xfs_file.c 35.9 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2 3
 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
 * All Rights Reserved.
L
Linus Torvalds 已提交
4
 *
5 6
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
L
Linus Torvalds 已提交
7 8
 * published by the Free Software Foundation.
 *
9 10 11 12
 * This program is distributed in the hope that it would be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
L
Linus Torvalds 已提交
13
 *
14 15 16
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write the Free Software Foundation,
 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
L
Linus Torvalds 已提交
17 18
 */
#include "xfs.h"
19
#include "xfs_fs.h"
L
Linus Torvalds 已提交
20 21
#include "xfs_log.h"
#include "xfs_sb.h"
22
#include "xfs_ag.h"
L
Linus Torvalds 已提交
23 24 25 26 27 28
#include "xfs_trans.h"
#include "xfs_mount.h"
#include "xfs_bmap_btree.h"
#include "xfs_alloc.h"
#include "xfs_dinode.h"
#include "xfs_inode.h"
29
#include "xfs_inode_item.h"
30
#include "xfs_bmap.h"
L
Linus Torvalds 已提交
31
#include "xfs_error.h"
32
#include "xfs_vnodeops.h"
33
#include "xfs_da_btree.h"
34
#include "xfs_ioctl.h"
35
#include "xfs_trace.h"
L
Linus Torvalds 已提交
36 37

#include <linux/dcache.h>
38
#include <linux/falloc.h>
39
#include <linux/pagevec.h>
L
Linus Torvalds 已提交
40

41
static const struct vm_operations_struct xfs_file_vm_ops;
L
Linus Torvalds 已提交
42

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
/*
 * Locking primitives for read and write IO paths to ensure we consistently use
 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
 */
static inline void
xfs_rw_ilock(
	struct xfs_inode	*ip,
	int			type)
{
	if (type & XFS_IOLOCK_EXCL)
		mutex_lock(&VFS_I(ip)->i_mutex);
	xfs_ilock(ip, type);
}

static inline void
xfs_rw_iunlock(
	struct xfs_inode	*ip,
	int			type)
{
	xfs_iunlock(ip, type);
	if (type & XFS_IOLOCK_EXCL)
		mutex_unlock(&VFS_I(ip)->i_mutex);
}

static inline void
xfs_rw_ilock_demote(
	struct xfs_inode	*ip,
	int			type)
{
	xfs_ilock_demote(ip, type);
	if (type & XFS_IOLOCK_EXCL)
		mutex_unlock(&VFS_I(ip)->i_mutex);
}

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
/*
 *	xfs_iozero
 *
 *	xfs_iozero clears the specified range of buffer supplied,
 *	and marks all the affected blocks as valid and modified.  If
 *	an affected block is not allocated, it will be allocated.  If
 *	an affected block is not completely overwritten, and is not
 *	valid before the operation, it will be read from disk before
 *	being partially zeroed.
 */
STATIC int
xfs_iozero(
	struct xfs_inode	*ip,	/* inode			*/
	loff_t			pos,	/* offset in file		*/
	size_t			count)	/* size of data to zero		*/
{
	struct page		*page;
	struct address_space	*mapping;
	int			status;

	mapping = VFS_I(ip)->i_mapping;
	do {
		unsigned offset, bytes;
		void *fsdata;

		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
		bytes = PAGE_CACHE_SIZE - offset;
		if (bytes > count)
			bytes = count;

		status = pagecache_write_begin(NULL, mapping, pos, bytes,
					AOP_FLAG_UNINTERRUPTIBLE,
					&page, &fsdata);
		if (status)
			break;

		zero_user(page, offset, bytes);

		status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
					page, fsdata);
		WARN_ON(status <= 0); /* can't return less than zero! */
		pos += bytes;
		count -= bytes;
		status = 0;
	} while (count);

	return (-status);
}

126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
/*
 * Fsync operations on directories are much simpler than on regular files,
 * as there is no file data to flush, and thus also no need for explicit
 * cache flush operations, and there are no non-transaction metadata updates
 * on directories either.
 */
STATIC int
xfs_dir_fsync(
	struct file		*file,
	loff_t			start,
	loff_t			end,
	int			datasync)
{
	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
	struct xfs_mount	*mp = ip->i_mount;
	xfs_lsn_t		lsn = 0;

	trace_xfs_dir_fsync(ip);

	xfs_ilock(ip, XFS_ILOCK_SHARED);
	if (xfs_ipincount(ip))
		lsn = ip->i_itemp->ili_last_lsn;
	xfs_iunlock(ip, XFS_ILOCK_SHARED);

	if (!lsn)
		return 0;
	return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
}

155 156 157
STATIC int
xfs_file_fsync(
	struct file		*file,
158 159
	loff_t			start,
	loff_t			end,
160 161
	int			datasync)
{
162 163
	struct inode		*inode = file->f_mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
164
	struct xfs_mount	*mp = ip->i_mount;
165 166
	int			error = 0;
	int			log_flushed = 0;
167
	xfs_lsn_t		lsn = 0;
168

C
Christoph Hellwig 已提交
169
	trace_xfs_file_fsync(ip);
170

171 172 173 174
	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
	if (error)
		return error;

175
	if (XFS_FORCED_SHUTDOWN(mp))
176 177 178 179
		return -XFS_ERROR(EIO);

	xfs_iflags_clear(ip, XFS_ITRUNCATED);

180 181 182 183 184 185 186 187 188 189 190 191 192 193
	if (mp->m_flags & XFS_MOUNT_BARRIER) {
		/*
		 * If we have an RT and/or log subvolume we need to make sure
		 * to flush the write cache the device used for file data
		 * first.  This is to ensure newly written file data make
		 * it to disk before logging the new inode size in case of
		 * an extending write.
		 */
		if (XFS_IS_REALTIME_INODE(ip))
			xfs_blkdev_issue_flush(mp->m_rtdev_targp);
		else if (mp->m_logdev_targp != mp->m_ddev_targp)
			xfs_blkdev_issue_flush(mp->m_ddev_targp);
	}

194
	/*
C
Christoph Hellwig 已提交
195 196
	 * All metadata updates are logged, which means that we just have
	 * to flush the log up to the latest LSN that touched the inode.
197 198
	 */
	xfs_ilock(ip, XFS_ILOCK_SHARED);
199 200 201 202 203
	if (xfs_ipincount(ip)) {
		if (!datasync ||
		    (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP))
			lsn = ip->i_itemp->ili_last_lsn;
	}
C
Christoph Hellwig 已提交
204
	xfs_iunlock(ip, XFS_ILOCK_SHARED);
205

C
Christoph Hellwig 已提交
206
	if (lsn)
207 208
		error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);

209 210 211 212 213 214 215 216 217 218 219 220
	/*
	 * If we only have a single device, and the log force about was
	 * a no-op we might have to flush the data device cache here.
	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
	 * an already allocated file and thus do not have any metadata to
	 * commit.
	 */
	if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
	    mp->m_logdev_targp == mp->m_ddev_targp &&
	    !XFS_IS_REALTIME_INODE(ip) &&
	    !log_flushed)
		xfs_blkdev_issue_flush(mp->m_ddev_targp);
221 222 223 224

	return -error;
}

225 226
STATIC ssize_t
xfs_file_aio_read(
227 228
	struct kiocb		*iocb,
	const struct iovec	*iovp,
229 230
	unsigned long		nr_segs,
	loff_t			pos)
231 232 233
{
	struct file		*file = iocb->ki_filp;
	struct inode		*inode = file->f_mapping->host;
234 235
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
236 237
	size_t			size = 0;
	ssize_t			ret = 0;
238
	int			ioflags = 0;
239 240 241 242
	xfs_fsize_t		n;

	XFS_STATS_INC(xs_read_calls);

243 244 245 246 247 248 249
	BUG_ON(iocb->ki_pos != pos);

	if (unlikely(file->f_flags & O_DIRECT))
		ioflags |= IO_ISDIRECT;
	if (file->f_mode & FMODE_NOCMTIME)
		ioflags |= IO_INVIS;

250 251 252
	ret = generic_segment_checks(iovp, &nr_segs, &size, VERIFY_WRITE);
	if (ret < 0)
		return ret;
253 254 255 256 257

	if (unlikely(ioflags & IO_ISDIRECT)) {
		xfs_buftarg_t	*target =
			XFS_IS_REALTIME_INODE(ip) ?
				mp->m_rtdev_targp : mp->m_ddev_targp;
258
		if ((iocb->ki_pos & target->bt_smask) ||
259
		    (size & target->bt_smask)) {
260
			if (iocb->ki_pos == i_size_read(inode))
261
				return 0;
262 263 264 265
			return -XFS_ERROR(EINVAL);
		}
	}

266
	n = mp->m_super->s_maxbytes - iocb->ki_pos;
267
	if (n <= 0 || size == 0)
268 269 270 271 272 273 274 275
		return 0;

	if (n < size)
		size = n;

	if (XFS_FORCED_SHUTDOWN(mp))
		return -EIO;

276 277 278 279 280 281 282 283 284 285 286 287 288
	/*
	 * Locking is a bit tricky here. If we take an exclusive lock
	 * for direct IO, we effectively serialise all new concurrent
	 * read IO to this file and block it behind IO that is currently in
	 * progress because IO in progress holds the IO lock shared. We only
	 * need to hold the lock exclusive to blow away the page cache, so
	 * only take lock exclusively if the page cache needs invalidation.
	 * This allows the normal direct IO case of no page cache pages to
	 * proceeed concurrently without serialisation.
	 */
	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
	if ((ioflags & IO_ISDIRECT) && inode->i_mapping->nrpages) {
		xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
289 290
		xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);

291 292 293 294
		if (inode->i_mapping->nrpages) {
			ret = -xfs_flushinval_pages(ip,
					(iocb->ki_pos & PAGE_CACHE_MASK),
					-1, FI_REMAPF_LOCKED);
295 296 297 298
			if (ret) {
				xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
				return ret;
			}
299
		}
300
		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
301
	}
302

303
	trace_xfs_file_read(ip, size, iocb->ki_pos, ioflags);
304

305
	ret = generic_file_aio_read(iocb, iovp, nr_segs, iocb->ki_pos);
306 307 308
	if (ret > 0)
		XFS_STATS_ADD(xs_read_bytes, ret);

309
	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
310 311 312
	return ret;
}

313 314
STATIC ssize_t
xfs_file_splice_read(
315 316 317 318
	struct file		*infilp,
	loff_t			*ppos,
	struct pipe_inode_info	*pipe,
	size_t			count,
319
	unsigned int		flags)
320
{
321 322
	struct xfs_inode	*ip = XFS_I(infilp->f_mapping->host);
	int			ioflags = 0;
323 324 325
	ssize_t			ret;

	XFS_STATS_INC(xs_read_calls);
326 327 328 329

	if (infilp->f_mode & FMODE_NOCMTIME)
		ioflags |= IO_INVIS;

330 331 332
	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
		return -EIO;

333
	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
334 335 336 337 338 339 340

	trace_xfs_file_splice_read(ip, count, *ppos, ioflags);

	ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
	if (ret > 0)
		XFS_STATS_ADD(xs_read_bytes, ret);

341
	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
342 343 344
	return ret;
}

345 346 347 348 349 350 351 352
/*
 * xfs_file_splice_write() does not use xfs_rw_ilock() because
 * generic_file_splice_write() takes the i_mutex itself. This, in theory,
 * couuld cause lock inversions between the aio_write path and the splice path
 * if someone is doing concurrent splice(2) based writes and write(2) based
 * writes to the same inode. The only real way to fix this is to re-implement
 * the generic code here with correct locking orders.
 */
353 354
STATIC ssize_t
xfs_file_splice_write(
355 356 357 358
	struct pipe_inode_info	*pipe,
	struct file		*outfilp,
	loff_t			*ppos,
	size_t			count,
359
	unsigned int		flags)
360 361
{
	struct inode		*inode = outfilp->f_mapping->host;
362 363 364
	struct xfs_inode	*ip = XFS_I(inode);
	int			ioflags = 0;
	ssize_t			ret;
365 366

	XFS_STATS_INC(xs_write_calls);
367 368 369 370

	if (outfilp->f_mode & FMODE_NOCMTIME)
		ioflags |= IO_INVIS;

371 372 373 374 375 376 377 378
	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
		return -EIO;

	xfs_ilock(ip, XFS_IOLOCK_EXCL);

	trace_xfs_file_splice_write(ip, count, *ppos, ioflags);

	ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags);
379 380
	if (ret > 0)
		XFS_STATS_ADD(xs_write_bytes, ret);
381 382 383 384 385 386

	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
	return ret;
}

/*
387 388 389 390
 * This routine is called to handle zeroing any space in the last block of the
 * file that is beyond the EOF.  We do this since the size is being increased
 * without writing anything to that block and we don't want to read the
 * garbage on the disk.
391 392 393
 */
STATIC int				/* error (positive) */
xfs_zero_last_block(
394 395 396
	struct xfs_inode	*ip,
	xfs_fsize_t		offset,
	xfs_fsize_t		isize)
397
{
398 399 400 401 402 403 404
	struct xfs_mount	*mp = ip->i_mount;
	xfs_fileoff_t		last_fsb = XFS_B_TO_FSBT(mp, isize);
	int			zero_offset = XFS_B_FSB_OFFSET(mp, isize);
	int			zero_len;
	int			nimaps = 1;
	int			error = 0;
	struct xfs_bmbt_irec	imap;
405

406
	xfs_ilock(ip, XFS_ILOCK_EXCL);
D
Dave Chinner 已提交
407
	error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
408
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
D
Dave Chinner 已提交
409
	if (error)
410
		return error;
411

412
	ASSERT(nimaps > 0);
413

414 415 416 417
	/*
	 * If the block underlying isize is just a hole, then there
	 * is nothing to zero.
	 */
418
	if (imap.br_startblock == HOLESTARTBLOCK)
419 420 421 422 423
		return 0;

	zero_len = mp->m_sb.sb_blocksize - zero_offset;
	if (isize + zero_len > offset)
		zero_len = offset - isize;
424
	return xfs_iozero(ip, isize, zero_len);
425 426 427
}

/*
428 429 430 431 432 433 434 435 436
 * Zero any on disk space between the current EOF and the new, larger EOF.
 *
 * This handles the normal case of zeroing the remainder of the last block in
 * the file and the unusual case of zeroing blocks out beyond the size of the
 * file.  This second case only happens with fixed size extents and when the
 * system crashes before the inode size was updated but after blocks were
 * allocated.
 *
 * Expects the iolock to be held exclusive, and will take the ilock internally.
437 438 439
 */
int					/* error (positive) */
xfs_zero_eof(
440 441 442
	struct xfs_inode	*ip,
	xfs_off_t		offset,		/* starting I/O offset */
	xfs_fsize_t		isize)		/* current inode size */
443
{
444 445 446 447 448 449 450 451 452 453 454 455
	struct xfs_mount	*mp = ip->i_mount;
	xfs_fileoff_t		start_zero_fsb;
	xfs_fileoff_t		end_zero_fsb;
	xfs_fileoff_t		zero_count_fsb;
	xfs_fileoff_t		last_fsb;
	xfs_fileoff_t		zero_off;
	xfs_fsize_t		zero_len;
	int			nimaps;
	int			error = 0;
	struct xfs_bmbt_irec	imap;

	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
456 457 458 459
	ASSERT(offset > isize);

	/*
	 * First handle zeroing the block on which isize resides.
460
	 *
461 462
	 * We only zero a part of that block so it is handled specially.
	 */
463 464 465 466
	if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
		error = xfs_zero_last_block(ip, offset, isize);
		if (error)
			return error;
467 468 469
	}

	/*
470 471 472 473 474 475 476
	 * Calculate the range between the new size and the old where blocks
	 * needing to be zeroed may exist.
	 *
	 * To get the block where the last byte in the file currently resides,
	 * we need to subtract one from the size and truncate back to a block
	 * boundary.  We subtract 1 in case the size is exactly on a block
	 * boundary.
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
	 */
	last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
	start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
	end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
	ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
	if (last_fsb == end_zero_fsb) {
		/*
		 * The size was only incremented on its last block.
		 * We took care of that above, so just return.
		 */
		return 0;
	}

	ASSERT(start_zero_fsb <= end_zero_fsb);
	while (start_zero_fsb <= end_zero_fsb) {
		nimaps = 1;
		zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
494 495

		xfs_ilock(ip, XFS_ILOCK_EXCL);
D
Dave Chinner 已提交
496 497
		error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
					  &imap, &nimaps, 0);
498 499
		xfs_iunlock(ip, XFS_ILOCK_EXCL);
		if (error)
500
			return error;
501

502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
		ASSERT(nimaps > 0);

		if (imap.br_state == XFS_EXT_UNWRITTEN ||
		    imap.br_startblock == HOLESTARTBLOCK) {
			start_zero_fsb = imap.br_startoff + imap.br_blockcount;
			ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
			continue;
		}

		/*
		 * There are blocks we need to zero.
		 */
		zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
		zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);

		if ((zero_off + zero_len) > offset)
			zero_len = offset - zero_off;

		error = xfs_iozero(ip, zero_off, zero_len);
521 522
		if (error)
			return error;
523 524 525 526 527 528 529 530

		start_zero_fsb = imap.br_startoff + imap.br_blockcount;
		ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
	}

	return 0;
}

531 532 533
/*
 * Common pre-write limit and setup checks.
 *
534 535 536
 * Called with the iolocked held either shared and exclusive according to
 * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
 * if called for a direct write beyond i_size.
537 538 539 540 541 542 543 544 545 546 547 548
 */
STATIC ssize_t
xfs_file_aio_write_checks(
	struct file		*file,
	loff_t			*pos,
	size_t			*count,
	int			*iolock)
{
	struct inode		*inode = file->f_mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
	int			error = 0;

549
restart:
550
	error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode));
551
	if (error)
552 553 554 555 556
		return error;

	/*
	 * If the offset is beyond the size of the file, we need to zero any
	 * blocks that fall between the existing EOF and the start of this
557
	 * write.  If zeroing is needed and we are currently holding the
558 559
	 * iolock shared, we need to update it to exclusive which implies
	 * having to redo all checks before.
560
	 */
561
	if (*pos > i_size_read(inode)) {
562
		if (*iolock == XFS_IOLOCK_SHARED) {
563
			xfs_rw_iunlock(ip, *iolock);
564
			*iolock = XFS_IOLOCK_EXCL;
565
			xfs_rw_ilock(ip, *iolock);
566 567
			goto restart;
		}
568
		error = -xfs_zero_eof(ip, *pos, i_size_read(inode));
569 570
		if (error)
			return error;
571
	}
572

C
Christoph Hellwig 已提交
573 574 575 576 577 578
	/*
	 * Updating the timestamps will grab the ilock again from
	 * xfs_fs_dirty_inode, so we have to call it after dropping the
	 * lock above.  Eventually we should look into a way to avoid
	 * the pointless lock roundtrip.
	 */
579 580 581 582 583
	if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
		error = file_update_time(file);
		if (error)
			return error;
	}
C
Christoph Hellwig 已提交
584

585 586 587 588 589 590 591 592
	/*
	 * If we're writing the file then make sure to clear the setuid and
	 * setgid bits if the process is not being run by root.  This keeps
	 * people from modifying setuid and setgid binaries.
	 */
	return file_remove_suid(file);
}

593 594 595 596
/*
 * xfs_file_dio_aio_write - handle direct IO writes
 *
 * Lock the inode appropriately to prepare for and issue a direct IO write.
597
 * By separating it from the buffered write path we remove all the tricky to
598 599
 * follow locking changes and looping.
 *
600 601 602 603 604 605 606 607 608 609 610 611 612
 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
 * pages are flushed out.
 *
 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
 * allowing them to be done in parallel with reads and other direct IO writes.
 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
 * needs to do sub-block zeroing and that requires serialisation against other
 * direct IOs to the same block. In this case we need to serialise the
 * submission of the unaligned IOs so that we don't get racing block zeroing in
 * the dio layer.  To avoid the problem with aio, we also need to wait for
 * outstanding IOs to complete so that unwritten extent conversion is completed
 * before we try to map the overlapping block. This is currently implemented by
C
Christoph Hellwig 已提交
613
 * hitting it with a big hammer (i.e. inode_dio_wait()).
614
 *
615 616 617 618 619 620 621 622 623
 * Returns with locks held indicated by @iolock and errors indicated by
 * negative return values.
 */
STATIC ssize_t
xfs_file_dio_aio_write(
	struct kiocb		*iocb,
	const struct iovec	*iovp,
	unsigned long		nr_segs,
	loff_t			pos,
624
	size_t			ocount)
625 626 627 628 629 630 631 632
{
	struct file		*file = iocb->ki_filp;
	struct address_space	*mapping = file->f_mapping;
	struct inode		*inode = mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
	ssize_t			ret = 0;
	size_t			count = ocount;
633
	int			unaligned_io = 0;
634
	int			iolock;
635 636 637 638 639 640
	struct xfs_buftarg	*target = XFS_IS_REALTIME_INODE(ip) ?
					mp->m_rtdev_targp : mp->m_ddev_targp;

	if ((pos & target->bt_smask) || (count & target->bt_smask))
		return -XFS_ERROR(EINVAL);

641 642 643
	if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
		unaligned_io = 1;

644 645 646 647 648 649 650 651
	/*
	 * We don't need to take an exclusive lock unless there page cache needs
	 * to be invalidated or unaligned IO is being executed. We don't need to
	 * consider the EOF extension case here because
	 * xfs_file_aio_write_checks() will relock the inode as necessary for
	 * EOF zeroing cases and fill out the new inode size as appropriate.
	 */
	if (unaligned_io || mapping->nrpages)
652
		iolock = XFS_IOLOCK_EXCL;
653
	else
654 655
		iolock = XFS_IOLOCK_SHARED;
	xfs_rw_ilock(ip, iolock);
656 657 658 659 660 661

	/*
	 * Recheck if there are cached pages that need invalidate after we got
	 * the iolock to protect against other threads adding new pages while
	 * we were waiting for the iolock.
	 */
662 663 664 665
	if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
		xfs_rw_iunlock(ip, iolock);
		iolock = XFS_IOLOCK_EXCL;
		xfs_rw_ilock(ip, iolock);
666
	}
667

668
	ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
669
	if (ret)
670
		goto out;
671 672 673 674 675

	if (mapping->nrpages) {
		ret = -xfs_flushinval_pages(ip, (pos & PAGE_CACHE_MASK), -1,
							FI_REMAPF_LOCKED);
		if (ret)
676
			goto out;
677 678
	}

679 680 681 682 683
	/*
	 * If we are doing unaligned IO, wait for all other IO to drain,
	 * otherwise demote the lock if we had to flush cached pages
	 */
	if (unaligned_io)
C
Christoph Hellwig 已提交
684
		inode_dio_wait(inode);
685
	else if (iolock == XFS_IOLOCK_EXCL) {
686
		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
687
		iolock = XFS_IOLOCK_SHARED;
688 689 690 691 692 693
	}

	trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
	ret = generic_file_direct_write(iocb, iovp,
			&nr_segs, pos, &iocb->ki_pos, count, ocount);

694 695 696
out:
	xfs_rw_iunlock(ip, iolock);

697 698 699 700 701
	/* No fallback to buffered IO on errors for XFS. */
	ASSERT(ret < 0 || ret == count);
	return ret;
}

702
STATIC ssize_t
703
xfs_file_buffered_aio_write(
704 705
	struct kiocb		*iocb,
	const struct iovec	*iovp,
706
	unsigned long		nr_segs,
707
	loff_t			pos,
708
	size_t			ocount)
709 710 711 712
{
	struct file		*file = iocb->ki_filp;
	struct address_space	*mapping = file->f_mapping;
	struct inode		*inode = mapping->host;
713
	struct xfs_inode	*ip = XFS_I(inode);
714 715
	ssize_t			ret;
	int			enospc = 0;
716
	int			iolock = XFS_IOLOCK_EXCL;
717
	size_t			count = ocount;
718

719
	xfs_rw_ilock(ip, iolock);
720

721
	ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
722
	if (ret)
723
		goto out;
724 725 726 727 728

	/* We can write back this queue in page reclaim */
	current->backing_dev_info = mapping->backing_dev_info;

write_retry:
729 730
	trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0);
	ret = generic_file_buffered_write(iocb, iovp, nr_segs,
D
Dave Chinner 已提交
731 732
			pos, &iocb->ki_pos, count, 0);

733
	/*
D
Dave Chinner 已提交
734 735 736
	 * If we just got an ENOSPC, try to write back all dirty inodes to
	 * convert delalloc space to free up some of the excess reserved
	 * metadata space.
737 738 739
	 */
	if (ret == -ENOSPC && !enospc) {
		enospc = 1;
D
Dave Chinner 已提交
740 741
		xfs_flush_inodes(ip->i_mount);
		goto write_retry;
742
	}
743

744
	current->backing_dev_info = NULL;
745 746
out:
	xfs_rw_iunlock(ip, iolock);
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
	return ret;
}

STATIC ssize_t
xfs_file_aio_write(
	struct kiocb		*iocb,
	const struct iovec	*iovp,
	unsigned long		nr_segs,
	loff_t			pos)
{
	struct file		*file = iocb->ki_filp;
	struct address_space	*mapping = file->f_mapping;
	struct inode		*inode = mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
	ssize_t			ret;
	size_t			ocount = 0;

	XFS_STATS_INC(xs_write_calls);

	BUG_ON(iocb->ki_pos != pos);

	ret = generic_segment_checks(iovp, &nr_segs, &ocount, VERIFY_READ);
	if (ret)
		return ret;

	if (ocount == 0)
		return 0;

J
Jan Kara 已提交
775
	sb_start_write(inode->i_sb);
776

J
Jan Kara 已提交
777 778 779 780
	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
		ret = -EIO;
		goto out;
	}
781 782

	if (unlikely(file->f_flags & O_DIRECT))
783
		ret = xfs_file_dio_aio_write(iocb, iovp, nr_segs, pos, ocount);
784 785
	else
		ret = xfs_file_buffered_aio_write(iocb, iovp, nr_segs, pos,
786
						  ocount);
787

788 789
	if (ret > 0) {
		ssize_t err;
790

791
		XFS_STATS_ADD(xs_write_bytes, ret);
792

793 794 795 796
		/* Handle various SYNC-type writes */
		err = generic_write_sync(file, pos, ret);
		if (err < 0)
			ret = err;
797 798
	}

J
Jan Kara 已提交
799 800
out:
	sb_end_write(inode->i_sb);
801
	return ret;
802 803
}

804 805 806 807 808 809 810 811 812 813 814 815 816
STATIC long
xfs_file_fallocate(
	struct file	*file,
	int		mode,
	loff_t		offset,
	loff_t		len)
{
	struct inode	*inode = file->f_path.dentry->d_inode;
	long		error;
	loff_t		new_size = 0;
	xfs_flock64_t	bf;
	xfs_inode_t	*ip = XFS_I(inode);
	int		cmd = XFS_IOC_RESVSP;
817
	int		attr_flags = XFS_ATTR_NOLOCK;
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839

	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
		return -EOPNOTSUPP;

	bf.l_whence = 0;
	bf.l_start = offset;
	bf.l_len = len;

	xfs_ilock(ip, XFS_IOLOCK_EXCL);

	if (mode & FALLOC_FL_PUNCH_HOLE)
		cmd = XFS_IOC_UNRESVSP;

	/* check the new inode size is valid before allocating */
	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
	    offset + len > i_size_read(inode)) {
		new_size = offset + len;
		error = inode_newsize_ok(inode, new_size);
		if (error)
			goto out_unlock;
	}

840 841 842 843
	if (file->f_flags & O_DSYNC)
		attr_flags |= XFS_ATTR_SYNC;

	error = -xfs_change_file_space(ip, cmd, &bf, 0, attr_flags);
844 845 846 847 848 849 850 851 852
	if (error)
		goto out_unlock;

	/* Change file size if needed */
	if (new_size) {
		struct iattr iattr;

		iattr.ia_valid = ATTR_SIZE;
		iattr.ia_size = new_size;
C
Christoph Hellwig 已提交
853
		error = -xfs_setattr_size(ip, &iattr, XFS_ATTR_NOLOCK);
854 855 856 857 858 859 860 861
	}

out_unlock:
	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
	return error;
}


L
Linus Torvalds 已提交
862
STATIC int
863
xfs_file_open(
L
Linus Torvalds 已提交
864
	struct inode	*inode,
865
	struct file	*file)
L
Linus Torvalds 已提交
866
{
867
	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
L
Linus Torvalds 已提交
868
		return -EFBIG;
869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
		return -EIO;
	return 0;
}

STATIC int
xfs_dir_open(
	struct inode	*inode,
	struct file	*file)
{
	struct xfs_inode *ip = XFS_I(inode);
	int		mode;
	int		error;

	error = xfs_file_open(inode, file);
	if (error)
		return error;

	/*
	 * If there are any blocks, read-ahead block 0 as we're almost
	 * certain to have the next operation be a read there.
	 */
	mode = xfs_ilock_map_shared(ip);
	if (ip->i_d.di_nextents > 0)
		xfs_da_reada_buf(NULL, ip, 0, XFS_DATA_FORK);
	xfs_iunlock(ip, mode);
	return 0;
L
Linus Torvalds 已提交
896 897 898
}

STATIC int
899
xfs_file_release(
L
Linus Torvalds 已提交
900 901 902
	struct inode	*inode,
	struct file	*filp)
{
903
	return -xfs_release(XFS_I(inode));
L
Linus Torvalds 已提交
904 905 906
}

STATIC int
907
xfs_file_readdir(
L
Linus Torvalds 已提交
908 909 910 911
	struct file	*filp,
	void		*dirent,
	filldir_t	filldir)
{
C
Christoph Hellwig 已提交
912
	struct inode	*inode = filp->f_path.dentry->d_inode;
913
	xfs_inode_t	*ip = XFS_I(inode);
C
Christoph Hellwig 已提交
914 915 916 917 918 919 920 921 922 923 924 925 926
	int		error;
	size_t		bufsize;

	/*
	 * The Linux API doesn't pass down the total size of the buffer
	 * we read into down to the filesystem.  With the filldir concept
	 * it's not needed for correct information, but the XFS dir2 leaf
	 * code wants an estimate of the buffer size to calculate it's
	 * readahead window and size the buffers used for mapping to
	 * physical blocks.
	 *
	 * Try to give it an estimate that's good enough, maybe at some
	 * point we can change the ->readdir prototype to include the
E
Eric Sandeen 已提交
927
	 * buffer size.  For now we use the current glibc buffer size.
C
Christoph Hellwig 已提交
928
	 */
E
Eric Sandeen 已提交
929
	bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
C
Christoph Hellwig 已提交
930

931
	error = xfs_readdir(ip, dirent, bufsize,
C
Christoph Hellwig 已提交
932 933 934 935
				(xfs_off_t *)&filp->f_pos, filldir);
	if (error)
		return -error;
	return 0;
L
Linus Torvalds 已提交
936 937 938
}

STATIC int
939
xfs_file_mmap(
L
Linus Torvalds 已提交
940 941 942
	struct file	*filp,
	struct vm_area_struct *vma)
{
943
	vma->vm_ops = &xfs_file_vm_ops;
944

945
	file_accessed(filp);
L
Linus Torvalds 已提交
946 947 948
	return 0;
}

949 950 951 952 953 954 955 956 957
/*
 * mmap()d file has taken write protection fault and is being made
 * writable. We can set the page state up correctly for a writable
 * page, which means we can do correct delalloc accounting (ENOSPC
 * checking!) and unwritten extent mapping.
 */
STATIC int
xfs_vm_page_mkwrite(
	struct vm_area_struct	*vma,
958
	struct vm_fault		*vmf)
959
{
960
	return block_page_mkwrite(vma, vmf, xfs_get_blocks);
961 962
}

963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
/*
 * This type is designed to indicate the type of offset we would like
 * to search from page cache for either xfs_seek_data() or xfs_seek_hole().
 */
enum {
	HOLE_OFF = 0,
	DATA_OFF,
};

/*
 * Lookup the desired type of offset from the given page.
 *
 * On success, return true and the offset argument will point to the
 * start of the region that was found.  Otherwise this function will
 * return false and keep the offset argument unchanged.
 */
STATIC bool
xfs_lookup_buffer_offset(
	struct page		*page,
	loff_t			*offset,
	unsigned int		type)
{
	loff_t			lastoff = page_offset(page);
	bool			found = false;
	struct buffer_head	*bh, *head;

	bh = head = page_buffers(page);
	do {
		/*
		 * Unwritten extents that have data in the page
		 * cache covering them can be identified by the
		 * BH_Unwritten state flag.  Pages with multiple
		 * buffers might have a mix of holes, data and
		 * unwritten extents - any buffer with valid
		 * data in it should have BH_Uptodate flag set
		 * on it.
		 */
		if (buffer_unwritten(bh) ||
		    buffer_uptodate(bh)) {
			if (type == DATA_OFF)
				found = true;
		} else {
			if (type == HOLE_OFF)
				found = true;
		}

		if (found) {
			*offset = lastoff;
			break;
		}
		lastoff += bh->b_size;
	} while ((bh = bh->b_this_page) != head);

	return found;
}

/*
 * This routine is called to find out and return a data or hole offset
 * from the page cache for unwritten extents according to the desired
 * type for xfs_seek_data() or xfs_seek_hole().
 *
 * The argument offset is used to tell where we start to search from the
 * page cache.  Map is used to figure out the end points of the range to
 * lookup pages.
 *
 * Return true if the desired type of offset was found, and the argument
 * offset is filled with that address.  Otherwise, return false and keep
 * offset unchanged.
 */
STATIC bool
xfs_find_get_desired_pgoff(
	struct inode		*inode,
	struct xfs_bmbt_irec	*map,
	unsigned int		type,
	loff_t			*offset)
{
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
	struct pagevec		pvec;
	pgoff_t			index;
	pgoff_t			end;
	loff_t			endoff;
	loff_t			startoff = *offset;
	loff_t			lastoff = startoff;
	bool			found = false;

	pagevec_init(&pvec, 0);

	index = startoff >> PAGE_CACHE_SHIFT;
	endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
	end = endoff >> PAGE_CACHE_SHIFT;
	do {
		int		want;
		unsigned	nr_pages;
		unsigned int	i;

		want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
					  want);
		/*
		 * No page mapped into given range.  If we are searching holes
		 * and if this is the first time we got into the loop, it means
		 * that the given offset is landed in a hole, return it.
		 *
		 * If we have already stepped through some block buffers to find
		 * holes but they all contains data.  In this case, the last
		 * offset is already updated and pointed to the end of the last
		 * mapped page, if it does not reach the endpoint to search,
		 * that means there should be a hole between them.
		 */
		if (nr_pages == 0) {
			/* Data search found nothing */
			if (type == DATA_OFF)
				break;

			ASSERT(type == HOLE_OFF);
			if (lastoff == startoff || lastoff < endoff) {
				found = true;
				*offset = lastoff;
			}
			break;
		}

		/*
		 * At lease we found one page.  If this is the first time we
		 * step into the loop, and if the first page index offset is
		 * greater than the given search offset, a hole was found.
		 */
		if (type == HOLE_OFF && lastoff == startoff &&
		    lastoff < page_offset(pvec.pages[0])) {
			found = true;
			break;
		}

		for (i = 0; i < nr_pages; i++) {
			struct page	*page = pvec.pages[i];
			loff_t		b_offset;

			/*
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL),
			 * or even swizzled back from swapper_space to tmpfs
			 * file mapping. However, page->index will not change
			 * because we have a reference on the page.
			 *
			 * Searching done if the page index is out of range.
			 * If the current offset is not reaches the end of
			 * the specified search range, there should be a hole
			 * between them.
			 */
			if (page->index > end) {
				if (type == HOLE_OFF && lastoff < endoff) {
					*offset = lastoff;
					found = true;
				}
				goto out;
			}

			lock_page(page);
			/*
			 * Page truncated or invalidated(page->mapping == NULL).
			 * We can freely skip it and proceed to check the next
			 * page.
			 */
			if (unlikely(page->mapping != inode->i_mapping)) {
				unlock_page(page);
				continue;
			}

			if (!page_has_buffers(page)) {
				unlock_page(page);
				continue;
			}

			found = xfs_lookup_buffer_offset(page, &b_offset, type);
			if (found) {
				/*
				 * The found offset may be less than the start
				 * point to search if this is the first time to
				 * come here.
				 */
				*offset = max_t(loff_t, startoff, b_offset);
				unlock_page(page);
				goto out;
			}

			/*
			 * We either searching data but nothing was found, or
			 * searching hole but found a data buffer.  In either
			 * case, probably the next page contains the desired
			 * things, update the last offset to it so.
			 */
			lastoff = page_offset(page) + PAGE_SIZE;
			unlock_page(page);
		}

		/*
		 * The number of returned pages less than our desired, search
		 * done.  In this case, nothing was found for searching data,
		 * but we found a hole behind the last offset.
		 */
		if (nr_pages < want) {
			if (type == HOLE_OFF) {
				*offset = lastoff;
				found = true;
			}
			break;
		}

		index = pvec.pages[i - 1]->index + 1;
		pagevec_release(&pvec);
	} while (index <= end);

out:
	pagevec_release(&pvec);
	return found;
}

1181 1182 1183
STATIC loff_t
xfs_seek_data(
	struct file		*file,
1184
	loff_t			start)
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
{
	struct inode		*inode = file->f_mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
	loff_t			uninitialized_var(offset);
	xfs_fsize_t		isize;
	xfs_fileoff_t		fsbno;
	xfs_filblks_t		end;
	uint			lock;
	int			error;

	lock = xfs_ilock_map_shared(ip);

	isize = i_size_read(inode);
	if (start >= isize) {
		error = ENXIO;
		goto out_unlock;
	}

	/*
	 * Try to read extents from the first block indicated
	 * by fsbno to the end block of the file.
	 */
1208
	fsbno = XFS_B_TO_FSBT(mp, start);
1209
	end = XFS_B_TO_FSB(mp, isize);
1210 1211 1212 1213
	for (;;) {
		struct xfs_bmbt_irec	map[2];
		int			nmap = 2;
		unsigned int		i;
1214

1215 1216 1217 1218
		error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
				       XFS_BMAPI_ENTIRE);
		if (error)
			goto out_unlock;
1219

1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
		/* No extents at given offset, must be beyond EOF */
		if (nmap == 0) {
			error = ENXIO;
			goto out_unlock;
		}

		for (i = 0; i < nmap; i++) {
			offset = max_t(loff_t, start,
				       XFS_FSB_TO_B(mp, map[i].br_startoff));

			/* Landed in a data extent */
			if (map[i].br_startblock == DELAYSTARTBLOCK ||
			    (map[i].br_state == XFS_EXT_NORM &&
			     !isnullstartblock(map[i].br_startblock)))
				goto out;

			/*
			 * Landed in an unwritten extent, try to search data
			 * from page cache.
			 */
			if (map[i].br_state == XFS_EXT_UNWRITTEN) {
				if (xfs_find_get_desired_pgoff(inode, &map[i],
							DATA_OFF, &offset))
					goto out;
			}
		}

		/*
		 * map[0] is hole or its an unwritten extent but
		 * without data in page cache.  Probably means that
		 * we are reading after EOF if nothing in map[1].
		 */
1252 1253 1254 1255 1256
		if (nmap == 1) {
			error = ENXIO;
			goto out_unlock;
		}

1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
		ASSERT(i > 1);

		/*
		 * Nothing was found, proceed to the next round of search
		 * if reading offset not beyond or hit EOF.
		 */
		fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
		start = XFS_FSB_TO_B(mp, fsbno);
		if (start >= isize) {
			error = ENXIO;
			goto out_unlock;
		}
1269 1270
	}

1271
out:
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
	if (offset != file->f_pos)
		file->f_pos = offset;

out_unlock:
	xfs_iunlock_map_shared(ip, lock);

	if (error)
		return -error;
	return offset;
}

STATIC loff_t
xfs_seek_hole(
	struct file		*file,
1286
	loff_t			start)
1287 1288 1289 1290 1291 1292 1293
{
	struct inode		*inode = file->f_mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
	loff_t			uninitialized_var(offset);
	xfs_fsize_t		isize;
	xfs_fileoff_t		fsbno;
1294
	xfs_filblks_t		end;
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
	uint			lock;
	int			error;

	if (XFS_FORCED_SHUTDOWN(mp))
		return -XFS_ERROR(EIO);

	lock = xfs_ilock_map_shared(ip);

	isize = i_size_read(inode);
	if (start >= isize) {
		error = ENXIO;
		goto out_unlock;
	}

	fsbno = XFS_B_TO_FSBT(mp, start);
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
	end = XFS_B_TO_FSB(mp, isize);

	for (;;) {
		struct xfs_bmbt_irec	map[2];
		int			nmap = 2;
		unsigned int		i;

		error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
				       XFS_BMAPI_ENTIRE);
		if (error)
			goto out_unlock;

		/* No extents at given offset, must be beyond EOF */
		if (nmap == 0) {
			error = ENXIO;
			goto out_unlock;
		}

		for (i = 0; i < nmap; i++) {
			offset = max_t(loff_t, start,
				       XFS_FSB_TO_B(mp, map[i].br_startoff));

			/* Landed in a hole */
			if (map[i].br_startblock == HOLESTARTBLOCK)
				goto out;

			/*
			 * Landed in an unwritten extent, try to search hole
			 * from page cache.
			 */
			if (map[i].br_state == XFS_EXT_UNWRITTEN) {
				if (xfs_find_get_desired_pgoff(inode, &map[i],
							HOLE_OFF, &offset))
					goto out;
			}
		}
1346 1347

		/*
1348 1349 1350 1351 1352
		 * map[0] contains data or its unwritten but contains
		 * data in page cache, probably means that we are
		 * reading after EOF.  We should fix offset to point
		 * to the end of the file(i.e., there is an implicit
		 * hole at the end of any file).
1353
		 */
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
		if (nmap == 1) {
			offset = isize;
			break;
		}

		ASSERT(i > 1);

		/*
		 * Both mappings contains data, proceed to the next round of
		 * search if the current reading offset not beyond or hit EOF.
		 */
		fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
		start = XFS_FSB_TO_B(mp, fsbno);
		if (start >= isize) {
			offset = isize;
			break;
		}
1371 1372
	}

1373 1374 1375 1376 1377 1378 1379 1380
out:
	/*
	 * At this point, we must have found a hole.  However, the returned
	 * offset may be bigger than the file size as it may be aligned to
	 * page boundary for unwritten extents, we need to deal with this
	 * situation in particular.
	 */
	offset = min_t(loff_t, offset, isize);
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
	if (offset != file->f_pos)
		file->f_pos = offset;

out_unlock:
	xfs_iunlock_map_shared(ip, lock);

	if (error)
		return -error;
	return offset;
}

STATIC loff_t
xfs_file_llseek(
	struct file	*file,
	loff_t		offset,
	int		origin)
{
	switch (origin) {
	case SEEK_END:
	case SEEK_CUR:
	case SEEK_SET:
		return generic_file_llseek(file, offset, origin);
	case SEEK_DATA:
1404
		return xfs_seek_data(file, offset);
1405
	case SEEK_HOLE:
1406
		return xfs_seek_hole(file, offset);
1407 1408 1409 1410 1411
	default:
		return -EINVAL;
	}
}

1412
const struct file_operations xfs_file_operations = {
1413
	.llseek		= xfs_file_llseek,
L
Linus Torvalds 已提交
1414
	.read		= do_sync_read,
1415
	.write		= do_sync_write,
1416 1417
	.aio_read	= xfs_file_aio_read,
	.aio_write	= xfs_file_aio_write,
1418 1419
	.splice_read	= xfs_file_splice_read,
	.splice_write	= xfs_file_splice_write,
1420
	.unlocked_ioctl	= xfs_file_ioctl,
L
Linus Torvalds 已提交
1421
#ifdef CONFIG_COMPAT
1422
	.compat_ioctl	= xfs_file_compat_ioctl,
L
Linus Torvalds 已提交
1423
#endif
1424 1425 1426 1427
	.mmap		= xfs_file_mmap,
	.open		= xfs_file_open,
	.release	= xfs_file_release,
	.fsync		= xfs_file_fsync,
1428
	.fallocate	= xfs_file_fallocate,
L
Linus Torvalds 已提交
1429 1430
};

1431
const struct file_operations xfs_dir_file_operations = {
1432
	.open		= xfs_dir_open,
L
Linus Torvalds 已提交
1433
	.read		= generic_read_dir,
1434
	.readdir	= xfs_file_readdir,
1435
	.llseek		= generic_file_llseek,
1436
	.unlocked_ioctl	= xfs_file_ioctl,
1437
#ifdef CONFIG_COMPAT
1438
	.compat_ioctl	= xfs_file_compat_ioctl,
1439
#endif
1440
	.fsync		= xfs_dir_fsync,
L
Linus Torvalds 已提交
1441 1442
};

1443
static const struct vm_operations_struct xfs_file_vm_ops = {
1444
	.fault		= filemap_fault,
1445
	.page_mkwrite	= xfs_vm_page_mkwrite,
1446
	.remap_pages	= generic_file_remap_pages,
1447
};