nf_conntrack_core.c 33.9 KB
Newer Older
1 2 3 4 5
/* Connection state tracking for netfilter.  This is separated from,
   but required by, the NAT layer; it can also be used by an iptables
   extension. */

/* (C) 1999-2001 Paul `Rusty' Russell
6
 * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
 * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * 23 Apr 2001: Harald Welte <laforge@gnumonks.org>
 *	- new API and handling of conntrack/nat helpers
 *	- now capable of multiple expectations for one master
 * 16 Jul 2002: Harald Welte <laforge@gnumonks.org>
 *	- add usage/reference counts to ip_conntrack_expect
 *	- export ip_conntrack[_expect]_{find_get,put} functions
 * 16 Dec 2003: Yasuyuki Kozakai @USAGI <yasuyuki.kozakai@toshiba.co.jp>
 *	- generalize L3 protocol denendent part.
 * 23 Mar 2004: Yasuyuki Kozakai @USAGI <yasuyuki.kozakai@toshiba.co.jp>
 *	- add support various size of conntrack structures.
23 24 25
 * 26 Jan 2006: Harald Welte <laforge@netfilter.org>
 * 	- restructure nf_conn (introduce nf_conn_help)
 * 	- redesign 'features' how they were originally intended
26 27
 * 26 Feb 2006: Pablo Neira Ayuso <pablo@eurodev.net>
 * 	- add support for L3 protocol module load on demand.
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
 *
 * Derived from net/ipv4/netfilter/ip_conntrack_core.c
 */

#include <linux/types.h>
#include <linux/netfilter.h>
#include <linux/module.h>
#include <linux/skbuff.h>
#include <linux/proc_fs.h>
#include <linux/vmalloc.h>
#include <linux/stddef.h>
#include <linux/slab.h>
#include <linux/random.h>
#include <linux/jhash.h>
#include <linux/err.h>
#include <linux/percpu.h>
#include <linux/moduleparam.h>
#include <linux/notifier.h>
#include <linux/kernel.h>
#include <linux/netdevice.h>
#include <linux/socket.h>

#include <net/netfilter/nf_conntrack.h>
#include <net/netfilter/nf_conntrack_l3proto.h>
52
#include <net/netfilter/nf_conntrack_l4proto.h>
53
#include <net/netfilter/nf_conntrack_expect.h>
54 55 56
#include <net/netfilter/nf_conntrack_helper.h>
#include <net/netfilter/nf_conntrack_core.h>

57
#define NF_CONNTRACK_VERSION	"0.5.0"
58 59 60 61 62 63 64 65 66 67 68

#if 0
#define DEBUGP printk
#else
#define DEBUGP(format, args...)
#endif

DEFINE_RWLOCK(nf_conntrack_lock);

/* nf_conntrack_standalone needs this */
atomic_t nf_conntrack_count = ATOMIC_INIT(0);
69
EXPORT_SYMBOL_GPL(nf_conntrack_count);
70 71

void (*nf_conntrack_destroyed)(struct nf_conn *conntrack) = NULL;
72
unsigned int nf_conntrack_htable_size __read_mostly;
73
int nf_conntrack_max __read_mostly;
74
EXPORT_SYMBOL_GPL(nf_conntrack_max);
75
struct list_head *nf_conntrack_hash __read_mostly;
76
struct nf_conn nf_conntrack_untracked __read_mostly;
77
unsigned int nf_ct_log_invalid __read_mostly;
78
LIST_HEAD(unconfirmed);
79
static int nf_conntrack_vmalloc __read_mostly;
80

81
static unsigned int nf_conntrack_next_id;
82

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
DEFINE_PER_CPU(struct ip_conntrack_stat, nf_conntrack_stat);
EXPORT_PER_CPU_SYMBOL(nf_conntrack_stat);

/*
 * This scheme offers various size of "struct nf_conn" dependent on
 * features(helper, nat, ...)
 */

#define NF_CT_FEATURES_NAMELEN	256
static struct {
	/* name of slab cache. printed in /proc/slabinfo */
	char *name;

	/* size of slab cache */
	size_t size;

	/* slab cache pointer */
	kmem_cache_t *cachep;

	/* allocated slab cache + modules which uses this slab cache */
	int use;

} nf_ct_cache[NF_CT_F_NUM];

/* protect members of nf_ct_cache except of "use" */
DEFINE_RWLOCK(nf_ct_cache_lock);

/* This avoids calling kmem_cache_create() with same name simultaneously */
I
Ingo Molnar 已提交
111
static DEFINE_MUTEX(nf_ct_cache_mutex);
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134

static int nf_conntrack_hash_rnd_initted;
static unsigned int nf_conntrack_hash_rnd;

static u_int32_t __hash_conntrack(const struct nf_conntrack_tuple *tuple,
				  unsigned int size, unsigned int rnd)
{
	unsigned int a, b;
	a = jhash((void *)tuple->src.u3.all, sizeof(tuple->src.u3.all),
		  ((tuple->src.l3num) << 16) | tuple->dst.protonum);
	b = jhash((void *)tuple->dst.u3.all, sizeof(tuple->dst.u3.all),
			(tuple->src.u.all << 16) | tuple->dst.u.all);

	return jhash_2words(a, b, rnd) % size;
}

static inline u_int32_t hash_conntrack(const struct nf_conntrack_tuple *tuple)
{
	return __hash_conntrack(tuple, nf_conntrack_htable_size,
				nf_conntrack_hash_rnd);
}

int nf_conntrack_register_cache(u_int32_t features, const char *name,
135
				size_t size)
136 137 138 139 140 141 142 143 144 145 146 147 148 149
{
	int ret = 0;
	char *cache_name;
	kmem_cache_t *cachep;

	DEBUGP("nf_conntrack_register_cache: features=0x%x, name=%s, size=%d\n",
	       features, name, size);

	if (features < NF_CT_F_BASIC || features >= NF_CT_F_NUM) {
		DEBUGP("nf_conntrack_register_cache: invalid features.: 0x%x\n",
			features);
		return -EINVAL;
	}

I
Ingo Molnar 已提交
150
	mutex_lock(&nf_ct_cache_mutex);
151 152 153 154 155 156 157

	write_lock_bh(&nf_ct_cache_lock);
	/* e.g: multiple helpers are loaded */
	if (nf_ct_cache[features].use > 0) {
		DEBUGP("nf_conntrack_register_cache: already resisterd.\n");
		if ((!strncmp(nf_ct_cache[features].name, name,
			      NF_CT_FEATURES_NAMELEN))
158
		    && nf_ct_cache[features].size == size) {
159 160 161 162 163 164 165
			DEBUGP("nf_conntrack_register_cache: reusing.\n");
			nf_ct_cache[features].use++;
			ret = 0;
		} else
			ret = -EBUSY;

		write_unlock_bh(&nf_ct_cache_lock);
I
Ingo Molnar 已提交
166
		mutex_unlock(&nf_ct_cache_mutex);
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
		return ret;
	}
	write_unlock_bh(&nf_ct_cache_lock);

	/*
	 * The memory space for name of slab cache must be alive until
	 * cache is destroyed.
	 */
	cache_name = kmalloc(sizeof(char)*NF_CT_FEATURES_NAMELEN, GFP_ATOMIC);
	if (cache_name == NULL) {
		DEBUGP("nf_conntrack_register_cache: can't alloc cache_name\n");
		ret = -ENOMEM;
		goto out_up_mutex;
	}

	if (strlcpy(cache_name, name, NF_CT_FEATURES_NAMELEN)
						>= NF_CT_FEATURES_NAMELEN) {
		printk("nf_conntrack_register_cache: name too long\n");
		ret = -EINVAL;
		goto out_free_name;
	}

	cachep = kmem_cache_create(cache_name, size, 0, 0,
				   NULL, NULL);
	if (!cachep) {
		printk("nf_conntrack_register_cache: Can't create slab cache "
		       "for the features = 0x%x\n", features);
		ret = -ENOMEM;
		goto out_free_name;
	}

	write_lock_bh(&nf_ct_cache_lock);
	nf_ct_cache[features].use = 1;
	nf_ct_cache[features].size = size;
	nf_ct_cache[features].cachep = cachep;
	nf_ct_cache[features].name = cache_name;
	write_unlock_bh(&nf_ct_cache_lock);

	goto out_up_mutex;

out_free_name:
	kfree(cache_name);
out_up_mutex:
I
Ingo Molnar 已提交
210
	mutex_unlock(&nf_ct_cache_mutex);
211 212 213 214 215 216 217 218 219 220 221 222 223 224
	return ret;
}

/* FIXME: In the current, only nf_conntrack_cleanup() can call this function. */
void nf_conntrack_unregister_cache(u_int32_t features)
{
	kmem_cache_t *cachep;
	char *name;

	/*
	 * This assures that kmem_cache_create() isn't called before destroying
	 * slab cache.
	 */
	DEBUGP("nf_conntrack_unregister_cache: 0x%04x\n", features);
I
Ingo Molnar 已提交
225
	mutex_lock(&nf_ct_cache_mutex);
226 227 228 229

	write_lock_bh(&nf_ct_cache_lock);
	if (--nf_ct_cache[features].use > 0) {
		write_unlock_bh(&nf_ct_cache_lock);
I
Ingo Molnar 已提交
230
		mutex_unlock(&nf_ct_cache_mutex);
231 232 233 234 235 236 237 238 239 240 241 242 243 244
		return;
	}
	cachep = nf_ct_cache[features].cachep;
	name = nf_ct_cache[features].name;
	nf_ct_cache[features].cachep = NULL;
	nf_ct_cache[features].name = NULL;
	nf_ct_cache[features].size = 0;
	write_unlock_bh(&nf_ct_cache_lock);

	synchronize_net();

	kmem_cache_destroy(cachep);
	kfree(name);

I
Ingo Molnar 已提交
245
	mutex_unlock(&nf_ct_cache_mutex);
246 247 248 249 250 251 252 253 254 255
}

int
nf_ct_get_tuple(const struct sk_buff *skb,
		unsigned int nhoff,
		unsigned int dataoff,
		u_int16_t l3num,
		u_int8_t protonum,
		struct nf_conntrack_tuple *tuple,
		const struct nf_conntrack_l3proto *l3proto,
256
		const struct nf_conntrack_l4proto *l4proto)
257 258 259 260 261 262 263 264 265 266
{
	NF_CT_TUPLE_U_BLANK(tuple);

	tuple->src.l3num = l3num;
	if (l3proto->pkt_to_tuple(skb, nhoff, tuple) == 0)
		return 0;

	tuple->dst.protonum = protonum;
	tuple->dst.dir = IP_CT_DIR_ORIGINAL;

267
	return l4proto->pkt_to_tuple(skb, dataoff, tuple);
268 269 270 271 272 273
}

int
nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
		   const struct nf_conntrack_tuple *orig,
		   const struct nf_conntrack_l3proto *l3proto,
274
		   const struct nf_conntrack_l4proto *l4proto)
275 276 277 278 279 280 281 282 283 284
{
	NF_CT_TUPLE_U_BLANK(inverse);

	inverse->src.l3num = orig->src.l3num;
	if (l3proto->invert_tuple(inverse, orig) == 0)
		return 0;

	inverse->dst.dir = !orig->dst.dir;

	inverse->dst.protonum = orig->dst.protonum;
285
	return l4proto->invert_tuple(inverse, orig);
286 287 288 289 290 291
}

static void
clean_from_lists(struct nf_conn *ct)
{
	DEBUGP("clean_from_lists(%p)\n", ct);
P
Patrick McHardy 已提交
292 293
	list_del(&ct->tuplehash[IP_CT_DIR_ORIGINAL].list);
	list_del(&ct->tuplehash[IP_CT_DIR_REPLY].list);
294 295

	/* Destroy all pending expectations */
296
	nf_ct_remove_expectations(ct);
297 298 299 300 301 302 303
}

static void
destroy_conntrack(struct nf_conntrack *nfct)
{
	struct nf_conn *ct = (struct nf_conn *)nfct;
	struct nf_conntrack_l3proto *l3proto;
304
	struct nf_conntrack_l4proto *l4proto;
305 306 307 308 309 310 311 312 313 314 315

	DEBUGP("destroy_conntrack(%p)\n", ct);
	NF_CT_ASSERT(atomic_read(&nfct->use) == 0);
	NF_CT_ASSERT(!timer_pending(&ct->timeout));

	nf_conntrack_event(IPCT_DESTROY, ct);
	set_bit(IPS_DYING_BIT, &ct->status);

	/* To make sure we don't get any weird locking issues here:
	 * destroy_conntrack() MUST NOT be called with a write lock
	 * to nf_conntrack_lock!!! -HW */
316
	l3proto = __nf_ct_l3proto_find(ct->tuplehash[IP_CT_DIR_REPLY].tuple.src.l3num);
317 318 319
	if (l3proto && l3proto->destroy)
		l3proto->destroy(ct);

320 321 322
	l4proto = __nf_ct_l4proto_find(ct->tuplehash[IP_CT_DIR_REPLY].tuple.src.l3num, ct->tuplehash[IP_CT_DIR_REPLY].tuple.dst.protonum);
	if (l4proto && l4proto->destroy)
		l4proto->destroy(ct);
323 324 325 326 327 328 329 330 331

	if (nf_conntrack_destroyed)
		nf_conntrack_destroyed(ct);

	write_lock_bh(&nf_conntrack_lock);
	/* Expectations will have been removed in clean_from_lists,
	 * except TFTP can create an expectation on the first packet,
	 * before connection is in the list, so we need to clean here,
	 * too. */
332
	nf_ct_remove_expectations(ct);
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362

	/* We overload first tuple to link into unconfirmed list. */
	if (!nf_ct_is_confirmed(ct)) {
		BUG_ON(list_empty(&ct->tuplehash[IP_CT_DIR_ORIGINAL].list));
		list_del(&ct->tuplehash[IP_CT_DIR_ORIGINAL].list);
	}

	NF_CT_STAT_INC(delete);
	write_unlock_bh(&nf_conntrack_lock);

	if (ct->master)
		nf_ct_put(ct->master);

	DEBUGP("destroy_conntrack: returning ct=%p to slab\n", ct);
	nf_conntrack_free(ct);
}

static void death_by_timeout(unsigned long ul_conntrack)
{
	struct nf_conn *ct = (void *)ul_conntrack;

	write_lock_bh(&nf_conntrack_lock);
	/* Inside lock so preempt is disabled on module removal path.
	 * Otherwise we can get spurious warnings. */
	NF_CT_STAT_INC(delete_list);
	clean_from_lists(ct);
	write_unlock_bh(&nf_conntrack_lock);
	nf_ct_put(ct);
}

363
struct nf_conntrack_tuple_hash *
364 365 366 367 368 369 370
__nf_conntrack_find(const struct nf_conntrack_tuple *tuple,
		    const struct nf_conn *ignored_conntrack)
{
	struct nf_conntrack_tuple_hash *h;
	unsigned int hash = hash_conntrack(tuple);

	list_for_each_entry(h, &nf_conntrack_hash[hash], list) {
P
Patrick McHardy 已提交
371 372
		if (nf_ct_tuplehash_to_ctrack(h) != ignored_conntrack &&
		    nf_ct_tuple_equal(tuple, &h->tuple)) {
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
			NF_CT_STAT_INC(found);
			return h;
		}
		NF_CT_STAT_INC(searched);
	}

	return NULL;
}

/* Find a connection corresponding to a tuple. */
struct nf_conntrack_tuple_hash *
nf_conntrack_find_get(const struct nf_conntrack_tuple *tuple,
		      const struct nf_conn *ignored_conntrack)
{
	struct nf_conntrack_tuple_hash *h;

	read_lock_bh(&nf_conntrack_lock);
	h = __nf_conntrack_find(tuple, ignored_conntrack);
	if (h)
		atomic_inc(&nf_ct_tuplehash_to_ctrack(h)->ct_general.use);
	read_unlock_bh(&nf_conntrack_lock);

	return h;
}

398 399 400 401 402
static void __nf_conntrack_hash_insert(struct nf_conn *ct,
				       unsigned int hash,
				       unsigned int repl_hash) 
{
	ct->id = ++nf_conntrack_next_id;
P
Patrick McHardy 已提交
403 404 405 406
	list_add(&ct->tuplehash[IP_CT_DIR_ORIGINAL].list,
		 &nf_conntrack_hash[hash]);
	list_add(&ct->tuplehash[IP_CT_DIR_REPLY].list,
		 &nf_conntrack_hash[repl_hash]);
407 408 409 410 411 412 413 414 415 416 417 418 419 420
}

void nf_conntrack_hash_insert(struct nf_conn *ct)
{
	unsigned int hash, repl_hash;

	hash = hash_conntrack(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
	repl_hash = hash_conntrack(&ct->tuplehash[IP_CT_DIR_REPLY].tuple);

	write_lock_bh(&nf_conntrack_lock);
	__nf_conntrack_hash_insert(ct, hash, repl_hash);
	write_unlock_bh(&nf_conntrack_lock);
}

421 422 423 424 425
/* Confirm a connection given skb; places it in hash table */
int
__nf_conntrack_confirm(struct sk_buff **pskb)
{
	unsigned int hash, repl_hash;
P
Patrick McHardy 已提交
426
	struct nf_conntrack_tuple_hash *h;
427
	struct nf_conn *ct;
P
Patrick McHardy 已提交
428
	struct nf_conn_help *help;
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
	enum ip_conntrack_info ctinfo;

	ct = nf_ct_get(*pskb, &ctinfo);

	/* ipt_REJECT uses nf_conntrack_attach to attach related
	   ICMP/TCP RST packets in other direction.  Actual packet
	   which created connection will be IP_CT_NEW or for an
	   expected connection, IP_CT_RELATED. */
	if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
		return NF_ACCEPT;

	hash = hash_conntrack(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
	repl_hash = hash_conntrack(&ct->tuplehash[IP_CT_DIR_REPLY].tuple);

	/* We're not in hash table, and we refuse to set up related
	   connections for unconfirmed conns.  But packet copies and
	   REJECT will give spurious warnings here. */
	/* NF_CT_ASSERT(atomic_read(&ct->ct_general.use) == 1); */

	/* No external references means noone else could have
	   confirmed us. */
	NF_CT_ASSERT(!nf_ct_is_confirmed(ct));
	DEBUGP("Confirming conntrack %p\n", ct);

	write_lock_bh(&nf_conntrack_lock);

	/* See if there's one in the list already, including reverse:
	   NAT could have grabbed it without realizing, since we're
	   not in the hash.  If there is, we lost race. */
P
Patrick McHardy 已提交
458 459 460 461 462 463 464 465
	list_for_each_entry(h, &nf_conntrack_hash[hash], list)
		if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
				      &h->tuple))
			goto out;
	list_for_each_entry(h, &nf_conntrack_hash[repl_hash], list)
		if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_REPLY].tuple,
				      &h->tuple))
			goto out;
466

P
Patrick McHardy 已提交
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
	/* Remove from unconfirmed list */
	list_del(&ct->tuplehash[IP_CT_DIR_ORIGINAL].list);

	__nf_conntrack_hash_insert(ct, hash, repl_hash);
	/* Timer relative to confirmation time, not original
	   setting time, otherwise we'd get timer wrap in
	   weird delay cases. */
	ct->timeout.expires += jiffies;
	add_timer(&ct->timeout);
	atomic_inc(&ct->ct_general.use);
	set_bit(IPS_CONFIRMED_BIT, &ct->status);
	NF_CT_STAT_INC(insert);
	write_unlock_bh(&nf_conntrack_lock);
	help = nfct_help(ct);
	if (help && help->helper)
		nf_conntrack_event_cache(IPCT_HELPER, *pskb);
483
#ifdef CONFIG_NF_NAT_NEEDED
P
Patrick McHardy 已提交
484 485 486
	if (test_bit(IPS_SRC_NAT_DONE_BIT, &ct->status) ||
	    test_bit(IPS_DST_NAT_DONE_BIT, &ct->status))
		nf_conntrack_event_cache(IPCT_NATINFO, *pskb);
487
#endif
P
Patrick McHardy 已提交
488 489 490
	nf_conntrack_event_cache(master_ct(ct) ?
				 IPCT_RELATED : IPCT_NEW, *pskb);
	return NF_ACCEPT;
491

P
Patrick McHardy 已提交
492
out:
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
	NF_CT_STAT_INC(insert_failed);
	write_unlock_bh(&nf_conntrack_lock);
	return NF_DROP;
}

/* Returns true if a connection correspondings to the tuple (required
   for NAT). */
int
nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
			 const struct nf_conn *ignored_conntrack)
{
	struct nf_conntrack_tuple_hash *h;

	read_lock_bh(&nf_conntrack_lock);
	h = __nf_conntrack_find(tuple, ignored_conntrack);
	read_unlock_bh(&nf_conntrack_lock);

	return h != NULL;
}

/* There's a small race here where we may free a just-assured
   connection.  Too bad: we're in trouble anyway. */
static int early_drop(struct list_head *chain)
{
	/* Traverse backwards: gives us oldest, which is roughly LRU */
	struct nf_conntrack_tuple_hash *h;
P
Patrick McHardy 已提交
519
	struct nf_conn *ct = NULL, *tmp;
520 521 522
	int dropped = 0;

	read_lock_bh(&nf_conntrack_lock);
P
Patrick McHardy 已提交
523 524 525 526 527 528 529
	list_for_each_entry_reverse(h, chain, list) {
		tmp = nf_ct_tuplehash_to_ctrack(h);
		if (!test_bit(IPS_ASSURED_BIT, &tmp->status)) {
			ct = tmp;
			atomic_inc(&ct->ct_general.use);
			break;
		}
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
	}
	read_unlock_bh(&nf_conntrack_lock);

	if (!ct)
		return dropped;

	if (del_timer(&ct->timeout)) {
		death_by_timeout((unsigned long)ct);
		dropped = 1;
		NF_CT_STAT_INC(early_drop);
	}
	nf_ct_put(ct);
	return dropped;
}

static struct nf_conn *
__nf_conntrack_alloc(const struct nf_conntrack_tuple *orig,
		     const struct nf_conntrack_tuple *repl,
		     const struct nf_conntrack_l3proto *l3proto)
{
	struct nf_conn *conntrack = NULL;
	u_int32_t features = 0;
552
	struct nf_conntrack_helper *helper;
553

554
	if (unlikely(!nf_conntrack_hash_rnd_initted)) {
555 556 557 558
		get_random_bytes(&nf_conntrack_hash_rnd, 4);
		nf_conntrack_hash_rnd_initted = 1;
	}

559 560 561
	/* We don't want any race condition at early drop stage */
	atomic_inc(&nf_conntrack_count);

562
	if (nf_conntrack_max
563
	    && atomic_read(&nf_conntrack_count) > nf_conntrack_max) {
564 565 566
		unsigned int hash = hash_conntrack(orig);
		/* Try dropping from this hash chain. */
		if (!early_drop(&nf_conntrack_hash[hash])) {
567
			atomic_dec(&nf_conntrack_count);
568 569 570 571 572 573 574 575 576 577
			if (net_ratelimit())
				printk(KERN_WARNING
				       "nf_conntrack: table full, dropping"
				       " packet.\n");
			return ERR_PTR(-ENOMEM);
		}
	}

	/*  find features needed by this conntrack. */
	features = l3proto->get_features(orig);
578 579

	/* FIXME: protect helper list per RCU */
580
	read_lock_bh(&nf_conntrack_lock);
581 582
	helper = __nf_ct_helper_find(repl);
	if (helper)
583 584 585 586 587 588 589
		features |= NF_CT_F_HELP;
	read_unlock_bh(&nf_conntrack_lock);

	DEBUGP("nf_conntrack_alloc: features=0x%x\n", features);

	read_lock_bh(&nf_ct_cache_lock);

590
	if (unlikely(!nf_ct_cache[features].use)) {
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
		DEBUGP("nf_conntrack_alloc: not supported features = 0x%x\n",
			features);
		goto out;
	}

	conntrack = kmem_cache_alloc(nf_ct_cache[features].cachep, GFP_ATOMIC);
	if (conntrack == NULL) {
		DEBUGP("nf_conntrack_alloc: Can't alloc conntrack from cache\n");
		goto out;
	}

	memset(conntrack, 0, nf_ct_cache[features].size);
	conntrack->features = features;
	atomic_set(&conntrack->ct_general.use, 1);
	conntrack->ct_general.destroy = destroy_conntrack;
	conntrack->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
	conntrack->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
	/* Don't set timer yet: wait for confirmation */
	init_timer(&conntrack->timeout);
	conntrack->timeout.data = (unsigned long)conntrack;
	conntrack->timeout.function = death_by_timeout;
612
	read_unlock_bh(&nf_ct_cache_lock);
613

614
	return conntrack;
615 616
out:
	read_unlock_bh(&nf_ct_cache_lock);
617
	atomic_dec(&nf_conntrack_count);
618 619 620 621 622 623 624 625
	return conntrack;
}

struct nf_conn *nf_conntrack_alloc(const struct nf_conntrack_tuple *orig,
				   const struct nf_conntrack_tuple *repl)
{
	struct nf_conntrack_l3proto *l3proto;

626
	l3proto = __nf_ct_l3proto_find(orig->src.l3num);
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
	return __nf_conntrack_alloc(orig, repl, l3proto);
}

void nf_conntrack_free(struct nf_conn *conntrack)
{
	u_int32_t features = conntrack->features;
	NF_CT_ASSERT(features >= NF_CT_F_BASIC && features < NF_CT_F_NUM);
	DEBUGP("nf_conntrack_free: features = 0x%x, conntrack=%p\n", features,
	       conntrack);
	kmem_cache_free(nf_ct_cache[features].cachep, conntrack);
	atomic_dec(&nf_conntrack_count);
}

/* Allocate a new conntrack: we return -ENOMEM if classification
   failed due to stress.  Otherwise it really is unclassifiable. */
static struct nf_conntrack_tuple_hash *
init_conntrack(const struct nf_conntrack_tuple *tuple,
	       struct nf_conntrack_l3proto *l3proto,
645
	       struct nf_conntrack_l4proto *l4proto,
646 647 648 649 650 651 652
	       struct sk_buff *skb,
	       unsigned int dataoff)
{
	struct nf_conn *conntrack;
	struct nf_conntrack_tuple repl_tuple;
	struct nf_conntrack_expect *exp;

653
	if (!nf_ct_invert_tuple(&repl_tuple, tuple, l3proto, l4proto)) {
654 655 656 657 658 659 660 661 662 663
		DEBUGP("Can't invert tuple.\n");
		return NULL;
	}

	conntrack = __nf_conntrack_alloc(tuple, &repl_tuple, l3proto);
	if (conntrack == NULL || IS_ERR(conntrack)) {
		DEBUGP("Can't allocate conntrack.\n");
		return (struct nf_conntrack_tuple_hash *)conntrack;
	}

664
	if (!l4proto->new(conntrack, skb, dataoff)) {
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
		nf_conntrack_free(conntrack);
		DEBUGP("init conntrack: can't track with proto module\n");
		return NULL;
	}

	write_lock_bh(&nf_conntrack_lock);
	exp = find_expectation(tuple);

	if (exp) {
		DEBUGP("conntrack: expectation arrives ct=%p exp=%p\n",
			conntrack, exp);
		/* Welcome, Mr. Bond.  We've been expecting you... */
		__set_bit(IPS_EXPECTED_BIT, &conntrack->status);
		conntrack->master = exp->master;
#ifdef CONFIG_NF_CONNTRACK_MARK
		conntrack->mark = exp->master->mark;
681 682 683
#endif
#ifdef CONFIG_NF_CONNTRACK_SECMARK
		conntrack->secmark = exp->master->secmark;
684 685 686
#endif
		nf_conntrack_get(&conntrack->master->ct_general);
		NF_CT_STAT_INC(expect_new);
687 688 689 690 691
	} else {
		struct nf_conn_help *help = nfct_help(conntrack);

		if (help)
			help->helper = __nf_ct_helper_find(&repl_tuple);
692
		NF_CT_STAT_INC(new);
693
	}
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715

	/* Overload tuple linked list to put us in unconfirmed list. */
	list_add(&conntrack->tuplehash[IP_CT_DIR_ORIGINAL].list, &unconfirmed);

	write_unlock_bh(&nf_conntrack_lock);

	if (exp) {
		if (exp->expectfn)
			exp->expectfn(conntrack, exp);
		nf_conntrack_expect_put(exp);
	}

	return &conntrack->tuplehash[IP_CT_DIR_ORIGINAL];
}

/* On success, returns conntrack ptr, sets skb->nfct and ctinfo */
static inline struct nf_conn *
resolve_normal_ct(struct sk_buff *skb,
		  unsigned int dataoff,
		  u_int16_t l3num,
		  u_int8_t protonum,
		  struct nf_conntrack_l3proto *l3proto,
716
		  struct nf_conntrack_l4proto *l4proto,
717 718 719 720 721 722 723 724 725
		  int *set_reply,
		  enum ip_conntrack_info *ctinfo)
{
	struct nf_conntrack_tuple tuple;
	struct nf_conntrack_tuple_hash *h;
	struct nf_conn *ct;

	if (!nf_ct_get_tuple(skb, (unsigned int)(skb->nh.raw - skb->data),
			     dataoff, l3num, protonum, &tuple, l3proto,
726
			     l4proto)) {
727 728 729 730 731 732 733
		DEBUGP("resolve_normal_ct: Can't get tuple\n");
		return NULL;
	}

	/* look for tuple match */
	h = nf_conntrack_find_get(&tuple, NULL);
	if (!h) {
734
		h = init_conntrack(&tuple, l3proto, l4proto, skb, dataoff);
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
		if (!h)
			return NULL;
		if (IS_ERR(h))
			return (void *)h;
	}
	ct = nf_ct_tuplehash_to_ctrack(h);

	/* It exists; we have (non-exclusive) reference. */
	if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
		*ctinfo = IP_CT_ESTABLISHED + IP_CT_IS_REPLY;
		/* Please set reply bit if this packet OK */
		*set_reply = 1;
	} else {
		/* Once we've had two way comms, always ESTABLISHED. */
		if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
			DEBUGP("nf_conntrack_in: normal packet for %p\n", ct);
			*ctinfo = IP_CT_ESTABLISHED;
		} else if (test_bit(IPS_EXPECTED_BIT, &ct->status)) {
			DEBUGP("nf_conntrack_in: related packet for %p\n", ct);
			*ctinfo = IP_CT_RELATED;
		} else {
			DEBUGP("nf_conntrack_in: new packet for %p\n", ct);
			*ctinfo = IP_CT_NEW;
		}
		*set_reply = 0;
	}
	skb->nfct = &ct->ct_general;
	skb->nfctinfo = *ctinfo;
	return ct;
}

unsigned int
nf_conntrack_in(int pf, unsigned int hooknum, struct sk_buff **pskb)
{
	struct nf_conn *ct;
	enum ip_conntrack_info ctinfo;
	struct nf_conntrack_l3proto *l3proto;
772
	struct nf_conntrack_l4proto *l4proto;
773 774 775 776 777 778 779 780 781 782 783
	unsigned int dataoff;
	u_int8_t protonum;
	int set_reply = 0;
	int ret;

	/* Previously seen (loopback or untracked)?  Ignore. */
	if ((*pskb)->nfct) {
		NF_CT_STAT_INC(ignore);
		return NF_ACCEPT;
	}

784
	l3proto = __nf_ct_l3proto_find((u_int16_t)pf);
785 786 787 788 789
	if ((ret = l3proto->prepare(pskb, hooknum, &dataoff, &protonum)) <= 0) {
		DEBUGP("not prepared to track yet or error occured\n");
		return -ret;
	}

790
	l4proto = __nf_ct_l4proto_find((u_int16_t)pf, protonum);
791 792 793 794

	/* It may be an special packet, error, unclean...
	 * inverse of the return code tells to the netfilter
	 * core what to do with the packet. */
795 796
	if (l4proto->error != NULL &&
	    (ret = l4proto->error(*pskb, dataoff, &ctinfo, pf, hooknum)) <= 0) {
797 798 799 800 801
		NF_CT_STAT_INC(error);
		NF_CT_STAT_INC(invalid);
		return -ret;
	}

802
	ct = resolve_normal_ct(*pskb, dataoff, pf, protonum, l3proto, l4proto,
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
			       &set_reply, &ctinfo);
	if (!ct) {
		/* Not valid part of a connection */
		NF_CT_STAT_INC(invalid);
		return NF_ACCEPT;
	}

	if (IS_ERR(ct)) {
		/* Too stressed to deal. */
		NF_CT_STAT_INC(drop);
		return NF_DROP;
	}

	NF_CT_ASSERT((*pskb)->nfct);

818
	ret = l4proto->packet(ct, *pskb, dataoff, ctinfo, pf, hooknum);
819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
	if (ret < 0) {
		/* Invalid: inverse of the return code tells
		 * the netfilter core what to do */
		DEBUGP("nf_conntrack_in: Can't track with proto module\n");
		nf_conntrack_put((*pskb)->nfct);
		(*pskb)->nfct = NULL;
		NF_CT_STAT_INC(invalid);
		return -ret;
	}

	if (set_reply && !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
		nf_conntrack_event_cache(IPCT_STATUS, *pskb);

	return ret;
}

int nf_ct_invert_tuplepr(struct nf_conntrack_tuple *inverse,
			 const struct nf_conntrack_tuple *orig)
{
	return nf_ct_invert_tuple(inverse, orig,
839
				  __nf_ct_l3proto_find(orig->src.l3num),
840
				  __nf_ct_l4proto_find(orig->src.l3num,
841
						     orig->dst.protonum));
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
}

/* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
void __nf_ct_refresh_acct(struct nf_conn *ct,
			  enum ip_conntrack_info ctinfo,
			  const struct sk_buff *skb,
			  unsigned long extra_jiffies,
			  int do_acct)
{
	int event = 0;

	NF_CT_ASSERT(ct->timeout.data == (unsigned long)ct);
	NF_CT_ASSERT(skb);

	write_lock_bh(&nf_conntrack_lock);

858 859 860 861 862 863
	/* Only update if this is not a fixed timeout */
	if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status)) {
		write_unlock_bh(&nf_conntrack_lock);
		return;
	}

864 865 866 867 868
	/* If not in hash table, timer will not be active yet */
	if (!nf_ct_is_confirmed(ct)) {
		ct->timeout.expires = extra_jiffies;
		event = IPCT_REFRESH;
	} else {
869 870 871 872 873 874 875 876
		unsigned long newtime = jiffies + extra_jiffies;

		/* Only update the timeout if the new timeout is at least
		   HZ jiffies from the old timeout. Need del_timer for race
		   avoidance (may already be dying). */
		if (newtime - ct->timeout.expires >= HZ
		    && del_timer(&ct->timeout)) {
			ct->timeout.expires = newtime;
877 878 879 880 881 882 883 884 885 886
			add_timer(&ct->timeout);
			event = IPCT_REFRESH;
		}
	}

#ifdef CONFIG_NF_CT_ACCT
	if (do_acct) {
		ct->counters[CTINFO2DIR(ctinfo)].packets++;
		ct->counters[CTINFO2DIR(ctinfo)].bytes +=
			skb->len - (unsigned int)(skb->nh.raw - skb->data);
887 888 889 890

		if ((ct->counters[CTINFO2DIR(ctinfo)].packets & 0x80000000)
		    || (ct->counters[CTINFO2DIR(ctinfo)].bytes & 0x80000000))
			event |= IPCT_COUNTER_FILLING;
891 892 893 894 895 896 897 898 899 900
	}
#endif

	write_unlock_bh(&nf_conntrack_lock);

	/* must be unlocked when calling event cache */
	if (event)
		nf_conntrack_event_cache(event, skb);
}

901 902 903 904 905
#if defined(CONFIG_NF_CT_NETLINK) || \
    defined(CONFIG_NF_CT_NETLINK_MODULE)

#include <linux/netfilter/nfnetlink.h>
#include <linux/netfilter/nfnetlink_conntrack.h>
I
Ingo Molnar 已提交
906 907
#include <linux/mutex.h>

908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947

/* Generic function for tcp/udp/sctp/dccp and alike. This needs to be
 * in ip_conntrack_core, since we don't want the protocols to autoload
 * or depend on ctnetlink */
int nf_ct_port_tuple_to_nfattr(struct sk_buff *skb,
			       const struct nf_conntrack_tuple *tuple)
{
	NFA_PUT(skb, CTA_PROTO_SRC_PORT, sizeof(u_int16_t),
		&tuple->src.u.tcp.port);
	NFA_PUT(skb, CTA_PROTO_DST_PORT, sizeof(u_int16_t),
		&tuple->dst.u.tcp.port);
	return 0;

nfattr_failure:
	return -1;
}

static const size_t cta_min_proto[CTA_PROTO_MAX] = {
	[CTA_PROTO_SRC_PORT-1]  = sizeof(u_int16_t),
	[CTA_PROTO_DST_PORT-1]  = sizeof(u_int16_t)
};

int nf_ct_port_nfattr_to_tuple(struct nfattr *tb[],
			       struct nf_conntrack_tuple *t)
{
	if (!tb[CTA_PROTO_SRC_PORT-1] || !tb[CTA_PROTO_DST_PORT-1])
		return -EINVAL;

	if (nfattr_bad_size(tb, CTA_PROTO_MAX, cta_min_proto))
		return -EINVAL;

	t->src.u.tcp.port =
		*(u_int16_t *)NFA_DATA(tb[CTA_PROTO_SRC_PORT-1]);
	t->dst.u.tcp.port =
		*(u_int16_t *)NFA_DATA(tb[CTA_PROTO_DST_PORT-1]);

	return 0;
}
#endif

948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
/* Used by ipt_REJECT and ip6t_REJECT. */
void __nf_conntrack_attach(struct sk_buff *nskb, struct sk_buff *skb)
{
	struct nf_conn *ct;
	enum ip_conntrack_info ctinfo;

	/* This ICMP is in reverse direction to the packet which caused it */
	ct = nf_ct_get(skb, &ctinfo);
	if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
		ctinfo = IP_CT_RELATED + IP_CT_IS_REPLY;
	else
		ctinfo = IP_CT_RELATED;

	/* Attach to new skbuff, and increment count */
	nskb->nfct = &ct->ct_general;
	nskb->nfctinfo = ctinfo;
	nf_conntrack_get(nskb->nfct);
}

static inline int
do_iter(const struct nf_conntrack_tuple_hash *i,
	int (*iter)(struct nf_conn *i, void *data),
	void *data)
{
	return iter(nf_ct_tuplehash_to_ctrack(i), data);
}

/* Bring out ya dead! */
P
Patrick McHardy 已提交
976
static struct nf_conn *
977 978 979
get_next_corpse(int (*iter)(struct nf_conn *i, void *data),
		void *data, unsigned int *bucket)
{
P
Patrick McHardy 已提交
980 981
	struct nf_conntrack_tuple_hash *h;
	struct nf_conn *ct;
982 983 984

	write_lock_bh(&nf_conntrack_lock);
	for (; *bucket < nf_conntrack_htable_size; (*bucket)++) {
P
Patrick McHardy 已提交
985 986 987 988 989
		list_for_each_entry(h, &nf_conntrack_hash[*bucket], list) {
			ct = nf_ct_tuplehash_to_ctrack(h);
			if (iter(ct, data))
				goto found;
		}
990
 	}
P
Patrick McHardy 已提交
991 992 993 994 995
	list_for_each_entry(h, &unconfirmed, list) {
		ct = nf_ct_tuplehash_to_ctrack(h);
		if (iter(ct, data))
			goto found;
	}
996
	write_unlock_bh(&nf_conntrack_lock);
P
Patrick McHardy 已提交
997 998
	return NULL;
found:
999
	atomic_inc(&ct->ct_general.use);
1000
	write_unlock_bh(&nf_conntrack_lock);
P
Patrick McHardy 已提交
1001
	return ct;
1002 1003 1004 1005 1006
}

void
nf_ct_iterate_cleanup(int (*iter)(struct nf_conn *i, void *data), void *data)
{
P
Patrick McHardy 已提交
1007
	struct nf_conn *ct;
1008 1009
	unsigned int bucket = 0;

P
Patrick McHardy 已提交
1010
	while ((ct = get_next_corpse(iter, data, &bucket)) != NULL) {
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
		/* Time to push up daises... */
		if (del_timer(&ct->timeout))
			death_by_timeout((unsigned long)ct);
		/* ... else the timer will get him soon. */

		nf_ct_put(ct);
	}
}

static int kill_all(struct nf_conn *i, void *data)
{
	return 1;
}

static void free_conntrack_hash(struct list_head *hash, int vmalloced, int size)
{
	if (vmalloced)
		vfree(hash);
	else
		free_pages((unsigned long)hash, 
			   get_order(sizeof(struct list_head) * size));
}

1034 1035 1036 1037 1038
void nf_conntrack_flush()
{
	nf_ct_iterate_cleanup(kill_all, NULL);
}

1039 1040 1041 1042 1043 1044
/* Mishearing the voices in his head, our hero wonders how he's
   supposed to kill the mall. */
void nf_conntrack_cleanup(void)
{
	int i;

1045 1046
	ip_ct_attach = NULL;

1047 1048 1049 1050 1051 1052 1053
	/* This makes sure all current packets have passed through
	   netfilter framework.  Roll on, two-stage module
	   delete... */
	synchronize_net();

	nf_ct_event_cache_flush();
 i_see_dead_people:
1054
	nf_conntrack_flush();
1055 1056 1057 1058
	if (atomic_read(&nf_conntrack_count) != 0) {
		schedule();
		goto i_see_dead_people;
	}
1059 1060 1061
	/* wait until all references to nf_conntrack_untracked are dropped */
	while (atomic_read(&nf_conntrack_untracked.ct_general.use) > 1)
		schedule();
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073

	for (i = 0; i < NF_CT_F_NUM; i++) {
		if (nf_ct_cache[i].use == 0)
			continue;

		NF_CT_ASSERT(nf_ct_cache[i].use == 1);
		nf_ct_cache[i].use = 1;
		nf_conntrack_unregister_cache(i);
	}
	kmem_cache_destroy(nf_conntrack_expect_cachep);
	free_conntrack_hash(nf_conntrack_hash, nf_conntrack_vmalloc,
			    nf_conntrack_htable_size);
1074

1075 1076
	nf_conntrack_l4proto_unregister(&nf_conntrack_l4proto_generic);

1077 1078 1079 1080 1081 1082
	/* free l3proto protocol tables */
	for (i = 0; i < PF_MAX; i++)
		if (nf_ct_protos[i]) {
			kfree(nf_ct_protos[i]);
			nf_ct_protos[i] = NULL;
		}
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
}

static struct list_head *alloc_hashtable(int size, int *vmalloced)
{
	struct list_head *hash;
	unsigned int i;

	*vmalloced = 0; 
	hash = (void*)__get_free_pages(GFP_KERNEL, 
				       get_order(sizeof(struct list_head)
						 * size));
	if (!hash) { 
		*vmalloced = 1;
		printk(KERN_WARNING "nf_conntrack: falling back to vmalloc.\n");
		hash = vmalloc(sizeof(struct list_head) * size);
	}

	if (hash)
		for (i = 0; i < size; i++) 
			INIT_LIST_HEAD(&hash[i]);

	return hash;
}

int set_hashsize(const char *val, struct kernel_param *kp)
{
	int i, bucket, hashsize, vmalloced;
	int old_vmalloced, old_size;
	int rnd;
	struct list_head *hash, *old_hash;
	struct nf_conntrack_tuple_hash *h;

	/* On boot, we can set this without any fancy locking. */
	if (!nf_conntrack_htable_size)
		return param_set_uint(val, kp);

	hashsize = simple_strtol(val, NULL, 0);
	if (!hashsize)
		return -EINVAL;

	hash = alloc_hashtable(hashsize, &vmalloced);
	if (!hash)
		return -ENOMEM;

	/* We have to rehahs for the new table anyway, so we also can
	 * use a newrandom seed */
	get_random_bytes(&rnd, 4);

	write_lock_bh(&nf_conntrack_lock);
	for (i = 0; i < nf_conntrack_htable_size; i++) {
		while (!list_empty(&nf_conntrack_hash[i])) {
			h = list_entry(nf_conntrack_hash[i].next,
				       struct nf_conntrack_tuple_hash, list);
			list_del(&h->list);
			bucket = __hash_conntrack(&h->tuple, hashsize, rnd);
			list_add_tail(&h->list, &hash[bucket]);
		}
	}
	old_size = nf_conntrack_htable_size;
	old_vmalloced = nf_conntrack_vmalloc;
	old_hash = nf_conntrack_hash;

	nf_conntrack_htable_size = hashsize;
	nf_conntrack_vmalloc = vmalloced;
	nf_conntrack_hash = hash;
	nf_conntrack_hash_rnd = rnd;
	write_unlock_bh(&nf_conntrack_lock);

	free_conntrack_hash(old_hash, old_vmalloced, old_size);
	return 0;
}

module_param_call(hashsize, set_hashsize, param_get_uint,
		  &nf_conntrack_htable_size, 0600);

int __init nf_conntrack_init(void)
{
	unsigned int i;
	int ret;

	/* Idea from tcp.c: use 1/16384 of memory.  On i386: 32MB
	 * machine has 256 buckets.  >= 1GB machines have 8192 buckets. */
	if (!nf_conntrack_htable_size) {
		nf_conntrack_htable_size
			= (((num_physpages << PAGE_SHIFT) / 16384)
			   / sizeof(struct list_head));
		if (num_physpages > (1024 * 1024 * 1024 / PAGE_SIZE))
			nf_conntrack_htable_size = 8192;
		if (nf_conntrack_htable_size < 16)
			nf_conntrack_htable_size = 16;
	}
	nf_conntrack_max = 8 * nf_conntrack_htable_size;

	printk("nf_conntrack version %s (%u buckets, %d max)\n",
	       NF_CONNTRACK_VERSION, nf_conntrack_htable_size,
	       nf_conntrack_max);

	nf_conntrack_hash = alloc_hashtable(nf_conntrack_htable_size,
					    &nf_conntrack_vmalloc);
	if (!nf_conntrack_hash) {
		printk(KERN_ERR "Unable to create nf_conntrack_hash\n");
		goto err_out;
	}

	ret = nf_conntrack_register_cache(NF_CT_F_BASIC, "nf_conntrack:basic",
1188
					  sizeof(struct nf_conn));
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
	if (ret < 0) {
		printk(KERN_ERR "Unable to create nf_conn slab cache\n");
		goto err_free_hash;
	}

	nf_conntrack_expect_cachep = kmem_cache_create("nf_conntrack_expect",
					sizeof(struct nf_conntrack_expect),
					0, 0, NULL, NULL);
	if (!nf_conntrack_expect_cachep) {
		printk(KERN_ERR "Unable to create nf_expect slab cache\n");
		goto err_free_conntrack_slab;
	}

1202 1203 1204 1205
	ret = nf_conntrack_l4proto_register(&nf_conntrack_l4proto_generic);
	if (ret < 0)
		goto out_free_expect_slab;

1206 1207
	/* Don't NEED lock here, but good form anyway. */
	write_lock_bh(&nf_conntrack_lock);
1208
        for (i = 0; i < AF_MAX; i++)
1209
		nf_ct_l3protos[i] = &nf_conntrack_l3proto_generic;
1210 1211
        write_unlock_bh(&nf_conntrack_lock);

1212 1213 1214
	/* For use by REJECT target */
	ip_ct_attach = __nf_conntrack_attach;

1215 1216 1217 1218 1219 1220 1221 1222
	/* Set up fake conntrack:
	    - to never be deleted, not in any hashes */
	atomic_set(&nf_conntrack_untracked.ct_general.use, 1);
	/*  - and look it like as a confirmed connection */
	set_bit(IPS_CONFIRMED_BIT, &nf_conntrack_untracked.status);

	return ret;

1223 1224
out_free_expect_slab:
	kmem_cache_destroy(nf_conntrack_expect_cachep);
1225 1226 1227 1228 1229 1230 1231 1232
err_free_conntrack_slab:
	nf_conntrack_unregister_cache(NF_CT_F_BASIC);
err_free_hash:
	free_conntrack_hash(nf_conntrack_hash, nf_conntrack_vmalloc,
			    nf_conntrack_htable_size);
err_out:
	return -ENOMEM;
}