nicvf_queues.c 50.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * Copyright (C) 2015 Cavium, Inc.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of version 2 of the GNU General Public License
 * as published by the Free Software Foundation.
 */

#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/ip.h>
#include <linux/etherdevice.h>
13
#include <linux/iommu.h>
14 15 16 17 18 19 20 21
#include <net/ip.h>
#include <net/tso.h>

#include "nic_reg.h"
#include "nic.h"
#include "q_struct.h"
#include "nicvf_queues.h"

22 23
static inline void nicvf_sq_add_gather_subdesc(struct snd_queue *sq, int qentry,
					       int size, u64 data);
24 25 26 27 28
static void nicvf_get_page(struct nicvf *nic)
{
	if (!nic->rb_pageref || !nic->rb_page)
		return;

29
	page_ref_add(nic->rb_page, nic->rb_pageref);
30 31 32
	nic->rb_pageref = 0;
}

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
/* Poll a register for a specific value */
static int nicvf_poll_reg(struct nicvf *nic, int qidx,
			  u64 reg, int bit_pos, int bits, int val)
{
	u64 bit_mask;
	u64 reg_val;
	int timeout = 10;

	bit_mask = (1ULL << bits) - 1;
	bit_mask = (bit_mask << bit_pos);

	while (timeout) {
		reg_val = nicvf_queue_reg_read(nic, reg, qidx);
		if (((reg_val & bit_mask) >> bit_pos) == val)
			return 0;
		usleep_range(1000, 2000);
		timeout--;
	}
	netdev_err(nic->netdev, "Poll on reg 0x%llx failed\n", reg);
	return 1;
}

/* Allocate memory for a queue's descriptors */
static int nicvf_alloc_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem,
				  int q_len, int desc_size, int align_bytes)
{
	dmem->q_len = q_len;
	dmem->size = (desc_size * q_len) + align_bytes;
	/* Save address, need it while freeing */
	dmem->unalign_base = dma_zalloc_coherent(&nic->pdev->dev, dmem->size,
						&dmem->dma, GFP_KERNEL);
	if (!dmem->unalign_base)
		return -ENOMEM;

	/* Align memory address for 'align_bytes' */
	dmem->phys_base = NICVF_ALIGNED_ADDR((u64)dmem->dma, align_bytes);
69
	dmem->base = dmem->unalign_base + (dmem->phys_base - dmem->dma);
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
	return 0;
}

/* Free queue's descriptor memory */
static void nicvf_free_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem)
{
	if (!dmem)
		return;

	dma_free_coherent(&nic->pdev->dev, dmem->size,
			  dmem->unalign_base, dmem->dma);
	dmem->unalign_base = NULL;
	dmem->base = NULL;
}

85 86
#define XDP_PAGE_REFCNT_REFILL 256

87 88 89 90 91 92 93
/* Allocate a new page or recycle one if possible
 *
 * We cannot optimize dma mapping here, since
 * 1. It's only one RBDR ring for 8 Rx queues.
 * 2. CQE_RX gives address of the buffer where pkt has been DMA'ed
 *    and not idx into RBDR ring, so can't refer to saved info.
 * 3. There are multiple receive buffers per page
94
 */
95 96
static inline struct pgcache *nicvf_alloc_page(struct nicvf *nic,
					       struct rbdr *rbdr, gfp_t gfp)
97
{
98
	int ref_count;
99 100 101 102 103 104 105
	struct page *page = NULL;
	struct pgcache *pgcache, *next;

	/* Check if page is already allocated */
	pgcache = &rbdr->pgcache[rbdr->pgidx];
	page = pgcache->page;
	/* Check if page can be recycled */
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
	if (page) {
		ref_count = page_ref_count(page);
		/* Check if this page has been used once i.e 'put_page'
		 * called after packet transmission i.e internal ref_count
		 * and page's ref_count are equal i.e page can be recycled.
		 */
		if (rbdr->is_xdp && (ref_count == pgcache->ref_count))
			pgcache->ref_count--;
		else
			page = NULL;

		/* In non-XDP mode, page's ref_count needs to be '1' for it
		 * to be recycled.
		 */
		if (!rbdr->is_xdp && (ref_count != 1))
			page = NULL;
	}
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139

	if (!page) {
		page = alloc_pages(gfp | __GFP_COMP | __GFP_NOWARN, 0);
		if (!page)
			return NULL;

		this_cpu_inc(nic->pnicvf->drv_stats->page_alloc);

		/* Check for space */
		if (rbdr->pgalloc >= rbdr->pgcnt) {
			/* Page can still be used */
			nic->rb_page = page;
			return NULL;
		}

		/* Save the page in page cache */
		pgcache->page = page;
140
		pgcache->dma_addr = 0;
141
		pgcache->ref_count = 0;
142 143 144
		rbdr->pgalloc++;
	}

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
	/* Take additional page references for recycling */
	if (rbdr->is_xdp) {
		/* Since there is single RBDR (i.e single core doing
		 * page recycling) per 8 Rx queues, in XDP mode adjusting
		 * page references atomically is the biggest bottleneck, so
		 * take bunch of references at a time.
		 *
		 * So here, below reference counts defer by '1'.
		 */
		if (!pgcache->ref_count) {
			pgcache->ref_count = XDP_PAGE_REFCNT_REFILL;
			page_ref_add(page, XDP_PAGE_REFCNT_REFILL);
		}
	} else {
		/* In non-XDP case, single 64K page is divided across multiple
		 * receive buffers, so cost of recycling is less anyway.
		 * So we can do with just one extra reference.
		 */
		page_ref_add(page, 1);
	}
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179

	rbdr->pgidx++;
	rbdr->pgidx &= (rbdr->pgcnt - 1);

	/* Prefetch refcount of next page in page cache */
	next = &rbdr->pgcache[rbdr->pgidx];
	page = next->page;
	if (page)
		prefetch(&page->_refcount);

	return pgcache;
}

/* Allocate buffer for packet reception */
static inline int nicvf_alloc_rcv_buffer(struct nicvf *nic, struct rbdr *rbdr,
180
					 gfp_t gfp, u32 buf_len, u64 *rbuf)
181 182
{
	struct pgcache *pgcache = NULL;
183

184 185 186
	/* Check if request can be accomodated in previous allocated page.
	 * But in XDP mode only one buffer per page is permitted.
	 */
187
	if (!rbdr->is_xdp && nic->rb_page &&
188
	    ((nic->rb_page_offset + buf_len) <= PAGE_SIZE)) {
189 190
		nic->rb_pageref++;
		goto ret;
191 192
	}

193
	nicvf_get_page(nic);
194
	nic->rb_page = NULL;
195

196 197 198
	/* Get new page, either recycled or new one */
	pgcache = nicvf_alloc_page(nic, rbdr, gfp);
	if (!pgcache && !nic->rb_page) {
199 200
		this_cpu_inc(nic->pnicvf->drv_stats->rcv_buffer_alloc_failures);
		return -ENOMEM;
201
	}
202

203
	nic->rb_page_offset = 0;
204 205 206 207 208

	/* Reserve space for header modifications by BPF program */
	if (rbdr->is_xdp)
		buf_len += XDP_PACKET_HEADROOM;

209 210 211
	/* Check if it's recycled */
	if (pgcache)
		nic->rb_page = pgcache->page;
212
ret:
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
	if (rbdr->is_xdp && pgcache && pgcache->dma_addr) {
		*rbuf = pgcache->dma_addr;
	} else {
		/* HW will ensure data coherency, CPU sync not required */
		*rbuf = (u64)dma_map_page_attrs(&nic->pdev->dev, nic->rb_page,
						nic->rb_page_offset, buf_len,
						DMA_FROM_DEVICE,
						DMA_ATTR_SKIP_CPU_SYNC);
		if (dma_mapping_error(&nic->pdev->dev, (dma_addr_t)*rbuf)) {
			if (!nic->rb_page_offset)
				__free_pages(nic->rb_page, 0);
			nic->rb_page = NULL;
			return -ENOMEM;
		}
		if (pgcache)
228
			pgcache->dma_addr = *rbuf + XDP_PACKET_HEADROOM;
229
		nic->rb_page_offset += buf_len;
230
	}
231 232 233 234

	return 0;
}

235
/* Build skb around receive buffer */
236 237 238
static struct sk_buff *nicvf_rb_ptr_to_skb(struct nicvf *nic,
					   u64 rb_ptr, int len)
{
239
	void *data;
240 241
	struct sk_buff *skb;

242
	data = phys_to_virt(rb_ptr);
243 244

	/* Now build an skb to give to stack */
245
	skb = build_skb(data, RCV_FRAG_LEN);
246
	if (!skb) {
247
		put_page(virt_to_page(data));
248 249 250
		return NULL;
	}

251
	prefetch(skb->data);
252 253 254 255 256 257 258 259
	return skb;
}

/* Allocate RBDR ring and populate receive buffers */
static int  nicvf_init_rbdr(struct nicvf *nic, struct rbdr *rbdr,
			    int ring_len, int buf_size)
{
	int idx;
260
	u64 rbuf;
261 262 263 264 265 266 267 268 269 270 271 272 273 274
	struct rbdr_entry_t *desc;
	int err;

	err = nicvf_alloc_q_desc_mem(nic, &rbdr->dmem, ring_len,
				     sizeof(struct rbdr_entry_t),
				     NICVF_RCV_BUF_ALIGN_BYTES);
	if (err)
		return err;

	rbdr->desc = rbdr->dmem.base;
	/* Buffer size has to be in multiples of 128 bytes */
	rbdr->dma_size = buf_size;
	rbdr->enable = true;
	rbdr->thresh = RBDR_THRESH;
275 276
	rbdr->head = 0;
	rbdr->tail = 0;
277

278 279 280 281 282 283
	/* Initialize page recycling stuff.
	 *
	 * Can't use single buffer per page especially with 64K pages.
	 * On embedded platforms i.e 81xx/83xx available memory itself
	 * is low and minimum ring size of RBDR is 8K, that takes away
	 * lots of memory.
284 285
	 *
	 * But for XDP it has to be a single buffer per page.
286
	 */
287 288 289 290 291 292 293
	if (!nic->pnicvf->xdp_prog) {
		rbdr->pgcnt = ring_len / (PAGE_SIZE / buf_size);
		rbdr->is_xdp = false;
	} else {
		rbdr->pgcnt = ring_len;
		rbdr->is_xdp = true;
	}
294 295 296 297 298 299 300 301
	rbdr->pgcnt = roundup_pow_of_two(rbdr->pgcnt);
	rbdr->pgcache = kzalloc(sizeof(*rbdr->pgcache) *
				rbdr->pgcnt, GFP_KERNEL);
	if (!rbdr->pgcache)
		return -ENOMEM;
	rbdr->pgidx = 0;
	rbdr->pgalloc = 0;

302 303
	nic->rb_page = NULL;
	for (idx = 0; idx < ring_len; idx++) {
304 305
		err = nicvf_alloc_rcv_buffer(nic, rbdr, GFP_KERNEL,
					     RCV_FRAG_LEN, &rbuf);
306 307 308
		if (err) {
			/* To free already allocated and mapped ones */
			rbdr->tail = idx - 1;
309
			return err;
310
		}
311 312

		desc = GET_RBDR_DESC(rbdr, idx);
313
		desc->buf_addr = rbuf & ~(NICVF_RCV_BUF_ALIGN_BYTES - 1);
314
	}
315 316 317

	nicvf_get_page(nic);

318 319 320 321 322 323 324
	return 0;
}

/* Free RBDR ring and its receive buffers */
static void nicvf_free_rbdr(struct nicvf *nic, struct rbdr *rbdr)
{
	int head, tail;
325
	u64 buf_addr, phys_addr;
326
	struct pgcache *pgcache;
327 328 329 330 331 332 333 334 335 336 337 338
	struct rbdr_entry_t *desc;

	if (!rbdr)
		return;

	rbdr->enable = false;
	if (!rbdr->dmem.base)
		return;

	head = rbdr->head;
	tail = rbdr->tail;

339
	/* Release page references */
340 341
	while (head != tail) {
		desc = GET_RBDR_DESC(rbdr, head);
342
		buf_addr = desc->buf_addr;
343 344 345 346 347
		phys_addr = nicvf_iova_to_phys(nic, buf_addr);
		dma_unmap_page_attrs(&nic->pdev->dev, buf_addr, RCV_FRAG_LEN,
				     DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
		if (phys_addr)
			put_page(virt_to_page(phys_to_virt(phys_addr)));
348 349 350
		head++;
		head &= (rbdr->dmem.q_len - 1);
	}
351
	/* Release buffer of tail desc */
352
	desc = GET_RBDR_DESC(rbdr, tail);
353
	buf_addr = desc->buf_addr;
354 355 356 357 358
	phys_addr = nicvf_iova_to_phys(nic, buf_addr);
	dma_unmap_page_attrs(&nic->pdev->dev, buf_addr, RCV_FRAG_LEN,
			     DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
	if (phys_addr)
		put_page(virt_to_page(phys_to_virt(phys_addr)));
359

360 361 362 363 364 365 366
	/* Sync page cache info */
	smp_rmb();

	/* Release additional page references held for recycling */
	head = 0;
	while (head < rbdr->pgcnt) {
		pgcache = &rbdr->pgcache[head];
367 368 369 370 371 372
		if (pgcache->page && page_ref_count(pgcache->page) != 0) {
			if (!rbdr->is_xdp) {
				put_page(pgcache->page);
				continue;
			}
			page_ref_sub(pgcache->page, pgcache->ref_count - 1);
373
			put_page(pgcache->page);
374
		}
375 376 377
		head++;
	}

378 379 380 381 382 383
	/* Free RBDR ring */
	nicvf_free_q_desc_mem(nic, &rbdr->dmem);
}

/* Refill receive buffer descriptors with new buffers.
 */
A
Aleksey Makarov 已提交
384
static void nicvf_refill_rbdr(struct nicvf *nic, gfp_t gfp)
385 386 387 388 389 390 391
{
	struct queue_set *qs = nic->qs;
	int rbdr_idx = qs->rbdr_cnt;
	int tail, qcount;
	int refill_rb_cnt;
	struct rbdr *rbdr;
	struct rbdr_entry_t *desc;
392
	u64 rbuf;
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
	int new_rb = 0;

refill:
	if (!rbdr_idx)
		return;
	rbdr_idx--;
	rbdr = &qs->rbdr[rbdr_idx];
	/* Check if it's enabled */
	if (!rbdr->enable)
		goto next_rbdr;

	/* Get no of desc's to be refilled */
	qcount = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, rbdr_idx);
	qcount &= 0x7FFFF;
	/* Doorbell can be ringed with a max of ring size minus 1 */
	if (qcount >= (qs->rbdr_len - 1))
		goto next_rbdr;
	else
		refill_rb_cnt = qs->rbdr_len - qcount - 1;

413 414 415
	/* Sync page cache info */
	smp_rmb();

416 417 418 419 420 421
	/* Start filling descs from tail */
	tail = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_TAIL, rbdr_idx) >> 3;
	while (refill_rb_cnt) {
		tail++;
		tail &= (rbdr->dmem.q_len - 1);

422
		if (nicvf_alloc_rcv_buffer(nic, rbdr, gfp, RCV_FRAG_LEN, &rbuf))
423 424 425
			break;

		desc = GET_RBDR_DESC(rbdr, tail);
426
		desc->buf_addr = rbuf & ~(NICVF_RCV_BUF_ALIGN_BYTES - 1);
427 428 429 430
		refill_rb_cnt--;
		new_rb++;
	}

431 432
	nicvf_get_page(nic);

433 434 435 436 437 438 439 440 441 442 443 444 445 446
	/* make sure all memory stores are done before ringing doorbell */
	smp_wmb();

	/* Check if buffer allocation failed */
	if (refill_rb_cnt)
		nic->rb_alloc_fail = true;
	else
		nic->rb_alloc_fail = false;

	/* Notify HW */
	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR,
			      rbdr_idx, new_rb);
next_rbdr:
	/* Re-enable RBDR interrupts only if buffer allocation is success */
447 448
	if (!nic->rb_alloc_fail && rbdr->enable &&
	    netif_running(nic->pnicvf->netdev))
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
		nicvf_enable_intr(nic, NICVF_INTR_RBDR, rbdr_idx);

	if (rbdr_idx)
		goto refill;
}

/* Alloc rcv buffers in non-atomic mode for better success */
void nicvf_rbdr_work(struct work_struct *work)
{
	struct nicvf *nic = container_of(work, struct nicvf, rbdr_work.work);

	nicvf_refill_rbdr(nic, GFP_KERNEL);
	if (nic->rb_alloc_fail)
		schedule_delayed_work(&nic->rbdr_work, msecs_to_jiffies(10));
	else
		nic->rb_work_scheduled = false;
}

/* In Softirq context, alloc rcv buffers in atomic mode */
void nicvf_rbdr_task(unsigned long data)
{
	struct nicvf *nic = (struct nicvf *)data;

	nicvf_refill_rbdr(nic, GFP_ATOMIC);
	if (nic->rb_alloc_fail) {
		nic->rb_work_scheduled = true;
		schedule_delayed_work(&nic->rbdr_work, msecs_to_jiffies(10));
	}
}

/* Initialize completion queue */
static int nicvf_init_cmp_queue(struct nicvf *nic,
				struct cmp_queue *cq, int q_len)
{
	int err;

	err = nicvf_alloc_q_desc_mem(nic, &cq->dmem, q_len, CMP_QUEUE_DESC_SIZE,
				     NICVF_CQ_BASE_ALIGN_BYTES);
	if (err)
		return err;

	cq->desc = cq->dmem.base;
491
	cq->thresh = pass1_silicon(nic->pdev) ? 0 : CMP_QUEUE_CQE_THRESH;
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
	nic->cq_coalesce_usecs = (CMP_QUEUE_TIMER_THRESH * 0.05) - 1;

	return 0;
}

static void nicvf_free_cmp_queue(struct nicvf *nic, struct cmp_queue *cq)
{
	if (!cq)
		return;
	if (!cq->dmem.base)
		return;

	nicvf_free_q_desc_mem(nic, &cq->dmem);
}

/* Initialize transmit queue */
static int nicvf_init_snd_queue(struct nicvf *nic,
509
				struct snd_queue *sq, int q_len, int qidx)
510 511 512 513 514 515 516 517 518
{
	int err;

	err = nicvf_alloc_q_desc_mem(nic, &sq->dmem, q_len, SND_QUEUE_DESC_SIZE,
				     NICVF_SQ_BASE_ALIGN_BYTES);
	if (err)
		return err;

	sq->desc = sq->dmem.base;
519
	sq->skbuff = kcalloc(q_len, sizeof(u64), GFP_KERNEL);
520 521
	if (!sq->skbuff)
		return -ENOMEM;
522

523 524 525 526
	sq->head = 0;
	sq->tail = 0;
	sq->thresh = SND_QUEUE_THRESH;

527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
	/* Check if this SQ is a XDP TX queue */
	if (nic->sqs_mode)
		qidx += ((nic->sqs_id + 1) * MAX_SND_QUEUES_PER_QS);
	if (qidx < nic->pnicvf->xdp_tx_queues) {
		/* Alloc memory to save page pointers for XDP_TX */
		sq->xdp_page = kcalloc(q_len, sizeof(u64), GFP_KERNEL);
		if (!sq->xdp_page)
			return -ENOMEM;
		sq->xdp_desc_cnt = 0;
		sq->xdp_free_cnt = q_len - 1;
		sq->is_xdp = true;
	} else {
		sq->xdp_page = NULL;
		sq->xdp_desc_cnt = 0;
		sq->xdp_free_cnt = 0;
		sq->is_xdp = false;

		atomic_set(&sq->free_cnt, q_len - 1);

		/* Preallocate memory for TSO segment's header */
		sq->tso_hdrs = dma_alloc_coherent(&nic->pdev->dev,
						  q_len * TSO_HEADER_SIZE,
						  &sq->tso_hdrs_phys,
						  GFP_KERNEL);
		if (!sq->tso_hdrs)
			return -ENOMEM;
	}
554 555 556 557

	return 0;
}

558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
void nicvf_unmap_sndq_buffers(struct nicvf *nic, struct snd_queue *sq,
			      int hdr_sqe, u8 subdesc_cnt)
{
	u8 idx;
	struct sq_gather_subdesc *gather;

	/* Unmap DMA mapped skb data buffers */
	for (idx = 0; idx < subdesc_cnt; idx++) {
		hdr_sqe++;
		hdr_sqe &= (sq->dmem.q_len - 1);
		gather = (struct sq_gather_subdesc *)GET_SQ_DESC(sq, hdr_sqe);
		/* HW will ensure data coherency, CPU sync not required */
		dma_unmap_page_attrs(&nic->pdev->dev, gather->addr,
				     gather->size, DMA_TO_DEVICE,
				     DMA_ATTR_SKIP_CPU_SYNC);
	}
}

576 577
static void nicvf_free_snd_queue(struct nicvf *nic, struct snd_queue *sq)
{
578
	struct sk_buff *skb;
579
	struct page *page;
580 581
	struct sq_hdr_subdesc *hdr;
	struct sq_hdr_subdesc *tso_sqe;
582

583 584 585 586 587 588
	if (!sq)
		return;
	if (!sq->dmem.base)
		return;

	if (sq->tso_hdrs)
589 590
		dma_free_coherent(&nic->pdev->dev,
				  sq->dmem.q_len * TSO_HEADER_SIZE,
591 592
				  sq->tso_hdrs, sq->tso_hdrs_phys);

593 594 595 596
	/* Free pending skbs in the queue */
	smp_rmb();
	while (sq->head != sq->tail) {
		skb = (struct sk_buff *)sq->skbuff[sq->head];
597
		if (!skb || !sq->xdp_page)
598
			goto next;
599 600 601 602 603 604 605

		page = (struct page *)sq->xdp_page[sq->head];
		if (!page)
			goto next;
		else
			put_page(page);

606 607 608 609 610 611 612 613 614 615 616 617
		hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, sq->head);
		/* Check for dummy descriptor used for HW TSO offload on 88xx */
		if (hdr->dont_send) {
			/* Get actual TSO descriptors and unmap them */
			tso_sqe =
			 (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, hdr->rsvd2);
			nicvf_unmap_sndq_buffers(nic, sq, hdr->rsvd2,
						 tso_sqe->subdesc_cnt);
		} else {
			nicvf_unmap_sndq_buffers(nic, sq, sq->head,
						 hdr->subdesc_cnt);
		}
618 619
		if (skb)
			dev_kfree_skb_any(skb);
620
next:
621 622 623
		sq->head++;
		sq->head &= (sq->dmem.q_len - 1);
	}
624
	kfree(sq->skbuff);
625
	kfree(sq->xdp_page);
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
	nicvf_free_q_desc_mem(nic, &sq->dmem);
}

static void nicvf_reclaim_snd_queue(struct nicvf *nic,
				    struct queue_set *qs, int qidx)
{
	/* Disable send queue */
	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, 0);
	/* Check if SQ is stopped */
	if (nicvf_poll_reg(nic, qidx, NIC_QSET_SQ_0_7_STATUS, 21, 1, 0x01))
		return;
	/* Reset send queue */
	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
}

static void nicvf_reclaim_rcv_queue(struct nicvf *nic,
				    struct queue_set *qs, int qidx)
{
	union nic_mbx mbx = {};

	/* Make sure all packets in the pipeline are written back into mem */
	mbx.msg.msg = NIC_MBOX_MSG_RQ_SW_SYNC;
	nicvf_send_msg_to_pf(nic, &mbx);
}

static void nicvf_reclaim_cmp_queue(struct nicvf *nic,
				    struct queue_set *qs, int qidx)
{
	/* Disable timer threshold (doesn't get reset upon CQ reset */
	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2, qidx, 0);
	/* Disable completion queue */
	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, 0);
	/* Reset completion queue */
	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
}

static void nicvf_reclaim_rbdr(struct nicvf *nic,
			       struct rbdr *rbdr, int qidx)
{
	u64 tmp, fifo_state;
	int timeout = 10;

	/* Save head and tail pointers for feeing up buffers */
	rbdr->head = nicvf_queue_reg_read(nic,
					  NIC_QSET_RBDR_0_1_HEAD,
					  qidx) >> 3;
	rbdr->tail = nicvf_queue_reg_read(nic,
					  NIC_QSET_RBDR_0_1_TAIL,
					  qidx) >> 3;

	/* If RBDR FIFO is in 'FAIL' state then do a reset first
	 * before relaiming.
	 */
	fifo_state = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, qidx);
	if (((fifo_state >> 62) & 0x03) == 0x3)
		nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
				      qidx, NICVF_RBDR_RESET);

	/* Disable RBDR */
	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0);
	if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
		return;
	while (1) {
		tmp = nicvf_queue_reg_read(nic,
					   NIC_QSET_RBDR_0_1_PREFETCH_STATUS,
					   qidx);
		if ((tmp & 0xFFFFFFFF) == ((tmp >> 32) & 0xFFFFFFFF))
			break;
		usleep_range(1000, 2000);
		timeout--;
		if (!timeout) {
			netdev_err(nic->netdev,
				   "Failed polling on prefetch status\n");
			return;
		}
	}
	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
			      qidx, NICVF_RBDR_RESET);

	if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x02))
		return;
	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0x00);
	if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
		return;
}

712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
void nicvf_config_vlan_stripping(struct nicvf *nic, netdev_features_t features)
{
	u64 rq_cfg;
	int sqs;

	rq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_RQ_GEN_CFG, 0);

	/* Enable first VLAN stripping */
	if (features & NETIF_F_HW_VLAN_CTAG_RX)
		rq_cfg |= (1ULL << 25);
	else
		rq_cfg &= ~(1ULL << 25);
	nicvf_queue_reg_write(nic, NIC_QSET_RQ_GEN_CFG, 0, rq_cfg);

	/* Configure Secondary Qsets, if any */
	for (sqs = 0; sqs < nic->sqs_count; sqs++)
		if (nic->snicvf[sqs])
			nicvf_queue_reg_write(nic->snicvf[sqs],
					      NIC_QSET_RQ_GEN_CFG, 0, rq_cfg);
}

733 734 735 736
static void nicvf_reset_rcv_queue_stats(struct nicvf *nic)
{
	union nic_mbx mbx = {};

737
	/* Reset all RQ/SQ and VF stats */
738
	mbx.reset_stat.msg = NIC_MBOX_MSG_RESET_STAT_COUNTER;
739 740
	mbx.reset_stat.rx_stat_mask = 0x3FFF;
	mbx.reset_stat.tx_stat_mask = 0x1F;
741
	mbx.reset_stat.rq_stat_mask = 0xFFFF;
742
	mbx.reset_stat.sq_stat_mask = 0xFFFF;
743 744 745
	nicvf_send_msg_to_pf(nic, &mbx);
}

746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
/* Configures receive queue */
static void nicvf_rcv_queue_config(struct nicvf *nic, struct queue_set *qs,
				   int qidx, bool enable)
{
	union nic_mbx mbx = {};
	struct rcv_queue *rq;
	struct rq_cfg rq_cfg;

	rq = &qs->rq[qidx];
	rq->enable = enable;

	/* Disable receive queue */
	nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, 0);

	if (!rq->enable) {
		nicvf_reclaim_rcv_queue(nic, qs, qidx);
		return;
	}

	rq->cq_qs = qs->vnic_id;
	rq->cq_idx = qidx;
	rq->start_rbdr_qs = qs->vnic_id;
	rq->start_qs_rbdr_idx = qs->rbdr_cnt - 1;
	rq->cont_rbdr_qs = qs->vnic_id;
	rq->cont_qs_rbdr_idx = qs->rbdr_cnt - 1;
	/* all writes of RBDR data to be loaded into L2 Cache as well*/
	rq->caching = 1;

	/* Send a mailbox msg to PF to config RQ */
	mbx.rq.msg = NIC_MBOX_MSG_RQ_CFG;
	mbx.rq.qs_num = qs->vnic_id;
	mbx.rq.rq_num = qidx;
	mbx.rq.cfg = (rq->caching << 26) | (rq->cq_qs << 19) |
			  (rq->cq_idx << 16) | (rq->cont_rbdr_qs << 9) |
			  (rq->cont_qs_rbdr_idx << 8) |
			  (rq->start_rbdr_qs << 1) | (rq->start_qs_rbdr_idx);
	nicvf_send_msg_to_pf(nic, &mbx);

	mbx.rq.msg = NIC_MBOX_MSG_RQ_BP_CFG;
785 786 787
	mbx.rq.cfg = BIT_ULL(63) | BIT_ULL(62) |
		     (RQ_PASS_RBDR_LVL << 16) | (RQ_PASS_CQ_LVL << 8) |
		     (qs->vnic_id << 0);
788 789 790 791 792 793
	nicvf_send_msg_to_pf(nic, &mbx);

	/* RQ drop config
	 * Enable CQ drop to reserve sufficient CQEs for all tx packets
	 */
	mbx.rq.msg = NIC_MBOX_MSG_RQ_DROP_CFG;
794 795 796
	mbx.rq.cfg = BIT_ULL(63) | BIT_ULL(62) |
		     (RQ_PASS_RBDR_LVL << 40) | (RQ_DROP_RBDR_LVL << 32) |
		     (RQ_PASS_CQ_LVL << 16) | (RQ_DROP_CQ_LVL << 8);
797 798
	nicvf_send_msg_to_pf(nic, &mbx);

799
	if (!nic->sqs_mode && (qidx == 0)) {
800 801 802
		/* Enable checking L3/L4 length and TCP/UDP checksums
		 * Also allow IPv6 pkts with zero UDP checksum.
		 */
803
		nicvf_queue_reg_write(nic, NIC_QSET_RQ_GEN_CFG, 0,
804
				      (BIT(24) | BIT(23) | BIT(21) | BIT(20)));
805
		nicvf_config_vlan_stripping(nic, nic->netdev->features);
806
	}
807 808

	/* Enable Receive queue */
809
	memset(&rq_cfg, 0, sizeof(struct rq_cfg));
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
	rq_cfg.ena = 1;
	rq_cfg.tcp_ena = 0;
	nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, *(u64 *)&rq_cfg);
}

/* Configures completion queue */
void nicvf_cmp_queue_config(struct nicvf *nic, struct queue_set *qs,
			    int qidx, bool enable)
{
	struct cmp_queue *cq;
	struct cq_cfg cq_cfg;

	cq = &qs->cq[qidx];
	cq->enable = enable;

	if (!cq->enable) {
		nicvf_reclaim_cmp_queue(nic, qs, qidx);
		return;
	}

	/* Reset completion queue */
	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);

	if (!cq->enable)
		return;

	spin_lock_init(&cq->lock);
	/* Set completion queue base address */
	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_BASE,
			      qidx, (u64)(cq->dmem.phys_base));

	/* Enable Completion queue */
842
	memset(&cq_cfg, 0, sizeof(struct cq_cfg));
843 844 845
	cq_cfg.ena = 1;
	cq_cfg.reset = 0;
	cq_cfg.caching = 0;
846
	cq_cfg.qsize = ilog2(qs->cq_len >> 10);
847 848 849 850 851 852
	cq_cfg.avg_con = 0;
	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, *(u64 *)&cq_cfg);

	/* Set threshold value for interrupt generation */
	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_THRESH, qidx, cq->thresh);
	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2,
853
			      qidx, CMP_QUEUE_TIMER_THRESH);
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
}

/* Configures transmit queue */
static void nicvf_snd_queue_config(struct nicvf *nic, struct queue_set *qs,
				   int qidx, bool enable)
{
	union nic_mbx mbx = {};
	struct snd_queue *sq;
	struct sq_cfg sq_cfg;

	sq = &qs->sq[qidx];
	sq->enable = enable;

	if (!sq->enable) {
		nicvf_reclaim_snd_queue(nic, qs, qidx);
		return;
	}

	/* Reset send queue */
	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);

	sq->cq_qs = qs->vnic_id;
	sq->cq_idx = qidx;

	/* Send a mailbox msg to PF to config SQ */
	mbx.sq.msg = NIC_MBOX_MSG_SQ_CFG;
	mbx.sq.qs_num = qs->vnic_id;
	mbx.sq.sq_num = qidx;
882
	mbx.sq.sqs_mode = nic->sqs_mode;
883 884 885 886 887 888 889 890
	mbx.sq.cfg = (sq->cq_qs << 3) | sq->cq_idx;
	nicvf_send_msg_to_pf(nic, &mbx);

	/* Set queue base address */
	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_BASE,
			      qidx, (u64)(sq->dmem.phys_base));

	/* Enable send queue  & set queue size */
891
	memset(&sq_cfg, 0, sizeof(struct sq_cfg));
892 893 894
	sq_cfg.ena = 1;
	sq_cfg.reset = 0;
	sq_cfg.ldwb = 0;
895
	sq_cfg.qsize = ilog2(qs->sq_len >> 10);
896
	sq_cfg.tstmp_bgx_intf = 0;
897 898 899 900
	/* CQ's level at which HW will stop processing SQEs to avoid
	 * transmitting a pkt with no space in CQ to post CQE_TX.
	 */
	sq_cfg.cq_limit = (CMP_QUEUE_PIPELINE_RSVD * 256) / qs->cq_len;
901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, *(u64 *)&sq_cfg);

	/* Set threshold value for interrupt generation */
	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_THRESH, qidx, sq->thresh);

	/* Set queue:cpu affinity for better load distribution */
	if (cpu_online(qidx)) {
		cpumask_set_cpu(qidx, &sq->affinity_mask);
		netif_set_xps_queue(nic->netdev,
				    &sq->affinity_mask, qidx);
	}
}

/* Configures receive buffer descriptor ring */
static void nicvf_rbdr_config(struct nicvf *nic, struct queue_set *qs,
			      int qidx, bool enable)
{
	struct rbdr *rbdr;
	struct rbdr_cfg rbdr_cfg;

	rbdr = &qs->rbdr[qidx];
	nicvf_reclaim_rbdr(nic, rbdr, qidx);
	if (!enable)
		return;

	/* Set descriptor base address */
	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_BASE,
			      qidx, (u64)(rbdr->dmem.phys_base));

	/* Enable RBDR  & set queue size */
	/* Buffer size should be in multiples of 128 bytes */
932
	memset(&rbdr_cfg, 0, sizeof(struct rbdr_cfg));
933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
	rbdr_cfg.ena = 1;
	rbdr_cfg.reset = 0;
	rbdr_cfg.ldwb = 0;
	rbdr_cfg.qsize = RBDR_SIZE;
	rbdr_cfg.avg_con = 0;
	rbdr_cfg.lines = rbdr->dma_size / 128;
	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
			      qidx, *(u64 *)&rbdr_cfg);

	/* Notify HW */
	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR,
			      qidx, qs->rbdr_len - 1);

	/* Set threshold value for interrupt generation */
	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_THRESH,
			      qidx, rbdr->thresh - 1);
}

/* Requests PF to assign and enable Qset */
void nicvf_qset_config(struct nicvf *nic, bool enable)
{
	union nic_mbx mbx = {};
	struct queue_set *qs = nic->qs;
	struct qs_cfg *qs_cfg;

	if (!qs) {
		netdev_warn(nic->netdev,
			    "Qset is still not allocated, don't init queues\n");
		return;
	}

	qs->enable = enable;
	qs->vnic_id = nic->vf_id;

	/* Send a mailbox msg to PF to config Qset */
	mbx.qs.msg = NIC_MBOX_MSG_QS_CFG;
	mbx.qs.num = qs->vnic_id;
970
	mbx.qs.sqs_count = nic->sqs_count;
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015

	mbx.qs.cfg = 0;
	qs_cfg = (struct qs_cfg *)&mbx.qs.cfg;
	if (qs->enable) {
		qs_cfg->ena = 1;
#ifdef __BIG_ENDIAN
		qs_cfg->be = 1;
#endif
		qs_cfg->vnic = qs->vnic_id;
	}
	nicvf_send_msg_to_pf(nic, &mbx);
}

static void nicvf_free_resources(struct nicvf *nic)
{
	int qidx;
	struct queue_set *qs = nic->qs;

	/* Free receive buffer descriptor ring */
	for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
		nicvf_free_rbdr(nic, &qs->rbdr[qidx]);

	/* Free completion queue */
	for (qidx = 0; qidx < qs->cq_cnt; qidx++)
		nicvf_free_cmp_queue(nic, &qs->cq[qidx]);

	/* Free send queue */
	for (qidx = 0; qidx < qs->sq_cnt; qidx++)
		nicvf_free_snd_queue(nic, &qs->sq[qidx]);
}

static int nicvf_alloc_resources(struct nicvf *nic)
{
	int qidx;
	struct queue_set *qs = nic->qs;

	/* Alloc receive buffer descriptor ring */
	for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) {
		if (nicvf_init_rbdr(nic, &qs->rbdr[qidx], qs->rbdr_len,
				    DMA_BUFFER_LEN))
			goto alloc_fail;
	}

	/* Alloc send queue */
	for (qidx = 0; qidx < qs->sq_cnt; qidx++) {
1016
		if (nicvf_init_snd_queue(nic, &qs->sq[qidx], qs->sq_len, qidx))
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
			goto alloc_fail;
	}

	/* Alloc completion queue */
	for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
		if (nicvf_init_cmp_queue(nic, &qs->cq[qidx], qs->cq_len))
			goto alloc_fail;
	}

	return 0;
alloc_fail:
	nicvf_free_resources(nic);
	return -ENOMEM;
}

int nicvf_set_qset_resources(struct nicvf *nic)
{
	struct queue_set *qs;

	qs = devm_kzalloc(&nic->pdev->dev, sizeof(*qs), GFP_KERNEL);
	if (!qs)
		return -ENOMEM;
	nic->qs = qs;

	/* Set count of each queue */
1042 1043 1044 1045
	qs->rbdr_cnt = DEFAULT_RBDR_CNT;
	qs->rq_cnt = min_t(u8, MAX_RCV_QUEUES_PER_QS, num_online_cpus());
	qs->sq_cnt = min_t(u8, MAX_SND_QUEUES_PER_QS, num_online_cpus());
	qs->cq_cnt = max_t(u8, qs->rq_cnt, qs->sq_cnt);
1046 1047 1048 1049 1050

	/* Set queue lengths */
	qs->rbdr_len = RCV_BUF_COUNT;
	qs->sq_len = SND_QUEUE_LEN;
	qs->cq_len = CMP_QUEUE_LEN;
1051 1052 1053

	nic->rx_queues = qs->rq_cnt;
	nic->tx_queues = qs->sq_cnt;
1054
	nic->xdp_tx_queues = 0;
1055

1056 1057 1058 1059 1060 1061 1062
	return 0;
}

int nicvf_config_data_transfer(struct nicvf *nic, bool enable)
{
	bool disable = false;
	struct queue_set *qs = nic->qs;
1063
	struct queue_set *pqs = nic->pnicvf->qs;
1064 1065 1066 1067 1068
	int qidx;

	if (!qs)
		return 0;

1069 1070 1071 1072 1073 1074 1075 1076 1077
	/* Take primary VF's queue lengths.
	 * This is needed to take queue lengths set from ethtool
	 * into consideration.
	 */
	if (nic->sqs_mode && pqs) {
		qs->cq_len = pqs->cq_len;
		qs->sq_len = pqs->sq_len;
	}

1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
	if (enable) {
		if (nicvf_alloc_resources(nic))
			return -ENOMEM;

		for (qidx = 0; qidx < qs->sq_cnt; qidx++)
			nicvf_snd_queue_config(nic, qs, qidx, enable);
		for (qidx = 0; qidx < qs->cq_cnt; qidx++)
			nicvf_cmp_queue_config(nic, qs, qidx, enable);
		for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
			nicvf_rbdr_config(nic, qs, qidx, enable);
		for (qidx = 0; qidx < qs->rq_cnt; qidx++)
			nicvf_rcv_queue_config(nic, qs, qidx, enable);
	} else {
		for (qidx = 0; qidx < qs->rq_cnt; qidx++)
			nicvf_rcv_queue_config(nic, qs, qidx, disable);
		for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
			nicvf_rbdr_config(nic, qs, qidx, disable);
		for (qidx = 0; qidx < qs->sq_cnt; qidx++)
			nicvf_snd_queue_config(nic, qs, qidx, disable);
		for (qidx = 0; qidx < qs->cq_cnt; qidx++)
			nicvf_cmp_queue_config(nic, qs, qidx, disable);

		nicvf_free_resources(nic);
	}

1103 1104 1105 1106 1107
	/* Reset RXQ's stats.
	 * SQ's stats will get reset automatically once SQ is reset.
	 */
	nicvf_reset_rcv_queue_stats(nic);

1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
	return 0;
}

/* Get a free desc from SQ
 * returns descriptor ponter & descriptor number
 */
static inline int nicvf_get_sq_desc(struct snd_queue *sq, int desc_cnt)
{
	int qentry;

	qentry = sq->tail;
1119 1120 1121 1122
	if (!sq->is_xdp)
		atomic_sub(desc_cnt, &sq->free_cnt);
	else
		sq->xdp_free_cnt -= desc_cnt;
1123 1124 1125 1126 1127 1128
	sq->tail += desc_cnt;
	sq->tail &= (sq->dmem.q_len - 1);

	return qentry;
}

1129 1130 1131 1132 1133 1134 1135 1136
/* Rollback to previous tail pointer when descriptors not used */
static inline void nicvf_rollback_sq_desc(struct snd_queue *sq,
					  int qentry, int desc_cnt)
{
	sq->tail = qentry;
	atomic_add(desc_cnt, &sq->free_cnt);
}

1137 1138 1139
/* Free descriptor back to SQ for future use */
void nicvf_put_sq_desc(struct snd_queue *sq, int desc_cnt)
{
1140 1141 1142 1143
	if (!sq->is_xdp)
		atomic_add(desc_cnt, &sq->free_cnt);
	else
		sq->xdp_free_cnt += desc_cnt;
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
	sq->head += desc_cnt;
	sq->head &= (sq->dmem.q_len - 1);
}

static inline int nicvf_get_nxt_sqentry(struct snd_queue *sq, int qentry)
{
	qentry++;
	qentry &= (sq->dmem.q_len - 1);
	return qentry;
}

void nicvf_sq_enable(struct nicvf *nic, struct snd_queue *sq, int qidx)
{
	u64 sq_cfg;

	sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
	sq_cfg |= NICVF_SQ_EN;
	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
	/* Ring doorbell so that H/W restarts processing SQEs */
	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR, qidx, 0);
}

void nicvf_sq_disable(struct nicvf *nic, int qidx)
{
	u64 sq_cfg;

	sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
	sq_cfg &= ~NICVF_SQ_EN;
	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
}

void nicvf_sq_free_used_descs(struct net_device *netdev, struct snd_queue *sq,
			      int qidx)
{
	u64 head, tail;
	struct sk_buff *skb;
	struct nicvf *nic = netdev_priv(netdev);
	struct sq_hdr_subdesc *hdr;

	head = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_HEAD, qidx) >> 4;
	tail = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_TAIL, qidx) >> 4;
	while (sq->head != head) {
		hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, sq->head);
		if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER) {
			nicvf_put_sq_desc(sq, 1);
			continue;
		}
		skb = (struct sk_buff *)sq->skbuff[sq->head];
1192 1193
		if (skb)
			dev_kfree_skb_any(skb);
1194 1195 1196 1197 1198 1199 1200
		atomic64_add(1, (atomic64_t *)&netdev->stats.tx_packets);
		atomic64_add(hdr->tot_len,
			     (atomic64_t *)&netdev->stats.tx_bytes);
		nicvf_put_sq_desc(sq, hdr->subdesc_cnt + 1);
	}
}

1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
/* XDP Transmit APIs */
void nicvf_xdp_sq_doorbell(struct nicvf *nic,
			   struct snd_queue *sq, int sq_num)
{
	if (!sq->xdp_desc_cnt)
		return;

	/* make sure all memory stores are done before ringing doorbell */
	wmb();

	/* Inform HW to xmit all TSO segments */
	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR,
			      sq_num, sq->xdp_desc_cnt);
	sq->xdp_desc_cnt = 0;
}

static inline void
nicvf_xdp_sq_add_hdr_subdesc(struct snd_queue *sq, int qentry,
			     int subdesc_cnt, u64 data, int len)
{
	struct sq_hdr_subdesc *hdr;

	hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
	memset(hdr, 0, SND_QUEUE_DESC_SIZE);
	hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
	hdr->subdesc_cnt = subdesc_cnt;
	hdr->tot_len = len;
	hdr->post_cqe = 1;
	sq->xdp_page[qentry] = (u64)virt_to_page((void *)data);
}

int nicvf_xdp_sq_append_pkt(struct nicvf *nic, struct snd_queue *sq,
			    u64 bufaddr, u64 dma_addr, u16 len)
{
	int subdesc_cnt = MIN_SQ_DESC_PER_PKT_XMIT;
	int qentry;

	if (subdesc_cnt > sq->xdp_free_cnt)
		return 0;

	qentry = nicvf_get_sq_desc(sq, subdesc_cnt);

	nicvf_xdp_sq_add_hdr_subdesc(sq, qentry, subdesc_cnt - 1, bufaddr, len);

	qentry = nicvf_get_nxt_sqentry(sq, qentry);
	nicvf_sq_add_gather_subdesc(sq, qentry, len, dma_addr);

	sq->xdp_desc_cnt += subdesc_cnt;

	return 1;
}

1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
/* Calculate no of SQ subdescriptors needed to transmit all
 * segments of this TSO packet.
 * Taken from 'Tilera network driver' with a minor modification.
 */
static int nicvf_tso_count_subdescs(struct sk_buff *skb)
{
	struct skb_shared_info *sh = skb_shinfo(skb);
	unsigned int sh_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
	unsigned int data_len = skb->len - sh_len;
	unsigned int p_len = sh->gso_size;
	long f_id = -1;    /* id of the current fragment */
	long f_size = skb_headlen(skb) - sh_len;  /* current fragment size */
	long f_used = 0;  /* bytes used from the current fragment */
	long n;            /* size of the current piece of payload */
	int num_edescs = 0;
	int segment;

	for (segment = 0; segment < sh->gso_segs; segment++) {
		unsigned int p_used = 0;

		/* One edesc for header and for each piece of the payload. */
		for (num_edescs++; p_used < p_len; num_edescs++) {
			/* Advance as needed. */
			while (f_used >= f_size) {
				f_id++;
				f_size = skb_frag_size(&sh->frags[f_id]);
				f_used = 0;
			}

			/* Use bytes from the current fragment. */
			n = p_len - p_used;
			if (n > f_size - f_used)
				n = f_size - f_used;
			f_used += n;
			p_used += n;
		}

		/* The last segment may be less than gso_size. */
		data_len -= p_len;
		if (data_len < p_len)
			p_len = data_len;
	}

	/* '+ gso_segs' for SQ_HDR_SUDESCs for each segment */
	return num_edescs + sh->gso_segs;
}

1300 1301
#define POST_CQE_DESC_COUNT 2

1302 1303 1304 1305 1306
/* Get the number of SQ descriptors needed to xmit this skb */
static int nicvf_sq_subdesc_required(struct nicvf *nic, struct sk_buff *skb)
{
	int subdesc_cnt = MIN_SQ_DESC_PER_PKT_XMIT;

1307
	if (skb_shinfo(skb)->gso_size && !nic->hw_tso) {
1308 1309 1310 1311
		subdesc_cnt = nicvf_tso_count_subdescs(skb);
		return subdesc_cnt;
	}

1312 1313 1314 1315
	/* Dummy descriptors to get TSO pkt completion notification */
	if (nic->t88 && nic->hw_tso && skb_shinfo(skb)->gso_size)
		subdesc_cnt += POST_CQE_DESC_COUNT;

1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
	if (skb_shinfo(skb)->nr_frags)
		subdesc_cnt += skb_shinfo(skb)->nr_frags;

	return subdesc_cnt;
}

/* Add SQ HEADER subdescriptor.
 * First subdescriptor for every send descriptor.
 */
static inline void
1326
nicvf_sq_add_hdr_subdesc(struct nicvf *nic, struct snd_queue *sq, int qentry,
1327 1328 1329 1330
			 int subdesc_cnt, struct sk_buff *skb, int len)
{
	int proto;
	struct sq_hdr_subdesc *hdr;
1331 1332 1333 1334 1335
	union {
		struct iphdr *v4;
		struct ipv6hdr *v6;
		unsigned char *hdr;
	} ip;
1336

1337
	ip.hdr = skb_network_header(skb);
1338 1339 1340
	hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
	memset(hdr, 0, SND_QUEUE_DESC_SIZE);
	hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353

	if (nic->t88 && nic->hw_tso && skb_shinfo(skb)->gso_size) {
		/* post_cqe = 0, to avoid HW posting a CQE for every TSO
		 * segment transmitted on 88xx.
		 */
		hdr->subdesc_cnt = subdesc_cnt - POST_CQE_DESC_COUNT;
	} else {
		sq->skbuff[qentry] = (u64)skb;
		/* Enable notification via CQE after processing SQE */
		hdr->post_cqe = 1;
		/* No of subdescriptors following this */
		hdr->subdesc_cnt = subdesc_cnt;
	}
1354 1355 1356 1357 1358 1359 1360
	hdr->tot_len = len;

	/* Offload checksum calculation to HW */
	if (skb->ip_summed == CHECKSUM_PARTIAL) {
		hdr->l3_offset = skb_network_offset(skb);
		hdr->l4_offset = skb_transport_offset(skb);

1361 1362 1363
		proto = (ip.v4->version == 4) ? ip.v4->protocol :
			ip.v6->nexthdr;

1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
		switch (proto) {
		case IPPROTO_TCP:
			hdr->csum_l4 = SEND_L4_CSUM_TCP;
			break;
		case IPPROTO_UDP:
			hdr->csum_l4 = SEND_L4_CSUM_UDP;
			break;
		case IPPROTO_SCTP:
			hdr->csum_l4 = SEND_L4_CSUM_SCTP;
			break;
		}
	}
1376 1377 1378 1379 1380 1381 1382

	if (nic->hw_tso && skb_shinfo(skb)->gso_size) {
		hdr->tso = 1;
		hdr->tso_start = skb_transport_offset(skb) + tcp_hdrlen(skb);
		hdr->tso_max_paysize = skb_shinfo(skb)->gso_size;
		/* For non-tunneled pkts, point this to L2 ethertype */
		hdr->inner_l3_offset = skb_network_offset(skb) - 2;
1383
		this_cpu_inc(nic->pnicvf->drv_stats->tx_tso);
1384
	}
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
}

/* SQ GATHER subdescriptor
 * Must follow HDR descriptor
 */
static inline void nicvf_sq_add_gather_subdesc(struct snd_queue *sq, int qentry,
					       int size, u64 data)
{
	struct sq_gather_subdesc *gather;

	qentry &= (sq->dmem.q_len - 1);
	gather = (struct sq_gather_subdesc *)GET_SQ_DESC(sq, qentry);

	memset(gather, 0, SND_QUEUE_DESC_SIZE);
	gather->subdesc_type = SQ_DESC_TYPE_GATHER;
1400
	gather->ld_type = NIC_SEND_LD_TYPE_E_LDD;
1401 1402 1403 1404
	gather->size = size;
	gather->addr = data;
}

1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
/* Add HDR + IMMEDIATE subdescriptors right after descriptors of a TSO
 * packet so that a CQE is posted as a notifation for transmission of
 * TSO packet.
 */
static inline void nicvf_sq_add_cqe_subdesc(struct snd_queue *sq, int qentry,
					    int tso_sqe, struct sk_buff *skb)
{
	struct sq_imm_subdesc *imm;
	struct sq_hdr_subdesc *hdr;

	sq->skbuff[qentry] = (u64)skb;

	hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
	memset(hdr, 0, SND_QUEUE_DESC_SIZE);
	hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
	/* Enable notification via CQE after processing SQE */
	hdr->post_cqe = 1;
	/* There is no packet to transmit here */
	hdr->dont_send = 1;
	hdr->subdesc_cnt = POST_CQE_DESC_COUNT - 1;
	hdr->tot_len = 1;
	/* Actual TSO header SQE index, needed for cleanup */
	hdr->rsvd2 = tso_sqe;

	qentry = nicvf_get_nxt_sqentry(sq, qentry);
	imm = (struct sq_imm_subdesc *)GET_SQ_DESC(sq, qentry);
	memset(imm, 0, SND_QUEUE_DESC_SIZE);
	imm->subdesc_type = SQ_DESC_TYPE_IMMEDIATE;
	imm->len = 1;
}

1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
static inline void nicvf_sq_doorbell(struct nicvf *nic, struct sk_buff *skb,
				     int sq_num, int desc_cnt)
{
	struct netdev_queue *txq;

	txq = netdev_get_tx_queue(nic->pnicvf->netdev,
				  skb_get_queue_mapping(skb));

	netdev_tx_sent_queue(txq, skb->len);

	/* make sure all memory stores are done before ringing doorbell */
	smp_wmb();

	/* Inform HW to xmit all TSO segments */
	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR,
			      sq_num, desc_cnt);
}

1454 1455 1456 1457
/* Segment a TSO packet into 'gso_size' segments and append
 * them to SQ for transfer
 */
static int nicvf_sq_append_tso(struct nicvf *nic, struct snd_queue *sq,
1458
			       int sq_num, int qentry, struct sk_buff *skb)
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
{
	struct tso_t tso;
	int seg_subdescs = 0, desc_cnt = 0;
	int seg_len, total_len, data_left;
	int hdr_qentry = qentry;
	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);

	tso_start(skb, &tso);
	total_len = skb->len - hdr_len;
	while (total_len > 0) {
		char *hdr;

		/* Save Qentry for adding HDR_SUBDESC at the end */
		hdr_qentry = qentry;

		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
		total_len -= data_left;

		/* Add segment's header */
		qentry = nicvf_get_nxt_sqentry(sq, qentry);
		hdr = sq->tso_hdrs + qentry * TSO_HEADER_SIZE;
		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
		nicvf_sq_add_gather_subdesc(sq, qentry, hdr_len,
					    sq->tso_hdrs_phys +
					    qentry * TSO_HEADER_SIZE);
		/* HDR_SUDESC + GATHER */
		seg_subdescs = 2;
		seg_len = hdr_len;

		/* Add segment's payload fragments */
		while (data_left > 0) {
			int size;

			size = min_t(int, tso.size, data_left);

			qentry = nicvf_get_nxt_sqentry(sq, qentry);
			nicvf_sq_add_gather_subdesc(sq, qentry, size,
						    virt_to_phys(tso.data));
			seg_subdescs++;
			seg_len += size;

			data_left -= size;
			tso_build_data(skb, &tso, size);
		}
1503
		nicvf_sq_add_hdr_subdesc(nic, sq, hdr_qentry,
1504
					 seg_subdescs - 1, skb, seg_len);
1505
		sq->skbuff[hdr_qentry] = (u64)NULL;
1506 1507 1508 1509 1510 1511 1512
		qentry = nicvf_get_nxt_sqentry(sq, qentry);

		desc_cnt += seg_subdescs;
	}
	/* Save SKB in the last segment for freeing */
	sq->skbuff[hdr_qentry] = (u64)skb;

1513
	nicvf_sq_doorbell(nic, skb, sq_num, desc_cnt);
1514

1515
	this_cpu_inc(nic->pnicvf->drv_stats->tx_tso);
1516 1517 1518 1519
	return 1;
}

/* Append an skb to a SQ for packet transfer. */
1520 1521
int nicvf_sq_append_skb(struct nicvf *nic, struct snd_queue *sq,
			struct sk_buff *skb, u8 sq_num)
1522 1523
{
	int i, size;
1524
	int subdesc_cnt, hdr_sqe = 0;
1525
	int qentry;
1526
	u64 dma_addr;
1527 1528 1529 1530 1531 1532 1533 1534

	subdesc_cnt = nicvf_sq_subdesc_required(nic, skb);
	if (subdesc_cnt > atomic_read(&sq->free_cnt))
		goto append_fail;

	qentry = nicvf_get_sq_desc(sq, subdesc_cnt);

	/* Check if its a TSO packet */
1535
	if (skb_shinfo(skb)->gso_size && !nic->hw_tso)
1536
		return nicvf_sq_append_tso(nic, sq, sq_num, qentry, skb);
1537 1538

	/* Add SQ header subdesc */
1539 1540
	nicvf_sq_add_hdr_subdesc(nic, sq, qentry, subdesc_cnt - 1,
				 skb, skb->len);
1541
	hdr_sqe = qentry;
1542 1543 1544 1545

	/* Add SQ gather subdescs */
	qentry = nicvf_get_nxt_sqentry(sq, qentry);
	size = skb_is_nonlinear(skb) ? skb_headlen(skb) : skb->len;
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
	/* HW will ensure data coherency, CPU sync not required */
	dma_addr = dma_map_page_attrs(&nic->pdev->dev, virt_to_page(skb->data),
				      offset_in_page(skb->data), size,
				      DMA_TO_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
	if (dma_mapping_error(&nic->pdev->dev, dma_addr)) {
		nicvf_rollback_sq_desc(sq, qentry, subdesc_cnt);
		return 0;
	}

	nicvf_sq_add_gather_subdesc(sq, qentry, size, dma_addr);
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567

	/* Check for scattered buffer */
	if (!skb_is_nonlinear(skb))
		goto doorbell;

	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
		const struct skb_frag_struct *frag;

		frag = &skb_shinfo(skb)->frags[i];

		qentry = nicvf_get_nxt_sqentry(sq, qentry);
		size = skb_frag_size(frag);
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
		dma_addr = dma_map_page_attrs(&nic->pdev->dev,
					      skb_frag_page(frag),
					      frag->page_offset, size,
					      DMA_TO_DEVICE,
					      DMA_ATTR_SKIP_CPU_SYNC);
		if (dma_mapping_error(&nic->pdev->dev, dma_addr)) {
			/* Free entire chain of mapped buffers
			 * here 'i' = frags mapped + above mapped skb->data
			 */
			nicvf_unmap_sndq_buffers(nic, sq, hdr_sqe, i);
			nicvf_rollback_sq_desc(sq, qentry, subdesc_cnt);
			return 0;
		}
		nicvf_sq_add_gather_subdesc(sq, qentry, size, dma_addr);
1582 1583 1584
	}

doorbell:
1585 1586
	if (nic->t88 && skb_shinfo(skb)->gso_size) {
		qentry = nicvf_get_nxt_sqentry(sq, qentry);
1587
		nicvf_sq_add_cqe_subdesc(sq, qentry, hdr_sqe, skb);
1588 1589
	}

1590
	nicvf_sq_doorbell(nic, skb, sq_num, subdesc_cnt);
1591 1592 1593 1594

	return 1;

append_fail:
1595 1596
	/* Use original PCI dev for debug log */
	nic = nic->pnicvf;
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
	netdev_dbg(nic->netdev, "Not enough SQ descriptors to xmit pkt\n");
	return 0;
}

static inline unsigned frag_num(unsigned i)
{
#ifdef __BIG_ENDIAN
	return (i & ~3) + 3 - (i & 3);
#else
	return i;
#endif
}

1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
static void nicvf_unmap_rcv_buffer(struct nicvf *nic, u64 dma_addr,
				   u64 buf_addr, bool xdp)
{
	struct page *page = NULL;
	int len = RCV_FRAG_LEN;

	if (xdp) {
		page = virt_to_page(phys_to_virt(buf_addr));
		/* Check if it's a recycled page, if not
		 * unmap the DMA mapping.
		 *
		 * Recycled page holds an extra reference.
		 */
		if (page_ref_count(page) != 1)
			return;
1625 1626

		len += XDP_PACKET_HEADROOM;
1627 1628 1629 1630 1631 1632 1633
		/* Receive buffers in XDP mode are mapped from page start */
		dma_addr &= PAGE_MASK;
	}
	dma_unmap_page_attrs(&nic->pdev->dev, dma_addr, len,
			     DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
}

1634
/* Returns SKB for a received packet */
1635 1636
struct sk_buff *nicvf_get_rcv_skb(struct nicvf *nic,
				  struct cqe_rx_t *cqe_rx, bool xdp)
1637 1638 1639 1640
{
	int frag;
	int payload_len = 0;
	struct sk_buff *skb = NULL;
1641 1642
	struct page *page;
	int offset;
1643 1644
	u16 *rb_lens = NULL;
	u64 *rb_ptrs = NULL;
1645
	u64 phys_addr;
1646 1647

	rb_lens = (void *)cqe_rx + (3 * sizeof(u64));
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
	/* Except 88xx pass1 on all other chips CQE_RX2_S is added to
	 * CQE_RX at word6, hence buffer pointers move by word
	 *
	 * Use existing 'hw_tso' flag which will be set for all chips
	 * except 88xx pass1 instead of a additional cache line
	 * access (or miss) by using pci dev's revision.
	 */
	if (!nic->hw_tso)
		rb_ptrs = (void *)cqe_rx + (6 * sizeof(u64));
	else
		rb_ptrs = (void *)cqe_rx + (7 * sizeof(u64));
1659 1660 1661

	for (frag = 0; frag < cqe_rx->rb_cnt; frag++) {
		payload_len = rb_lens[frag_num(frag)];
1662 1663 1664 1665 1666 1667 1668
		phys_addr = nicvf_iova_to_phys(nic, *rb_ptrs);
		if (!phys_addr) {
			if (skb)
				dev_kfree_skb_any(skb);
			return NULL;
		}

1669 1670
		if (!frag) {
			/* First fragment */
1671 1672 1673
			nicvf_unmap_rcv_buffer(nic,
					       *rb_ptrs - cqe_rx->align_pad,
					       phys_addr, xdp);
1674
			skb = nicvf_rb_ptr_to_skb(nic,
1675
						  phys_addr - cqe_rx->align_pad,
1676 1677 1678 1679 1680 1681 1682
						  payload_len);
			if (!skb)
				return NULL;
			skb_reserve(skb, cqe_rx->align_pad);
			skb_put(skb, payload_len);
		} else {
			/* Add fragments */
1683
			nicvf_unmap_rcv_buffer(nic, *rb_ptrs, phys_addr, xdp);
1684 1685
			page = virt_to_page(phys_to_virt(phys_addr));
			offset = phys_to_virt(phys_addr) - page_address(page);
1686 1687
			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
					offset, payload_len, RCV_FRAG_LEN);
1688 1689 1690 1691 1692 1693 1694
		}
		/* Next buffer pointer */
		rb_ptrs++;
	}
	return skb;
}

1695
static u64 nicvf_int_type_to_mask(int int_type, int q_idx)
1696 1697 1698 1699 1700
{
	u64 reg_val;

	switch (int_type) {
	case NICVF_INTR_CQ:
1701
		reg_val = ((1ULL << q_idx) << NICVF_INTR_CQ_SHIFT);
1702 1703
		break;
	case NICVF_INTR_SQ:
1704
		reg_val = ((1ULL << q_idx) << NICVF_INTR_SQ_SHIFT);
1705 1706
		break;
	case NICVF_INTR_RBDR:
1707
		reg_val = ((1ULL << q_idx) << NICVF_INTR_RBDR_SHIFT);
1708 1709
		break;
	case NICVF_INTR_PKT_DROP:
1710
		reg_val = (1ULL << NICVF_INTR_PKT_DROP_SHIFT);
1711 1712
		break;
	case NICVF_INTR_TCP_TIMER:
1713
		reg_val = (1ULL << NICVF_INTR_TCP_TIMER_SHIFT);
1714 1715
		break;
	case NICVF_INTR_MBOX:
1716
		reg_val = (1ULL << NICVF_INTR_MBOX_SHIFT);
1717 1718
		break;
	case NICVF_INTR_QS_ERR:
1719
		reg_val = (1ULL << NICVF_INTR_QS_ERR_SHIFT);
1720 1721
		break;
	default:
1722
		reg_val = 0;
1723 1724
	}

1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
	return reg_val;
}

/* Enable interrupt */
void nicvf_enable_intr(struct nicvf *nic, int int_type, int q_idx)
{
	u64 mask = nicvf_int_type_to_mask(int_type, q_idx);

	if (!mask) {
		netdev_dbg(nic->netdev,
			   "Failed to enable interrupt: unknown type\n");
		return;
	}
	nicvf_reg_write(nic, NIC_VF_ENA_W1S,
			nicvf_reg_read(nic, NIC_VF_ENA_W1S) | mask);
1740 1741 1742 1743 1744
}

/* Disable interrupt */
void nicvf_disable_intr(struct nicvf *nic, int int_type, int q_idx)
{
1745
	u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
1746

1747 1748
	if (!mask) {
		netdev_dbg(nic->netdev,
1749
			   "Failed to disable interrupt: unknown type\n");
1750
		return;
1751 1752
	}

1753
	nicvf_reg_write(nic, NIC_VF_ENA_W1C, mask);
1754 1755 1756 1757 1758
}

/* Clear interrupt */
void nicvf_clear_intr(struct nicvf *nic, int int_type, int q_idx)
{
1759
	u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
1760

1761 1762
	if (!mask) {
		netdev_dbg(nic->netdev,
1763
			   "Failed to clear interrupt: unknown type\n");
1764
		return;
1765 1766
	}

1767
	nicvf_reg_write(nic, NIC_VF_INT, mask);
1768 1769 1770 1771 1772
}

/* Check if interrupt is enabled */
int nicvf_is_intr_enabled(struct nicvf *nic, int int_type, int q_idx)
{
1773 1774 1775 1776
	u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
	/* If interrupt type is unknown, we treat it disabled. */
	if (!mask) {
		netdev_dbg(nic->netdev,
1777
			   "Failed to check interrupt enable: unknown type\n");
1778
		return 0;
1779 1780
	}

1781
	return mask & nicvf_reg_read(nic, NIC_VF_ENA_W1S);
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
}

void nicvf_update_rq_stats(struct nicvf *nic, int rq_idx)
{
	struct rcv_queue *rq;

#define GET_RQ_STATS(reg) \
	nicvf_reg_read(nic, NIC_QSET_RQ_0_7_STAT_0_1 |\
			    (rq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))

	rq = &nic->qs->rq[rq_idx];
	rq->stats.bytes = GET_RQ_STATS(RQ_SQ_STATS_OCTS);
	rq->stats.pkts = GET_RQ_STATS(RQ_SQ_STATS_PKTS);
}

void nicvf_update_sq_stats(struct nicvf *nic, int sq_idx)
{
	struct snd_queue *sq;

#define GET_SQ_STATS(reg) \
	nicvf_reg_read(nic, NIC_QSET_SQ_0_7_STAT_0_1 |\
			    (sq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))

	sq = &nic->qs->sq[sq_idx];
	sq->stats.bytes = GET_SQ_STATS(RQ_SQ_STATS_OCTS);
	sq->stats.pkts = GET_SQ_STATS(RQ_SQ_STATS_PKTS);
}

/* Check for errors in the receive cmp.queue entry */
1811
int nicvf_check_cqe_rx_errs(struct nicvf *nic, struct cqe_rx_t *cqe_rx)
1812
{
1813 1814 1815
	netif_err(nic, rx_err, nic->netdev,
		  "RX error CQE err_level 0x%x err_opcode 0x%x\n",
		  cqe_rx->err_level, cqe_rx->err_opcode);
1816 1817 1818

	switch (cqe_rx->err_opcode) {
	case CQ_RX_ERROP_RE_PARTIAL:
1819
		this_cpu_inc(nic->drv_stats->rx_bgx_truncated_pkts);
1820 1821
		break;
	case CQ_RX_ERROP_RE_JABBER:
1822
		this_cpu_inc(nic->drv_stats->rx_jabber_errs);
1823 1824
		break;
	case CQ_RX_ERROP_RE_FCS:
1825
		this_cpu_inc(nic->drv_stats->rx_fcs_errs);
1826 1827
		break;
	case CQ_RX_ERROP_RE_RX_CTL:
1828
		this_cpu_inc(nic->drv_stats->rx_bgx_errs);
1829 1830
		break;
	case CQ_RX_ERROP_PREL2_ERR:
1831
		this_cpu_inc(nic->drv_stats->rx_prel2_errs);
1832 1833
		break;
	case CQ_RX_ERROP_L2_MAL:
1834
		this_cpu_inc(nic->drv_stats->rx_l2_hdr_malformed);
1835 1836
		break;
	case CQ_RX_ERROP_L2_OVERSIZE:
1837
		this_cpu_inc(nic->drv_stats->rx_oversize);
1838 1839
		break;
	case CQ_RX_ERROP_L2_UNDERSIZE:
1840
		this_cpu_inc(nic->drv_stats->rx_undersize);
1841 1842
		break;
	case CQ_RX_ERROP_L2_LENMISM:
1843
		this_cpu_inc(nic->drv_stats->rx_l2_len_mismatch);
1844 1845
		break;
	case CQ_RX_ERROP_L2_PCLP:
1846
		this_cpu_inc(nic->drv_stats->rx_l2_pclp);
1847 1848
		break;
	case CQ_RX_ERROP_IP_NOT:
1849
		this_cpu_inc(nic->drv_stats->rx_ip_ver_errs);
1850 1851
		break;
	case CQ_RX_ERROP_IP_CSUM_ERR:
1852
		this_cpu_inc(nic->drv_stats->rx_ip_csum_errs);
1853 1854
		break;
	case CQ_RX_ERROP_IP_MAL:
1855
		this_cpu_inc(nic->drv_stats->rx_ip_hdr_malformed);
1856 1857
		break;
	case CQ_RX_ERROP_IP_MALD:
1858
		this_cpu_inc(nic->drv_stats->rx_ip_payload_malformed);
1859 1860
		break;
	case CQ_RX_ERROP_IP_HOP:
1861
		this_cpu_inc(nic->drv_stats->rx_ip_ttl_errs);
1862 1863
		break;
	case CQ_RX_ERROP_L3_PCLP:
1864
		this_cpu_inc(nic->drv_stats->rx_l3_pclp);
1865 1866
		break;
	case CQ_RX_ERROP_L4_MAL:
1867
		this_cpu_inc(nic->drv_stats->rx_l4_malformed);
1868 1869
		break;
	case CQ_RX_ERROP_L4_CHK:
1870
		this_cpu_inc(nic->drv_stats->rx_l4_csum_errs);
1871 1872
		break;
	case CQ_RX_ERROP_UDP_LEN:
1873
		this_cpu_inc(nic->drv_stats->rx_udp_len_errs);
1874 1875
		break;
	case CQ_RX_ERROP_L4_PORT:
1876
		this_cpu_inc(nic->drv_stats->rx_l4_port_errs);
1877 1878
		break;
	case CQ_RX_ERROP_TCP_FLAG:
1879
		this_cpu_inc(nic->drv_stats->rx_tcp_flag_errs);
1880 1881
		break;
	case CQ_RX_ERROP_TCP_OFFSET:
1882
		this_cpu_inc(nic->drv_stats->rx_tcp_offset_errs);
1883 1884
		break;
	case CQ_RX_ERROP_L4_PCLP:
1885
		this_cpu_inc(nic->drv_stats->rx_l4_pclp);
1886 1887
		break;
	case CQ_RX_ERROP_RBDR_TRUNC:
1888
		this_cpu_inc(nic->drv_stats->rx_truncated_pkts);
1889 1890 1891 1892 1893 1894 1895
		break;
	}

	return 1;
}

/* Check for errors in the send cmp.queue entry */
1896
int nicvf_check_cqe_tx_errs(struct nicvf *nic, struct cqe_send_t *cqe_tx)
1897 1898 1899
{
	switch (cqe_tx->send_status) {
	case CQ_TX_ERROP_DESC_FAULT:
1900
		this_cpu_inc(nic->drv_stats->tx_desc_fault);
1901 1902
		break;
	case CQ_TX_ERROP_HDR_CONS_ERR:
1903
		this_cpu_inc(nic->drv_stats->tx_hdr_cons_err);
1904 1905
		break;
	case CQ_TX_ERROP_SUBDC_ERR:
1906
		this_cpu_inc(nic->drv_stats->tx_subdesc_err);
1907
		break;
1908
	case CQ_TX_ERROP_MAX_SIZE_VIOL:
1909
		this_cpu_inc(nic->drv_stats->tx_max_size_exceeded);
1910
		break;
1911
	case CQ_TX_ERROP_IMM_SIZE_OFLOW:
1912
		this_cpu_inc(nic->drv_stats->tx_imm_size_oflow);
1913 1914
		break;
	case CQ_TX_ERROP_DATA_SEQUENCE_ERR:
1915
		this_cpu_inc(nic->drv_stats->tx_data_seq_err);
1916 1917
		break;
	case CQ_TX_ERROP_MEM_SEQUENCE_ERR:
1918
		this_cpu_inc(nic->drv_stats->tx_mem_seq_err);
1919 1920
		break;
	case CQ_TX_ERROP_LOCK_VIOL:
1921
		this_cpu_inc(nic->drv_stats->tx_lock_viol);
1922 1923
		break;
	case CQ_TX_ERROP_DATA_FAULT:
1924
		this_cpu_inc(nic->drv_stats->tx_data_fault);
1925 1926
		break;
	case CQ_TX_ERROP_TSTMP_CONFLICT:
1927
		this_cpu_inc(nic->drv_stats->tx_tstmp_conflict);
1928 1929
		break;
	case CQ_TX_ERROP_TSTMP_TIMEOUT:
1930
		this_cpu_inc(nic->drv_stats->tx_tstmp_timeout);
1931 1932
		break;
	case CQ_TX_ERROP_MEM_FAULT:
1933
		this_cpu_inc(nic->drv_stats->tx_mem_fault);
1934 1935
		break;
	case CQ_TX_ERROP_CK_OVERLAP:
1936
		this_cpu_inc(nic->drv_stats->tx_csum_overlap);
1937 1938
		break;
	case CQ_TX_ERROP_CK_OFLOW:
1939
		this_cpu_inc(nic->drv_stats->tx_csum_overflow);
1940 1941 1942 1943 1944
		break;
	}

	return 1;
}