xfs_file.c 40.7 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2 3
 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
 * All Rights Reserved.
L
Linus Torvalds 已提交
4
 *
5 6
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
L
Linus Torvalds 已提交
7 8
 * published by the Free Software Foundation.
 *
9 10 11 12
 * This program is distributed in the hope that it would be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
L
Linus Torvalds 已提交
13
 *
14 15 16
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write the Free Software Foundation,
 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
L
Linus Torvalds 已提交
17 18
 */
#include "xfs.h"
19
#include "xfs_fs.h"
20
#include "xfs_shared.h"
21
#include "xfs_format.h"
22 23
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
L
Linus Torvalds 已提交
24
#include "xfs_mount.h"
25 26
#include "xfs_da_format.h"
#include "xfs_da_btree.h"
L
Linus Torvalds 已提交
27
#include "xfs_inode.h"
28
#include "xfs_trans.h"
29
#include "xfs_inode_item.h"
30
#include "xfs_bmap.h"
D
Dave Chinner 已提交
31
#include "xfs_bmap_util.h"
L
Linus Torvalds 已提交
32
#include "xfs_error.h"
33
#include "xfs_dir2.h"
D
Dave Chinner 已提交
34
#include "xfs_dir2_priv.h"
35
#include "xfs_ioctl.h"
36
#include "xfs_trace.h"
37
#include "xfs_log.h"
38
#include "xfs_icache.h"
39
#include "xfs_pnfs.h"
L
Linus Torvalds 已提交
40 41

#include <linux/dcache.h>
42
#include <linux/falloc.h>
43
#include <linux/pagevec.h>
44
#include <linux/backing-dev.h>
L
Linus Torvalds 已提交
45

46
static const struct vm_operations_struct xfs_file_vm_ops;
L
Linus Torvalds 已提交
47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
/*
 * Locking primitives for read and write IO paths to ensure we consistently use
 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
 */
static inline void
xfs_rw_ilock(
	struct xfs_inode	*ip,
	int			type)
{
	if (type & XFS_IOLOCK_EXCL)
		mutex_lock(&VFS_I(ip)->i_mutex);
	xfs_ilock(ip, type);
}

static inline void
xfs_rw_iunlock(
	struct xfs_inode	*ip,
	int			type)
{
	xfs_iunlock(ip, type);
	if (type & XFS_IOLOCK_EXCL)
		mutex_unlock(&VFS_I(ip)->i_mutex);
}

static inline void
xfs_rw_ilock_demote(
	struct xfs_inode	*ip,
	int			type)
{
	xfs_ilock_demote(ip, type);
	if (type & XFS_IOLOCK_EXCL)
		mutex_unlock(&VFS_I(ip)->i_mutex);
}

82
/*
83 84 85 86 87
 * xfs_iozero clears the specified range supplied via the page cache (except in
 * the DAX case). Writes through the page cache will allocate blocks over holes,
 * though the callers usually map the holes first and avoid them. If a block is
 * not completely zeroed, then it will be read from disk before being partially
 * zeroed.
88
 *
89 90 91
 * In the DAX case, we can just directly write to the underlying pages. This
 * will not allocate blocks, but will avoid holes and unwritten extents and so
 * not do unnecessary work.
92
 */
93
int
94 95 96 97 98 99 100
xfs_iozero(
	struct xfs_inode	*ip,	/* inode			*/
	loff_t			pos,	/* offset in file		*/
	size_t			count)	/* size of data to zero		*/
{
	struct page		*page;
	struct address_space	*mapping;
101 102
	int			status = 0;

103 104 105 106 107 108 109 110 111 112 113

	mapping = VFS_I(ip)->i_mapping;
	do {
		unsigned offset, bytes;
		void *fsdata;

		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
		bytes = PAGE_CACHE_SIZE - offset;
		if (bytes > count)
			bytes = count;

114 115 116 117 118 119 120 121 122 123 124
		if (IS_DAX(VFS_I(ip))) {
			status = dax_zero_page_range(VFS_I(ip), pos, bytes,
						     xfs_get_blocks_direct);
			if (status)
				break;
		} else {
			status = pagecache_write_begin(NULL, mapping, pos, bytes,
						AOP_FLAG_UNINTERRUPTIBLE,
						&page, &fsdata);
			if (status)
				break;
125

126
			zero_user(page, offset, bytes);
127

128 129 130 131 132
			status = pagecache_write_end(NULL, mapping, pos, bytes,
						bytes, page, fsdata);
			WARN_ON(status <= 0); /* can't return less than zero! */
			status = 0;
		}
133 134 135 136
		pos += bytes;
		count -= bytes;
	} while (count);

137
	return status;
138 139
}

140 141 142 143 144 145 146 147 148 149 150
int
xfs_update_prealloc_flags(
	struct xfs_inode	*ip,
	enum xfs_prealloc_flags	flags)
{
	struct xfs_trans	*tp;
	int			error;

	tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_WRITEID);
	error = xfs_trans_reserve(tp, &M_RES(ip->i_mount)->tr_writeid, 0, 0);
	if (error) {
151
		xfs_trans_cancel(tp);
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
		return error;
	}

	xfs_ilock(ip, XFS_ILOCK_EXCL);
	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);

	if (!(flags & XFS_PREALLOC_INVISIBLE)) {
		ip->i_d.di_mode &= ~S_ISUID;
		if (ip->i_d.di_mode & S_IXGRP)
			ip->i_d.di_mode &= ~S_ISGID;
		xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
	}

	if (flags & XFS_PREALLOC_SET)
		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
	if (flags & XFS_PREALLOC_CLEAR)
		ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;

	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
	if (flags & XFS_PREALLOC_SYNC)
		xfs_trans_set_sync(tp);
173
	return xfs_trans_commit(tp);
174 175
}

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
/*
 * Fsync operations on directories are much simpler than on regular files,
 * as there is no file data to flush, and thus also no need for explicit
 * cache flush operations, and there are no non-transaction metadata updates
 * on directories either.
 */
STATIC int
xfs_dir_fsync(
	struct file		*file,
	loff_t			start,
	loff_t			end,
	int			datasync)
{
	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
	struct xfs_mount	*mp = ip->i_mount;
	xfs_lsn_t		lsn = 0;

	trace_xfs_dir_fsync(ip);

	xfs_ilock(ip, XFS_ILOCK_SHARED);
	if (xfs_ipincount(ip))
		lsn = ip->i_itemp->ili_last_lsn;
	xfs_iunlock(ip, XFS_ILOCK_SHARED);

	if (!lsn)
		return 0;
D
Dave Chinner 已提交
202
	return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
203 204
}

205 206 207
STATIC int
xfs_file_fsync(
	struct file		*file,
208 209
	loff_t			start,
	loff_t			end,
210 211
	int			datasync)
{
212 213
	struct inode		*inode = file->f_mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
214
	struct xfs_mount	*mp = ip->i_mount;
215 216
	int			error = 0;
	int			log_flushed = 0;
217
	xfs_lsn_t		lsn = 0;
218

C
Christoph Hellwig 已提交
219
	trace_xfs_file_fsync(ip);
220

221 222 223 224
	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
	if (error)
		return error;

225
	if (XFS_FORCED_SHUTDOWN(mp))
E
Eric Sandeen 已提交
226
		return -EIO;
227 228 229

	xfs_iflags_clear(ip, XFS_ITRUNCATED);

230 231 232 233 234 235 236 237 238 239 240 241 242 243
	if (mp->m_flags & XFS_MOUNT_BARRIER) {
		/*
		 * If we have an RT and/or log subvolume we need to make sure
		 * to flush the write cache the device used for file data
		 * first.  This is to ensure newly written file data make
		 * it to disk before logging the new inode size in case of
		 * an extending write.
		 */
		if (XFS_IS_REALTIME_INODE(ip))
			xfs_blkdev_issue_flush(mp->m_rtdev_targp);
		else if (mp->m_logdev_targp != mp->m_ddev_targp)
			xfs_blkdev_issue_flush(mp->m_ddev_targp);
	}

244
	/*
C
Christoph Hellwig 已提交
245 246
	 * All metadata updates are logged, which means that we just have
	 * to flush the log up to the latest LSN that touched the inode.
247 248
	 */
	xfs_ilock(ip, XFS_ILOCK_SHARED);
249 250 251 252 253
	if (xfs_ipincount(ip)) {
		if (!datasync ||
		    (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP))
			lsn = ip->i_itemp->ili_last_lsn;
	}
C
Christoph Hellwig 已提交
254
	xfs_iunlock(ip, XFS_ILOCK_SHARED);
255

C
Christoph Hellwig 已提交
256
	if (lsn)
257 258
		error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);

259 260 261 262 263 264 265 266 267 268 269 270
	/*
	 * If we only have a single device, and the log force about was
	 * a no-op we might have to flush the data device cache here.
	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
	 * an already allocated file and thus do not have any metadata to
	 * commit.
	 */
	if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
	    mp->m_logdev_targp == mp->m_ddev_targp &&
	    !XFS_IS_REALTIME_INODE(ip) &&
	    !log_flushed)
		xfs_blkdev_issue_flush(mp->m_ddev_targp);
271

D
Dave Chinner 已提交
272
	return error;
273 274
}

275
STATIC ssize_t
A
Al Viro 已提交
276
xfs_file_read_iter(
277
	struct kiocb		*iocb,
A
Al Viro 已提交
278
	struct iov_iter		*to)
279 280 281
{
	struct file		*file = iocb->ki_filp;
	struct inode		*inode = file->f_mapping->host;
282 283
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
A
Al Viro 已提交
284
	size_t			size = iov_iter_count(to);
285
	ssize_t			ret = 0;
286
	int			ioflags = 0;
287
	xfs_fsize_t		n;
A
Al Viro 已提交
288
	loff_t			pos = iocb->ki_pos;
289 290 291

	XFS_STATS_INC(xs_read_calls);

292
	if (unlikely(iocb->ki_flags & IOCB_DIRECT))
D
Dave Chinner 已提交
293
		ioflags |= XFS_IO_ISDIRECT;
294
	if (file->f_mode & FMODE_NOCMTIME)
D
Dave Chinner 已提交
295
		ioflags |= XFS_IO_INVIS;
296

297
	if ((ioflags & XFS_IO_ISDIRECT) && !IS_DAX(inode)) {
298 299 300
		xfs_buftarg_t	*target =
			XFS_IS_REALTIME_INODE(ip) ?
				mp->m_rtdev_targp : mp->m_ddev_targp;
301 302
		/* DIO must be aligned to device logical sector size */
		if ((pos | size) & target->bt_logical_sectormask) {
D
Dave Chinner 已提交
303
			if (pos == i_size_read(inode))
304
				return 0;
E
Eric Sandeen 已提交
305
			return -EINVAL;
306 307 308
		}
	}

D
Dave Chinner 已提交
309
	n = mp->m_super->s_maxbytes - pos;
310
	if (n <= 0 || size == 0)
311 312 313 314 315 316 317 318
		return 0;

	if (n < size)
		size = n;

	if (XFS_FORCED_SHUTDOWN(mp))
		return -EIO;

319 320 321 322 323 324 325 326 327 328 329
	/*
	 * Locking is a bit tricky here. If we take an exclusive lock
	 * for direct IO, we effectively serialise all new concurrent
	 * read IO to this file and block it behind IO that is currently in
	 * progress because IO in progress holds the IO lock shared. We only
	 * need to hold the lock exclusive to blow away the page cache, so
	 * only take lock exclusively if the page cache needs invalidation.
	 * This allows the normal direct IO case of no page cache pages to
	 * proceeed concurrently without serialisation.
	 */
	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
D
Dave Chinner 已提交
330
	if ((ioflags & XFS_IO_ISDIRECT) && inode->i_mapping->nrpages) {
331
		xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
332 333
		xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);

334
		if (inode->i_mapping->nrpages) {
335
			ret = filemap_write_and_wait_range(
D
Dave Chinner 已提交
336
							VFS_I(ip)->i_mapping,
337
							pos, pos + size - 1);
338 339 340 341
			if (ret) {
				xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
				return ret;
			}
342 343 344 345 346 347 348

			/*
			 * Invalidate whole pages. This can return an error if
			 * we fail to invalidate a page, but this should never
			 * happen on XFS. Warn if it does fail.
			 */
			ret = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping,
349 350
					pos >> PAGE_CACHE_SHIFT,
					(pos + size - 1) >> PAGE_CACHE_SHIFT);
351 352
			WARN_ON_ONCE(ret);
			ret = 0;
353
		}
354
		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
355
	}
356

D
Dave Chinner 已提交
357
	trace_xfs_file_read(ip, size, pos, ioflags);
358

A
Al Viro 已提交
359
	ret = generic_file_read_iter(iocb, to);
360 361 362
	if (ret > 0)
		XFS_STATS_ADD(xs_read_bytes, ret);

363
	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
364 365 366
	return ret;
}

367 368
STATIC ssize_t
xfs_file_splice_read(
369 370 371 372
	struct file		*infilp,
	loff_t			*ppos,
	struct pipe_inode_info	*pipe,
	size_t			count,
373
	unsigned int		flags)
374
{
375 376
	struct xfs_inode	*ip = XFS_I(infilp->f_mapping->host);
	int			ioflags = 0;
377 378 379
	ssize_t			ret;

	XFS_STATS_INC(xs_read_calls);
380 381

	if (infilp->f_mode & FMODE_NOCMTIME)
D
Dave Chinner 已提交
382
		ioflags |= XFS_IO_INVIS;
383

384 385 386
	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
		return -EIO;

387
	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
388 389 390

	trace_xfs_file_splice_read(ip, count, *ppos, ioflags);

391 392 393 394 395
	/* for dax, we need to avoid the page cache */
	if (IS_DAX(VFS_I(ip)))
		ret = default_file_splice_read(infilp, ppos, pipe, count, flags);
	else
		ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
396 397 398
	if (ret > 0)
		XFS_STATS_ADD(xs_read_bytes, ret);

399
	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
400 401 402 403
	return ret;
}

/*
404 405 406 407
 * This routine is called to handle zeroing any space in the last block of the
 * file that is beyond the EOF.  We do this since the size is being increased
 * without writing anything to that block and we don't want to read the
 * garbage on the disk.
408 409 410
 */
STATIC int				/* error (positive) */
xfs_zero_last_block(
411 412
	struct xfs_inode	*ip,
	xfs_fsize_t		offset,
413 414
	xfs_fsize_t		isize,
	bool			*did_zeroing)
415
{
416 417 418 419 420 421 422
	struct xfs_mount	*mp = ip->i_mount;
	xfs_fileoff_t		last_fsb = XFS_B_TO_FSBT(mp, isize);
	int			zero_offset = XFS_B_FSB_OFFSET(mp, isize);
	int			zero_len;
	int			nimaps = 1;
	int			error = 0;
	struct xfs_bmbt_irec	imap;
423

424
	xfs_ilock(ip, XFS_ILOCK_EXCL);
D
Dave Chinner 已提交
425
	error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
426
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
D
Dave Chinner 已提交
427
	if (error)
428
		return error;
429

430
	ASSERT(nimaps > 0);
431

432 433 434 435
	/*
	 * If the block underlying isize is just a hole, then there
	 * is nothing to zero.
	 */
436
	if (imap.br_startblock == HOLESTARTBLOCK)
437 438 439 440 441
		return 0;

	zero_len = mp->m_sb.sb_blocksize - zero_offset;
	if (isize + zero_len > offset)
		zero_len = offset - isize;
442
	*did_zeroing = true;
443
	return xfs_iozero(ip, isize, zero_len);
444 445 446
}

/*
447 448 449 450 451 452 453 454 455
 * Zero any on disk space between the current EOF and the new, larger EOF.
 *
 * This handles the normal case of zeroing the remainder of the last block in
 * the file and the unusual case of zeroing blocks out beyond the size of the
 * file.  This second case only happens with fixed size extents and when the
 * system crashes before the inode size was updated but after blocks were
 * allocated.
 *
 * Expects the iolock to be held exclusive, and will take the ilock internally.
456 457 458
 */
int					/* error (positive) */
xfs_zero_eof(
459 460
	struct xfs_inode	*ip,
	xfs_off_t		offset,		/* starting I/O offset */
461 462
	xfs_fsize_t		isize,		/* current inode size */
	bool			*did_zeroing)
463
{
464 465 466 467 468 469 470 471 472 473 474 475
	struct xfs_mount	*mp = ip->i_mount;
	xfs_fileoff_t		start_zero_fsb;
	xfs_fileoff_t		end_zero_fsb;
	xfs_fileoff_t		zero_count_fsb;
	xfs_fileoff_t		last_fsb;
	xfs_fileoff_t		zero_off;
	xfs_fsize_t		zero_len;
	int			nimaps;
	int			error = 0;
	struct xfs_bmbt_irec	imap;

	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
476 477 478 479
	ASSERT(offset > isize);

	/*
	 * First handle zeroing the block on which isize resides.
480
	 *
481 482
	 * We only zero a part of that block so it is handled specially.
	 */
483
	if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
484
		error = xfs_zero_last_block(ip, offset, isize, did_zeroing);
485 486
		if (error)
			return error;
487 488 489
	}

	/*
490 491 492 493 494 495 496
	 * Calculate the range between the new size and the old where blocks
	 * needing to be zeroed may exist.
	 *
	 * To get the block where the last byte in the file currently resides,
	 * we need to subtract one from the size and truncate back to a block
	 * boundary.  We subtract 1 in case the size is exactly on a block
	 * boundary.
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
	 */
	last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
	start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
	end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
	ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
	if (last_fsb == end_zero_fsb) {
		/*
		 * The size was only incremented on its last block.
		 * We took care of that above, so just return.
		 */
		return 0;
	}

	ASSERT(start_zero_fsb <= end_zero_fsb);
	while (start_zero_fsb <= end_zero_fsb) {
		nimaps = 1;
		zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
514 515

		xfs_ilock(ip, XFS_ILOCK_EXCL);
D
Dave Chinner 已提交
516 517
		error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
					  &imap, &nimaps, 0);
518 519
		xfs_iunlock(ip, XFS_ILOCK_EXCL);
		if (error)
520
			return error;
521

522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
		ASSERT(nimaps > 0);

		if (imap.br_state == XFS_EXT_UNWRITTEN ||
		    imap.br_startblock == HOLESTARTBLOCK) {
			start_zero_fsb = imap.br_startoff + imap.br_blockcount;
			ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
			continue;
		}

		/*
		 * There are blocks we need to zero.
		 */
		zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
		zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);

		if ((zero_off + zero_len) > offset)
			zero_len = offset - zero_off;

		error = xfs_iozero(ip, zero_off, zero_len);
541 542
		if (error)
			return error;
543

544
		*did_zeroing = true;
545 546 547 548 549 550 551
		start_zero_fsb = imap.br_startoff + imap.br_blockcount;
		ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
	}

	return 0;
}

552 553 554
/*
 * Common pre-write limit and setup checks.
 *
555 556 557
 * Called with the iolocked held either shared and exclusive according to
 * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
 * if called for a direct write beyond i_size.
558 559 560
 */
STATIC ssize_t
xfs_file_aio_write_checks(
561 562
	struct kiocb		*iocb,
	struct iov_iter		*from,
563 564
	int			*iolock)
{
565
	struct file		*file = iocb->ki_filp;
566 567
	struct inode		*inode = file->f_mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
568
	ssize_t			error = 0;
569
	size_t			count = iov_iter_count(from);
570

571
restart:
572 573
	error = generic_write_checks(iocb, from);
	if (error <= 0)
574 575
		return error;

576
	error = xfs_break_layouts(inode, iolock, true);
577 578 579
	if (error)
		return error;

580 581 582 583 584 585 586
	/* For changing security info in file_remove_privs() we need i_mutex */
	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
		xfs_rw_iunlock(ip, *iolock);
		*iolock = XFS_IOLOCK_EXCL;
		xfs_rw_ilock(ip, *iolock);
		goto restart;
	}
587 588 589
	/*
	 * If the offset is beyond the size of the file, we need to zero any
	 * blocks that fall between the existing EOF and the start of this
590
	 * write.  If zeroing is needed and we are currently holding the
591 592
	 * iolock shared, we need to update it to exclusive which implies
	 * having to redo all checks before.
593 594 595 596 597 598 599 600
	 *
	 * We need to serialise against EOF updates that occur in IO
	 * completions here. We want to make sure that nobody is changing the
	 * size while we do this check until we have placed an IO barrier (i.e.
	 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
	 * The spinlock effectively forms a memory barrier once we have the
	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
	 * and hence be able to correctly determine if we need to run zeroing.
601
	 */
602
	spin_lock(&ip->i_flags_lock);
603
	if (iocb->ki_pos > i_size_read(inode)) {
604 605
		bool	zero = false;

606
		spin_unlock(&ip->i_flags_lock);
607
		if (*iolock == XFS_IOLOCK_SHARED) {
608
			xfs_rw_iunlock(ip, *iolock);
609
			*iolock = XFS_IOLOCK_EXCL;
610
			xfs_rw_ilock(ip, *iolock);
611
			iov_iter_reexpand(from, count);
612 613 614 615 616 617 618 619 620 621

			/*
			 * We now have an IO submission barrier in place, but
			 * AIO can do EOF updates during IO completion and hence
			 * we now need to wait for all of them to drain. Non-AIO
			 * DIO will have drained before we are given the
			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
			 * no-op.
			 */
			inode_dio_wait(inode);
622 623
			goto restart;
		}
624
		error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero);
625 626
		if (error)
			return error;
627 628
	} else
		spin_unlock(&ip->i_flags_lock);
629

C
Christoph Hellwig 已提交
630 631 632 633 634 635
	/*
	 * Updating the timestamps will grab the ilock again from
	 * xfs_fs_dirty_inode, so we have to call it after dropping the
	 * lock above.  Eventually we should look into a way to avoid
	 * the pointless lock roundtrip.
	 */
636 637 638 639 640
	if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
		error = file_update_time(file);
		if (error)
			return error;
	}
C
Christoph Hellwig 已提交
641

642 643 644 645 646
	/*
	 * If we're writing the file then make sure to clear the setuid and
	 * setgid bits if the process is not being run by root.  This keeps
	 * people from modifying setuid and setgid binaries.
	 */
647 648 649
	if (!IS_NOSEC(inode))
		return file_remove_privs(file);
	return 0;
650 651
}

652 653 654 655
/*
 * xfs_file_dio_aio_write - handle direct IO writes
 *
 * Lock the inode appropriately to prepare for and issue a direct IO write.
656
 * By separating it from the buffered write path we remove all the tricky to
657 658
 * follow locking changes and looping.
 *
659 660 661 662 663 664 665 666 667 668 669 670 671
 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
 * pages are flushed out.
 *
 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
 * allowing them to be done in parallel with reads and other direct IO writes.
 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
 * needs to do sub-block zeroing and that requires serialisation against other
 * direct IOs to the same block. In this case we need to serialise the
 * submission of the unaligned IOs so that we don't get racing block zeroing in
 * the dio layer.  To avoid the problem with aio, we also need to wait for
 * outstanding IOs to complete so that unwritten extent conversion is completed
 * before we try to map the overlapping block. This is currently implemented by
C
Christoph Hellwig 已提交
672
 * hitting it with a big hammer (i.e. inode_dio_wait()).
673
 *
674 675 676 677 678 679
 * Returns with locks held indicated by @iolock and errors indicated by
 * negative return values.
 */
STATIC ssize_t
xfs_file_dio_aio_write(
	struct kiocb		*iocb,
680
	struct iov_iter		*from)
681 682 683 684 685 686 687
{
	struct file		*file = iocb->ki_filp;
	struct address_space	*mapping = file->f_mapping;
	struct inode		*inode = mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
	ssize_t			ret = 0;
688
	int			unaligned_io = 0;
689
	int			iolock;
690 691
	size_t			count = iov_iter_count(from);
	loff_t			pos = iocb->ki_pos;
692 693
	loff_t			end;
	struct iov_iter		data;
694 695 696
	struct xfs_buftarg	*target = XFS_IS_REALTIME_INODE(ip) ?
					mp->m_rtdev_targp : mp->m_ddev_targp;

697
	/* DIO must be aligned to device logical sector size */
698
	if (!IS_DAX(inode) && ((pos | count) & target->bt_logical_sectormask))
E
Eric Sandeen 已提交
699
		return -EINVAL;
700

701
	/* "unaligned" here means not aligned to a filesystem block */
702 703 704
	if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
		unaligned_io = 1;

705 706 707 708 709 710 711 712
	/*
	 * We don't need to take an exclusive lock unless there page cache needs
	 * to be invalidated or unaligned IO is being executed. We don't need to
	 * consider the EOF extension case here because
	 * xfs_file_aio_write_checks() will relock the inode as necessary for
	 * EOF zeroing cases and fill out the new inode size as appropriate.
	 */
	if (unaligned_io || mapping->nrpages)
713
		iolock = XFS_IOLOCK_EXCL;
714
	else
715 716
		iolock = XFS_IOLOCK_SHARED;
	xfs_rw_ilock(ip, iolock);
717 718 719 720 721 722

	/*
	 * Recheck if there are cached pages that need invalidate after we got
	 * the iolock to protect against other threads adding new pages while
	 * we were waiting for the iolock.
	 */
723 724 725 726
	if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
		xfs_rw_iunlock(ip, iolock);
		iolock = XFS_IOLOCK_EXCL;
		xfs_rw_ilock(ip, iolock);
727
	}
728

729
	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
730
	if (ret)
731
		goto out;
732 733
	count = iov_iter_count(from);
	pos = iocb->ki_pos;
734
	end = pos + count - 1;
735 736

	if (mapping->nrpages) {
737
		ret = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
738
						   pos, end);
739
		if (ret)
740
			goto out;
741 742 743 744 745 746
		/*
		 * Invalidate whole pages. This can return an error if
		 * we fail to invalidate a page, but this should never
		 * happen on XFS. Warn if it does fail.
		 */
		ret = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping,
747
					pos >> PAGE_CACHE_SHIFT,
748
					end >> PAGE_CACHE_SHIFT);
749 750
		WARN_ON_ONCE(ret);
		ret = 0;
751 752
	}

753 754 755 756 757
	/*
	 * If we are doing unaligned IO, wait for all other IO to drain,
	 * otherwise demote the lock if we had to flush cached pages
	 */
	if (unaligned_io)
C
Christoph Hellwig 已提交
758
		inode_dio_wait(inode);
759
	else if (iolock == XFS_IOLOCK_EXCL) {
760
		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
761
		iolock = XFS_IOLOCK_SHARED;
762 763 764 765
	}

	trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);

766
	data = *from;
767
	ret = mapping->a_ops->direct_IO(iocb, &data, pos);
768 769 770 771 772 773 774 775 776 777 778 779 780

	/* see generic_file_direct_write() for why this is necessary */
	if (mapping->nrpages) {
		invalidate_inode_pages2_range(mapping,
					      pos >> PAGE_CACHE_SHIFT,
					      end >> PAGE_CACHE_SHIFT);
	}

	if (ret > 0) {
		pos += ret;
		iov_iter_advance(from, ret);
		iocb->ki_pos = pos;
	}
781 782 783
out:
	xfs_rw_iunlock(ip, iolock);

784 785 786 787 788
	/*
	 * No fallback to buffered IO on errors for XFS. DAX can result in
	 * partial writes, but direct IO will either complete fully or fail.
	 */
	ASSERT(ret < 0 || ret == count || IS_DAX(VFS_I(ip)));
789 790 791
	return ret;
}

792
STATIC ssize_t
793
xfs_file_buffered_aio_write(
794
	struct kiocb		*iocb,
795
	struct iov_iter		*from)
796 797 798 799
{
	struct file		*file = iocb->ki_filp;
	struct address_space	*mapping = file->f_mapping;
	struct inode		*inode = mapping->host;
800
	struct xfs_inode	*ip = XFS_I(inode);
801 802
	ssize_t			ret;
	int			enospc = 0;
803
	int			iolock = XFS_IOLOCK_EXCL;
804

805
	xfs_rw_ilock(ip, iolock);
806

807
	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
808
	if (ret)
809
		goto out;
810 811

	/* We can write back this queue in page reclaim */
812
	current->backing_dev_info = inode_to_bdi(inode);
813 814

write_retry:
815 816 817
	trace_xfs_file_buffered_write(ip, iov_iter_count(from),
				      iocb->ki_pos, 0);
	ret = generic_perform_write(file, from, iocb->ki_pos);
818
	if (likely(ret >= 0))
819
		iocb->ki_pos += ret;
820

821
	/*
822 823 824 825 826 827 828
	 * If we hit a space limit, try to free up some lingering preallocated
	 * space before returning an error. In the case of ENOSPC, first try to
	 * write back all dirty inodes to free up some of the excess reserved
	 * metadata space. This reduces the chances that the eofblocks scan
	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
	 * also behaves as a filter to prevent too many eofblocks scans from
	 * running at the same time.
829
	 */
830 831 832 833 834 835 836
	if (ret == -EDQUOT && !enospc) {
		enospc = xfs_inode_free_quota_eofblocks(ip);
		if (enospc)
			goto write_retry;
	} else if (ret == -ENOSPC && !enospc) {
		struct xfs_eofblocks eofb = {0};

837
		enospc = 1;
D
Dave Chinner 已提交
838
		xfs_flush_inodes(ip->i_mount);
839 840 841
		eofb.eof_scan_owner = ip->i_ino; /* for locking */
		eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
D
Dave Chinner 已提交
842
		goto write_retry;
843
	}
844

845
	current->backing_dev_info = NULL;
846 847
out:
	xfs_rw_iunlock(ip, iolock);
848 849 850 851
	return ret;
}

STATIC ssize_t
A
Al Viro 已提交
852
xfs_file_write_iter(
853
	struct kiocb		*iocb,
A
Al Viro 已提交
854
	struct iov_iter		*from)
855 856 857 858 859 860
{
	struct file		*file = iocb->ki_filp;
	struct address_space	*mapping = file->f_mapping;
	struct inode		*inode = mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
	ssize_t			ret;
A
Al Viro 已提交
861
	size_t			ocount = iov_iter_count(from);
862 863 864 865 866 867

	XFS_STATS_INC(xs_write_calls);

	if (ocount == 0)
		return 0;

A
Al Viro 已提交
868 869
	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
		return -EIO;
870

871
	if ((iocb->ki_flags & IOCB_DIRECT) || IS_DAX(inode))
A
Al Viro 已提交
872
		ret = xfs_file_dio_aio_write(iocb, from);
873
	else
A
Al Viro 已提交
874
		ret = xfs_file_buffered_aio_write(iocb, from);
875

876 877
	if (ret > 0) {
		ssize_t err;
878

879
		XFS_STATS_ADD(xs_write_bytes, ret);
880

881
		/* Handle various SYNC-type writes */
882
		err = generic_write_sync(file, iocb->ki_pos - ret, ret);
883 884
		if (err < 0)
			ret = err;
885
	}
886
	return ret;
887 888
}

889 890 891 892 893
#define	XFS_FALLOC_FL_SUPPORTED						\
		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
		 FALLOC_FL_INSERT_RANGE)

894 895
STATIC long
xfs_file_fallocate(
896 897 898 899
	struct file		*file,
	int			mode,
	loff_t			offset,
	loff_t			len)
900
{
901 902 903
	struct inode		*inode = file_inode(file);
	struct xfs_inode	*ip = XFS_I(inode);
	long			error;
904
	enum xfs_prealloc_flags	flags = 0;
905
	uint			iolock = XFS_IOLOCK_EXCL;
906
	loff_t			new_size = 0;
907
	bool			do_file_insert = 0;
908

909 910
	if (!S_ISREG(inode->i_mode))
		return -EINVAL;
911
	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
912 913
		return -EOPNOTSUPP;

914
	xfs_ilock(ip, iolock);
915
	error = xfs_break_layouts(inode, &iolock, false);
916 917 918
	if (error)
		goto out_unlock;

919 920 921
	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
	iolock |= XFS_MMAPLOCK_EXCL;

922 923 924 925
	if (mode & FALLOC_FL_PUNCH_HOLE) {
		error = xfs_free_file_space(ip, offset, len);
		if (error)
			goto out_unlock;
926 927 928 929
	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
		unsigned blksize_mask = (1 << inode->i_blkbits) - 1;

		if (offset & blksize_mask || len & blksize_mask) {
D
Dave Chinner 已提交
930
			error = -EINVAL;
931 932 933
			goto out_unlock;
		}

934 935 936 937 938
		/*
		 * There is no need to overlap collapse range with EOF,
		 * in which case it is effectively a truncate operation
		 */
		if (offset + len >= i_size_read(inode)) {
D
Dave Chinner 已提交
939
			error = -EINVAL;
940 941 942
			goto out_unlock;
		}

943 944 945 946 947
		new_size = i_size_read(inode) - len;

		error = xfs_collapse_file_space(ip, offset, len);
		if (error)
			goto out_unlock;
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
	} else if (mode & FALLOC_FL_INSERT_RANGE) {
		unsigned blksize_mask = (1 << inode->i_blkbits) - 1;

		new_size = i_size_read(inode) + len;
		if (offset & blksize_mask || len & blksize_mask) {
			error = -EINVAL;
			goto out_unlock;
		}

		/* check the new inode size does not wrap through zero */
		if (new_size > inode->i_sb->s_maxbytes) {
			error = -EFBIG;
			goto out_unlock;
		}

		/* Offset should be less than i_size */
		if (offset >= i_size_read(inode)) {
			error = -EINVAL;
			goto out_unlock;
		}
		do_file_insert = 1;
969
	} else {
970 971
		flags |= XFS_PREALLOC_SET;

972 973 974
		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
		    offset + len > i_size_read(inode)) {
			new_size = offset + len;
D
Dave Chinner 已提交
975
			error = inode_newsize_ok(inode, new_size);
976 977 978
			if (error)
				goto out_unlock;
		}
979

980 981 982 983 984
		if (mode & FALLOC_FL_ZERO_RANGE)
			error = xfs_zero_file_space(ip, offset, len);
		else
			error = xfs_alloc_file_space(ip, offset, len,
						     XFS_BMAPI_PREALLOC);
985 986 987 988
		if (error)
			goto out_unlock;
	}

989
	if (file->f_flags & O_DSYNC)
990 991 992
		flags |= XFS_PREALLOC_SYNC;

	error = xfs_update_prealloc_flags(ip, flags);
993 994 995 996 997 998 999 1000 1001
	if (error)
		goto out_unlock;

	/* Change file size if needed */
	if (new_size) {
		struct iattr iattr;

		iattr.ia_valid = ATTR_SIZE;
		iattr.ia_size = new_size;
1002
		error = xfs_setattr_size(ip, &iattr);
1003 1004
		if (error)
			goto out_unlock;
1005 1006
	}

1007 1008 1009 1010 1011 1012 1013 1014 1015
	/*
	 * Perform hole insertion now that the file size has been
	 * updated so that if we crash during the operation we don't
	 * leave shifted extents past EOF and hence losing access to
	 * the data that is contained within them.
	 */
	if (do_file_insert)
		error = xfs_insert_file_space(ip, offset, len);

1016
out_unlock:
1017
	xfs_iunlock(ip, iolock);
D
Dave Chinner 已提交
1018
	return error;
1019 1020 1021
}


L
Linus Torvalds 已提交
1022
STATIC int
1023
xfs_file_open(
L
Linus Torvalds 已提交
1024
	struct inode	*inode,
1025
	struct file	*file)
L
Linus Torvalds 已提交
1026
{
1027
	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
L
Linus Torvalds 已提交
1028
		return -EFBIG;
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
		return -EIO;
	return 0;
}

STATIC int
xfs_dir_open(
	struct inode	*inode,
	struct file	*file)
{
	struct xfs_inode *ip = XFS_I(inode);
	int		mode;
	int		error;

	error = xfs_file_open(inode, file);
	if (error)
		return error;

	/*
	 * If there are any blocks, read-ahead block 0 as we're almost
	 * certain to have the next operation be a read there.
	 */
1051
	mode = xfs_ilock_data_map_shared(ip);
1052
	if (ip->i_d.di_nextents > 0)
1053
		xfs_dir3_data_readahead(ip, 0, -1);
1054 1055
	xfs_iunlock(ip, mode);
	return 0;
L
Linus Torvalds 已提交
1056 1057 1058
}

STATIC int
1059
xfs_file_release(
L
Linus Torvalds 已提交
1060 1061 1062
	struct inode	*inode,
	struct file	*filp)
{
D
Dave Chinner 已提交
1063
	return xfs_release(XFS_I(inode));
L
Linus Torvalds 已提交
1064 1065 1066
}

STATIC int
1067
xfs_file_readdir(
A
Al Viro 已提交
1068 1069
	struct file	*file,
	struct dir_context *ctx)
L
Linus Torvalds 已提交
1070
{
A
Al Viro 已提交
1071
	struct inode	*inode = file_inode(file);
1072
	xfs_inode_t	*ip = XFS_I(inode);
C
Christoph Hellwig 已提交
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
	size_t		bufsize;

	/*
	 * The Linux API doesn't pass down the total size of the buffer
	 * we read into down to the filesystem.  With the filldir concept
	 * it's not needed for correct information, but the XFS dir2 leaf
	 * code wants an estimate of the buffer size to calculate it's
	 * readahead window and size the buffers used for mapping to
	 * physical blocks.
	 *
	 * Try to give it an estimate that's good enough, maybe at some
	 * point we can change the ->readdir prototype to include the
E
Eric Sandeen 已提交
1085
	 * buffer size.  For now we use the current glibc buffer size.
C
Christoph Hellwig 已提交
1086
	 */
E
Eric Sandeen 已提交
1087
	bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
C
Christoph Hellwig 已提交
1088

1089
	return xfs_readdir(ip, ctx, bufsize);
L
Linus Torvalds 已提交
1090 1091
}

1092 1093
/*
 * This type is designed to indicate the type of offset we would like
1094
 * to search from page cache for xfs_seek_hole_data().
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
 */
enum {
	HOLE_OFF = 0,
	DATA_OFF,
};

/*
 * Lookup the desired type of offset from the given page.
 *
 * On success, return true and the offset argument will point to the
 * start of the region that was found.  Otherwise this function will
 * return false and keep the offset argument unchanged.
 */
STATIC bool
xfs_lookup_buffer_offset(
	struct page		*page,
	loff_t			*offset,
	unsigned int		type)
{
	loff_t			lastoff = page_offset(page);
	bool			found = false;
	struct buffer_head	*bh, *head;

	bh = head = page_buffers(page);
	do {
		/*
		 * Unwritten extents that have data in the page
		 * cache covering them can be identified by the
		 * BH_Unwritten state flag.  Pages with multiple
		 * buffers might have a mix of holes, data and
		 * unwritten extents - any buffer with valid
		 * data in it should have BH_Uptodate flag set
		 * on it.
		 */
		if (buffer_unwritten(bh) ||
		    buffer_uptodate(bh)) {
			if (type == DATA_OFF)
				found = true;
		} else {
			if (type == HOLE_OFF)
				found = true;
		}

		if (found) {
			*offset = lastoff;
			break;
		}
		lastoff += bh->b_size;
	} while ((bh = bh->b_this_page) != head);

	return found;
}

/*
 * This routine is called to find out and return a data or hole offset
 * from the page cache for unwritten extents according to the desired
1151
 * type for xfs_seek_hole_data().
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
 *
 * The argument offset is used to tell where we start to search from the
 * page cache.  Map is used to figure out the end points of the range to
 * lookup pages.
 *
 * Return true if the desired type of offset was found, and the argument
 * offset is filled with that address.  Otherwise, return false and keep
 * offset unchanged.
 */
STATIC bool
xfs_find_get_desired_pgoff(
	struct inode		*inode,
	struct xfs_bmbt_irec	*map,
	unsigned int		type,
	loff_t			*offset)
{
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
	struct pagevec		pvec;
	pgoff_t			index;
	pgoff_t			end;
	loff_t			endoff;
	loff_t			startoff = *offset;
	loff_t			lastoff = startoff;
	bool			found = false;

	pagevec_init(&pvec, 0);

	index = startoff >> PAGE_CACHE_SHIFT;
	endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
	end = endoff >> PAGE_CACHE_SHIFT;
	do {
		int		want;
		unsigned	nr_pages;
		unsigned int	i;

		want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
					  want);
		/*
		 * No page mapped into given range.  If we are searching holes
		 * and if this is the first time we got into the loop, it means
		 * that the given offset is landed in a hole, return it.
		 *
		 * If we have already stepped through some block buffers to find
		 * holes but they all contains data.  In this case, the last
		 * offset is already updated and pointed to the end of the last
		 * mapped page, if it does not reach the endpoint to search,
		 * that means there should be a hole between them.
		 */
		if (nr_pages == 0) {
			/* Data search found nothing */
			if (type == DATA_OFF)
				break;

			ASSERT(type == HOLE_OFF);
			if (lastoff == startoff || lastoff < endoff) {
				found = true;
				*offset = lastoff;
			}
			break;
		}

		/*
		 * At lease we found one page.  If this is the first time we
		 * step into the loop, and if the first page index offset is
		 * greater than the given search offset, a hole was found.
		 */
		if (type == HOLE_OFF && lastoff == startoff &&
		    lastoff < page_offset(pvec.pages[0])) {
			found = true;
			break;
		}

		for (i = 0; i < nr_pages; i++) {
			struct page	*page = pvec.pages[i];
			loff_t		b_offset;

			/*
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL),
			 * or even swizzled back from swapper_space to tmpfs
			 * file mapping. However, page->index will not change
			 * because we have a reference on the page.
			 *
			 * Searching done if the page index is out of range.
			 * If the current offset is not reaches the end of
			 * the specified search range, there should be a hole
			 * between them.
			 */
			if (page->index > end) {
				if (type == HOLE_OFF && lastoff < endoff) {
					*offset = lastoff;
					found = true;
				}
				goto out;
			}

			lock_page(page);
			/*
			 * Page truncated or invalidated(page->mapping == NULL).
			 * We can freely skip it and proceed to check the next
			 * page.
			 */
			if (unlikely(page->mapping != inode->i_mapping)) {
				unlock_page(page);
				continue;
			}

			if (!page_has_buffers(page)) {
				unlock_page(page);
				continue;
			}

			found = xfs_lookup_buffer_offset(page, &b_offset, type);
			if (found) {
				/*
				 * The found offset may be less than the start
				 * point to search if this is the first time to
				 * come here.
				 */
				*offset = max_t(loff_t, startoff, b_offset);
				unlock_page(page);
				goto out;
			}

			/*
			 * We either searching data but nothing was found, or
			 * searching hole but found a data buffer.  In either
			 * case, probably the next page contains the desired
			 * things, update the last offset to it so.
			 */
			lastoff = page_offset(page) + PAGE_SIZE;
			unlock_page(page);
		}

		/*
		 * The number of returned pages less than our desired, search
		 * done.  In this case, nothing was found for searching data,
		 * but we found a hole behind the last offset.
		 */
		if (nr_pages < want) {
			if (type == HOLE_OFF) {
				*offset = lastoff;
				found = true;
			}
			break;
		}

		index = pvec.pages[i - 1]->index + 1;
		pagevec_release(&pvec);
	} while (index <= end);

out:
	pagevec_release(&pvec);
	return found;
}

1310
STATIC loff_t
1311
xfs_seek_hole_data(
1312
	struct file		*file,
1313 1314
	loff_t			start,
	int			whence)
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
{
	struct inode		*inode = file->f_mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
	loff_t			uninitialized_var(offset);
	xfs_fsize_t		isize;
	xfs_fileoff_t		fsbno;
	xfs_filblks_t		end;
	uint			lock;
	int			error;

1326 1327 1328
	if (XFS_FORCED_SHUTDOWN(mp))
		return -EIO;

1329
	lock = xfs_ilock_data_map_shared(ip);
1330 1331 1332

	isize = i_size_read(inode);
	if (start >= isize) {
D
Dave Chinner 已提交
1333
		error = -ENXIO;
1334 1335 1336 1337 1338 1339 1340
		goto out_unlock;
	}

	/*
	 * Try to read extents from the first block indicated
	 * by fsbno to the end block of the file.
	 */
1341
	fsbno = XFS_B_TO_FSBT(mp, start);
1342
	end = XFS_B_TO_FSB(mp, isize);
1343

1344 1345 1346 1347
	for (;;) {
		struct xfs_bmbt_irec	map[2];
		int			nmap = 2;
		unsigned int		i;
1348

1349 1350 1351 1352
		error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
				       XFS_BMAPI_ENTIRE);
		if (error)
			goto out_unlock;
1353

1354 1355
		/* No extents at given offset, must be beyond EOF */
		if (nmap == 0) {
D
Dave Chinner 已提交
1356
			error = -ENXIO;
1357 1358 1359 1360 1361 1362 1363
			goto out_unlock;
		}

		for (i = 0; i < nmap; i++) {
			offset = max_t(loff_t, start,
				       XFS_FSB_TO_B(mp, map[i].br_startoff));

1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
			/* Landed in the hole we wanted? */
			if (whence == SEEK_HOLE &&
			    map[i].br_startblock == HOLESTARTBLOCK)
				goto out;

			/* Landed in the data extent we wanted? */
			if (whence == SEEK_DATA &&
			    (map[i].br_startblock == DELAYSTARTBLOCK ||
			     (map[i].br_state == XFS_EXT_NORM &&
			      !isnullstartblock(map[i].br_startblock))))
1374 1375 1376
				goto out;

			/*
1377 1378
			 * Landed in an unwritten extent, try to search
			 * for hole or data from page cache.
1379 1380 1381
			 */
			if (map[i].br_state == XFS_EXT_UNWRITTEN) {
				if (xfs_find_get_desired_pgoff(inode, &map[i],
1382 1383
				      whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF,
							&offset))
1384 1385 1386 1387 1388
					goto out;
			}
		}

		/*
1389 1390
		 * We only received one extent out of the two requested. This
		 * means we've hit EOF and didn't find what we are looking for.
1391
		 */
1392
		if (nmap == 1) {
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
			/*
			 * If we were looking for a hole, set offset to
			 * the end of the file (i.e., there is an implicit
			 * hole at the end of any file).
		 	 */
			if (whence == SEEK_HOLE) {
				offset = isize;
				break;
			}
			/*
			 * If we were looking for data, it's nowhere to be found
			 */
			ASSERT(whence == SEEK_DATA);
D
Dave Chinner 已提交
1406
			error = -ENXIO;
1407 1408 1409
			goto out_unlock;
		}

1410 1411 1412 1413
		ASSERT(i > 1);

		/*
		 * Nothing was found, proceed to the next round of search
1414
		 * if the next reading offset is not at or beyond EOF.
1415 1416 1417 1418
		 */
		fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
		start = XFS_FSB_TO_B(mp, fsbno);
		if (start >= isize) {
1419 1420 1421 1422 1423
			if (whence == SEEK_HOLE) {
				offset = isize;
				break;
			}
			ASSERT(whence == SEEK_DATA);
D
Dave Chinner 已提交
1424
			error = -ENXIO;
1425 1426
			goto out_unlock;
		}
1427 1428
	}

1429 1430
out:
	/*
1431
	 * If at this point we have found the hole we wanted, the returned
1432
	 * offset may be bigger than the file size as it may be aligned to
1433
	 * page boundary for unwritten extents.  We need to deal with this
1434 1435
	 * situation in particular.
	 */
1436 1437
	if (whence == SEEK_HOLE)
		offset = min_t(loff_t, offset, isize);
J
Jie Liu 已提交
1438
	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1439 1440

out_unlock:
1441
	xfs_iunlock(ip, lock);
1442 1443

	if (error)
D
Dave Chinner 已提交
1444
		return error;
1445 1446 1447 1448 1449 1450 1451
	return offset;
}

STATIC loff_t
xfs_file_llseek(
	struct file	*file,
	loff_t		offset,
1452
	int		whence)
1453
{
1454
	switch (whence) {
1455 1456 1457
	case SEEK_END:
	case SEEK_CUR:
	case SEEK_SET:
1458
		return generic_file_llseek(file, offset, whence);
1459
	case SEEK_HOLE:
1460
	case SEEK_DATA:
1461
		return xfs_seek_hole_data(file, offset, whence);
1462 1463 1464 1465 1466
	default:
		return -EINVAL;
	}
}

1467 1468 1469 1470 1471
/*
 * Locking for serialisation of IO during page faults. This results in a lock
 * ordering of:
 *
 * mmap_sem (MM)
1472 1473 1474 1475
 *   sb_start_pagefault(vfs, freeze)
 *     i_mmap_lock (XFS - truncate serialisation)
 *       page_lock (MM)
 *         i_lock (XFS - extent map serialisation)
1476 1477
 */

1478 1479 1480 1481 1482
/*
 * mmap()d file has taken write protection fault and is being made writable. We
 * can set the page state up correctly for a writable page, which means we can
 * do correct delalloc accounting (ENOSPC checking!) and unwritten extent
 * mapping.
1483 1484
 */
STATIC int
1485
xfs_filemap_page_mkwrite(
1486 1487 1488
	struct vm_area_struct	*vma,
	struct vm_fault		*vmf)
{
1489
	struct inode		*inode = file_inode(vma->vm_file);
1490
	int			ret;
1491

1492
	trace_xfs_filemap_page_mkwrite(XFS_I(inode));
1493

1494
	sb_start_pagefault(inode->i_sb);
1495
	file_update_time(vma->vm_file);
1496
	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1497

1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
	if (IS_DAX(inode)) {
		ret = __dax_mkwrite(vma, vmf, xfs_get_blocks_direct,
				    xfs_end_io_dax_write);
	} else {
		ret = __block_page_mkwrite(vma, vmf, xfs_get_blocks);
		ret = block_page_mkwrite_return(ret);
	}

	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
	sb_end_pagefault(inode->i_sb);

	return ret;
1510 1511
}

1512
STATIC int
1513
xfs_filemap_fault(
1514 1515 1516
	struct vm_area_struct	*vma,
	struct vm_fault		*vmf)
{
1517 1518
	struct xfs_inode	*ip = XFS_I(file_inode(vma->vm_file));
	int			ret;
1519

1520
	trace_xfs_filemap_fault(ip);
1521

1522 1523 1524
	/* DAX can shortcut the normal fault path on write faults! */
	if ((vmf->flags & FAULT_FLAG_WRITE) && IS_DAX(VFS_I(ip)))
		return xfs_filemap_page_mkwrite(vma, vmf);
1525 1526

	xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
1527
	ret = filemap_fault(vma, vmf);
1528 1529
	xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);

1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
	return ret;
}

static const struct vm_operations_struct xfs_file_vm_ops = {
	.fault		= xfs_filemap_fault,
	.map_pages	= filemap_map_pages,
	.page_mkwrite	= xfs_filemap_page_mkwrite,
};

STATIC int
xfs_file_mmap(
	struct file	*filp,
	struct vm_area_struct *vma)
{
	file_accessed(filp);
	vma->vm_ops = &xfs_file_vm_ops;
	if (IS_DAX(file_inode(filp)))
		vma->vm_flags |= VM_MIXEDMAP;
	return 0;
1549 1550
}

1551
const struct file_operations xfs_file_operations = {
1552
	.llseek		= xfs_file_llseek,
A
Al Viro 已提交
1553
	.read_iter	= xfs_file_read_iter,
A
Al Viro 已提交
1554
	.write_iter	= xfs_file_write_iter,
1555
	.splice_read	= xfs_file_splice_read,
A
Al Viro 已提交
1556
	.splice_write	= iter_file_splice_write,
1557
	.unlocked_ioctl	= xfs_file_ioctl,
L
Linus Torvalds 已提交
1558
#ifdef CONFIG_COMPAT
1559
	.compat_ioctl	= xfs_file_compat_ioctl,
L
Linus Torvalds 已提交
1560
#endif
1561 1562 1563 1564
	.mmap		= xfs_file_mmap,
	.open		= xfs_file_open,
	.release	= xfs_file_release,
	.fsync		= xfs_file_fsync,
1565
	.fallocate	= xfs_file_fallocate,
L
Linus Torvalds 已提交
1566 1567
};

1568
const struct file_operations xfs_dir_file_operations = {
1569
	.open		= xfs_dir_open,
L
Linus Torvalds 已提交
1570
	.read		= generic_read_dir,
A
Al Viro 已提交
1571
	.iterate	= xfs_file_readdir,
1572
	.llseek		= generic_file_llseek,
1573
	.unlocked_ioctl	= xfs_file_ioctl,
1574
#ifdef CONFIG_COMPAT
1575
	.compat_ioctl	= xfs_file_compat_ioctl,
1576
#endif
1577
	.fsync		= xfs_dir_fsync,
L
Linus Torvalds 已提交
1578
};