1. 03 6月, 2018 5 次提交
  2. 31 5月, 2018 1 次提交
  3. 30 5月, 2018 2 次提交
  4. 28 5月, 2018 3 次提交
    • A
      bpf: Hooks for sys_sendmsg · 1cedee13
      Andrey Ignatov 提交于
      In addition to already existing BPF hooks for sys_bind and sys_connect,
      the patch provides new hooks for sys_sendmsg.
      
      It leverages existing BPF program type `BPF_PROG_TYPE_CGROUP_SOCK_ADDR`
      that provides access to socket itlself (properties like family, type,
      protocol) and user-passed `struct sockaddr *` so that BPF program can
      override destination IP and port for system calls such as sendto(2) or
      sendmsg(2) and/or assign source IP to the socket.
      
      The hooks are implemented as two new attach types:
      `BPF_CGROUP_UDP4_SENDMSG` and `BPF_CGROUP_UDP6_SENDMSG` for UDPv4 and
      UDPv6 correspondingly.
      
      UDPv4 and UDPv6 separate attach types for same reason as sys_bind and
      sys_connect hooks, i.e. to prevent reading from / writing to e.g.
      user_ip6 fields when user passes sockaddr_in since it'd be out-of-bound.
      
      The difference with already existing hooks is sys_sendmsg are
      implemented only for unconnected UDP.
      
      For TCP it doesn't make sense to change user-provided `struct sockaddr *`
      at sendto(2)/sendmsg(2) time since socket either was already connected
      and has source/destination set or wasn't connected and call to
      sendto(2)/sendmsg(2) would lead to ENOTCONN anyway.
      
      Connected UDP is already handled by sys_connect hooks that can override
      source/destination at connect time and use fast-path later, i.e. these
      hooks don't affect UDP fast-path.
      
      Rewriting source IP is implemented differently than that in sys_connect
      hooks. When sys_sendmsg is used with unconnected UDP it doesn't work to
      just bind socket to desired local IP address since source IP can be set
      on per-packet basis by using ancillary data (cmsg(3)). So no matter if
      socket is bound or not, source IP has to be rewritten on every call to
      sys_sendmsg.
      
      To do so two new fields are added to UAPI `struct bpf_sock_addr`;
      * `msg_src_ip4` to set source IPv4 for UDPv4;
      * `msg_src_ip6` to set source IPv6 for UDPv6.
      Signed-off-by: NAndrey Ignatov <rdna@fb.com>
      Acked-by: NAlexei Starovoitov <ast@kernel.org>
      Acked-by: NMartin KaFai Lau <kafai@fb.com>
      Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
      1cedee13
    • A
      bpf: avoid -Wmaybe-uninitialized warning · dc3b8ae9
      Arnd Bergmann 提交于
      The stack_map_get_build_id_offset() function is too long for gcc to track
      whether 'work' may or may not be initialized at the end of it, leading
      to a false-positive warning:
      
      kernel/bpf/stackmap.c: In function 'stack_map_get_build_id_offset':
      kernel/bpf/stackmap.c:334:13: error: 'work' may be used uninitialized in this function [-Werror=maybe-uninitialized]
      
      This removes the 'in_nmi_ctx' flag and uses the state of that variable
      itself to see if it got initialized.
      
      Fixes: bae77c5e ("bpf: enable stackmap with build_id in nmi context")
      Signed-off-by: NArnd Bergmann <arnd@arndb.de>
      Acked-by: NSong Liu <songliubraving@fb.com>
      Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
      dc3b8ae9
    • A
      bpf: btf: avoid -Wreturn-type warning · 53c8036c
      Arnd Bergmann 提交于
      gcc warns about a noreturn function possibly returning in
      some configurations:
      
      kernel/bpf/btf.c: In function 'env_type_is_resolve_sink':
      kernel/bpf/btf.c:729:1: error: control reaches end of non-void function [-Werror=return-type]
      
      Using BUG() instead of BUG_ON() avoids that warning and otherwise
      does the exact same thing.
      
      Fixes: eb3f595d ("bpf: btf: Validate type reference")
      Signed-off-by: NArnd Bergmann <arnd@arndb.de>
      Acked-by: NSong Liu <songliubraving@fb.com>
      Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
      53c8036c
  5. 26 5月, 2018 1 次提交
  6. 25 5月, 2018 8 次提交
    • J
      xdp/trace: extend tracepoint in devmap with an err · e74de52e
      Jesper Dangaard Brouer 提交于
      Extending tracepoint xdp:xdp_devmap_xmit in devmap with an err code
      allow people to easier identify the reason behind the ndo_xdp_xmit
      call to a given driver is failing.
      Signed-off-by: NJesper Dangaard Brouer <brouer@redhat.com>
      Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
      e74de52e
    • J
      xdp: change ndo_xdp_xmit API to support bulking · 735fc405
      Jesper Dangaard Brouer 提交于
      This patch change the API for ndo_xdp_xmit to support bulking
      xdp_frames.
      
      When kernel is compiled with CONFIG_RETPOLINE, XDP sees a huge slowdown.
      Most of the slowdown is caused by DMA API indirect function calls, but
      also the net_device->ndo_xdp_xmit() call.
      
      Benchmarked patch with CONFIG_RETPOLINE, using xdp_redirect_map with
      single flow/core test (CPU E5-1650 v4 @ 3.60GHz), showed
      performance improved:
       for driver ixgbe: 6,042,682 pps -> 6,853,768 pps = +811,086 pps
       for driver i40e : 6,187,169 pps -> 6,724,519 pps = +537,350 pps
      
      With frames avail as a bulk inside the driver ndo_xdp_xmit call,
      further optimizations are possible, like bulk DMA-mapping for TX.
      
      Testing without CONFIG_RETPOLINE show the same performance for
      physical NIC drivers.
      
      The virtual NIC driver tun sees a huge performance boost, as it can
      avoid doing per frame producer locking, but instead amortize the
      locking cost over the bulk.
      
      V2: Fix compile errors reported by kbuild test robot <lkp@intel.com>
      V4: Isolated ndo, driver changes and callers.
      Signed-off-by: NJesper Dangaard Brouer <brouer@redhat.com>
      Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
      735fc405
    • J
      xdp: introduce xdp_return_frame_rx_napi · 389ab7f0
      Jesper Dangaard Brouer 提交于
      When sending an xdp_frame through xdp_do_redirect call, then error
      cases can happen where the xdp_frame needs to be dropped, and
      returning an -errno code isn't sufficient/possible any-longer
      (e.g. for cpumap case). This is already fully supported, by simply
      calling xdp_return_frame.
      
      This patch is an optimization, which provides xdp_return_frame_rx_napi,
      which is a faster variant for these error cases.  It take advantage of
      the protection provided by XDP RX running under NAPI protection.
      
      This change is mostly relevant for drivers using the page_pool
      allocator as it can take advantage of this. (Tested with mlx5).
      Signed-off-by: NJesper Dangaard Brouer <brouer@redhat.com>
      Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
      389ab7f0
    • J
      xdp: add tracepoint for devmap like cpumap have · 38edddb8
      Jesper Dangaard Brouer 提交于
      Notice how this allow us get XDP statistic without affecting the XDP
      performance, as tracepoint is no-longer activated on a per packet basis.
      
      V5: Spotted by John Fastabend.
       Fix 'sent' also counted 'drops' in this patch, a later patch corrected
       this, but it was a mistake in this intermediate step.
      Signed-off-by: NJesper Dangaard Brouer <brouer@redhat.com>
      Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
      38edddb8
    • J
      bpf: devmap prepare xdp frames for bulking · 5d053f9d
      Jesper Dangaard Brouer 提交于
      Like cpumap create queue for xdp frames that will be bulked.  For now,
      this patch simply invoke ndo_xdp_xmit foreach frame.  This happens,
      either when the map flush operation is envoked, or when the limit
      DEV_MAP_BULK_SIZE is reached.
      
      V5: Avoid memleak on error path in dev_map_update_elem()
      Signed-off-by: NJesper Dangaard Brouer <brouer@redhat.com>
      Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
      5d053f9d
    • J
      bpf: devmap introduce dev_map_enqueue · 67f29e07
      Jesper Dangaard Brouer 提交于
      Functionality is the same, but the ndo_xdp_xmit call is now
      simply invoked from inside the devmap.c code.
      
      V2: Fix compile issue reported by kbuild test robot <lkp@intel.com>
      
      V5: Cleanups requested by Daniel
       - Newlines before func definition
       - Use BUILD_BUG_ON checks
       - Remove unnecessary use return value store in dev_map_enqueue
      Signed-off-by: NJesper Dangaard Brouer <brouer@redhat.com>
      Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
      67f29e07
    • Y
      bpf: introduce bpf subcommand BPF_TASK_FD_QUERY · 41bdc4b4
      Yonghong Song 提交于
      Currently, suppose a userspace application has loaded a bpf program
      and attached it to a tracepoint/kprobe/uprobe, and a bpf
      introspection tool, e.g., bpftool, wants to show which bpf program
      is attached to which tracepoint/kprobe/uprobe. Such attachment
      information will be really useful to understand the overall bpf
      deployment in the system.
      
      There is a name field (16 bytes) for each program, which could
      be used to encode the attachment point. There are some drawbacks
      for this approaches. First, bpftool user (e.g., an admin) may not
      really understand the association between the name and the
      attachment point. Second, if one program is attached to multiple
      places, encoding a proper name which can imply all these
      attachments becomes difficult.
      
      This patch introduces a new bpf subcommand BPF_TASK_FD_QUERY.
      Given a pid and fd, if the <pid, fd> is associated with a
      tracepoint/kprobe/uprobe perf event, BPF_TASK_FD_QUERY will return
         . prog_id
         . tracepoint name, or
         . k[ret]probe funcname + offset or kernel addr, or
         . u[ret]probe filename + offset
      to the userspace.
      The user can use "bpftool prog" to find more information about
      bpf program itself with prog_id.
      Acked-by: NMartin KaFai Lau <kafai@fb.com>
      Signed-off-by: NYonghong Song <yhs@fb.com>
      Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
      41bdc4b4
    • Y
      perf/core: add perf_get_event() to return perf_event given a struct file · f8d959a5
      Yonghong Song 提交于
      A new extern function, perf_get_event(), is added to return a perf event
      given a struct file. This function will be used in later patches.
      Signed-off-by: NYonghong Song <yhs@fb.com>
      Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
      f8d959a5
  7. 24 5月, 2018 8 次提交
    • D
      bpf: properly enforce index mask to prevent out-of-bounds speculation · c93552c4
      Daniel Borkmann 提交于
      While reviewing the verifier code, I recently noticed that the
      following two program variants in relation to tail calls can be
      loaded.
      
      Variant 1:
      
        # bpftool p d x i 15
          0: (15) if r1 == 0x0 goto pc+3
          1: (18) r2 = map[id:5]
          3: (05) goto pc+2
          4: (18) r2 = map[id:6]
          6: (b7) r3 = 7
          7: (35) if r3 >= 0xa0 goto pc+2
          8: (54) (u32) r3 &= (u32) 255
          9: (85) call bpf_tail_call#12
         10: (b7) r0 = 1
         11: (95) exit
      
        # bpftool m s i 5
          5: prog_array  flags 0x0
              key 4B  value 4B  max_entries 4  memlock 4096B
        # bpftool m s i 6
          6: prog_array  flags 0x0
              key 4B  value 4B  max_entries 160  memlock 4096B
      
      Variant 2:
      
        # bpftool p d x i 20
          0: (15) if r1 == 0x0 goto pc+3
          1: (18) r2 = map[id:8]
          3: (05) goto pc+2
          4: (18) r2 = map[id:7]
          6: (b7) r3 = 7
          7: (35) if r3 >= 0x4 goto pc+2
          8: (54) (u32) r3 &= (u32) 3
          9: (85) call bpf_tail_call#12
         10: (b7) r0 = 1
         11: (95) exit
      
        # bpftool m s i 8
          8: prog_array  flags 0x0
              key 4B  value 4B  max_entries 160  memlock 4096B
        # bpftool m s i 7
          7: prog_array  flags 0x0
              key 4B  value 4B  max_entries 4  memlock 4096B
      
      In both cases the index masking inserted by the verifier in order
      to control out of bounds speculation from a CPU via b2157399
      ("bpf: prevent out-of-bounds speculation") seems to be incorrect
      in what it is enforcing. In the 1st variant, the mask is applied
      from the map with the significantly larger number of entries where
      we would allow to a certain degree out of bounds speculation for
      the smaller map, and in the 2nd variant where the mask is applied
      from the map with the smaller number of entries, we get buggy
      behavior since we truncate the index of the larger map.
      
      The original intent from commit b2157399 is to reject such
      occasions where two or more different tail call maps are used
      in the same tail call helper invocation. However, the check on
      the BPF_MAP_PTR_POISON is never hit since we never poisoned the
      saved pointer in the first place! We do this explicitly for map
      lookups but in case of tail calls we basically used the tail
      call map in insn_aux_data that was processed in the most recent
      path which the verifier walked. Thus any prior path that stored
      a pointer in insn_aux_data at the helper location was always
      overridden.
      
      Fix it by moving the map pointer poison logic into a small helper
      that covers both BPF helpers with the same logic. After that in
      fixup_bpf_calls() the poison check is then hit for tail calls
      and the program rejected. Latter only happens in unprivileged
      case since this is the *only* occasion where a rewrite needs to
      happen, and where such rewrite is specific to the map (max_entries,
      index_mask). In the privileged case the rewrite is generic for
      the insn->imm / insn->code update so multiple maps from different
      paths can be handled just fine since all the remaining logic
      happens in the instruction processing itself. This is similar
      to the case of map lookups: in case there is a collision of
      maps in fixup_bpf_calls() we must skip the inlined rewrite since
      this will turn the generic instruction sequence into a non-
      generic one. Thus the patch_call_imm will simply update the
      insn->imm location where the bpf_map_lookup_elem() will later
      take care of the dispatch. Given we need this 'poison' state
      as a check, the information of whether a map is an unpriv_array
      gets lost, so enforcing it prior to that needs an additional
      state. In general this check is needed since there are some
      complex and tail call intensive BPF programs out there where
      LLVM tends to generate such code occasionally. We therefore
      convert the map_ptr rather into map_state to store all this
      w/o extra memory overhead, and the bit whether one of the maps
      involved in the collision was from an unpriv_array thus needs
      to be retained as well there.
      
      Fixes: b2157399 ("bpf: prevent out-of-bounds speculation")
      Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
      Acked-by: NAlexei Starovoitov <ast@kernel.org>
      Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
      c93552c4
    • M
      ipv6: sr: Add seg6local action End.BPF · 004d4b27
      Mathieu Xhonneux 提交于
      This patch adds the End.BPF action to the LWT seg6local infrastructure.
      This action works like any other seg6local End action, meaning that an IPv6
      header with SRH is needed, whose DA has to be equal to the SID of the
      action. It will also advance the SRH to the next segment, the BPF program
      does not have to take care of this.
      
      Since the BPF program may not be a source of instability in the kernel, it
      is important to ensure that the integrity of the packet is maintained
      before yielding it back to the IPv6 layer. The hook hence keeps track if
      the SRH has been altered through the helpers, and re-validates its
      content if needed with seg6_validate_srh. The state kept for validation is
      stored in a per-CPU buffer. The BPF program is not allowed to directly
      write into the packet, and only some fields of the SRH can be altered
      through the helper bpf_lwt_seg6_store_bytes.
      
      Performances profiling has shown that the SRH re-validation does not induce
      a significant overhead. If the altered SRH is deemed as invalid, the packet
      is dropped.
      
      This validation is also done before executing any action through
      bpf_lwt_seg6_action, and will not be performed again if the SRH is not
      modified after calling the action.
      
      The BPF program may return 3 types of return codes:
          - BPF_OK: the End.BPF action will look up the next destination through
                   seg6_lookup_nexthop.
          - BPF_REDIRECT: if an action has been executed through the
                bpf_lwt_seg6_action helper, the BPF program should return this
                value, as the skb's destination is already set and the default
                lookup should not be performed.
          - BPF_DROP : the packet will be dropped.
      Signed-off-by: NMathieu Xhonneux <m.xhonneux@gmail.com>
      Acked-by: NDavid Lebrun <dlebrun@google.com>
      Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
      004d4b27
    • S
      bpf: get JITed image lengths of functions via syscall · 815581c1
      Sandipan Das 提交于
      This adds new two new fields to struct bpf_prog_info. For
      multi-function programs, these fields can be used to pass
      a list of the JITed image lengths of each function for a
      given program to userspace using the bpf system call with
      the BPF_OBJ_GET_INFO_BY_FD command.
      
      This can be used by userspace applications like bpftool
      to split up the contiguous JITed dump, also obtained via
      the system call, into more relatable chunks corresponding
      to each function.
      Signed-off-by: NSandipan Das <sandipan@linux.vnet.ibm.com>
      Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
      815581c1
    • S
      bpf: fix multi-function JITed dump obtained via syscall · 4d56a76e
      Sandipan Das 提交于
      Currently, for multi-function programs, we cannot get the JITed
      instructions using the bpf system call's BPF_OBJ_GET_INFO_BY_FD
      command. Because of this, userspace tools such as bpftool fail
      to identify a multi-function program as being JITed or not.
      
      With the JIT enabled and the test program running, this can be
      verified as follows:
      
        # cat /proc/sys/net/core/bpf_jit_enable
        1
      
      Before applying this patch:
      
        # bpftool prog list
        1: kprobe  name foo  tag b811aab41a39ad3d  gpl
                loaded_at 2018-05-16T11:43:38+0530  uid 0
                xlated 216B  not jited  memlock 65536B
        ...
      
        # bpftool prog dump jited id 1
        no instructions returned
      
      After applying this patch:
      
        # bpftool prog list
        1: kprobe  name foo  tag b811aab41a39ad3d  gpl
                loaded_at 2018-05-16T12:13:01+0530  uid 0
                xlated 216B  jited 308B  memlock 65536B
        ...
      
        # bpftool prog dump jited id 1
           0:   nop
           4:   nop
           8:   mflr    r0
           c:   std     r0,16(r1)
          10:   stdu    r1,-112(r1)
          14:   std     r31,104(r1)
          18:   addi    r31,r1,48
          1c:   li      r3,10
        ...
      Signed-off-by: NSandipan Das <sandipan@linux.vnet.ibm.com>
      Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
      4d56a76e
    • S
      bpf: get kernel symbol addresses via syscall · dbecd738
      Sandipan Das 提交于
      This adds new two new fields to struct bpf_prog_info. For
      multi-function programs, these fields can be used to pass
      a list of kernel symbol addresses for all functions in a
      given program to userspace using the bpf system call with
      the BPF_OBJ_GET_INFO_BY_FD command.
      
      When bpf_jit_kallsyms is enabled, we can get the address
      of the corresponding kernel symbol for a callee function
      and resolve the symbol's name. The address is determined
      by adding the value of the call instruction's imm field
      to __bpf_call_base. This offset gets assigned to the imm
      field by the verifier.
      
      For some architectures, such as powerpc64, the imm field
      is not large enough to hold this offset.
      
      We resolve this by:
      
      [1] Assigning the subprog id to the imm field of a call
          instruction in the verifier instead of the offset of
          the callee's symbol's address from __bpf_call_base.
      
      [2] Determining the address of a callee's corresponding
          symbol by using the imm field as an index for the
          list of kernel symbol addresses now available from
          the program info.
      Suggested-by: NDaniel Borkmann <daniel@iogearbox.net>
      Signed-off-by: NSandipan Das <sandipan@linux.vnet.ibm.com>
      Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
      dbecd738
    • S
      bpf: support 64-bit offsets for bpf function calls · 2162fed4
      Sandipan Das 提交于
      The imm field of a bpf instruction is a signed 32-bit integer.
      For JITed bpf-to-bpf function calls, it holds the offset of the
      start address of the callee's JITed image from __bpf_call_base.
      
      For some architectures, such as powerpc64, this offset may be
      as large as 64 bits and cannot be accomodated in the imm field
      without truncation.
      
      We resolve this by:
      
      [1] Additionally using the auxiliary data of each function to
          keep a list of start addresses of the JITed images for all
          functions determined by the verifier.
      
      [2] Retaining the subprog id inside the off field of the call
          instructions and using it to index into the list mentioned
          above and lookup the callee's address.
      
      To make sure that the existing JIT compilers continue to work
      without requiring changes, we keep the imm field as it is.
      Signed-off-by: NSandipan Das <sandipan@linux.vnet.ibm.com>
      Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
      2162fed4
    • M
      bpf: btf: Avoid variable length array · a2889a4c
      Martin KaFai Lau 提交于
      Sparse warning:
      kernel/bpf/btf.c:1985:34: warning: Variable length array is used.
      
      This patch directly uses ARRAY_SIZE().
      
      Fixes: f80442a4 ("bpf: btf: Change how section is supported in btf_header")
      Signed-off-by: NMartin KaFai Lau <kafai@fb.com>
      Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
      a2889a4c
    • A
      umh: introduce fork_usermode_blob() helper · 449325b5
      Alexei Starovoitov 提交于
      Introduce helper:
      int fork_usermode_blob(void *data, size_t len, struct umh_info *info);
      struct umh_info {
             struct file *pipe_to_umh;
             struct file *pipe_from_umh;
             pid_t pid;
      };
      
      that GPLed kernel modules (signed or unsigned) can use it to execute part
      of its own data as swappable user mode process.
      
      The kernel will do:
      - allocate a unique file in tmpfs
      - populate that file with [data, data + len] bytes
      - user-mode-helper code will do_execve that file and, before the process
        starts, the kernel will create two unix pipes for bidirectional
        communication between kernel module and umh
      - close tmpfs file, effectively deleting it
      - the fork_usermode_blob will return zero on success and populate
        'struct umh_info' with two unix pipes and the pid of the user process
      
      As the first step in the development of the bpfilter project
      the fork_usermode_blob() helper is introduced to allow user mode code
      to be invoked from a kernel module. The idea is that user mode code plus
      normal kernel module code are built as part of the kernel build
      and installed as traditional kernel module into distro specified location,
      such that from a distribution point of view, there is
      no difference between regular kernel modules and kernel modules + umh code.
      Such modules can be signed, modprobed, rmmod, etc. The use of this new helper
      by a kernel module doesn't make it any special from kernel and user space
      tooling point of view.
      
      Such approach enables kernel to delegate functionality traditionally done
      by the kernel modules into the user space processes (either root or !root) and
      reduces security attack surface of the new code. The buggy umh code would crash
      the user process, but not the kernel. Another advantage is that umh code
      of the kernel module can be debugged and tested out of user space
      (e.g. opening the possibility to run clang sanitizers, fuzzers or
      user space test suites on the umh code).
      In case of the bpfilter project such architecture allows complex control plane
      to be done in the user space while bpf based data plane stays in the kernel.
      
      Since umh can crash, can be oom-ed by the kernel, killed by the admin,
      the kernel module that uses them (like bpfilter) needs to manage life
      time of umh on its own via two unix pipes and the pid of umh.
      
      The exit code of such kernel module should kill the umh it started,
      so that rmmod of the kernel module will cleanup the corresponding umh.
      Just like if the kernel module does kmalloc() it should kfree() it
      in the exit code.
      Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      449325b5
  8. 23 5月, 2018 5 次提交
    • M
      bpf: btf: Rename btf_key_id and btf_value_id in bpf_map_info · 9b2cf328
      Martin KaFai Lau 提交于
      In "struct bpf_map_info", the name "btf_id", "btf_key_id" and "btf_value_id"
      could cause confusion because the "id" of "btf_id" means the BPF obj id
      given to the BTF object while
      "btf_key_id" and "btf_value_id" means the BTF type id within
      that BTF object.
      
      To make it clear, btf_key_id and btf_value_id are
      renamed to btf_key_type_id and btf_value_type_id.
      Suggested-by: NDaniel Borkmann <daniel@iogearbox.net>
      Signed-off-by: NMartin KaFai Lau <kafai@fb.com>
      Acked-by: NYonghong Song <yhs@fb.com>
      Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
      9b2cf328
    • M
      bpf: btf: Remove unused bits from uapi/linux/btf.h · aea2f7b8
      Martin KaFai Lau 提交于
      This patch does the followings:
      1. Limit BTF_MAX_TYPES and BTF_MAX_NAME_OFFSET to 64k.  We can
         raise it later.
      
      2. Remove the BTF_TYPE_PARENT and BTF_STR_TBL_ELF_ID.  They are
         currently encoded at the highest bit of a u32.
         It is because the current use case does not require supporting
         parent type (i.e type_id referring to a type in another BTF file).
         It also does not support referring to a string in ELF.
      
         The BTF_TYPE_PARENT and BTF_STR_TBL_ELF_ID checks are replaced
         by BTF_TYPE_ID_CHECK and BTF_STR_OFFSET_CHECK which are
         defined in btf.c instead of uapi/linux/btf.h.
      
      3. Limit the BTF_INFO_KIND from 5 bits to 4 bits which is enough.
         There is unused bits headroom if we ever needed it later.
      
      4. The root bit in BTF_INFO is also removed because it is not
         used in the current use case.
      
      5. Remove BTF_INT_VARARGS since func type is not supported now.
         The BTF_INT_ENCODING is limited to 4 bits instead of 8 bits.
      
      The above can be added back later because the verifier
      ensures the unused bits are zeros.
      Signed-off-by: NMartin KaFai Lau <kafai@fb.com>
      Acked-by: NYonghong Song <yhs@fb.com>
      Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
      aea2f7b8
    • M
      bpf: btf: Check array->index_type · 4ef5f574
      Martin KaFai Lau 提交于
      Instead of ingoring the array->index_type field.  Enforce that
      it must be a BTF_KIND_INT in size 1/2/4/8 bytes.
      Signed-off-by: NMartin KaFai Lau <kafai@fb.com>
      Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
      4ef5f574
    • M
      bpf: btf: Change how section is supported in btf_header · f80442a4
      Martin KaFai Lau 提交于
      There are currently unused section descriptions in the btf_header.  Those
      sections are here to support future BTF use cases.  For example, the
      func section (func_off) is to support function signature (e.g. the BPF
      prog function signature).
      
      Instead of spelling out all potential sections up-front in the btf_header.
      This patch makes changes to btf_header such that extending it (e.g. adding
      a section) is possible later.  The unused ones can be removed for now and
      they can be added back later.
      
      This patch:
      1. adds a hdr_len to the btf_header.  It will allow adding
      sections (and other info like parent_label and parent_name)
      later.  The check is similar to the existing bpf_attr.
      If a user passes in a longer hdr_len, the kernel
      ensures the extra tailing bytes are 0.
      
      2. allows the section order in the BTF object to be
      different from its sec_off order in btf_header.
      
      3. each sec_off is followed by a sec_len.  It must not have gap or
      overlapping among sections.
      
      The string section is ensured to be at the end due to the 4 bytes
      alignment requirement of the type section.
      
      The above changes will allow enough flexibility to
      add new sections (and other info) to the btf_header later.
      
      This patch also removes an unnecessary !err check
      at the end of btf_parse().
      Signed-off-by: NMartin KaFai Lau <kafai@fb.com>
      Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
      f80442a4
    • M
      bpf: Expose check_uarg_tail_zero() · dcab51f1
      Martin KaFai Lau 提交于
      This patch exposes check_uarg_tail_zero() which will
      be reused by a later BTF patch.  Its name is changed to
      bpf_check_uarg_tail_zero().
      Signed-off-by: NMartin KaFai Lau <kafai@fb.com>
      Acked-by: NYonghong Song <yhs@fb.com>
      Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
      dcab51f1
  9. 20 5月, 2018 1 次提交
    • A
      bpf: Prevent memory disambiguation attack · af86ca4e
      Alexei Starovoitov 提交于
      Detect code patterns where malicious 'speculative store bypass' can be used
      and sanitize such patterns.
      
       39: (bf) r3 = r10
       40: (07) r3 += -216
       41: (79) r8 = *(u64 *)(r7 +0)   // slow read
       42: (7a) *(u64 *)(r10 -72) = 0  // verifier inserts this instruction
       43: (7b) *(u64 *)(r8 +0) = r3   // this store becomes slow due to r8
       44: (79) r1 = *(u64 *)(r6 +0)   // cpu speculatively executes this load
       45: (71) r2 = *(u8 *)(r1 +0)    // speculatively arbitrary 'load byte'
                                       // is now sanitized
      
      Above code after x86 JIT becomes:
       e5: mov    %rbp,%rdx
       e8: add    $0xffffffffffffff28,%rdx
       ef: mov    0x0(%r13),%r14
       f3: movq   $0x0,-0x48(%rbp)
       fb: mov    %rdx,0x0(%r14)
       ff: mov    0x0(%rbx),%rdi
      103: movzbq 0x0(%rdi),%rsi
      Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
      Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
      af86ca4e
  10. 19 5月, 2018 1 次提交
  11. 18 5月, 2018 5 次提交
    • B
      xsk: clean up SPDX headers · dac09149
      Björn Töpel 提交于
      Clean up SPDX-License-Identifier and removing licensing leftovers.
      Signed-off-by: NBjörn Töpel <bjorn.topel@intel.com>
      Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
      dac09149
    • M
      sched/deadline: Make the grub_reclaim() function static · 3febfc8a
      Mathieu Malaterre 提交于
      Since the grub_reclaim() function can be made static, make it so.
      
      Silences the following GCC warning (W=1):
      
        kernel/sched/deadline.c:1120:5: warning: no previous prototype for ‘grub_reclaim’ [-Wmissing-prototypes]
      Signed-off-by: NMathieu Malaterre <malat@debian.org>
      Acked-by: NPeter Zijlstra <peterz@infradead.org>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Link: http://lkml.kernel.org/r/20180516200902.959-1-malat@debian.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
      3febfc8a
    • M
      sched/debug: Move the print_rt_rq() and print_dl_rq() declarations to kernel/sched/sched.h · f6a34630
      Mathieu Malaterre 提交于
      In the following commit:
      
        6b55c965 ("sched/debug: Move print_cfs_rq() declaration to kernel/sched/sched.h")
      
      the print_cfs_rq() prototype was added to <kernel/sched/sched.h>,
      right next to the prototypes for print_cfs_stats(), print_rt_stats()
      and print_dl_stats().
      
      Finish this previous commit and also move related prototypes for
      print_rt_rq() and print_dl_rq().
      
      Remove existing extern declarations now that they not needed anymore.
      
      Silences the following GCC warning, triggered by W=1:
      
        kernel/sched/debug.c:573:6: warning: no previous prototype for ‘print_rt_rq’ [-Wmissing-prototypes]
        kernel/sched/debug.c:603:6: warning: no previous prototype for ‘print_dl_rq’ [-Wmissing-prototypes]
      Signed-off-by: NMathieu Malaterre <malat@debian.org>
      Acked-by: NPeter Zijlstra <peterz@infradead.org>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Link: http://lkml.kernel.org/r/20180516195348.30426-1-malat@debian.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
      f6a34630
    • D
      bpf: fix truncated jump targets on heavy expansions · 050fad7c
      Daniel Borkmann 提交于
      Recently during testing, I ran into the following panic:
      
        [  207.892422] Internal error: Accessing user space memory outside uaccess.h routines: 96000004 [#1] SMP
        [  207.901637] Modules linked in: binfmt_misc [...]
        [  207.966530] CPU: 45 PID: 2256 Comm: test_verifier Tainted: G        W         4.17.0-rc3+ #7
        [  207.974956] Hardware name: FOXCONN R2-1221R-A4/C2U4N_MB, BIOS G31FB18A 03/31/2017
        [  207.982428] pstate: 60400005 (nZCv daif +PAN -UAO)
        [  207.987214] pc : bpf_skb_load_helper_8_no_cache+0x34/0xc0
        [  207.992603] lr : 0xffff000000bdb754
        [  207.996080] sp : ffff000013703ca0
        [  207.999384] x29: ffff000013703ca0 x28: 0000000000000001
        [  208.004688] x27: 0000000000000001 x26: 0000000000000000
        [  208.009992] x25: ffff000013703ce0 x24: ffff800fb4afcb00
        [  208.015295] x23: ffff00007d2f5038 x22: ffff00007d2f5000
        [  208.020599] x21: fffffffffeff2a6f x20: 000000000000000a
        [  208.025903] x19: ffff000009578000 x18: 0000000000000a03
        [  208.031206] x17: 0000000000000000 x16: 0000000000000000
        [  208.036510] x15: 0000ffff9de83000 x14: 0000000000000000
        [  208.041813] x13: 0000000000000000 x12: 0000000000000000
        [  208.047116] x11: 0000000000000001 x10: ffff0000089e7f18
        [  208.052419] x9 : fffffffffeff2a6f x8 : 0000000000000000
        [  208.057723] x7 : 000000000000000a x6 : 00280c6160000000
        [  208.063026] x5 : 0000000000000018 x4 : 0000000000007db6
        [  208.068329] x3 : 000000000008647a x2 : 19868179b1484500
        [  208.073632] x1 : 0000000000000000 x0 : ffff000009578c08
        [  208.078938] Process test_verifier (pid: 2256, stack limit = 0x0000000049ca7974)
        [  208.086235] Call trace:
        [  208.088672]  bpf_skb_load_helper_8_no_cache+0x34/0xc0
        [  208.093713]  0xffff000000bdb754
        [  208.096845]  bpf_test_run+0x78/0xf8
        [  208.100324]  bpf_prog_test_run_skb+0x148/0x230
        [  208.104758]  sys_bpf+0x314/0x1198
        [  208.108064]  el0_svc_naked+0x30/0x34
        [  208.111632] Code: 91302260 f9400001 f9001fa1 d2800001 (29500680)
        [  208.117717] ---[ end trace 263cb8a59b5bf29f ]---
      
      The program itself which caused this had a long jump over the whole
      instruction sequence where all of the inner instructions required
      heavy expansions into multiple BPF instructions. Additionally, I also
      had BPF hardening enabled which requires once more rewrites of all
      constant values in order to blind them. Each time we rewrite insns,
      bpf_adj_branches() would need to potentially adjust branch targets
      which cross the patchlet boundary to accommodate for the additional
      delta. Eventually that lead to the case where the target offset could
      not fit into insn->off's upper 0x7fff limit anymore where then offset
      wraps around becoming negative (in s16 universe), or vice versa
      depending on the jump direction.
      
      Therefore it becomes necessary to detect and reject any such occasions
      in a generic way for native eBPF and cBPF to eBPF migrations. For
      the latter we can simply check bounds in the bpf_convert_filter()'s
      BPF_EMIT_JMP helper macro and bail out once we surpass limits. The
      bpf_patch_insn_single() for native eBPF (and cBPF to eBPF in case
      of subsequent hardening) is a bit more complex in that we need to
      detect such truncations before hitting the bpf_prog_realloc(). Thus
      the latter is split into an extra pass to probe problematic offsets
      on the original program in order to fail early. With that in place
      and carefully tested I no longer hit the panic and the rewrites are
      rejected properly. The above example panic I've seen on bpf-next,
      though the issue itself is generic in that a guard against this issue
      in bpf seems more appropriate in this case.
      Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
      Acked-by: NMartin KaFai Lau <kafai@fb.com>
      Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
      050fad7c
    • J
      bpf: parse and verdict prog attach may race with bpf map update · 96174560
      John Fastabend 提交于
      In the sockmap design BPF programs (SK_SKB_STREAM_PARSER,
      SK_SKB_STREAM_VERDICT and SK_MSG_VERDICT) are attached to the sockmap
      map type and when a sock is added to the map the programs are used by
      the socket. However, sockmap updates from both userspace and BPF
      programs can happen concurrently with the attach and detach of these
      programs.
      
      To resolve this we use the bpf_prog_inc_not_zero and a READ_ONCE()
      primitive to ensure the program pointer is not refeched and
      possibly NULL'd before the refcnt increment. This happens inside
      a RCU critical section so although the pointer reference in the map
      object may be NULL (by a concurrent detach operation) the reference
      from READ_ONCE will not be free'd until after grace period. This
      ensures the object returned by READ_ONCE() is valid through the
      RCU criticl section and safe to use as long as we "know" it may
      be free'd shortly.
      
      Daniel spotted a case in the sock update API where instead of using
      the READ_ONCE() program reference we used the pointer from the
      original map, stab->bpf_{verdict|parse|txmsg}. The problem with this
      is the logic checks the object returned from the READ_ONCE() is not
      NULL and then tries to reference the object again but using the
      above map pointer, which may have already been NULL'd by a parallel
      detach operation. If this happened bpf_porg_inc_not_zero could
      dereference a NULL pointer.
      
      Fix this by using variable returned by READ_ONCE() that is checked
      for NULL.
      
      Fixes: 2f857d04 ("bpf: sockmap, remove STRPARSER map_flags and add multi-map support")
      Reported-by: NDaniel Borkmann <daniel@iogearbox.net>
      Signed-off-by: NJohn Fastabend <john.fastabend@gmail.com>
      Acked-by: NMartin KaFai Lau <kafai@fb.com>
      Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
      96174560