm.pdf 1) aarch64 instruction set: section C3.4.7 and C6.2.279 (UDIV) "A division by zero results in a zero being written to the destination register, without any indication that the division by zero occurred." 2) aarch32 instruction set: section F1.4.8 and F5.1.263 (UDIV) "For the SDIV and UDIV instructions, division by zero always returns a zero result." Fixes: f4d7e40a ("bpf: introduce function calls (verification)") Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
-
由 Daniel Borkmann 提交于
Recent findings by syzcaller fixed in 7891a87e ("bpf: arsh is not supported in 32 bit alu thus reject it") triggered a warning in the interpreter due to unknown opcode not being rejected by the verifier. The 'return 0' for an unknown opcode is really not optimal, since with BPF to BPF calls, this would go untracked by the verifier. Do two things here to improve the situation: i) perform basic insn sanity check early on in the verification phase and reject every non-uapi insn right there. The bpf_opcode_in_insntable() table reuses the same mapping as the jumptable in ___bpf_prog_run() sans the non-public mappings. And ii) in ___bpf_prog_run() we do need to BUG in the case where the verifier would ever create an unknown opcode due to some rewrites. Note that JITs do not have such issues since they would punt to interpreter in these situations. Moreover, the BPF_JIT_ALWAYS_ON would also help to avoid such unknown opcodes in the first place. Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
-
由 Daniel Borkmann 提交于
Given we recently had c131187d ("bpf: fix branch pruning logic") and 95a762e2 ("bpf: fix incorrect sign extension in check_alu_op()") in particular where before verifier skipped verification of the wrongly assumed dead branch, we should not just replace the dead code parts with nops (mov r0,r0). If there is a bug such as fixed in 95a762e2 in future again, where runtime could execute those insns, then one of the potential issues with the current setting would be that given the nops would be at the end of the program, we could execute out of bounds at some point. The best in such case would be to just exit the BPF program altogether and return an exception code. However, given this would require two instructions, and such a dead code gap could just be a single insn long, we would need to place 'r0 = X; ret' snippet at the very end after the user program or at the start before the program (where we'd skip that region on prog entry), and then place unconditional ja's into the dead code gap. While more complex but possible, there's still another block in the road that currently prevents from this, namely BPF to BPF calls. The issue here is that such exception could be returned from a callee, but the caller would not know that it's an exception that needs to be propagated further down. Alternative that has little complexity is to just use a ja-1 code for now which will trap the execution here instead of silently doing bad things if we ever get there due to bugs. Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
-
- 20 1月, 2018 2 次提交
-
-
由 Daniel Borkmann 提交于
Given the limit could potentially get further adjustments in the future, add it to the log so it becomes obvious what the current limit is w/o having to check the source first. This may also be helpful for debugging complexity related issues on kernels that backport from upstream. Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
-
由 Daniel Borkmann 提交于
I've seen two patch proposals now for helper additions that used ARG_PTR_TO_MEM or similar in reg_X but no corresponding ARG_CONST_SIZE in reg_X+1. Verifier won't complain in such case, but it will omit verifying the memory passed to the helper thus ending up badly. Detect such buggy helper function signature and bail out during verification rather than finding them through review. Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
-
- 18 1月, 2018 1 次提交
-
-
由 Daniel Borkmann 提交于
syzkaller generated a BPF proglet and triggered a warning with the following: 0: (b7) r0 = 0 1: (d5) if r0 s<= 0x0 goto pc+0 R0=inv0 R1=ctx(id=0,off=0,imm=0) R10=fp0 2: (1f) r0 -= r1 R0=inv0 R1=ctx(id=0,off=0,imm=0) R10=fp0 verifier internal error: known but bad sbounds What happens is that in the first insn, r0's min/max value are both 0 due to the immediate assignment, later in the jsle test the bounds are updated for the min value in the false path, meaning, they yield smin_val = 1, smax_val = 0, and when ctx pointer is subtracted from r0, verifier bails out with the internal error and throwing a WARN since smin_val != smax_val for the known constant. For min_val > max_val scenario it means that reg_set_min_max() and reg_set_min_max_inv() (which both refine existing bounds) demonstrated that such branch cannot be taken at runtime. In above scenario for the case where it will be taken, the existing [0, 0] bounds are kept intact. Meaning, the rejection is not due to a verifier internal error, and therefore the WARN() is not necessary either. We could just reject such cases in adjust_{ptr,scalar}_min_max_vals() when either known scalars have smin_val != smax_val or umin_val != umax_val or any scalar reg with bounds smin_val > smax_val or umin_val > umax_val. However, there may be a small risk of breakage of buggy programs, so handle this more gracefully and in adjust_{ptr,scalar}_min_max_vals() just taint the dst reg as unknown scalar when we see ops with such kind of src reg. Reported-by: syzbot+6d362cadd45dc0a12ba4@syzkaller.appspotmail.com Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
-
- 17 1月, 2018 1 次提交
-
-
由 Daniel Borkmann 提交于
Alexei found that verifier does not reject stores into context via BPF_ST instead of BPF_STX. And while looking at it, we also should not allow XADD variant of BPF_STX. The context rewriter is only assuming either BPF_LDX_MEM- or BPF_STX_MEM-type operations, thus reject anything other than that so that assumptions in the rewriter properly hold. Add test cases as well for BPF selftests. Fixes: d691f9e8 ("bpf: allow programs to write to certain skb fields") Reported-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
-
- 15 1月, 2018 2 次提交
-
-
由 Jakub Kicinski 提交于
BPF map offload follow similar path to program offload. At creation time users may specify ifindex of the device on which they want to create the map. Map will be validated by the kernel's .map_alloc_check callback and device driver will be called for the actual allocation. Map will have an empty set of operations associated with it (save for alloc and free callbacks). The real device callbacks are kept in map->offload->dev_ops because they have slightly different signatures. Map operations are called in process context so the driver may communicate with HW freely, msleep(), wait() etc. Map alloc and free callbacks are muxed via existing .ndo_bpf, and are always called with rtnl lock held. Maps and programs are guaranteed to be destroyed before .ndo_uninit (i.e. before unregister_netdev() returns). Map callbacks are invoked with bpf_devs_lock *read* locked, drivers must take care of exclusive locking if necessary. All offload-specific branches are marked with unlikely() (through bpf_map_is_dev_bound()), given that branch penalty will be negligible compared to IO anyway, and we don't want to penalize SW path unnecessarily. Signed-off-by: NJakub Kicinski <jakub.kicinski@netronome.com> Reviewed-by: NQuentin Monnet <quentin.monnet@netronome.com> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
-
由 Alexei Starovoitov 提交于
due to some JITs doing if (src_reg == 0) check in 64-bit mode for div/mod operations mask upper 32-bits of src register before doing the check Fixes: 62258278 ("net: filter: x86: internal BPF JIT") Fixes: 7a12b503 ("sparc64: Add eBPF JIT.") Reported-by: syzbot+48340bb518e88849e2e3@syzkaller.appspotmail.com Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
-
- 11 1月, 2018 2 次提交
-
-
由 Daniel Borkmann 提交于
The following snippet was throwing an 'unknown opcode cc' warning in BPF interpreter: 0: (18) r0 = 0x0 2: (7b) *(u64 *)(r10 -16) = r0 3: (cc) (u32) r0 s>>= (u32) r0 4: (95) exit Although a number of JITs do support BPF_ALU | BPF_ARSH | BPF_{K,X} generation, not all of them do and interpreter does neither. We can leave existing ones and implement it later in bpf-next for the remaining ones, but reject this properly in verifier for the time being. Fixes: 17a52670 ("bpf: verifier (add verifier core)") Reported-by: syzbot+93c4904c5c70348a6890@syzkaller.appspotmail.com Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
-
由 Colin Ian King 提交于
Trivial fix to spelling mistake in error message text. Signed-off-by: NColin Ian King <colin.king@canonical.com> Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
-