nicvf_queues.c 47.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * Copyright (C) 2015 Cavium, Inc.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of version 2 of the GNU General Public License
 * as published by the Free Software Foundation.
 */

#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/ip.h>
#include <linux/etherdevice.h>
13
#include <linux/iommu.h>
14 15 16 17 18 19 20 21
#include <net/ip.h>
#include <net/tso.h>

#include "nic_reg.h"
#include "nic.h"
#include "q_struct.h"
#include "nicvf_queues.h"

22 23 24 25 26
static void nicvf_get_page(struct nicvf *nic)
{
	if (!nic->rb_pageref || !nic->rb_page)
		return;

27
	page_ref_add(nic->rb_page, nic->rb_pageref);
28 29 30
	nic->rb_pageref = 0;
}

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
/* Poll a register for a specific value */
static int nicvf_poll_reg(struct nicvf *nic, int qidx,
			  u64 reg, int bit_pos, int bits, int val)
{
	u64 bit_mask;
	u64 reg_val;
	int timeout = 10;

	bit_mask = (1ULL << bits) - 1;
	bit_mask = (bit_mask << bit_pos);

	while (timeout) {
		reg_val = nicvf_queue_reg_read(nic, reg, qidx);
		if (((reg_val & bit_mask) >> bit_pos) == val)
			return 0;
		usleep_range(1000, 2000);
		timeout--;
	}
	netdev_err(nic->netdev, "Poll on reg 0x%llx failed\n", reg);
	return 1;
}

/* Allocate memory for a queue's descriptors */
static int nicvf_alloc_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem,
				  int q_len, int desc_size, int align_bytes)
{
	dmem->q_len = q_len;
	dmem->size = (desc_size * q_len) + align_bytes;
	/* Save address, need it while freeing */
	dmem->unalign_base = dma_zalloc_coherent(&nic->pdev->dev, dmem->size,
						&dmem->dma, GFP_KERNEL);
	if (!dmem->unalign_base)
		return -ENOMEM;

	/* Align memory address for 'align_bytes' */
	dmem->phys_base = NICVF_ALIGNED_ADDR((u64)dmem->dma, align_bytes);
67
	dmem->base = dmem->unalign_base + (dmem->phys_base - dmem->dma);
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
	return 0;
}

/* Free queue's descriptor memory */
static void nicvf_free_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem)
{
	if (!dmem)
		return;

	dma_free_coherent(&nic->pdev->dev, dmem->size,
			  dmem->unalign_base, dmem->dma);
	dmem->unalign_base = NULL;
	dmem->base = NULL;
}

83 84 85 86 87 88 89
/* Allocate a new page or recycle one if possible
 *
 * We cannot optimize dma mapping here, since
 * 1. It's only one RBDR ring for 8 Rx queues.
 * 2. CQE_RX gives address of the buffer where pkt has been DMA'ed
 *    and not idx into RBDR ring, so can't refer to saved info.
 * 3. There are multiple receive buffers per page
90
 */
91 92
static struct pgcache *nicvf_alloc_page(struct nicvf *nic,
					struct rbdr *rbdr, gfp_t gfp)
93
{
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
	struct page *page = NULL;
	struct pgcache *pgcache, *next;

	/* Check if page is already allocated */
	pgcache = &rbdr->pgcache[rbdr->pgidx];
	page = pgcache->page;
	/* Check if page can be recycled */
	if (page && (page_ref_count(page) != 1))
		page = NULL;

	if (!page) {
		page = alloc_pages(gfp | __GFP_COMP | __GFP_NOWARN, 0);
		if (!page)
			return NULL;

		this_cpu_inc(nic->pnicvf->drv_stats->page_alloc);

		/* Check for space */
		if (rbdr->pgalloc >= rbdr->pgcnt) {
			/* Page can still be used */
			nic->rb_page = page;
			return NULL;
		}

		/* Save the page in page cache */
		pgcache->page = page;
120
		pgcache->dma_addr = 0;
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
		rbdr->pgalloc++;
	}

	/* Take extra page reference for recycling */
	page_ref_add(page, 1);

	rbdr->pgidx++;
	rbdr->pgidx &= (rbdr->pgcnt - 1);

	/* Prefetch refcount of next page in page cache */
	next = &rbdr->pgcache[rbdr->pgidx];
	page = next->page;
	if (page)
		prefetch(&page->_refcount);

	return pgcache;
}

/* Allocate buffer for packet reception */
static inline int nicvf_alloc_rcv_buffer(struct nicvf *nic, struct rbdr *rbdr,
141
					 gfp_t gfp, u32 buf_len, u64 *rbuf)
142 143
{
	struct pgcache *pgcache = NULL;
144

145 146 147
	/* Check if request can be accomodated in previous allocated page.
	 * But in XDP mode only one buffer per page is permitted.
	 */
148
	if (!rbdr->is_xdp && nic->rb_page &&
149
	    ((nic->rb_page_offset + buf_len) <= PAGE_SIZE)) {
150 151
		nic->rb_pageref++;
		goto ret;
152 153
	}

154
	nicvf_get_page(nic);
155
	nic->rb_page = NULL;
156

157 158 159
	/* Get new page, either recycled or new one */
	pgcache = nicvf_alloc_page(nic, rbdr, gfp);
	if (!pgcache && !nic->rb_page) {
160 161
		this_cpu_inc(nic->pnicvf->drv_stats->rcv_buffer_alloc_failures);
		return -ENOMEM;
162
	}
163

164
	nic->rb_page_offset = 0;
165 166 167
	/* Check if it's recycled */
	if (pgcache)
		nic->rb_page = pgcache->page;
168
ret:
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
	if (rbdr->is_xdp && pgcache && pgcache->dma_addr) {
		*rbuf = pgcache->dma_addr;
	} else {
		/* HW will ensure data coherency, CPU sync not required */
		*rbuf = (u64)dma_map_page_attrs(&nic->pdev->dev, nic->rb_page,
						nic->rb_page_offset, buf_len,
						DMA_FROM_DEVICE,
						DMA_ATTR_SKIP_CPU_SYNC);
		if (dma_mapping_error(&nic->pdev->dev, (dma_addr_t)*rbuf)) {
			if (!nic->rb_page_offset)
				__free_pages(nic->rb_page, 0);
			nic->rb_page = NULL;
			return -ENOMEM;
		}
		if (pgcache)
			pgcache->dma_addr = *rbuf;
		nic->rb_page_offset += buf_len;
186
	}
187 188 189 190

	return 0;
}

191
/* Build skb around receive buffer */
192 193 194
static struct sk_buff *nicvf_rb_ptr_to_skb(struct nicvf *nic,
					   u64 rb_ptr, int len)
{
195
	void *data;
196 197
	struct sk_buff *skb;

198
	data = phys_to_virt(rb_ptr);
199 200

	/* Now build an skb to give to stack */
201
	skb = build_skb(data, RCV_FRAG_LEN);
202
	if (!skb) {
203
		put_page(virt_to_page(data));
204 205 206
		return NULL;
	}

207
	prefetch(skb->data);
208 209 210 211 212 213 214 215
	return skb;
}

/* Allocate RBDR ring and populate receive buffers */
static int  nicvf_init_rbdr(struct nicvf *nic, struct rbdr *rbdr,
			    int ring_len, int buf_size)
{
	int idx;
216
	u64 rbuf;
217 218 219 220 221 222 223 224 225 226 227 228 229 230
	struct rbdr_entry_t *desc;
	int err;

	err = nicvf_alloc_q_desc_mem(nic, &rbdr->dmem, ring_len,
				     sizeof(struct rbdr_entry_t),
				     NICVF_RCV_BUF_ALIGN_BYTES);
	if (err)
		return err;

	rbdr->desc = rbdr->dmem.base;
	/* Buffer size has to be in multiples of 128 bytes */
	rbdr->dma_size = buf_size;
	rbdr->enable = true;
	rbdr->thresh = RBDR_THRESH;
231 232
	rbdr->head = 0;
	rbdr->tail = 0;
233

234 235 236 237 238 239
	/* Initialize page recycling stuff.
	 *
	 * Can't use single buffer per page especially with 64K pages.
	 * On embedded platforms i.e 81xx/83xx available memory itself
	 * is low and minimum ring size of RBDR is 8K, that takes away
	 * lots of memory.
240 241
	 *
	 * But for XDP it has to be a single buffer per page.
242
	 */
243 244 245 246 247 248 249
	if (!nic->pnicvf->xdp_prog) {
		rbdr->pgcnt = ring_len / (PAGE_SIZE / buf_size);
		rbdr->is_xdp = false;
	} else {
		rbdr->pgcnt = ring_len;
		rbdr->is_xdp = true;
	}
250 251 252 253 254 255 256 257
	rbdr->pgcnt = roundup_pow_of_two(rbdr->pgcnt);
	rbdr->pgcache = kzalloc(sizeof(*rbdr->pgcache) *
				rbdr->pgcnt, GFP_KERNEL);
	if (!rbdr->pgcache)
		return -ENOMEM;
	rbdr->pgidx = 0;
	rbdr->pgalloc = 0;

258 259
	nic->rb_page = NULL;
	for (idx = 0; idx < ring_len; idx++) {
260 261
		err = nicvf_alloc_rcv_buffer(nic, rbdr, GFP_KERNEL,
					     RCV_FRAG_LEN, &rbuf);
262 263 264
		if (err) {
			/* To free already allocated and mapped ones */
			rbdr->tail = idx - 1;
265
			return err;
266
		}
267 268

		desc = GET_RBDR_DESC(rbdr, idx);
269
		desc->buf_addr = rbuf & ~(NICVF_RCV_BUF_ALIGN_BYTES - 1);
270
	}
271 272 273

	nicvf_get_page(nic);

274 275 276 277 278 279 280
	return 0;
}

/* Free RBDR ring and its receive buffers */
static void nicvf_free_rbdr(struct nicvf *nic, struct rbdr *rbdr)
{
	int head, tail;
281
	u64 buf_addr, phys_addr;
282
	struct pgcache *pgcache;
283 284 285 286 287 288 289 290 291 292 293 294
	struct rbdr_entry_t *desc;

	if (!rbdr)
		return;

	rbdr->enable = false;
	if (!rbdr->dmem.base)
		return;

	head = rbdr->head;
	tail = rbdr->tail;

295
	/* Release page references */
296 297
	while (head != tail) {
		desc = GET_RBDR_DESC(rbdr, head);
298
		buf_addr = desc->buf_addr;
299 300 301 302 303
		phys_addr = nicvf_iova_to_phys(nic, buf_addr);
		dma_unmap_page_attrs(&nic->pdev->dev, buf_addr, RCV_FRAG_LEN,
				     DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
		if (phys_addr)
			put_page(virt_to_page(phys_to_virt(phys_addr)));
304 305 306
		head++;
		head &= (rbdr->dmem.q_len - 1);
	}
307
	/* Release buffer of tail desc */
308
	desc = GET_RBDR_DESC(rbdr, tail);
309
	buf_addr = desc->buf_addr;
310 311 312 313 314
	phys_addr = nicvf_iova_to_phys(nic, buf_addr);
	dma_unmap_page_attrs(&nic->pdev->dev, buf_addr, RCV_FRAG_LEN,
			     DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
	if (phys_addr)
		put_page(virt_to_page(phys_to_virt(phys_addr)));
315

316 317 318 319 320 321 322 323 324 325 326 327
	/* Sync page cache info */
	smp_rmb();

	/* Release additional page references held for recycling */
	head = 0;
	while (head < rbdr->pgcnt) {
		pgcache = &rbdr->pgcache[head];
		if (pgcache->page && page_ref_count(pgcache->page) != 0)
			put_page(pgcache->page);
		head++;
	}

328 329 330 331 332 333
	/* Free RBDR ring */
	nicvf_free_q_desc_mem(nic, &rbdr->dmem);
}

/* Refill receive buffer descriptors with new buffers.
 */
A
Aleksey Makarov 已提交
334
static void nicvf_refill_rbdr(struct nicvf *nic, gfp_t gfp)
335 336 337 338 339 340 341
{
	struct queue_set *qs = nic->qs;
	int rbdr_idx = qs->rbdr_cnt;
	int tail, qcount;
	int refill_rb_cnt;
	struct rbdr *rbdr;
	struct rbdr_entry_t *desc;
342
	u64 rbuf;
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
	int new_rb = 0;

refill:
	if (!rbdr_idx)
		return;
	rbdr_idx--;
	rbdr = &qs->rbdr[rbdr_idx];
	/* Check if it's enabled */
	if (!rbdr->enable)
		goto next_rbdr;

	/* Get no of desc's to be refilled */
	qcount = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, rbdr_idx);
	qcount &= 0x7FFFF;
	/* Doorbell can be ringed with a max of ring size minus 1 */
	if (qcount >= (qs->rbdr_len - 1))
		goto next_rbdr;
	else
		refill_rb_cnt = qs->rbdr_len - qcount - 1;

363 364 365
	/* Sync page cache info */
	smp_rmb();

366 367 368 369 370 371
	/* Start filling descs from tail */
	tail = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_TAIL, rbdr_idx) >> 3;
	while (refill_rb_cnt) {
		tail++;
		tail &= (rbdr->dmem.q_len - 1);

372
		if (nicvf_alloc_rcv_buffer(nic, rbdr, gfp, RCV_FRAG_LEN, &rbuf))
373 374 375
			break;

		desc = GET_RBDR_DESC(rbdr, tail);
376
		desc->buf_addr = rbuf & ~(NICVF_RCV_BUF_ALIGN_BYTES - 1);
377 378 379 380
		refill_rb_cnt--;
		new_rb++;
	}

381 382
	nicvf_get_page(nic);

383 384 385 386 387 388 389 390 391 392 393 394 395 396
	/* make sure all memory stores are done before ringing doorbell */
	smp_wmb();

	/* Check if buffer allocation failed */
	if (refill_rb_cnt)
		nic->rb_alloc_fail = true;
	else
		nic->rb_alloc_fail = false;

	/* Notify HW */
	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR,
			      rbdr_idx, new_rb);
next_rbdr:
	/* Re-enable RBDR interrupts only if buffer allocation is success */
397 398
	if (!nic->rb_alloc_fail && rbdr->enable &&
	    netif_running(nic->pnicvf->netdev))
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
		nicvf_enable_intr(nic, NICVF_INTR_RBDR, rbdr_idx);

	if (rbdr_idx)
		goto refill;
}

/* Alloc rcv buffers in non-atomic mode for better success */
void nicvf_rbdr_work(struct work_struct *work)
{
	struct nicvf *nic = container_of(work, struct nicvf, rbdr_work.work);

	nicvf_refill_rbdr(nic, GFP_KERNEL);
	if (nic->rb_alloc_fail)
		schedule_delayed_work(&nic->rbdr_work, msecs_to_jiffies(10));
	else
		nic->rb_work_scheduled = false;
}

/* In Softirq context, alloc rcv buffers in atomic mode */
void nicvf_rbdr_task(unsigned long data)
{
	struct nicvf *nic = (struct nicvf *)data;

	nicvf_refill_rbdr(nic, GFP_ATOMIC);
	if (nic->rb_alloc_fail) {
		nic->rb_work_scheduled = true;
		schedule_delayed_work(&nic->rbdr_work, msecs_to_jiffies(10));
	}
}

/* Initialize completion queue */
static int nicvf_init_cmp_queue(struct nicvf *nic,
				struct cmp_queue *cq, int q_len)
{
	int err;

	err = nicvf_alloc_q_desc_mem(nic, &cq->dmem, q_len, CMP_QUEUE_DESC_SIZE,
				     NICVF_CQ_BASE_ALIGN_BYTES);
	if (err)
		return err;

	cq->desc = cq->dmem.base;
441
	cq->thresh = pass1_silicon(nic->pdev) ? 0 : CMP_QUEUE_CQE_THRESH;
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
	nic->cq_coalesce_usecs = (CMP_QUEUE_TIMER_THRESH * 0.05) - 1;

	return 0;
}

static void nicvf_free_cmp_queue(struct nicvf *nic, struct cmp_queue *cq)
{
	if (!cq)
		return;
	if (!cq->dmem.base)
		return;

	nicvf_free_q_desc_mem(nic, &cq->dmem);
}

/* Initialize transmit queue */
static int nicvf_init_snd_queue(struct nicvf *nic,
				struct snd_queue *sq, int q_len)
{
	int err;

	err = nicvf_alloc_q_desc_mem(nic, &sq->dmem, q_len, SND_QUEUE_DESC_SIZE,
				     NICVF_SQ_BASE_ALIGN_BYTES);
	if (err)
		return err;

	sq->desc = sq->dmem.base;
469
	sq->skbuff = kcalloc(q_len, sizeof(u64), GFP_KERNEL);
470 471
	if (!sq->skbuff)
		return -ENOMEM;
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
	sq->head = 0;
	sq->tail = 0;
	atomic_set(&sq->free_cnt, q_len - 1);
	sq->thresh = SND_QUEUE_THRESH;

	/* Preallocate memory for TSO segment's header */
	sq->tso_hdrs = dma_alloc_coherent(&nic->pdev->dev,
					  q_len * TSO_HEADER_SIZE,
					  &sq->tso_hdrs_phys, GFP_KERNEL);
	if (!sq->tso_hdrs)
		return -ENOMEM;

	return 0;
}

487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
void nicvf_unmap_sndq_buffers(struct nicvf *nic, struct snd_queue *sq,
			      int hdr_sqe, u8 subdesc_cnt)
{
	u8 idx;
	struct sq_gather_subdesc *gather;

	/* Unmap DMA mapped skb data buffers */
	for (idx = 0; idx < subdesc_cnt; idx++) {
		hdr_sqe++;
		hdr_sqe &= (sq->dmem.q_len - 1);
		gather = (struct sq_gather_subdesc *)GET_SQ_DESC(sq, hdr_sqe);
		/* HW will ensure data coherency, CPU sync not required */
		dma_unmap_page_attrs(&nic->pdev->dev, gather->addr,
				     gather->size, DMA_TO_DEVICE,
				     DMA_ATTR_SKIP_CPU_SYNC);
	}
}

505 506
static void nicvf_free_snd_queue(struct nicvf *nic, struct snd_queue *sq)
{
507
	struct sk_buff *skb;
508 509
	struct sq_hdr_subdesc *hdr;
	struct sq_hdr_subdesc *tso_sqe;
510

511 512 513 514 515 516
	if (!sq)
		return;
	if (!sq->dmem.base)
		return;

	if (sq->tso_hdrs)
517 518
		dma_free_coherent(&nic->pdev->dev,
				  sq->dmem.q_len * TSO_HEADER_SIZE,
519 520
				  sq->tso_hdrs, sq->tso_hdrs_phys);

521 522 523 524
	/* Free pending skbs in the queue */
	smp_rmb();
	while (sq->head != sq->tail) {
		skb = (struct sk_buff *)sq->skbuff[sq->head];
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
		if (!skb)
			goto next;
		hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, sq->head);
		/* Check for dummy descriptor used for HW TSO offload on 88xx */
		if (hdr->dont_send) {
			/* Get actual TSO descriptors and unmap them */
			tso_sqe =
			 (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, hdr->rsvd2);
			nicvf_unmap_sndq_buffers(nic, sq, hdr->rsvd2,
						 tso_sqe->subdesc_cnt);
		} else {
			nicvf_unmap_sndq_buffers(nic, sq, sq->head,
						 hdr->subdesc_cnt);
		}
		dev_kfree_skb_any(skb);
next:
541 542 543
		sq->head++;
		sq->head &= (sq->dmem.q_len - 1);
	}
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
	kfree(sq->skbuff);
	nicvf_free_q_desc_mem(nic, &sq->dmem);
}

static void nicvf_reclaim_snd_queue(struct nicvf *nic,
				    struct queue_set *qs, int qidx)
{
	/* Disable send queue */
	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, 0);
	/* Check if SQ is stopped */
	if (nicvf_poll_reg(nic, qidx, NIC_QSET_SQ_0_7_STATUS, 21, 1, 0x01))
		return;
	/* Reset send queue */
	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
}

static void nicvf_reclaim_rcv_queue(struct nicvf *nic,
				    struct queue_set *qs, int qidx)
{
	union nic_mbx mbx = {};

	/* Make sure all packets in the pipeline are written back into mem */
	mbx.msg.msg = NIC_MBOX_MSG_RQ_SW_SYNC;
	nicvf_send_msg_to_pf(nic, &mbx);
}

static void nicvf_reclaim_cmp_queue(struct nicvf *nic,
				    struct queue_set *qs, int qidx)
{
	/* Disable timer threshold (doesn't get reset upon CQ reset */
	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2, qidx, 0);
	/* Disable completion queue */
	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, 0);
	/* Reset completion queue */
	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
}

static void nicvf_reclaim_rbdr(struct nicvf *nic,
			       struct rbdr *rbdr, int qidx)
{
	u64 tmp, fifo_state;
	int timeout = 10;

	/* Save head and tail pointers for feeing up buffers */
	rbdr->head = nicvf_queue_reg_read(nic,
					  NIC_QSET_RBDR_0_1_HEAD,
					  qidx) >> 3;
	rbdr->tail = nicvf_queue_reg_read(nic,
					  NIC_QSET_RBDR_0_1_TAIL,
					  qidx) >> 3;

	/* If RBDR FIFO is in 'FAIL' state then do a reset first
	 * before relaiming.
	 */
	fifo_state = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, qidx);
	if (((fifo_state >> 62) & 0x03) == 0x3)
		nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
				      qidx, NICVF_RBDR_RESET);

	/* Disable RBDR */
	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0);
	if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
		return;
	while (1) {
		tmp = nicvf_queue_reg_read(nic,
					   NIC_QSET_RBDR_0_1_PREFETCH_STATUS,
					   qidx);
		if ((tmp & 0xFFFFFFFF) == ((tmp >> 32) & 0xFFFFFFFF))
			break;
		usleep_range(1000, 2000);
		timeout--;
		if (!timeout) {
			netdev_err(nic->netdev,
				   "Failed polling on prefetch status\n");
			return;
		}
	}
	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
			      qidx, NICVF_RBDR_RESET);

	if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x02))
		return;
	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0x00);
	if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
		return;
}

631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
void nicvf_config_vlan_stripping(struct nicvf *nic, netdev_features_t features)
{
	u64 rq_cfg;
	int sqs;

	rq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_RQ_GEN_CFG, 0);

	/* Enable first VLAN stripping */
	if (features & NETIF_F_HW_VLAN_CTAG_RX)
		rq_cfg |= (1ULL << 25);
	else
		rq_cfg &= ~(1ULL << 25);
	nicvf_queue_reg_write(nic, NIC_QSET_RQ_GEN_CFG, 0, rq_cfg);

	/* Configure Secondary Qsets, if any */
	for (sqs = 0; sqs < nic->sqs_count; sqs++)
		if (nic->snicvf[sqs])
			nicvf_queue_reg_write(nic->snicvf[sqs],
					      NIC_QSET_RQ_GEN_CFG, 0, rq_cfg);
}

652 653 654 655
static void nicvf_reset_rcv_queue_stats(struct nicvf *nic)
{
	union nic_mbx mbx = {};

656
	/* Reset all RQ/SQ and VF stats */
657
	mbx.reset_stat.msg = NIC_MBOX_MSG_RESET_STAT_COUNTER;
658 659
	mbx.reset_stat.rx_stat_mask = 0x3FFF;
	mbx.reset_stat.tx_stat_mask = 0x1F;
660
	mbx.reset_stat.rq_stat_mask = 0xFFFF;
661
	mbx.reset_stat.sq_stat_mask = 0xFFFF;
662 663 664
	nicvf_send_msg_to_pf(nic, &mbx);
}

665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
/* Configures receive queue */
static void nicvf_rcv_queue_config(struct nicvf *nic, struct queue_set *qs,
				   int qidx, bool enable)
{
	union nic_mbx mbx = {};
	struct rcv_queue *rq;
	struct rq_cfg rq_cfg;

	rq = &qs->rq[qidx];
	rq->enable = enable;

	/* Disable receive queue */
	nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, 0);

	if (!rq->enable) {
		nicvf_reclaim_rcv_queue(nic, qs, qidx);
		return;
	}

	rq->cq_qs = qs->vnic_id;
	rq->cq_idx = qidx;
	rq->start_rbdr_qs = qs->vnic_id;
	rq->start_qs_rbdr_idx = qs->rbdr_cnt - 1;
	rq->cont_rbdr_qs = qs->vnic_id;
	rq->cont_qs_rbdr_idx = qs->rbdr_cnt - 1;
	/* all writes of RBDR data to be loaded into L2 Cache as well*/
	rq->caching = 1;

	/* Send a mailbox msg to PF to config RQ */
	mbx.rq.msg = NIC_MBOX_MSG_RQ_CFG;
	mbx.rq.qs_num = qs->vnic_id;
	mbx.rq.rq_num = qidx;
	mbx.rq.cfg = (rq->caching << 26) | (rq->cq_qs << 19) |
			  (rq->cq_idx << 16) | (rq->cont_rbdr_qs << 9) |
			  (rq->cont_qs_rbdr_idx << 8) |
			  (rq->start_rbdr_qs << 1) | (rq->start_qs_rbdr_idx);
	nicvf_send_msg_to_pf(nic, &mbx);

	mbx.rq.msg = NIC_MBOX_MSG_RQ_BP_CFG;
704 705 706
	mbx.rq.cfg = BIT_ULL(63) | BIT_ULL(62) |
		     (RQ_PASS_RBDR_LVL << 16) | (RQ_PASS_CQ_LVL << 8) |
		     (qs->vnic_id << 0);
707 708 709 710 711 712
	nicvf_send_msg_to_pf(nic, &mbx);

	/* RQ drop config
	 * Enable CQ drop to reserve sufficient CQEs for all tx packets
	 */
	mbx.rq.msg = NIC_MBOX_MSG_RQ_DROP_CFG;
713 714 715
	mbx.rq.cfg = BIT_ULL(63) | BIT_ULL(62) |
		     (RQ_PASS_RBDR_LVL << 40) | (RQ_DROP_RBDR_LVL << 32) |
		     (RQ_PASS_CQ_LVL << 16) | (RQ_DROP_CQ_LVL << 8);
716 717
	nicvf_send_msg_to_pf(nic, &mbx);

718
	if (!nic->sqs_mode && (qidx == 0)) {
719 720 721
		/* Enable checking L3/L4 length and TCP/UDP checksums
		 * Also allow IPv6 pkts with zero UDP checksum.
		 */
722
		nicvf_queue_reg_write(nic, NIC_QSET_RQ_GEN_CFG, 0,
723
				      (BIT(24) | BIT(23) | BIT(21) | BIT(20)));
724
		nicvf_config_vlan_stripping(nic, nic->netdev->features);
725
	}
726 727

	/* Enable Receive queue */
728
	memset(&rq_cfg, 0, sizeof(struct rq_cfg));
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
	rq_cfg.ena = 1;
	rq_cfg.tcp_ena = 0;
	nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, *(u64 *)&rq_cfg);
}

/* Configures completion queue */
void nicvf_cmp_queue_config(struct nicvf *nic, struct queue_set *qs,
			    int qidx, bool enable)
{
	struct cmp_queue *cq;
	struct cq_cfg cq_cfg;

	cq = &qs->cq[qidx];
	cq->enable = enable;

	if (!cq->enable) {
		nicvf_reclaim_cmp_queue(nic, qs, qidx);
		return;
	}

	/* Reset completion queue */
	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);

	if (!cq->enable)
		return;

	spin_lock_init(&cq->lock);
	/* Set completion queue base address */
	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_BASE,
			      qidx, (u64)(cq->dmem.phys_base));

	/* Enable Completion queue */
761
	memset(&cq_cfg, 0, sizeof(struct cq_cfg));
762 763 764
	cq_cfg.ena = 1;
	cq_cfg.reset = 0;
	cq_cfg.caching = 0;
765
	cq_cfg.qsize = ilog2(qs->cq_len >> 10);
766 767 768 769 770 771
	cq_cfg.avg_con = 0;
	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, *(u64 *)&cq_cfg);

	/* Set threshold value for interrupt generation */
	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_THRESH, qidx, cq->thresh);
	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2,
772
			      qidx, CMP_QUEUE_TIMER_THRESH);
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
}

/* Configures transmit queue */
static void nicvf_snd_queue_config(struct nicvf *nic, struct queue_set *qs,
				   int qidx, bool enable)
{
	union nic_mbx mbx = {};
	struct snd_queue *sq;
	struct sq_cfg sq_cfg;

	sq = &qs->sq[qidx];
	sq->enable = enable;

	if (!sq->enable) {
		nicvf_reclaim_snd_queue(nic, qs, qidx);
		return;
	}

	/* Reset send queue */
	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);

	sq->cq_qs = qs->vnic_id;
	sq->cq_idx = qidx;

	/* Send a mailbox msg to PF to config SQ */
	mbx.sq.msg = NIC_MBOX_MSG_SQ_CFG;
	mbx.sq.qs_num = qs->vnic_id;
	mbx.sq.sq_num = qidx;
801
	mbx.sq.sqs_mode = nic->sqs_mode;
802 803 804 805 806 807 808 809
	mbx.sq.cfg = (sq->cq_qs << 3) | sq->cq_idx;
	nicvf_send_msg_to_pf(nic, &mbx);

	/* Set queue base address */
	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_BASE,
			      qidx, (u64)(sq->dmem.phys_base));

	/* Enable send queue  & set queue size */
810
	memset(&sq_cfg, 0, sizeof(struct sq_cfg));
811 812 813
	sq_cfg.ena = 1;
	sq_cfg.reset = 0;
	sq_cfg.ldwb = 0;
814
	sq_cfg.qsize = ilog2(qs->sq_len >> 10);
815
	sq_cfg.tstmp_bgx_intf = 0;
816 817 818 819
	/* CQ's level at which HW will stop processing SQEs to avoid
	 * transmitting a pkt with no space in CQ to post CQE_TX.
	 */
	sq_cfg.cq_limit = (CMP_QUEUE_PIPELINE_RSVD * 256) / qs->cq_len;
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, *(u64 *)&sq_cfg);

	/* Set threshold value for interrupt generation */
	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_THRESH, qidx, sq->thresh);

	/* Set queue:cpu affinity for better load distribution */
	if (cpu_online(qidx)) {
		cpumask_set_cpu(qidx, &sq->affinity_mask);
		netif_set_xps_queue(nic->netdev,
				    &sq->affinity_mask, qidx);
	}
}

/* Configures receive buffer descriptor ring */
static void nicvf_rbdr_config(struct nicvf *nic, struct queue_set *qs,
			      int qidx, bool enable)
{
	struct rbdr *rbdr;
	struct rbdr_cfg rbdr_cfg;

	rbdr = &qs->rbdr[qidx];
	nicvf_reclaim_rbdr(nic, rbdr, qidx);
	if (!enable)
		return;

	/* Set descriptor base address */
	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_BASE,
			      qidx, (u64)(rbdr->dmem.phys_base));

	/* Enable RBDR  & set queue size */
	/* Buffer size should be in multiples of 128 bytes */
851
	memset(&rbdr_cfg, 0, sizeof(struct rbdr_cfg));
852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
	rbdr_cfg.ena = 1;
	rbdr_cfg.reset = 0;
	rbdr_cfg.ldwb = 0;
	rbdr_cfg.qsize = RBDR_SIZE;
	rbdr_cfg.avg_con = 0;
	rbdr_cfg.lines = rbdr->dma_size / 128;
	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
			      qidx, *(u64 *)&rbdr_cfg);

	/* Notify HW */
	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR,
			      qidx, qs->rbdr_len - 1);

	/* Set threshold value for interrupt generation */
	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_THRESH,
			      qidx, rbdr->thresh - 1);
}

/* Requests PF to assign and enable Qset */
void nicvf_qset_config(struct nicvf *nic, bool enable)
{
	union nic_mbx mbx = {};
	struct queue_set *qs = nic->qs;
	struct qs_cfg *qs_cfg;

	if (!qs) {
		netdev_warn(nic->netdev,
			    "Qset is still not allocated, don't init queues\n");
		return;
	}

	qs->enable = enable;
	qs->vnic_id = nic->vf_id;

	/* Send a mailbox msg to PF to config Qset */
	mbx.qs.msg = NIC_MBOX_MSG_QS_CFG;
	mbx.qs.num = qs->vnic_id;
889
	mbx.qs.sqs_count = nic->sqs_count;
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960

	mbx.qs.cfg = 0;
	qs_cfg = (struct qs_cfg *)&mbx.qs.cfg;
	if (qs->enable) {
		qs_cfg->ena = 1;
#ifdef __BIG_ENDIAN
		qs_cfg->be = 1;
#endif
		qs_cfg->vnic = qs->vnic_id;
	}
	nicvf_send_msg_to_pf(nic, &mbx);
}

static void nicvf_free_resources(struct nicvf *nic)
{
	int qidx;
	struct queue_set *qs = nic->qs;

	/* Free receive buffer descriptor ring */
	for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
		nicvf_free_rbdr(nic, &qs->rbdr[qidx]);

	/* Free completion queue */
	for (qidx = 0; qidx < qs->cq_cnt; qidx++)
		nicvf_free_cmp_queue(nic, &qs->cq[qidx]);

	/* Free send queue */
	for (qidx = 0; qidx < qs->sq_cnt; qidx++)
		nicvf_free_snd_queue(nic, &qs->sq[qidx]);
}

static int nicvf_alloc_resources(struct nicvf *nic)
{
	int qidx;
	struct queue_set *qs = nic->qs;

	/* Alloc receive buffer descriptor ring */
	for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) {
		if (nicvf_init_rbdr(nic, &qs->rbdr[qidx], qs->rbdr_len,
				    DMA_BUFFER_LEN))
			goto alloc_fail;
	}

	/* Alloc send queue */
	for (qidx = 0; qidx < qs->sq_cnt; qidx++) {
		if (nicvf_init_snd_queue(nic, &qs->sq[qidx], qs->sq_len))
			goto alloc_fail;
	}

	/* Alloc completion queue */
	for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
		if (nicvf_init_cmp_queue(nic, &qs->cq[qidx], qs->cq_len))
			goto alloc_fail;
	}

	return 0;
alloc_fail:
	nicvf_free_resources(nic);
	return -ENOMEM;
}

int nicvf_set_qset_resources(struct nicvf *nic)
{
	struct queue_set *qs;

	qs = devm_kzalloc(&nic->pdev->dev, sizeof(*qs), GFP_KERNEL);
	if (!qs)
		return -ENOMEM;
	nic->qs = qs;

	/* Set count of each queue */
961 962 963 964
	qs->rbdr_cnt = DEFAULT_RBDR_CNT;
	qs->rq_cnt = min_t(u8, MAX_RCV_QUEUES_PER_QS, num_online_cpus());
	qs->sq_cnt = min_t(u8, MAX_SND_QUEUES_PER_QS, num_online_cpus());
	qs->cq_cnt = max_t(u8, qs->rq_cnt, qs->sq_cnt);
965 966 967 968 969

	/* Set queue lengths */
	qs->rbdr_len = RCV_BUF_COUNT;
	qs->sq_len = SND_QUEUE_LEN;
	qs->cq_len = CMP_QUEUE_LEN;
970 971 972

	nic->rx_queues = qs->rq_cnt;
	nic->tx_queues = qs->sq_cnt;
973
	nic->xdp_tx_queues = 0;
974

975 976 977 978 979 980 981
	return 0;
}

int nicvf_config_data_transfer(struct nicvf *nic, bool enable)
{
	bool disable = false;
	struct queue_set *qs = nic->qs;
982
	struct queue_set *pqs = nic->pnicvf->qs;
983 984 985 986 987
	int qidx;

	if (!qs)
		return 0;

988 989 990 991 992 993 994 995 996
	/* Take primary VF's queue lengths.
	 * This is needed to take queue lengths set from ethtool
	 * into consideration.
	 */
	if (nic->sqs_mode && pqs) {
		qs->cq_len = pqs->cq_len;
		qs->sq_len = pqs->sq_len;
	}

997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
	if (enable) {
		if (nicvf_alloc_resources(nic))
			return -ENOMEM;

		for (qidx = 0; qidx < qs->sq_cnt; qidx++)
			nicvf_snd_queue_config(nic, qs, qidx, enable);
		for (qidx = 0; qidx < qs->cq_cnt; qidx++)
			nicvf_cmp_queue_config(nic, qs, qidx, enable);
		for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
			nicvf_rbdr_config(nic, qs, qidx, enable);
		for (qidx = 0; qidx < qs->rq_cnt; qidx++)
			nicvf_rcv_queue_config(nic, qs, qidx, enable);
	} else {
		for (qidx = 0; qidx < qs->rq_cnt; qidx++)
			nicvf_rcv_queue_config(nic, qs, qidx, disable);
		for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
			nicvf_rbdr_config(nic, qs, qidx, disable);
		for (qidx = 0; qidx < qs->sq_cnt; qidx++)
			nicvf_snd_queue_config(nic, qs, qidx, disable);
		for (qidx = 0; qidx < qs->cq_cnt; qidx++)
			nicvf_cmp_queue_config(nic, qs, qidx, disable);

		nicvf_free_resources(nic);
	}

1022 1023 1024 1025 1026
	/* Reset RXQ's stats.
	 * SQ's stats will get reset automatically once SQ is reset.
	 */
	nicvf_reset_rcv_queue_stats(nic);

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
	return 0;
}

/* Get a free desc from SQ
 * returns descriptor ponter & descriptor number
 */
static inline int nicvf_get_sq_desc(struct snd_queue *sq, int desc_cnt)
{
	int qentry;

	qentry = sq->tail;
	atomic_sub(desc_cnt, &sq->free_cnt);
	sq->tail += desc_cnt;
	sq->tail &= (sq->dmem.q_len - 1);

	return qentry;
}

1045 1046 1047 1048 1049 1050 1051 1052
/* Rollback to previous tail pointer when descriptors not used */
static inline void nicvf_rollback_sq_desc(struct snd_queue *sq,
					  int qentry, int desc_cnt)
{
	sq->tail = qentry;
	atomic_add(desc_cnt, &sq->free_cnt);
}

1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
/* Free descriptor back to SQ for future use */
void nicvf_put_sq_desc(struct snd_queue *sq, int desc_cnt)
{
	atomic_add(desc_cnt, &sq->free_cnt);
	sq->head += desc_cnt;
	sq->head &= (sq->dmem.q_len - 1);
}

static inline int nicvf_get_nxt_sqentry(struct snd_queue *sq, int qentry)
{
	qentry++;
	qentry &= (sq->dmem.q_len - 1);
	return qentry;
}

void nicvf_sq_enable(struct nicvf *nic, struct snd_queue *sq, int qidx)
{
	u64 sq_cfg;

	sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
	sq_cfg |= NICVF_SQ_EN;
	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
	/* Ring doorbell so that H/W restarts processing SQEs */
	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR, qidx, 0);
}

void nicvf_sq_disable(struct nicvf *nic, int qidx)
{
	u64 sq_cfg;

	sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
	sq_cfg &= ~NICVF_SQ_EN;
	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
}

void nicvf_sq_free_used_descs(struct net_device *netdev, struct snd_queue *sq,
			      int qidx)
{
	u64 head, tail;
	struct sk_buff *skb;
	struct nicvf *nic = netdev_priv(netdev);
	struct sq_hdr_subdesc *hdr;

	head = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_HEAD, qidx) >> 4;
	tail = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_TAIL, qidx) >> 4;
	while (sq->head != head) {
		hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, sq->head);
		if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER) {
			nicvf_put_sq_desc(sq, 1);
			continue;
		}
		skb = (struct sk_buff *)sq->skbuff[sq->head];
1105 1106
		if (skb)
			dev_kfree_skb_any(skb);
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
		atomic64_add(1, (atomic64_t *)&netdev->stats.tx_packets);
		atomic64_add(hdr->tot_len,
			     (atomic64_t *)&netdev->stats.tx_bytes);
		nicvf_put_sq_desc(sq, hdr->subdesc_cnt + 1);
	}
}

/* Calculate no of SQ subdescriptors needed to transmit all
 * segments of this TSO packet.
 * Taken from 'Tilera network driver' with a minor modification.
 */
static int nicvf_tso_count_subdescs(struct sk_buff *skb)
{
	struct skb_shared_info *sh = skb_shinfo(skb);
	unsigned int sh_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
	unsigned int data_len = skb->len - sh_len;
	unsigned int p_len = sh->gso_size;
	long f_id = -1;    /* id of the current fragment */
	long f_size = skb_headlen(skb) - sh_len;  /* current fragment size */
	long f_used = 0;  /* bytes used from the current fragment */
	long n;            /* size of the current piece of payload */
	int num_edescs = 0;
	int segment;

	for (segment = 0; segment < sh->gso_segs; segment++) {
		unsigned int p_used = 0;

		/* One edesc for header and for each piece of the payload. */
		for (num_edescs++; p_used < p_len; num_edescs++) {
			/* Advance as needed. */
			while (f_used >= f_size) {
				f_id++;
				f_size = skb_frag_size(&sh->frags[f_id]);
				f_used = 0;
			}

			/* Use bytes from the current fragment. */
			n = p_len - p_used;
			if (n > f_size - f_used)
				n = f_size - f_used;
			f_used += n;
			p_used += n;
		}

		/* The last segment may be less than gso_size. */
		data_len -= p_len;
		if (data_len < p_len)
			p_len = data_len;
	}

	/* '+ gso_segs' for SQ_HDR_SUDESCs for each segment */
	return num_edescs + sh->gso_segs;
}

1161 1162
#define POST_CQE_DESC_COUNT 2

1163 1164 1165 1166 1167
/* Get the number of SQ descriptors needed to xmit this skb */
static int nicvf_sq_subdesc_required(struct nicvf *nic, struct sk_buff *skb)
{
	int subdesc_cnt = MIN_SQ_DESC_PER_PKT_XMIT;

1168
	if (skb_shinfo(skb)->gso_size && !nic->hw_tso) {
1169 1170 1171 1172
		subdesc_cnt = nicvf_tso_count_subdescs(skb);
		return subdesc_cnt;
	}

1173 1174 1175 1176
	/* Dummy descriptors to get TSO pkt completion notification */
	if (nic->t88 && nic->hw_tso && skb_shinfo(skb)->gso_size)
		subdesc_cnt += POST_CQE_DESC_COUNT;

1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
	if (skb_shinfo(skb)->nr_frags)
		subdesc_cnt += skb_shinfo(skb)->nr_frags;

	return subdesc_cnt;
}

/* Add SQ HEADER subdescriptor.
 * First subdescriptor for every send descriptor.
 */
static inline void
1187
nicvf_sq_add_hdr_subdesc(struct nicvf *nic, struct snd_queue *sq, int qentry,
1188 1189 1190 1191
			 int subdesc_cnt, struct sk_buff *skb, int len)
{
	int proto;
	struct sq_hdr_subdesc *hdr;
1192 1193 1194 1195 1196
	union {
		struct iphdr *v4;
		struct ipv6hdr *v6;
		unsigned char *hdr;
	} ip;
1197

1198
	ip.hdr = skb_network_header(skb);
1199 1200 1201
	hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
	memset(hdr, 0, SND_QUEUE_DESC_SIZE);
	hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214

	if (nic->t88 && nic->hw_tso && skb_shinfo(skb)->gso_size) {
		/* post_cqe = 0, to avoid HW posting a CQE for every TSO
		 * segment transmitted on 88xx.
		 */
		hdr->subdesc_cnt = subdesc_cnt - POST_CQE_DESC_COUNT;
	} else {
		sq->skbuff[qentry] = (u64)skb;
		/* Enable notification via CQE after processing SQE */
		hdr->post_cqe = 1;
		/* No of subdescriptors following this */
		hdr->subdesc_cnt = subdesc_cnt;
	}
1215 1216 1217 1218 1219 1220 1221 1222
	hdr->tot_len = len;

	/* Offload checksum calculation to HW */
	if (skb->ip_summed == CHECKSUM_PARTIAL) {
		hdr->csum_l3 = 1; /* Enable IP csum calculation */
		hdr->l3_offset = skb_network_offset(skb);
		hdr->l4_offset = skb_transport_offset(skb);

1223 1224 1225
		proto = (ip.v4->version == 4) ? ip.v4->protocol :
			ip.v6->nexthdr;

1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
		switch (proto) {
		case IPPROTO_TCP:
			hdr->csum_l4 = SEND_L4_CSUM_TCP;
			break;
		case IPPROTO_UDP:
			hdr->csum_l4 = SEND_L4_CSUM_UDP;
			break;
		case IPPROTO_SCTP:
			hdr->csum_l4 = SEND_L4_CSUM_SCTP;
			break;
		}
	}
1238 1239 1240 1241 1242 1243 1244

	if (nic->hw_tso && skb_shinfo(skb)->gso_size) {
		hdr->tso = 1;
		hdr->tso_start = skb_transport_offset(skb) + tcp_hdrlen(skb);
		hdr->tso_max_paysize = skb_shinfo(skb)->gso_size;
		/* For non-tunneled pkts, point this to L2 ethertype */
		hdr->inner_l3_offset = skb_network_offset(skb) - 2;
1245
		this_cpu_inc(nic->pnicvf->drv_stats->tx_tso);
1246
	}
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
}

/* SQ GATHER subdescriptor
 * Must follow HDR descriptor
 */
static inline void nicvf_sq_add_gather_subdesc(struct snd_queue *sq, int qentry,
					       int size, u64 data)
{
	struct sq_gather_subdesc *gather;

	qentry &= (sq->dmem.q_len - 1);
	gather = (struct sq_gather_subdesc *)GET_SQ_DESC(sq, qentry);

	memset(gather, 0, SND_QUEUE_DESC_SIZE);
	gather->subdesc_type = SQ_DESC_TYPE_GATHER;
1262
	gather->ld_type = NIC_SEND_LD_TYPE_E_LDD;
1263 1264 1265 1266
	gather->size = size;
	gather->addr = data;
}

1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
/* Add HDR + IMMEDIATE subdescriptors right after descriptors of a TSO
 * packet so that a CQE is posted as a notifation for transmission of
 * TSO packet.
 */
static inline void nicvf_sq_add_cqe_subdesc(struct snd_queue *sq, int qentry,
					    int tso_sqe, struct sk_buff *skb)
{
	struct sq_imm_subdesc *imm;
	struct sq_hdr_subdesc *hdr;

	sq->skbuff[qentry] = (u64)skb;

	hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
	memset(hdr, 0, SND_QUEUE_DESC_SIZE);
	hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
	/* Enable notification via CQE after processing SQE */
	hdr->post_cqe = 1;
	/* There is no packet to transmit here */
	hdr->dont_send = 1;
	hdr->subdesc_cnt = POST_CQE_DESC_COUNT - 1;
	hdr->tot_len = 1;
	/* Actual TSO header SQE index, needed for cleanup */
	hdr->rsvd2 = tso_sqe;

	qentry = nicvf_get_nxt_sqentry(sq, qentry);
	imm = (struct sq_imm_subdesc *)GET_SQ_DESC(sq, qentry);
	memset(imm, 0, SND_QUEUE_DESC_SIZE);
	imm->subdesc_type = SQ_DESC_TYPE_IMMEDIATE;
	imm->len = 1;
}

1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
static inline void nicvf_sq_doorbell(struct nicvf *nic, struct sk_buff *skb,
				     int sq_num, int desc_cnt)
{
	struct netdev_queue *txq;

	txq = netdev_get_tx_queue(nic->pnicvf->netdev,
				  skb_get_queue_mapping(skb));

	netdev_tx_sent_queue(txq, skb->len);

	/* make sure all memory stores are done before ringing doorbell */
	smp_wmb();

	/* Inform HW to xmit all TSO segments */
	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR,
			      sq_num, desc_cnt);
}

1316 1317 1318 1319
/* Segment a TSO packet into 'gso_size' segments and append
 * them to SQ for transfer
 */
static int nicvf_sq_append_tso(struct nicvf *nic, struct snd_queue *sq,
1320
			       int sq_num, int qentry, struct sk_buff *skb)
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
{
	struct tso_t tso;
	int seg_subdescs = 0, desc_cnt = 0;
	int seg_len, total_len, data_left;
	int hdr_qentry = qentry;
	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);

	tso_start(skb, &tso);
	total_len = skb->len - hdr_len;
	while (total_len > 0) {
		char *hdr;

		/* Save Qentry for adding HDR_SUBDESC at the end */
		hdr_qentry = qentry;

		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
		total_len -= data_left;

		/* Add segment's header */
		qentry = nicvf_get_nxt_sqentry(sq, qentry);
		hdr = sq->tso_hdrs + qentry * TSO_HEADER_SIZE;
		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
		nicvf_sq_add_gather_subdesc(sq, qentry, hdr_len,
					    sq->tso_hdrs_phys +
					    qentry * TSO_HEADER_SIZE);
		/* HDR_SUDESC + GATHER */
		seg_subdescs = 2;
		seg_len = hdr_len;

		/* Add segment's payload fragments */
		while (data_left > 0) {
			int size;

			size = min_t(int, tso.size, data_left);

			qentry = nicvf_get_nxt_sqentry(sq, qentry);
			nicvf_sq_add_gather_subdesc(sq, qentry, size,
						    virt_to_phys(tso.data));
			seg_subdescs++;
			seg_len += size;

			data_left -= size;
			tso_build_data(skb, &tso, size);
		}
1365
		nicvf_sq_add_hdr_subdesc(nic, sq, hdr_qentry,
1366
					 seg_subdescs - 1, skb, seg_len);
1367
		sq->skbuff[hdr_qentry] = (u64)NULL;
1368 1369 1370 1371 1372 1373 1374
		qentry = nicvf_get_nxt_sqentry(sq, qentry);

		desc_cnt += seg_subdescs;
	}
	/* Save SKB in the last segment for freeing */
	sq->skbuff[hdr_qentry] = (u64)skb;

1375
	nicvf_sq_doorbell(nic, skb, sq_num, desc_cnt);
1376

1377
	this_cpu_inc(nic->pnicvf->drv_stats->tx_tso);
1378 1379 1380 1381
	return 1;
}

/* Append an skb to a SQ for packet transfer. */
1382 1383
int nicvf_sq_append_skb(struct nicvf *nic, struct snd_queue *sq,
			struct sk_buff *skb, u8 sq_num)
1384 1385
{
	int i, size;
1386
	int subdesc_cnt, hdr_sqe = 0;
1387
	int qentry;
1388
	u64 dma_addr;
1389 1390 1391 1392 1393 1394 1395 1396

	subdesc_cnt = nicvf_sq_subdesc_required(nic, skb);
	if (subdesc_cnt > atomic_read(&sq->free_cnt))
		goto append_fail;

	qentry = nicvf_get_sq_desc(sq, subdesc_cnt);

	/* Check if its a TSO packet */
1397
	if (skb_shinfo(skb)->gso_size && !nic->hw_tso)
1398
		return nicvf_sq_append_tso(nic, sq, sq_num, qentry, skb);
1399 1400

	/* Add SQ header subdesc */
1401 1402
	nicvf_sq_add_hdr_subdesc(nic, sq, qentry, subdesc_cnt - 1,
				 skb, skb->len);
1403
	hdr_sqe = qentry;
1404 1405 1406 1407

	/* Add SQ gather subdescs */
	qentry = nicvf_get_nxt_sqentry(sq, qentry);
	size = skb_is_nonlinear(skb) ? skb_headlen(skb) : skb->len;
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
	/* HW will ensure data coherency, CPU sync not required */
	dma_addr = dma_map_page_attrs(&nic->pdev->dev, virt_to_page(skb->data),
				      offset_in_page(skb->data), size,
				      DMA_TO_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
	if (dma_mapping_error(&nic->pdev->dev, dma_addr)) {
		nicvf_rollback_sq_desc(sq, qentry, subdesc_cnt);
		return 0;
	}

	nicvf_sq_add_gather_subdesc(sq, qentry, size, dma_addr);
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429

	/* Check for scattered buffer */
	if (!skb_is_nonlinear(skb))
		goto doorbell;

	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
		const struct skb_frag_struct *frag;

		frag = &skb_shinfo(skb)->frags[i];

		qentry = nicvf_get_nxt_sqentry(sq, qentry);
		size = skb_frag_size(frag);
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
		dma_addr = dma_map_page_attrs(&nic->pdev->dev,
					      skb_frag_page(frag),
					      frag->page_offset, size,
					      DMA_TO_DEVICE,
					      DMA_ATTR_SKIP_CPU_SYNC);
		if (dma_mapping_error(&nic->pdev->dev, dma_addr)) {
			/* Free entire chain of mapped buffers
			 * here 'i' = frags mapped + above mapped skb->data
			 */
			nicvf_unmap_sndq_buffers(nic, sq, hdr_sqe, i);
			nicvf_rollback_sq_desc(sq, qentry, subdesc_cnt);
			return 0;
		}
		nicvf_sq_add_gather_subdesc(sq, qentry, size, dma_addr);
1444 1445 1446
	}

doorbell:
1447 1448
	if (nic->t88 && skb_shinfo(skb)->gso_size) {
		qentry = nicvf_get_nxt_sqentry(sq, qentry);
1449
		nicvf_sq_add_cqe_subdesc(sq, qentry, hdr_sqe, skb);
1450 1451
	}

1452
	nicvf_sq_doorbell(nic, skb, sq_num, subdesc_cnt);
1453 1454 1455 1456

	return 1;

append_fail:
1457 1458
	/* Use original PCI dev for debug log */
	nic = nic->pnicvf;
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
	netdev_dbg(nic->netdev, "Not enough SQ descriptors to xmit pkt\n");
	return 0;
}

static inline unsigned frag_num(unsigned i)
{
#ifdef __BIG_ENDIAN
	return (i & ~3) + 3 - (i & 3);
#else
	return i;
#endif
}

1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
static void nicvf_unmap_rcv_buffer(struct nicvf *nic, u64 dma_addr,
				   u64 buf_addr, bool xdp)
{
	struct page *page = NULL;
	int len = RCV_FRAG_LEN;

	if (xdp) {
		page = virt_to_page(phys_to_virt(buf_addr));
		/* Check if it's a recycled page, if not
		 * unmap the DMA mapping.
		 *
		 * Recycled page holds an extra reference.
		 */
		if (page_ref_count(page) != 1)
			return;
		/* Receive buffers in XDP mode are mapped from page start */
		dma_addr &= PAGE_MASK;
	}
	dma_unmap_page_attrs(&nic->pdev->dev, dma_addr, len,
			     DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
}

1494
/* Returns SKB for a received packet */
1495 1496
struct sk_buff *nicvf_get_rcv_skb(struct nicvf *nic,
				  struct cqe_rx_t *cqe_rx, bool xdp)
1497 1498 1499 1500
{
	int frag;
	int payload_len = 0;
	struct sk_buff *skb = NULL;
1501 1502
	struct page *page;
	int offset;
1503 1504
	u16 *rb_lens = NULL;
	u64 *rb_ptrs = NULL;
1505
	u64 phys_addr;
1506 1507

	rb_lens = (void *)cqe_rx + (3 * sizeof(u64));
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
	/* Except 88xx pass1 on all other chips CQE_RX2_S is added to
	 * CQE_RX at word6, hence buffer pointers move by word
	 *
	 * Use existing 'hw_tso' flag which will be set for all chips
	 * except 88xx pass1 instead of a additional cache line
	 * access (or miss) by using pci dev's revision.
	 */
	if (!nic->hw_tso)
		rb_ptrs = (void *)cqe_rx + (6 * sizeof(u64));
	else
		rb_ptrs = (void *)cqe_rx + (7 * sizeof(u64));
1519 1520 1521

	for (frag = 0; frag < cqe_rx->rb_cnt; frag++) {
		payload_len = rb_lens[frag_num(frag)];
1522 1523 1524 1525 1526 1527 1528
		phys_addr = nicvf_iova_to_phys(nic, *rb_ptrs);
		if (!phys_addr) {
			if (skb)
				dev_kfree_skb_any(skb);
			return NULL;
		}

1529 1530
		if (!frag) {
			/* First fragment */
1531 1532 1533
			nicvf_unmap_rcv_buffer(nic,
					       *rb_ptrs - cqe_rx->align_pad,
					       phys_addr, xdp);
1534
			skb = nicvf_rb_ptr_to_skb(nic,
1535
						  phys_addr - cqe_rx->align_pad,
1536 1537 1538 1539 1540 1541 1542
						  payload_len);
			if (!skb)
				return NULL;
			skb_reserve(skb, cqe_rx->align_pad);
			skb_put(skb, payload_len);
		} else {
			/* Add fragments */
1543
			nicvf_unmap_rcv_buffer(nic, *rb_ptrs, phys_addr, xdp);
1544 1545
			page = virt_to_page(phys_to_virt(phys_addr));
			offset = phys_to_virt(phys_addr) - page_address(page);
1546 1547
			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
					offset, payload_len, RCV_FRAG_LEN);
1548 1549 1550 1551 1552 1553 1554
		}
		/* Next buffer pointer */
		rb_ptrs++;
	}
	return skb;
}

1555
static u64 nicvf_int_type_to_mask(int int_type, int q_idx)
1556 1557 1558 1559 1560
{
	u64 reg_val;

	switch (int_type) {
	case NICVF_INTR_CQ:
1561
		reg_val = ((1ULL << q_idx) << NICVF_INTR_CQ_SHIFT);
1562 1563
		break;
	case NICVF_INTR_SQ:
1564
		reg_val = ((1ULL << q_idx) << NICVF_INTR_SQ_SHIFT);
1565 1566
		break;
	case NICVF_INTR_RBDR:
1567
		reg_val = ((1ULL << q_idx) << NICVF_INTR_RBDR_SHIFT);
1568 1569
		break;
	case NICVF_INTR_PKT_DROP:
1570
		reg_val = (1ULL << NICVF_INTR_PKT_DROP_SHIFT);
1571 1572
		break;
	case NICVF_INTR_TCP_TIMER:
1573
		reg_val = (1ULL << NICVF_INTR_TCP_TIMER_SHIFT);
1574 1575
		break;
	case NICVF_INTR_MBOX:
1576
		reg_val = (1ULL << NICVF_INTR_MBOX_SHIFT);
1577 1578
		break;
	case NICVF_INTR_QS_ERR:
1579
		reg_val = (1ULL << NICVF_INTR_QS_ERR_SHIFT);
1580 1581
		break;
	default:
1582
		reg_val = 0;
1583 1584
	}

1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
	return reg_val;
}

/* Enable interrupt */
void nicvf_enable_intr(struct nicvf *nic, int int_type, int q_idx)
{
	u64 mask = nicvf_int_type_to_mask(int_type, q_idx);

	if (!mask) {
		netdev_dbg(nic->netdev,
			   "Failed to enable interrupt: unknown type\n");
		return;
	}
	nicvf_reg_write(nic, NIC_VF_ENA_W1S,
			nicvf_reg_read(nic, NIC_VF_ENA_W1S) | mask);
1600 1601 1602 1603 1604
}

/* Disable interrupt */
void nicvf_disable_intr(struct nicvf *nic, int int_type, int q_idx)
{
1605
	u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
1606

1607 1608
	if (!mask) {
		netdev_dbg(nic->netdev,
1609
			   "Failed to disable interrupt: unknown type\n");
1610
		return;
1611 1612
	}

1613
	nicvf_reg_write(nic, NIC_VF_ENA_W1C, mask);
1614 1615 1616 1617 1618
}

/* Clear interrupt */
void nicvf_clear_intr(struct nicvf *nic, int int_type, int q_idx)
{
1619
	u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
1620

1621 1622
	if (!mask) {
		netdev_dbg(nic->netdev,
1623
			   "Failed to clear interrupt: unknown type\n");
1624
		return;
1625 1626
	}

1627
	nicvf_reg_write(nic, NIC_VF_INT, mask);
1628 1629 1630 1631 1632
}

/* Check if interrupt is enabled */
int nicvf_is_intr_enabled(struct nicvf *nic, int int_type, int q_idx)
{
1633 1634 1635 1636
	u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
	/* If interrupt type is unknown, we treat it disabled. */
	if (!mask) {
		netdev_dbg(nic->netdev,
1637
			   "Failed to check interrupt enable: unknown type\n");
1638
		return 0;
1639 1640
	}

1641
	return mask & nicvf_reg_read(nic, NIC_VF_ENA_W1S);
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
}

void nicvf_update_rq_stats(struct nicvf *nic, int rq_idx)
{
	struct rcv_queue *rq;

#define GET_RQ_STATS(reg) \
	nicvf_reg_read(nic, NIC_QSET_RQ_0_7_STAT_0_1 |\
			    (rq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))

	rq = &nic->qs->rq[rq_idx];
	rq->stats.bytes = GET_RQ_STATS(RQ_SQ_STATS_OCTS);
	rq->stats.pkts = GET_RQ_STATS(RQ_SQ_STATS_PKTS);
}

void nicvf_update_sq_stats(struct nicvf *nic, int sq_idx)
{
	struct snd_queue *sq;

#define GET_SQ_STATS(reg) \
	nicvf_reg_read(nic, NIC_QSET_SQ_0_7_STAT_0_1 |\
			    (sq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))

	sq = &nic->qs->sq[sq_idx];
	sq->stats.bytes = GET_SQ_STATS(RQ_SQ_STATS_OCTS);
	sq->stats.pkts = GET_SQ_STATS(RQ_SQ_STATS_PKTS);
}

/* Check for errors in the receive cmp.queue entry */
1671
int nicvf_check_cqe_rx_errs(struct nicvf *nic, struct cqe_rx_t *cqe_rx)
1672 1673 1674 1675 1676 1677 1678 1679 1680
{
	if (netif_msg_rx_err(nic))
		netdev_err(nic->netdev,
			   "%s: RX error CQE err_level 0x%x err_opcode 0x%x\n",
			   nic->netdev->name,
			   cqe_rx->err_level, cqe_rx->err_opcode);

	switch (cqe_rx->err_opcode) {
	case CQ_RX_ERROP_RE_PARTIAL:
1681
		this_cpu_inc(nic->drv_stats->rx_bgx_truncated_pkts);
1682 1683
		break;
	case CQ_RX_ERROP_RE_JABBER:
1684
		this_cpu_inc(nic->drv_stats->rx_jabber_errs);
1685 1686
		break;
	case CQ_RX_ERROP_RE_FCS:
1687
		this_cpu_inc(nic->drv_stats->rx_fcs_errs);
1688 1689
		break;
	case CQ_RX_ERROP_RE_RX_CTL:
1690
		this_cpu_inc(nic->drv_stats->rx_bgx_errs);
1691 1692
		break;
	case CQ_RX_ERROP_PREL2_ERR:
1693
		this_cpu_inc(nic->drv_stats->rx_prel2_errs);
1694 1695
		break;
	case CQ_RX_ERROP_L2_MAL:
1696
		this_cpu_inc(nic->drv_stats->rx_l2_hdr_malformed);
1697 1698
		break;
	case CQ_RX_ERROP_L2_OVERSIZE:
1699
		this_cpu_inc(nic->drv_stats->rx_oversize);
1700 1701
		break;
	case CQ_RX_ERROP_L2_UNDERSIZE:
1702
		this_cpu_inc(nic->drv_stats->rx_undersize);
1703 1704
		break;
	case CQ_RX_ERROP_L2_LENMISM:
1705
		this_cpu_inc(nic->drv_stats->rx_l2_len_mismatch);
1706 1707
		break;
	case CQ_RX_ERROP_L2_PCLP:
1708
		this_cpu_inc(nic->drv_stats->rx_l2_pclp);
1709 1710
		break;
	case CQ_RX_ERROP_IP_NOT:
1711
		this_cpu_inc(nic->drv_stats->rx_ip_ver_errs);
1712 1713
		break;
	case CQ_RX_ERROP_IP_CSUM_ERR:
1714
		this_cpu_inc(nic->drv_stats->rx_ip_csum_errs);
1715 1716
		break;
	case CQ_RX_ERROP_IP_MAL:
1717
		this_cpu_inc(nic->drv_stats->rx_ip_hdr_malformed);
1718 1719
		break;
	case CQ_RX_ERROP_IP_MALD:
1720
		this_cpu_inc(nic->drv_stats->rx_ip_payload_malformed);
1721 1722
		break;
	case CQ_RX_ERROP_IP_HOP:
1723
		this_cpu_inc(nic->drv_stats->rx_ip_ttl_errs);
1724 1725
		break;
	case CQ_RX_ERROP_L3_PCLP:
1726
		this_cpu_inc(nic->drv_stats->rx_l3_pclp);
1727 1728
		break;
	case CQ_RX_ERROP_L4_MAL:
1729
		this_cpu_inc(nic->drv_stats->rx_l4_malformed);
1730 1731
		break;
	case CQ_RX_ERROP_L4_CHK:
1732
		this_cpu_inc(nic->drv_stats->rx_l4_csum_errs);
1733 1734
		break;
	case CQ_RX_ERROP_UDP_LEN:
1735
		this_cpu_inc(nic->drv_stats->rx_udp_len_errs);
1736 1737
		break;
	case CQ_RX_ERROP_L4_PORT:
1738
		this_cpu_inc(nic->drv_stats->rx_l4_port_errs);
1739 1740
		break;
	case CQ_RX_ERROP_TCP_FLAG:
1741
		this_cpu_inc(nic->drv_stats->rx_tcp_flag_errs);
1742 1743
		break;
	case CQ_RX_ERROP_TCP_OFFSET:
1744
		this_cpu_inc(nic->drv_stats->rx_tcp_offset_errs);
1745 1746
		break;
	case CQ_RX_ERROP_L4_PCLP:
1747
		this_cpu_inc(nic->drv_stats->rx_l4_pclp);
1748 1749
		break;
	case CQ_RX_ERROP_RBDR_TRUNC:
1750
		this_cpu_inc(nic->drv_stats->rx_truncated_pkts);
1751 1752 1753 1754 1755 1756 1757
		break;
	}

	return 1;
}

/* Check for errors in the send cmp.queue entry */
1758
int nicvf_check_cqe_tx_errs(struct nicvf *nic, struct cqe_send_t *cqe_tx)
1759 1760 1761
{
	switch (cqe_tx->send_status) {
	case CQ_TX_ERROP_DESC_FAULT:
1762
		this_cpu_inc(nic->drv_stats->tx_desc_fault);
1763 1764
		break;
	case CQ_TX_ERROP_HDR_CONS_ERR:
1765
		this_cpu_inc(nic->drv_stats->tx_hdr_cons_err);
1766 1767
		break;
	case CQ_TX_ERROP_SUBDC_ERR:
1768
		this_cpu_inc(nic->drv_stats->tx_subdesc_err);
1769
		break;
1770
	case CQ_TX_ERROP_MAX_SIZE_VIOL:
1771
		this_cpu_inc(nic->drv_stats->tx_max_size_exceeded);
1772
		break;
1773
	case CQ_TX_ERROP_IMM_SIZE_OFLOW:
1774
		this_cpu_inc(nic->drv_stats->tx_imm_size_oflow);
1775 1776
		break;
	case CQ_TX_ERROP_DATA_SEQUENCE_ERR:
1777
		this_cpu_inc(nic->drv_stats->tx_data_seq_err);
1778 1779
		break;
	case CQ_TX_ERROP_MEM_SEQUENCE_ERR:
1780
		this_cpu_inc(nic->drv_stats->tx_mem_seq_err);
1781 1782
		break;
	case CQ_TX_ERROP_LOCK_VIOL:
1783
		this_cpu_inc(nic->drv_stats->tx_lock_viol);
1784 1785
		break;
	case CQ_TX_ERROP_DATA_FAULT:
1786
		this_cpu_inc(nic->drv_stats->tx_data_fault);
1787 1788
		break;
	case CQ_TX_ERROP_TSTMP_CONFLICT:
1789
		this_cpu_inc(nic->drv_stats->tx_tstmp_conflict);
1790 1791
		break;
	case CQ_TX_ERROP_TSTMP_TIMEOUT:
1792
		this_cpu_inc(nic->drv_stats->tx_tstmp_timeout);
1793 1794
		break;
	case CQ_TX_ERROP_MEM_FAULT:
1795
		this_cpu_inc(nic->drv_stats->tx_mem_fault);
1796 1797
		break;
	case CQ_TX_ERROP_CK_OVERLAP:
1798
		this_cpu_inc(nic->drv_stats->tx_csum_overlap);
1799 1800
		break;
	case CQ_TX_ERROP_CK_OFLOW:
1801
		this_cpu_inc(nic->drv_stats->tx_csum_overflow);
1802 1803 1804 1805 1806
		break;
	}

	return 1;
}