nf_conntrack_core.c 47.9 KB
Newer Older
1 2 3 4 5
/* Connection state tracking for netfilter.  This is separated from,
   but required by, the NAT layer; it can also be used by an iptables
   extension. */

/* (C) 1999-2001 Paul `Rusty' Russell
6
 * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
 * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * 23 Apr 2001: Harald Welte <laforge@gnumonks.org>
 *	- new API and handling of conntrack/nat helpers
 *	- now capable of multiple expectations for one master
 * 16 Jul 2002: Harald Welte <laforge@gnumonks.org>
 *	- add usage/reference counts to ip_conntrack_expect
 *	- export ip_conntrack[_expect]_{find_get,put} functions
 * 16 Dec 2003: Yasuyuki Kozakai @USAGI <yasuyuki.kozakai@toshiba.co.jp>
 *	- generalize L3 protocol denendent part.
 * 23 Mar 2004: Yasuyuki Kozakai @USAGI <yasuyuki.kozakai@toshiba.co.jp>
 *	- add support various size of conntrack structures.
23 24 25
 * 26 Jan 2006: Harald Welte <laforge@netfilter.org>
 * 	- restructure nf_conn (introduce nf_conn_help)
 * 	- redesign 'features' how they were originally intended
26 27
 * 26 Feb 2006: Pablo Neira Ayuso <pablo@eurodev.net>
 * 	- add support for L3 protocol module load on demand.
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
 *
 * Derived from net/ipv4/netfilter/ip_conntrack_core.c
 */

#include <linux/types.h>
#include <linux/netfilter.h>
#include <linux/module.h>
#include <linux/skbuff.h>
#include <linux/proc_fs.h>
#include <linux/vmalloc.h>
#include <linux/stddef.h>
#include <linux/slab.h>
#include <linux/random.h>
#include <linux/jhash.h>
#include <linux/err.h>
#include <linux/percpu.h>
#include <linux/moduleparam.h>
#include <linux/notifier.h>
#include <linux/kernel.h>
#include <linux/netdevice.h>
#include <linux/socket.h>

/* This rwlock protects the main hash table, protocol/helper/expected
   registrations, conntrack timers*/
#define ASSERT_READ_LOCK(x)
#define ASSERT_WRITE_LOCK(x)

#include <net/netfilter/nf_conntrack.h>
#include <net/netfilter/nf_conntrack_l3proto.h>
#include <net/netfilter/nf_conntrack_protocol.h>
#include <net/netfilter/nf_conntrack_helper.h>
#include <net/netfilter/nf_conntrack_core.h>
#include <linux/netfilter_ipv4/listhelp.h>

62
#define NF_CONNTRACK_VERSION	"0.5.0"
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88

#if 0
#define DEBUGP printk
#else
#define DEBUGP(format, args...)
#endif

DEFINE_RWLOCK(nf_conntrack_lock);

/* nf_conntrack_standalone needs this */
atomic_t nf_conntrack_count = ATOMIC_INIT(0);

void (*nf_conntrack_destroyed)(struct nf_conn *conntrack) = NULL;
LIST_HEAD(nf_conntrack_expect_list);
struct nf_conntrack_protocol **nf_ct_protos[PF_MAX];
struct nf_conntrack_l3proto *nf_ct_l3protos[PF_MAX];
static LIST_HEAD(helpers);
unsigned int nf_conntrack_htable_size = 0;
int nf_conntrack_max;
struct list_head *nf_conntrack_hash;
static kmem_cache_t *nf_conntrack_expect_cachep;
struct nf_conn nf_conntrack_untracked;
unsigned int nf_ct_log_invalid;
static LIST_HEAD(unconfirmed);
static int nf_conntrack_vmalloc;

89 90
static unsigned int nf_conntrack_next_id;
static unsigned int nf_conntrack_expect_next_id;
91
#ifdef CONFIG_NF_CONNTRACK_EVENTS
92 93
ATOMIC_NOTIFIER_HEAD(nf_conntrack_chain);
ATOMIC_NOTIFIER_HEAD(nf_conntrack_expect_chain);
94 95 96 97 98 99 100 101 102 103 104

DEFINE_PER_CPU(struct nf_conntrack_ecache, nf_conntrack_ecache);

/* deliver cached events and clear cache entry - must be called with locally
 * disabled softirqs */
static inline void
__nf_ct_deliver_cached_events(struct nf_conntrack_ecache *ecache)
{
	DEBUGP("ecache: delivering events for %p\n", ecache->ct);
	if (nf_ct_is_confirmed(ecache->ct) && !nf_ct_is_dying(ecache->ct)
	    && ecache->events)
105
		atomic_notifier_call_chain(&nf_conntrack_chain, ecache->events,
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
				    ecache->ct);

	ecache->events = 0;
	nf_ct_put(ecache->ct);
	ecache->ct = NULL;
}

/* Deliver all cached events for a particular conntrack. This is called
 * by code prior to async packet handling for freeing the skb */
void nf_ct_deliver_cached_events(const struct nf_conn *ct)
{
	struct nf_conntrack_ecache *ecache;

	local_bh_disable();
	ecache = &__get_cpu_var(nf_conntrack_ecache);
	if (ecache->ct == ct)
		__nf_ct_deliver_cached_events(ecache);
	local_bh_enable();
}

/* Deliver cached events for old pending events, if current conntrack != old */
void __nf_ct_event_cache_init(struct nf_conn *ct)
{
	struct nf_conntrack_ecache *ecache;
	
	/* take care of delivering potentially old events */
	ecache = &__get_cpu_var(nf_conntrack_ecache);
	BUG_ON(ecache->ct == ct);
	if (ecache->ct)
		__nf_ct_deliver_cached_events(ecache);
	/* initialize for this conntrack/packet */
	ecache->ct = ct;
	nf_conntrack_get(&ct->ct_general);
}

/* flush the event cache - touches other CPU's data and must not be called
 * while packets are still passing through the code */
static void nf_ct_event_cache_flush(void)
{
	struct nf_conntrack_ecache *ecache;
	int cpu;

148
	for_each_possible_cpu(cpu) {
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
		ecache = &per_cpu(nf_conntrack_ecache, cpu);
		if (ecache->ct)
			nf_ct_put(ecache->ct);
	}
}
#else
static inline void nf_ct_event_cache_flush(void) {}
#endif /* CONFIG_NF_CONNTRACK_EVENTS */

DEFINE_PER_CPU(struct ip_conntrack_stat, nf_conntrack_stat);
EXPORT_PER_CPU_SYMBOL(nf_conntrack_stat);

/*
 * This scheme offers various size of "struct nf_conn" dependent on
 * features(helper, nat, ...)
 */

#define NF_CT_FEATURES_NAMELEN	256
static struct {
	/* name of slab cache. printed in /proc/slabinfo */
	char *name;

	/* size of slab cache */
	size_t size;

	/* slab cache pointer */
	kmem_cache_t *cachep;

	/* allocated slab cache + modules which uses this slab cache */
	int use;

} nf_ct_cache[NF_CT_F_NUM];

/* protect members of nf_ct_cache except of "use" */
DEFINE_RWLOCK(nf_ct_cache_lock);

/* This avoids calling kmem_cache_create() with same name simultaneously */
I
Ingo Molnar 已提交
186
static DEFINE_MUTEX(nf_ct_cache_mutex);
187 188 189

extern struct nf_conntrack_protocol nf_conntrack_generic_protocol;
struct nf_conntrack_protocol *
190
__nf_ct_proto_find(u_int16_t l3proto, u_int8_t protocol)
191
{
192
	if (unlikely(l3proto >= AF_MAX || nf_ct_protos[l3proto] == NULL))
193 194 195 196 197
		return &nf_conntrack_generic_protocol;

	return nf_ct_protos[l3proto][protocol];
}

198 199 200 201 202 203 204 205 206
/* this is guaranteed to always return a valid protocol helper, since
 * it falls back to generic_protocol */
struct nf_conntrack_protocol *
nf_ct_proto_find_get(u_int16_t l3proto, u_int8_t protocol)
{
	struct nf_conntrack_protocol *p;

	preempt_disable();
	p = __nf_ct_proto_find(l3proto, protocol);
207 208
	if (!try_module_get(p->me))
		p = &nf_conntrack_generic_protocol;
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
	preempt_enable();
	
	return p;
}

void nf_ct_proto_put(struct nf_conntrack_protocol *p)
{
	module_put(p->me);
}

struct nf_conntrack_l3proto *
nf_ct_l3proto_find_get(u_int16_t l3proto)
{
	struct nf_conntrack_l3proto *p;

	preempt_disable();
	p = __nf_ct_l3proto_find(l3proto);
226 227
	if (!try_module_get(p->me))
		p = &nf_conntrack_generic_l3proto;
228 229 230 231 232 233 234 235 236 237
	preempt_enable();

	return p;
}

void nf_ct_l3proto_put(struct nf_conntrack_l3proto *p)
{
	module_put(p->me);
}

238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
int
nf_ct_l3proto_try_module_get(unsigned short l3proto)
{
	int ret;
	struct nf_conntrack_l3proto *p;

retry:	p = nf_ct_l3proto_find_get(l3proto);
	if (p == &nf_conntrack_generic_l3proto) {
		ret = request_module("nf_conntrack-%d", l3proto);
		if (!ret)
			goto retry;

		return -EPROTOTYPE;
	}

	return 0;
}

void nf_ct_l3proto_module_put(unsigned short l3proto)
{
	struct nf_conntrack_l3proto *p;

	preempt_disable();
	p = __nf_ct_l3proto_find(l3proto);
	preempt_enable();

	module_put(p->me);
}

267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
static int nf_conntrack_hash_rnd_initted;
static unsigned int nf_conntrack_hash_rnd;

static u_int32_t __hash_conntrack(const struct nf_conntrack_tuple *tuple,
				  unsigned int size, unsigned int rnd)
{
	unsigned int a, b;
	a = jhash((void *)tuple->src.u3.all, sizeof(tuple->src.u3.all),
		  ((tuple->src.l3num) << 16) | tuple->dst.protonum);
	b = jhash((void *)tuple->dst.u3.all, sizeof(tuple->dst.u3.all),
			(tuple->src.u.all << 16) | tuple->dst.u.all);

	return jhash_2words(a, b, rnd) % size;
}

static inline u_int32_t hash_conntrack(const struct nf_conntrack_tuple *tuple)
{
	return __hash_conntrack(tuple, nf_conntrack_htable_size,
				nf_conntrack_hash_rnd);
}

int nf_conntrack_register_cache(u_int32_t features, const char *name,
289
				size_t size)
290 291 292 293 294 295 296 297 298 299 300 301 302 303
{
	int ret = 0;
	char *cache_name;
	kmem_cache_t *cachep;

	DEBUGP("nf_conntrack_register_cache: features=0x%x, name=%s, size=%d\n",
	       features, name, size);

	if (features < NF_CT_F_BASIC || features >= NF_CT_F_NUM) {
		DEBUGP("nf_conntrack_register_cache: invalid features.: 0x%x\n",
			features);
		return -EINVAL;
	}

I
Ingo Molnar 已提交
304
	mutex_lock(&nf_ct_cache_mutex);
305 306 307 308 309 310 311

	write_lock_bh(&nf_ct_cache_lock);
	/* e.g: multiple helpers are loaded */
	if (nf_ct_cache[features].use > 0) {
		DEBUGP("nf_conntrack_register_cache: already resisterd.\n");
		if ((!strncmp(nf_ct_cache[features].name, name,
			      NF_CT_FEATURES_NAMELEN))
312
		    && nf_ct_cache[features].size == size) {
313 314 315 316 317 318 319
			DEBUGP("nf_conntrack_register_cache: reusing.\n");
			nf_ct_cache[features].use++;
			ret = 0;
		} else
			ret = -EBUSY;

		write_unlock_bh(&nf_ct_cache_lock);
I
Ingo Molnar 已提交
320
		mutex_unlock(&nf_ct_cache_mutex);
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
		return ret;
	}
	write_unlock_bh(&nf_ct_cache_lock);

	/*
	 * The memory space for name of slab cache must be alive until
	 * cache is destroyed.
	 */
	cache_name = kmalloc(sizeof(char)*NF_CT_FEATURES_NAMELEN, GFP_ATOMIC);
	if (cache_name == NULL) {
		DEBUGP("nf_conntrack_register_cache: can't alloc cache_name\n");
		ret = -ENOMEM;
		goto out_up_mutex;
	}

	if (strlcpy(cache_name, name, NF_CT_FEATURES_NAMELEN)
						>= NF_CT_FEATURES_NAMELEN) {
		printk("nf_conntrack_register_cache: name too long\n");
		ret = -EINVAL;
		goto out_free_name;
	}

	cachep = kmem_cache_create(cache_name, size, 0, 0,
				   NULL, NULL);
	if (!cachep) {
		printk("nf_conntrack_register_cache: Can't create slab cache "
		       "for the features = 0x%x\n", features);
		ret = -ENOMEM;
		goto out_free_name;
	}

	write_lock_bh(&nf_ct_cache_lock);
	nf_ct_cache[features].use = 1;
	nf_ct_cache[features].size = size;
	nf_ct_cache[features].cachep = cachep;
	nf_ct_cache[features].name = cache_name;
	write_unlock_bh(&nf_ct_cache_lock);

	goto out_up_mutex;

out_free_name:
	kfree(cache_name);
out_up_mutex:
I
Ingo Molnar 已提交
364
	mutex_unlock(&nf_ct_cache_mutex);
365 366 367 368 369 370 371 372 373 374 375 376 377 378
	return ret;
}

/* FIXME: In the current, only nf_conntrack_cleanup() can call this function. */
void nf_conntrack_unregister_cache(u_int32_t features)
{
	kmem_cache_t *cachep;
	char *name;

	/*
	 * This assures that kmem_cache_create() isn't called before destroying
	 * slab cache.
	 */
	DEBUGP("nf_conntrack_unregister_cache: 0x%04x\n", features);
I
Ingo Molnar 已提交
379
	mutex_lock(&nf_ct_cache_mutex);
380 381 382 383

	write_lock_bh(&nf_ct_cache_lock);
	if (--nf_ct_cache[features].use > 0) {
		write_unlock_bh(&nf_ct_cache_lock);
I
Ingo Molnar 已提交
384
		mutex_unlock(&nf_ct_cache_mutex);
385 386 387 388 389 390 391 392 393 394 395 396 397 398
		return;
	}
	cachep = nf_ct_cache[features].cachep;
	name = nf_ct_cache[features].name;
	nf_ct_cache[features].cachep = NULL;
	nf_ct_cache[features].name = NULL;
	nf_ct_cache[features].size = 0;
	write_unlock_bh(&nf_ct_cache_lock);

	synchronize_net();

	kmem_cache_destroy(cachep);
	kfree(name);

I
Ingo Molnar 已提交
399
	mutex_unlock(&nf_ct_cache_mutex);
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
}

int
nf_ct_get_tuple(const struct sk_buff *skb,
		unsigned int nhoff,
		unsigned int dataoff,
		u_int16_t l3num,
		u_int8_t protonum,
		struct nf_conntrack_tuple *tuple,
		const struct nf_conntrack_l3proto *l3proto,
		const struct nf_conntrack_protocol *protocol)
{
	NF_CT_TUPLE_U_BLANK(tuple);

	tuple->src.l3num = l3num;
	if (l3proto->pkt_to_tuple(skb, nhoff, tuple) == 0)
		return 0;

	tuple->dst.protonum = protonum;
	tuple->dst.dir = IP_CT_DIR_ORIGINAL;

	return protocol->pkt_to_tuple(skb, dataoff, tuple);
}

int
nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
		   const struct nf_conntrack_tuple *orig,
		   const struct nf_conntrack_l3proto *l3proto,
		   const struct nf_conntrack_protocol *protocol)
{
	NF_CT_TUPLE_U_BLANK(inverse);

	inverse->src.l3num = orig->src.l3num;
	if (l3proto->invert_tuple(inverse, orig) == 0)
		return 0;

	inverse->dst.dir = !orig->dst.dir;

	inverse->dst.protonum = orig->dst.protonum;
	return protocol->invert_tuple(inverse, orig);
}

/* nf_conntrack_expect helper functions */
443
void nf_ct_unlink_expect(struct nf_conntrack_expect *exp)
444
{
445 446 447
	struct nf_conn_help *master_help = nfct_help(exp->master);

	NF_CT_ASSERT(master_help);
448
	ASSERT_WRITE_LOCK(&nf_conntrack_lock);
449
	NF_CT_ASSERT(!timer_pending(&exp->timeout));
450

451 452
	list_del(&exp->list);
	NF_CT_STAT_INC(expect_delete);
453
	master_help->expecting--;
454 455 456 457 458 459 460 461 462 463 464 465 466
	nf_conntrack_expect_put(exp);
}

static void expectation_timed_out(unsigned long ul_expect)
{
	struct nf_conntrack_expect *exp = (void *)ul_expect;

	write_lock_bh(&nf_conntrack_lock);
	nf_ct_unlink_expect(exp);
	write_unlock_bh(&nf_conntrack_lock);
	nf_conntrack_expect_put(exp);
}

467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
struct nf_conntrack_expect *
__nf_conntrack_expect_find(const struct nf_conntrack_tuple *tuple)
{
	struct nf_conntrack_expect *i;
	
	list_for_each_entry(i, &nf_conntrack_expect_list, list) {
		if (nf_ct_tuple_mask_cmp(tuple, &i->tuple, &i->mask)) {
			atomic_inc(&i->use);
			return i;
		}
	}
	return NULL;
}

/* Just find a expectation corresponding to a tuple. */
struct nf_conntrack_expect *
nf_conntrack_expect_find(const struct nf_conntrack_tuple *tuple)
{
	struct nf_conntrack_expect *i;
	
	read_lock_bh(&nf_conntrack_lock);
	i = __nf_conntrack_expect_find(tuple);
	read_unlock_bh(&nf_conntrack_lock);

	return i;
}

494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
/* If an expectation for this connection is found, it gets delete from
 * global list then returned. */
static struct nf_conntrack_expect *
find_expectation(const struct nf_conntrack_tuple *tuple)
{
	struct nf_conntrack_expect *i;

	list_for_each_entry(i, &nf_conntrack_expect_list, list) {
	/* If master is not in hash table yet (ie. packet hasn't left
	   this machine yet), how can other end know about expected?
	   Hence these are not the droids you are looking for (if
	   master ct never got confirmed, we'd hold a reference to it
	   and weird things would happen to future packets). */
		if (nf_ct_tuple_mask_cmp(tuple, &i->tuple, &i->mask)
		    && nf_ct_is_confirmed(i->master)) {
			if (i->flags & NF_CT_EXPECT_PERMANENT) {
				atomic_inc(&i->use);
				return i;
			} else if (del_timer(&i->timeout)) {
				nf_ct_unlink_expect(i);
				return i;
			}
		}
	}
	return NULL;
}

/* delete all expectations for this conntrack */
522
void nf_ct_remove_expectations(struct nf_conn *ct)
523 524
{
	struct nf_conntrack_expect *i, *tmp;
525
	struct nf_conn_help *help = nfct_help(ct);
526 527

	/* Optimization: most connection never expect any others. */
528
	if (!help || help->expecting == 0)
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
		return;

	list_for_each_entry_safe(i, tmp, &nf_conntrack_expect_list, list) {
		if (i->master == ct && del_timer(&i->timeout)) {
			nf_ct_unlink_expect(i);
			nf_conntrack_expect_put(i);
 		}
	}
}

static void
clean_from_lists(struct nf_conn *ct)
{
	unsigned int ho, hr;
	
	DEBUGP("clean_from_lists(%p)\n", ct);
	ASSERT_WRITE_LOCK(&nf_conntrack_lock);

	ho = hash_conntrack(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
	hr = hash_conntrack(&ct->tuplehash[IP_CT_DIR_REPLY].tuple);
	LIST_DELETE(&nf_conntrack_hash[ho], &ct->tuplehash[IP_CT_DIR_ORIGINAL]);
	LIST_DELETE(&nf_conntrack_hash[hr], &ct->tuplehash[IP_CT_DIR_REPLY]);

	/* Destroy all pending expectations */
553
	nf_ct_remove_expectations(ct);
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
}

static void
destroy_conntrack(struct nf_conntrack *nfct)
{
	struct nf_conn *ct = (struct nf_conn *)nfct;
	struct nf_conntrack_l3proto *l3proto;
	struct nf_conntrack_protocol *proto;

	DEBUGP("destroy_conntrack(%p)\n", ct);
	NF_CT_ASSERT(atomic_read(&nfct->use) == 0);
	NF_CT_ASSERT(!timer_pending(&ct->timeout));

	nf_conntrack_event(IPCT_DESTROY, ct);
	set_bit(IPS_DYING_BIT, &ct->status);

	/* To make sure we don't get any weird locking issues here:
	 * destroy_conntrack() MUST NOT be called with a write lock
	 * to nf_conntrack_lock!!! -HW */
573
	l3proto = __nf_ct_l3proto_find(ct->tuplehash[IP_CT_DIR_REPLY].tuple.src.l3num);
574 575 576
	if (l3proto && l3proto->destroy)
		l3proto->destroy(ct);

577
	proto = __nf_ct_proto_find(ct->tuplehash[IP_CT_DIR_REPLY].tuple.src.l3num, ct->tuplehash[IP_CT_DIR_REPLY].tuple.dst.protonum);
578 579 580 581 582 583 584 585 586 587 588
	if (proto && proto->destroy)
		proto->destroy(ct);

	if (nf_conntrack_destroyed)
		nf_conntrack_destroyed(ct);

	write_lock_bh(&nf_conntrack_lock);
	/* Expectations will have been removed in clean_from_lists,
	 * except TFTP can create an expectation on the first packet,
	 * before connection is in the list, so we need to clean here,
	 * too. */
589
	nf_ct_remove_expectations(ct);
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629

	/* We overload first tuple to link into unconfirmed list. */
	if (!nf_ct_is_confirmed(ct)) {
		BUG_ON(list_empty(&ct->tuplehash[IP_CT_DIR_ORIGINAL].list));
		list_del(&ct->tuplehash[IP_CT_DIR_ORIGINAL].list);
	}

	NF_CT_STAT_INC(delete);
	write_unlock_bh(&nf_conntrack_lock);

	if (ct->master)
		nf_ct_put(ct->master);

	DEBUGP("destroy_conntrack: returning ct=%p to slab\n", ct);
	nf_conntrack_free(ct);
}

static void death_by_timeout(unsigned long ul_conntrack)
{
	struct nf_conn *ct = (void *)ul_conntrack;

	write_lock_bh(&nf_conntrack_lock);
	/* Inside lock so preempt is disabled on module removal path.
	 * Otherwise we can get spurious warnings. */
	NF_CT_STAT_INC(delete_list);
	clean_from_lists(ct);
	write_unlock_bh(&nf_conntrack_lock);
	nf_ct_put(ct);
}

static inline int
conntrack_tuple_cmp(const struct nf_conntrack_tuple_hash *i,
		    const struct nf_conntrack_tuple *tuple,
		    const struct nf_conn *ignored_conntrack)
{
	ASSERT_READ_LOCK(&nf_conntrack_lock);
	return nf_ct_tuplehash_to_ctrack(i) != ignored_conntrack
		&& nf_ct_tuple_equal(tuple, &i->tuple);
}

630
struct nf_conntrack_tuple_hash *
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
__nf_conntrack_find(const struct nf_conntrack_tuple *tuple,
		    const struct nf_conn *ignored_conntrack)
{
	struct nf_conntrack_tuple_hash *h;
	unsigned int hash = hash_conntrack(tuple);

	ASSERT_READ_LOCK(&nf_conntrack_lock);
	list_for_each_entry(h, &nf_conntrack_hash[hash], list) {
		if (conntrack_tuple_cmp(h, tuple, ignored_conntrack)) {
			NF_CT_STAT_INC(found);
			return h;
		}
		NF_CT_STAT_INC(searched);
	}

	return NULL;
}

/* Find a connection corresponding to a tuple. */
struct nf_conntrack_tuple_hash *
nf_conntrack_find_get(const struct nf_conntrack_tuple *tuple,
		      const struct nf_conn *ignored_conntrack)
{
	struct nf_conntrack_tuple_hash *h;

	read_lock_bh(&nf_conntrack_lock);
	h = __nf_conntrack_find(tuple, ignored_conntrack);
	if (h)
		atomic_inc(&nf_ct_tuplehash_to_ctrack(h)->ct_general.use);
	read_unlock_bh(&nf_conntrack_lock);

	return h;
}

665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
static void __nf_conntrack_hash_insert(struct nf_conn *ct,
				       unsigned int hash,
				       unsigned int repl_hash) 
{
	ct->id = ++nf_conntrack_next_id;
	list_prepend(&nf_conntrack_hash[hash],
		     &ct->tuplehash[IP_CT_DIR_ORIGINAL].list);
	list_prepend(&nf_conntrack_hash[repl_hash],
		     &ct->tuplehash[IP_CT_DIR_REPLY].list);
}

void nf_conntrack_hash_insert(struct nf_conn *ct)
{
	unsigned int hash, repl_hash;

	hash = hash_conntrack(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
	repl_hash = hash_conntrack(&ct->tuplehash[IP_CT_DIR_REPLY].tuple);

	write_lock_bh(&nf_conntrack_lock);
	__nf_conntrack_hash_insert(ct, hash, repl_hash);
	write_unlock_bh(&nf_conntrack_lock);
}

688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
/* Confirm a connection given skb; places it in hash table */
int
__nf_conntrack_confirm(struct sk_buff **pskb)
{
	unsigned int hash, repl_hash;
	struct nf_conn *ct;
	enum ip_conntrack_info ctinfo;

	ct = nf_ct_get(*pskb, &ctinfo);

	/* ipt_REJECT uses nf_conntrack_attach to attach related
	   ICMP/TCP RST packets in other direction.  Actual packet
	   which created connection will be IP_CT_NEW or for an
	   expected connection, IP_CT_RELATED. */
	if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
		return NF_ACCEPT;

	hash = hash_conntrack(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
	repl_hash = hash_conntrack(&ct->tuplehash[IP_CT_DIR_REPLY].tuple);

	/* We're not in hash table, and we refuse to set up related
	   connections for unconfirmed conns.  But packet copies and
	   REJECT will give spurious warnings here. */
	/* NF_CT_ASSERT(atomic_read(&ct->ct_general.use) == 1); */

	/* No external references means noone else could have
	   confirmed us. */
	NF_CT_ASSERT(!nf_ct_is_confirmed(ct));
	DEBUGP("Confirming conntrack %p\n", ct);

	write_lock_bh(&nf_conntrack_lock);

	/* See if there's one in the list already, including reverse:
	   NAT could have grabbed it without realizing, since we're
	   not in the hash.  If there is, we lost race. */
	if (!LIST_FIND(&nf_conntrack_hash[hash],
		       conntrack_tuple_cmp,
		       struct nf_conntrack_tuple_hash *,
		       &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple, NULL)
	    && !LIST_FIND(&nf_conntrack_hash[repl_hash],
			  conntrack_tuple_cmp,
			  struct nf_conntrack_tuple_hash *,
			  &ct->tuplehash[IP_CT_DIR_REPLY].tuple, NULL)) {
731
		struct nf_conn_help *help;
732 733 734
		/* Remove from unconfirmed list */
		list_del(&ct->tuplehash[IP_CT_DIR_ORIGINAL].list);

735
		__nf_conntrack_hash_insert(ct, hash, repl_hash);
736 737 738 739 740 741 742 743 744
		/* Timer relative to confirmation time, not original
		   setting time, otherwise we'd get timer wrap in
		   weird delay cases. */
		ct->timeout.expires += jiffies;
		add_timer(&ct->timeout);
		atomic_inc(&ct->ct_general.use);
		set_bit(IPS_CONFIRMED_BIT, &ct->status);
		NF_CT_STAT_INC(insert);
		write_unlock_bh(&nf_conntrack_lock);
745 746
		help = nfct_help(ct);
		if (help && help->helper)
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
			nf_conntrack_event_cache(IPCT_HELPER, *pskb);
#ifdef CONFIG_NF_NAT_NEEDED
		if (test_bit(IPS_SRC_NAT_DONE_BIT, &ct->status) ||
		    test_bit(IPS_DST_NAT_DONE_BIT, &ct->status))
			nf_conntrack_event_cache(IPCT_NATINFO, *pskb);
#endif
		nf_conntrack_event_cache(master_ct(ct) ?
					 IPCT_RELATED : IPCT_NEW, *pskb);
		return NF_ACCEPT;
	}

	NF_CT_STAT_INC(insert_failed);
	write_unlock_bh(&nf_conntrack_lock);
	return NF_DROP;
}

/* Returns true if a connection correspondings to the tuple (required
   for NAT). */
int
nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
			 const struct nf_conn *ignored_conntrack)
{
	struct nf_conntrack_tuple_hash *h;

	read_lock_bh(&nf_conntrack_lock);
	h = __nf_conntrack_find(tuple, ignored_conntrack);
	read_unlock_bh(&nf_conntrack_lock);

	return h != NULL;
}

/* There's a small race here where we may free a just-assured
   connection.  Too bad: we're in trouble anyway. */
static inline int unreplied(const struct nf_conntrack_tuple_hash *i)
{
	return !(test_bit(IPS_ASSURED_BIT,
			  &nf_ct_tuplehash_to_ctrack(i)->status));
}

static int early_drop(struct list_head *chain)
{
	/* Traverse backwards: gives us oldest, which is roughly LRU */
	struct nf_conntrack_tuple_hash *h;
	struct nf_conn *ct = NULL;
	int dropped = 0;

	read_lock_bh(&nf_conntrack_lock);
	h = LIST_FIND_B(chain, unreplied, struct nf_conntrack_tuple_hash *);
	if (h) {
		ct = nf_ct_tuplehash_to_ctrack(h);
		atomic_inc(&ct->ct_general.use);
	}
	read_unlock_bh(&nf_conntrack_lock);

	if (!ct)
		return dropped;

	if (del_timer(&ct->timeout)) {
		death_by_timeout((unsigned long)ct);
		dropped = 1;
		NF_CT_STAT_INC(early_drop);
	}
	nf_ct_put(ct);
	return dropped;
}

static inline int helper_cmp(const struct nf_conntrack_helper *i,
			     const struct nf_conntrack_tuple *rtuple)
{
	return nf_ct_tuple_mask_cmp(rtuple, &i->tuple, &i->mask);
}

static struct nf_conntrack_helper *
820
__nf_ct_helper_find(const struct nf_conntrack_tuple *tuple)
821 822 823 824 825 826
{
	return LIST_FIND(&helpers, helper_cmp,
			 struct nf_conntrack_helper *,
			 tuple);
}

827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
struct nf_conntrack_helper *
nf_ct_helper_find_get( const struct nf_conntrack_tuple *tuple)
{
	struct nf_conntrack_helper *helper;

	/* need nf_conntrack_lock to assure that helper exists until
	 * try_module_get() is called */
	read_lock_bh(&nf_conntrack_lock);

	helper = __nf_ct_helper_find(tuple);
	if (helper) {
		/* need to increase module usage count to assure helper will
		 * not go away while the caller is e.g. busy putting a
		 * conntrack in the hash that uses the helper */
		if (!try_module_get(helper->me))
			helper = NULL;
	}

	read_unlock_bh(&nf_conntrack_lock);

	return helper;
}

void nf_ct_helper_put(struct nf_conntrack_helper *helper)
{
	module_put(helper->me);
}

855 856 857 858 859 860 861
static struct nf_conn *
__nf_conntrack_alloc(const struct nf_conntrack_tuple *orig,
		     const struct nf_conntrack_tuple *repl,
		     const struct nf_conntrack_l3proto *l3proto)
{
	struct nf_conn *conntrack = NULL;
	u_int32_t features = 0;
862
	struct nf_conntrack_helper *helper;
863

864
	if (unlikely(!nf_conntrack_hash_rnd_initted)) {
865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
		get_random_bytes(&nf_conntrack_hash_rnd, 4);
		nf_conntrack_hash_rnd_initted = 1;
	}

	if (nf_conntrack_max
	    && atomic_read(&nf_conntrack_count) >= nf_conntrack_max) {
		unsigned int hash = hash_conntrack(orig);
		/* Try dropping from this hash chain. */
		if (!early_drop(&nf_conntrack_hash[hash])) {
			if (net_ratelimit())
				printk(KERN_WARNING
				       "nf_conntrack: table full, dropping"
				       " packet.\n");
			return ERR_PTR(-ENOMEM);
		}
	}

	/*  find features needed by this conntrack. */
	features = l3proto->get_features(orig);
884 885

	/* FIXME: protect helper list per RCU */
886
	read_lock_bh(&nf_conntrack_lock);
887 888
	helper = __nf_ct_helper_find(repl);
	if (helper)
889 890 891 892 893 894 895
		features |= NF_CT_F_HELP;
	read_unlock_bh(&nf_conntrack_lock);

	DEBUGP("nf_conntrack_alloc: features=0x%x\n", features);

	read_lock_bh(&nf_ct_cache_lock);

896
	if (unlikely(!nf_ct_cache[features].use)) {
897 898 899 900 901 902 903 904 905 906 907 908 909
		DEBUGP("nf_conntrack_alloc: not supported features = 0x%x\n",
			features);
		goto out;
	}

	conntrack = kmem_cache_alloc(nf_ct_cache[features].cachep, GFP_ATOMIC);
	if (conntrack == NULL) {
		DEBUGP("nf_conntrack_alloc: Can't alloc conntrack from cache\n");
		goto out;
	}

	memset(conntrack, 0, nf_ct_cache[features].size);
	conntrack->features = features;
910 911 912 913
	if (helper) {
		struct nf_conn_help *help = nfct_help(conntrack);
		NF_CT_ASSERT(help);
		help->helper = helper;
914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
	}

	atomic_set(&conntrack->ct_general.use, 1);
	conntrack->ct_general.destroy = destroy_conntrack;
	conntrack->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
	conntrack->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
	/* Don't set timer yet: wait for confirmation */
	init_timer(&conntrack->timeout);
	conntrack->timeout.data = (unsigned long)conntrack;
	conntrack->timeout.function = death_by_timeout;

	atomic_inc(&nf_conntrack_count);
out:
	read_unlock_bh(&nf_ct_cache_lock);
	return conntrack;
}

struct nf_conn *nf_conntrack_alloc(const struct nf_conntrack_tuple *orig,
				   const struct nf_conntrack_tuple *repl)
{
	struct nf_conntrack_l3proto *l3proto;

936
	l3proto = __nf_ct_l3proto_find(orig->src.l3num);
937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
	return __nf_conntrack_alloc(orig, repl, l3proto);
}

void nf_conntrack_free(struct nf_conn *conntrack)
{
	u_int32_t features = conntrack->features;
	NF_CT_ASSERT(features >= NF_CT_F_BASIC && features < NF_CT_F_NUM);
	DEBUGP("nf_conntrack_free: features = 0x%x, conntrack=%p\n", features,
	       conntrack);
	kmem_cache_free(nf_ct_cache[features].cachep, conntrack);
	atomic_dec(&nf_conntrack_count);
}

/* Allocate a new conntrack: we return -ENOMEM if classification
   failed due to stress.  Otherwise it really is unclassifiable. */
static struct nf_conntrack_tuple_hash *
init_conntrack(const struct nf_conntrack_tuple *tuple,
	       struct nf_conntrack_l3proto *l3proto,
	       struct nf_conntrack_protocol *protocol,
	       struct sk_buff *skb,
	       unsigned int dataoff)
{
	struct nf_conn *conntrack;
	struct nf_conntrack_tuple repl_tuple;
	struct nf_conntrack_expect *exp;

	if (!nf_ct_invert_tuple(&repl_tuple, tuple, l3proto, protocol)) {
		DEBUGP("Can't invert tuple.\n");
		return NULL;
	}

	conntrack = __nf_conntrack_alloc(tuple, &repl_tuple, l3proto);
	if (conntrack == NULL || IS_ERR(conntrack)) {
		DEBUGP("Can't allocate conntrack.\n");
		return (struct nf_conntrack_tuple_hash *)conntrack;
	}

	if (!protocol->new(conntrack, skb, dataoff)) {
		nf_conntrack_free(conntrack);
		DEBUGP("init conntrack: can't track with proto module\n");
		return NULL;
	}

	write_lock_bh(&nf_conntrack_lock);
	exp = find_expectation(tuple);

	if (exp) {
		DEBUGP("conntrack: expectation arrives ct=%p exp=%p\n",
			conntrack, exp);
		/* Welcome, Mr. Bond.  We've been expecting you... */
		__set_bit(IPS_EXPECTED_BIT, &conntrack->status);
		conntrack->master = exp->master;
#ifdef CONFIG_NF_CONNTRACK_MARK
		conntrack->mark = exp->master->mark;
991 992 993
#endif
#ifdef CONFIG_NF_CONNTRACK_SECMARK
		conntrack->secmark = exp->master->secmark;
994 995 996
#endif
		nf_conntrack_get(&conntrack->master->ct_general);
		NF_CT_STAT_INC(expect_new);
997
	} else
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
		NF_CT_STAT_INC(new);

	/* Overload tuple linked list to put us in unconfirmed list. */
	list_add(&conntrack->tuplehash[IP_CT_DIR_ORIGINAL].list, &unconfirmed);

	write_unlock_bh(&nf_conntrack_lock);

	if (exp) {
		if (exp->expectfn)
			exp->expectfn(conntrack, exp);
		nf_conntrack_expect_put(exp);
	}

	return &conntrack->tuplehash[IP_CT_DIR_ORIGINAL];
}

/* On success, returns conntrack ptr, sets skb->nfct and ctinfo */
static inline struct nf_conn *
resolve_normal_ct(struct sk_buff *skb,
		  unsigned int dataoff,
		  u_int16_t l3num,
		  u_int8_t protonum,
		  struct nf_conntrack_l3proto *l3proto,
		  struct nf_conntrack_protocol *proto,
		  int *set_reply,
		  enum ip_conntrack_info *ctinfo)
{
	struct nf_conntrack_tuple tuple;
	struct nf_conntrack_tuple_hash *h;
	struct nf_conn *ct;

	if (!nf_ct_get_tuple(skb, (unsigned int)(skb->nh.raw - skb->data),
			     dataoff, l3num, protonum, &tuple, l3proto,
			     proto)) {
		DEBUGP("resolve_normal_ct: Can't get tuple\n");
		return NULL;
	}

	/* look for tuple match */
	h = nf_conntrack_find_get(&tuple, NULL);
	if (!h) {
		h = init_conntrack(&tuple, l3proto, proto, skb, dataoff);
		if (!h)
			return NULL;
		if (IS_ERR(h))
			return (void *)h;
	}
	ct = nf_ct_tuplehash_to_ctrack(h);

	/* It exists; we have (non-exclusive) reference. */
	if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
		*ctinfo = IP_CT_ESTABLISHED + IP_CT_IS_REPLY;
		/* Please set reply bit if this packet OK */
		*set_reply = 1;
	} else {
		/* Once we've had two way comms, always ESTABLISHED. */
		if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
			DEBUGP("nf_conntrack_in: normal packet for %p\n", ct);
			*ctinfo = IP_CT_ESTABLISHED;
		} else if (test_bit(IPS_EXPECTED_BIT, &ct->status)) {
			DEBUGP("nf_conntrack_in: related packet for %p\n", ct);
			*ctinfo = IP_CT_RELATED;
		} else {
			DEBUGP("nf_conntrack_in: new packet for %p\n", ct);
			*ctinfo = IP_CT_NEW;
		}
		*set_reply = 0;
	}
	skb->nfct = &ct->ct_general;
	skb->nfctinfo = *ctinfo;
	return ct;
}

unsigned int
nf_conntrack_in(int pf, unsigned int hooknum, struct sk_buff **pskb)
{
	struct nf_conn *ct;
	enum ip_conntrack_info ctinfo;
	struct nf_conntrack_l3proto *l3proto;
	struct nf_conntrack_protocol *proto;
	unsigned int dataoff;
	u_int8_t protonum;
	int set_reply = 0;
	int ret;

	/* Previously seen (loopback or untracked)?  Ignore. */
	if ((*pskb)->nfct) {
		NF_CT_STAT_INC(ignore);
		return NF_ACCEPT;
	}

1089
	l3proto = __nf_ct_l3proto_find((u_int16_t)pf);
1090 1091 1092 1093 1094
	if ((ret = l3proto->prepare(pskb, hooknum, &dataoff, &protonum)) <= 0) {
		DEBUGP("not prepared to track yet or error occured\n");
		return -ret;
	}

1095
	proto = __nf_ct_proto_find((u_int16_t)pf, protonum);
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143

	/* It may be an special packet, error, unclean...
	 * inverse of the return code tells to the netfilter
	 * core what to do with the packet. */
	if (proto->error != NULL &&
	    (ret = proto->error(*pskb, dataoff, &ctinfo, pf, hooknum)) <= 0) {
		NF_CT_STAT_INC(error);
		NF_CT_STAT_INC(invalid);
		return -ret;
	}

	ct = resolve_normal_ct(*pskb, dataoff, pf, protonum, l3proto, proto,
			       &set_reply, &ctinfo);
	if (!ct) {
		/* Not valid part of a connection */
		NF_CT_STAT_INC(invalid);
		return NF_ACCEPT;
	}

	if (IS_ERR(ct)) {
		/* Too stressed to deal. */
		NF_CT_STAT_INC(drop);
		return NF_DROP;
	}

	NF_CT_ASSERT((*pskb)->nfct);

	ret = proto->packet(ct, *pskb, dataoff, ctinfo, pf, hooknum);
	if (ret < 0) {
		/* Invalid: inverse of the return code tells
		 * the netfilter core what to do */
		DEBUGP("nf_conntrack_in: Can't track with proto module\n");
		nf_conntrack_put((*pskb)->nfct);
		(*pskb)->nfct = NULL;
		NF_CT_STAT_INC(invalid);
		return -ret;
	}

	if (set_reply && !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
		nf_conntrack_event_cache(IPCT_STATUS, *pskb);

	return ret;
}

int nf_ct_invert_tuplepr(struct nf_conntrack_tuple *inverse,
			 const struct nf_conntrack_tuple *orig)
{
	return nf_ct_invert_tuple(inverse, orig,
1144 1145 1146
				  __nf_ct_l3proto_find(orig->src.l3num),
				  __nf_ct_proto_find(orig->src.l3num,
						     orig->dst.protonum));
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
}

/* Would two expected things clash? */
static inline int expect_clash(const struct nf_conntrack_expect *a,
			       const struct nf_conntrack_expect *b)
{
	/* Part covered by intersection of masks must be unequal,
	   otherwise they clash */
	struct nf_conntrack_tuple intersect_mask;
	int count;

	intersect_mask.src.l3num = a->mask.src.l3num & b->mask.src.l3num;
	intersect_mask.src.u.all = a->mask.src.u.all & b->mask.src.u.all;
	intersect_mask.dst.u.all = a->mask.dst.u.all & b->mask.dst.u.all;
	intersect_mask.dst.protonum = a->mask.dst.protonum
					& b->mask.dst.protonum;

	for (count = 0; count < NF_CT_TUPLE_L3SIZE; count++){
		intersect_mask.src.u3.all[count] =
			a->mask.src.u3.all[count] & b->mask.src.u3.all[count];
	}

	for (count = 0; count < NF_CT_TUPLE_L3SIZE; count++){
		intersect_mask.dst.u3.all[count] =
			a->mask.dst.u3.all[count] & b->mask.dst.u3.all[count];
	}

	return nf_ct_tuple_mask_cmp(&a->tuple, &b->tuple, &intersect_mask);
}

static inline int expect_matches(const struct nf_conntrack_expect *a,
				 const struct nf_conntrack_expect *b)
{
	return a->master == b->master
		&& nf_ct_tuple_equal(&a->tuple, &b->tuple)
		&& nf_ct_tuple_equal(&a->mask, &b->mask);
}

/* Generally a bad idea to call this: could have matched already. */
void nf_conntrack_unexpect_related(struct nf_conntrack_expect *exp)
{
	struct nf_conntrack_expect *i;

	write_lock_bh(&nf_conntrack_lock);
	/* choose the the oldest expectation to evict */
	list_for_each_entry_reverse(i, &nf_conntrack_expect_list, list) {
		if (expect_matches(i, exp) && del_timer(&i->timeout)) {
			nf_ct_unlink_expect(i);
			write_unlock_bh(&nf_conntrack_lock);
			nf_conntrack_expect_put(i);
			return;
		}
	}
	write_unlock_bh(&nf_conntrack_lock);
}

/* We don't increase the master conntrack refcount for non-fulfilled
 * conntracks. During the conntrack destruction, the expectations are
 * always killed before the conntrack itself */
struct nf_conntrack_expect *nf_conntrack_expect_alloc(struct nf_conn *me)
{
	struct nf_conntrack_expect *new;

	new = kmem_cache_alloc(nf_conntrack_expect_cachep, GFP_ATOMIC);
	if (!new) {
		DEBUGP("expect_related: OOM allocating expect\n");
		return NULL;
	}
	new->master = me;
	atomic_set(&new->use, 1);
	return new;
}

void nf_conntrack_expect_put(struct nf_conntrack_expect *exp)
{
	if (atomic_dec_and_test(&exp->use))
		kmem_cache_free(nf_conntrack_expect_cachep, exp);
}

static void nf_conntrack_expect_insert(struct nf_conntrack_expect *exp)
{
1228 1229
	struct nf_conn_help *master_help = nfct_help(exp->master);

1230
	atomic_inc(&exp->use);
1231
	master_help->expecting++;
1232 1233 1234 1235 1236
	list_add(&exp->list, &nf_conntrack_expect_list);

	init_timer(&exp->timeout);
	exp->timeout.data = (unsigned long)exp;
	exp->timeout.function = expectation_timed_out;
1237
	exp->timeout.expires = jiffies + master_help->helper->timeout * HZ;
1238 1239
	add_timer(&exp->timeout);

1240
	exp->id = ++nf_conntrack_expect_next_id;
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
	atomic_inc(&exp->use);
	NF_CT_STAT_INC(expect_create);
}

/* Race with expectations being used means we could have none to find; OK. */
static void evict_oldest_expect(struct nf_conn *master)
{
	struct nf_conntrack_expect *i;

	list_for_each_entry_reverse(i, &nf_conntrack_expect_list, list) {
		if (i->master == master) {
			if (del_timer(&i->timeout)) {
				nf_ct_unlink_expect(i);
				nf_conntrack_expect_put(i);
			}
			break;
		}
	}
}

static inline int refresh_timer(struct nf_conntrack_expect *i)
{
1263 1264
	struct nf_conn_help *master_help = nfct_help(i->master);

1265 1266 1267
	if (!del_timer(&i->timeout))
		return 0;

1268
	i->timeout.expires = jiffies + master_help->helper->timeout*HZ;
1269 1270 1271 1272 1273 1274 1275
	add_timer(&i->timeout);
	return 1;
}

int nf_conntrack_expect_related(struct nf_conntrack_expect *expect)
{
	struct nf_conntrack_expect *i;
1276
	struct nf_conn *master = expect->master;
1277
	struct nf_conn_help *master_help = nfct_help(master);
1278 1279
	int ret;

1280 1281
	NF_CT_ASSERT(master_help);

1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
	DEBUGP("nf_conntrack_expect_related %p\n", related_to);
	DEBUGP("tuple: "); NF_CT_DUMP_TUPLE(&expect->tuple);
	DEBUGP("mask:  "); NF_CT_DUMP_TUPLE(&expect->mask);

	write_lock_bh(&nf_conntrack_lock);
	list_for_each_entry(i, &nf_conntrack_expect_list, list) {
		if (expect_matches(i, expect)) {
			/* Refresh timer: if it's dying, ignore.. */
			if (refresh_timer(i)) {
				ret = 0;
				goto out;
			}
		} else if (expect_clash(i, expect)) {
			ret = -EBUSY;
			goto out;
		}
	}
	/* Will be over limit? */
1300 1301
	if (master_help->helper->max_expected &&
	    master_help->expecting >= master_help->helper->max_expected)
1302
		evict_oldest_expect(master);
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318

	nf_conntrack_expect_insert(expect);
	nf_conntrack_expect_event(IPEXP_NEW, expect);
	ret = 0;
out:
	write_unlock_bh(&nf_conntrack_lock);
	return ret;
}

int nf_conntrack_helper_register(struct nf_conntrack_helper *me)
{
	int ret;
	BUG_ON(me->timeout == 0);

	ret = nf_conntrack_register_cache(NF_CT_F_HELP, "nf_conntrack:help",
					  sizeof(struct nf_conn)
1319 1320
					  + sizeof(struct nf_conn_help)
					  + __alignof__(struct nf_conn_help));
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
	if (ret < 0) {
		printk(KERN_ERR "nf_conntrack_helper_reigster: Unable to create slab cache for conntracks\n");
		return ret;
	}
	write_lock_bh(&nf_conntrack_lock);
	list_prepend(&helpers, me);
	write_unlock_bh(&nf_conntrack_lock);

	return 0;
}

1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
struct nf_conntrack_helper *
__nf_conntrack_helper_find_byname(const char *name)
{
	struct nf_conntrack_helper *h;

	list_for_each_entry(h, &helpers, list) {
		if (!strcmp(h->name, name))
			return h;
	}

	return NULL;
}

1345 1346 1347
static inline int unhelp(struct nf_conntrack_tuple_hash *i,
			 const struct nf_conntrack_helper *me)
{
1348 1349 1350 1351 1352 1353
	struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(i);
	struct nf_conn_help *help = nfct_help(ct);

	if (help && help->helper == me) {
		nf_conntrack_event(IPCT_HELPER, ct);
		help->helper = NULL;
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
	}
	return 0;
}

void nf_conntrack_helper_unregister(struct nf_conntrack_helper *me)
{
	unsigned int i;
	struct nf_conntrack_expect *exp, *tmp;

	/* Need write lock here, to delete helper. */
	write_lock_bh(&nf_conntrack_lock);
	LIST_DELETE(&helpers, me);

	/* Get rid of expectations */
	list_for_each_entry_safe(exp, tmp, &nf_conntrack_expect_list, list) {
1369 1370
		struct nf_conn_help *help = nfct_help(exp->master);
		if (help->helper == me && del_timer(&exp->timeout)) {
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
			nf_ct_unlink_expect(exp);
			nf_conntrack_expect_put(exp);
		}
	}

	/* Get rid of expecteds, set helpers to NULL. */
	LIST_FIND_W(&unconfirmed, unhelp, struct nf_conntrack_tuple_hash*, me);
	for (i = 0; i < nf_conntrack_htable_size; i++)
		LIST_FIND_W(&nf_conntrack_hash[i], unhelp,
			    struct nf_conntrack_tuple_hash *, me);
	write_unlock_bh(&nf_conntrack_lock);

	/* Someone could be still looking at the helper in a bh. */
	synchronize_net();
}

/* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
void __nf_ct_refresh_acct(struct nf_conn *ct,
			  enum ip_conntrack_info ctinfo,
			  const struct sk_buff *skb,
			  unsigned long extra_jiffies,
			  int do_acct)
{
	int event = 0;

	NF_CT_ASSERT(ct->timeout.data == (unsigned long)ct);
	NF_CT_ASSERT(skb);

	write_lock_bh(&nf_conntrack_lock);

1401 1402 1403 1404 1405 1406
	/* Only update if this is not a fixed timeout */
	if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status)) {
		write_unlock_bh(&nf_conntrack_lock);
		return;
	}

1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
	/* If not in hash table, timer will not be active yet */
	if (!nf_ct_is_confirmed(ct)) {
		ct->timeout.expires = extra_jiffies;
		event = IPCT_REFRESH;
	} else {
		/* Need del_timer for race avoidance (may already be dying). */
		if (del_timer(&ct->timeout)) {
			ct->timeout.expires = jiffies + extra_jiffies;
			add_timer(&ct->timeout);
			event = IPCT_REFRESH;
		}
	}

#ifdef CONFIG_NF_CT_ACCT
	if (do_acct) {
		ct->counters[CTINFO2DIR(ctinfo)].packets++;
		ct->counters[CTINFO2DIR(ctinfo)].bytes +=
			skb->len - (unsigned int)(skb->nh.raw - skb->data);
	if ((ct->counters[CTINFO2DIR(ctinfo)].packets & 0x80000000)
	    || (ct->counters[CTINFO2DIR(ctinfo)].bytes & 0x80000000))
		event |= IPCT_COUNTER_FILLING;
	}
#endif

	write_unlock_bh(&nf_conntrack_lock);

	/* must be unlocked when calling event cache */
	if (event)
		nf_conntrack_event_cache(event, skb);
}

1438 1439 1440 1441 1442
#if defined(CONFIG_NF_CT_NETLINK) || \
    defined(CONFIG_NF_CT_NETLINK_MODULE)

#include <linux/netfilter/nfnetlink.h>
#include <linux/netfilter/nfnetlink_conntrack.h>
I
Ingo Molnar 已提交
1443 1444
#include <linux/mutex.h>

1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484

/* Generic function for tcp/udp/sctp/dccp and alike. This needs to be
 * in ip_conntrack_core, since we don't want the protocols to autoload
 * or depend on ctnetlink */
int nf_ct_port_tuple_to_nfattr(struct sk_buff *skb,
			       const struct nf_conntrack_tuple *tuple)
{
	NFA_PUT(skb, CTA_PROTO_SRC_PORT, sizeof(u_int16_t),
		&tuple->src.u.tcp.port);
	NFA_PUT(skb, CTA_PROTO_DST_PORT, sizeof(u_int16_t),
		&tuple->dst.u.tcp.port);
	return 0;

nfattr_failure:
	return -1;
}

static const size_t cta_min_proto[CTA_PROTO_MAX] = {
	[CTA_PROTO_SRC_PORT-1]  = sizeof(u_int16_t),
	[CTA_PROTO_DST_PORT-1]  = sizeof(u_int16_t)
};

int nf_ct_port_nfattr_to_tuple(struct nfattr *tb[],
			       struct nf_conntrack_tuple *t)
{
	if (!tb[CTA_PROTO_SRC_PORT-1] || !tb[CTA_PROTO_DST_PORT-1])
		return -EINVAL;

	if (nfattr_bad_size(tb, CTA_PROTO_MAX, cta_min_proto))
		return -EINVAL;

	t->src.u.tcp.port =
		*(u_int16_t *)NFA_DATA(tb[CTA_PROTO_SRC_PORT-1]);
	t->dst.u.tcp.port =
		*(u_int16_t *)NFA_DATA(tb[CTA_PROTO_DST_PORT-1]);

	return 0;
}
#endif

1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
/* Used by ipt_REJECT and ip6t_REJECT. */
void __nf_conntrack_attach(struct sk_buff *nskb, struct sk_buff *skb)
{
	struct nf_conn *ct;
	enum ip_conntrack_info ctinfo;

	/* This ICMP is in reverse direction to the packet which caused it */
	ct = nf_ct_get(skb, &ctinfo);
	if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
		ctinfo = IP_CT_RELATED + IP_CT_IS_REPLY;
	else
		ctinfo = IP_CT_RELATED;

	/* Attach to new skbuff, and increment count */
	nskb->nfct = &ct->ct_general;
	nskb->nfctinfo = ctinfo;
	nf_conntrack_get(nskb->nfct);
}

static inline int
do_iter(const struct nf_conntrack_tuple_hash *i,
	int (*iter)(struct nf_conn *i, void *data),
	void *data)
{
	return iter(nf_ct_tuplehash_to_ctrack(i), data);
}

/* Bring out ya dead! */
static struct nf_conntrack_tuple_hash *
get_next_corpse(int (*iter)(struct nf_conn *i, void *data),
		void *data, unsigned int *bucket)
{
	struct nf_conntrack_tuple_hash *h = NULL;

	write_lock_bh(&nf_conntrack_lock);
	for (; *bucket < nf_conntrack_htable_size; (*bucket)++) {
		h = LIST_FIND_W(&nf_conntrack_hash[*bucket], do_iter,
				struct nf_conntrack_tuple_hash *, iter, data);
		if (h)
			break;
 	}
	if (!h)
		h = LIST_FIND_W(&unconfirmed, do_iter,
				struct nf_conntrack_tuple_hash *, iter, data);
	if (h)
		atomic_inc(&nf_ct_tuplehash_to_ctrack(h)->ct_general.use);
	write_unlock_bh(&nf_conntrack_lock);

	return h;
}

void
nf_ct_iterate_cleanup(int (*iter)(struct nf_conn *i, void *data), void *data)
{
	struct nf_conntrack_tuple_hash *h;
	unsigned int bucket = 0;

	while ((h = get_next_corpse(iter, data, &bucket)) != NULL) {
		struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
		/* Time to push up daises... */
		if (del_timer(&ct->timeout))
			death_by_timeout((unsigned long)ct);
		/* ... else the timer will get him soon. */

		nf_ct_put(ct);
	}
}

static int kill_all(struct nf_conn *i, void *data)
{
	return 1;
}

static void free_conntrack_hash(struct list_head *hash, int vmalloced, int size)
{
	if (vmalloced)
		vfree(hash);
	else
		free_pages((unsigned long)hash, 
			   get_order(sizeof(struct list_head) * size));
}

1567 1568 1569 1570 1571
void nf_conntrack_flush()
{
	nf_ct_iterate_cleanup(kill_all, NULL);
}

1572 1573 1574 1575 1576 1577
/* Mishearing the voices in his head, our hero wonders how he's
   supposed to kill the mall. */
void nf_conntrack_cleanup(void)
{
	int i;

1578 1579
	ip_ct_attach = NULL;

1580 1581 1582 1583 1584 1585 1586
	/* This makes sure all current packets have passed through
	   netfilter framework.  Roll on, two-stage module
	   delete... */
	synchronize_net();

	nf_ct_event_cache_flush();
 i_see_dead_people:
1587
	nf_conntrack_flush();
1588 1589 1590 1591
	if (atomic_read(&nf_conntrack_count) != 0) {
		schedule();
		goto i_see_dead_people;
	}
1592 1593 1594
	/* wait until all references to nf_conntrack_untracked are dropped */
	while (atomic_read(&nf_conntrack_untracked.ct_general.use) > 1)
		schedule();
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606

	for (i = 0; i < NF_CT_F_NUM; i++) {
		if (nf_ct_cache[i].use == 0)
			continue;

		NF_CT_ASSERT(nf_ct_cache[i].use == 1);
		nf_ct_cache[i].use = 1;
		nf_conntrack_unregister_cache(i);
	}
	kmem_cache_destroy(nf_conntrack_expect_cachep);
	free_conntrack_hash(nf_conntrack_hash, nf_conntrack_vmalloc,
			    nf_conntrack_htable_size);
1607 1608 1609 1610 1611 1612 1613

	/* free l3proto protocol tables */
	for (i = 0; i < PF_MAX; i++)
		if (nf_ct_protos[i]) {
			kfree(nf_ct_protos[i]);
			nf_ct_protos[i] = NULL;
		}
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
}

static struct list_head *alloc_hashtable(int size, int *vmalloced)
{
	struct list_head *hash;
	unsigned int i;

	*vmalloced = 0; 
	hash = (void*)__get_free_pages(GFP_KERNEL, 
				       get_order(sizeof(struct list_head)
						 * size));
	if (!hash) { 
		*vmalloced = 1;
		printk(KERN_WARNING "nf_conntrack: falling back to vmalloc.\n");
		hash = vmalloc(sizeof(struct list_head) * size);
	}

	if (hash)
		for (i = 0; i < size; i++) 
			INIT_LIST_HEAD(&hash[i]);

	return hash;
}

int set_hashsize(const char *val, struct kernel_param *kp)
{
	int i, bucket, hashsize, vmalloced;
	int old_vmalloced, old_size;
	int rnd;
	struct list_head *hash, *old_hash;
	struct nf_conntrack_tuple_hash *h;

	/* On boot, we can set this without any fancy locking. */
	if (!nf_conntrack_htable_size)
		return param_set_uint(val, kp);

	hashsize = simple_strtol(val, NULL, 0);
	if (!hashsize)
		return -EINVAL;

	hash = alloc_hashtable(hashsize, &vmalloced);
	if (!hash)
		return -ENOMEM;

	/* We have to rehahs for the new table anyway, so we also can
	 * use a newrandom seed */
	get_random_bytes(&rnd, 4);

	write_lock_bh(&nf_conntrack_lock);
	for (i = 0; i < nf_conntrack_htable_size; i++) {
		while (!list_empty(&nf_conntrack_hash[i])) {
			h = list_entry(nf_conntrack_hash[i].next,
				       struct nf_conntrack_tuple_hash, list);
			list_del(&h->list);
			bucket = __hash_conntrack(&h->tuple, hashsize, rnd);
			list_add_tail(&h->list, &hash[bucket]);
		}
	}
	old_size = nf_conntrack_htable_size;
	old_vmalloced = nf_conntrack_vmalloc;
	old_hash = nf_conntrack_hash;

	nf_conntrack_htable_size = hashsize;
	nf_conntrack_vmalloc = vmalloced;
	nf_conntrack_hash = hash;
	nf_conntrack_hash_rnd = rnd;
	write_unlock_bh(&nf_conntrack_lock);

	free_conntrack_hash(old_hash, old_vmalloced, old_size);
	return 0;
}

module_param_call(hashsize, set_hashsize, param_get_uint,
		  &nf_conntrack_htable_size, 0600);

int __init nf_conntrack_init(void)
{
	unsigned int i;
	int ret;

	/* Idea from tcp.c: use 1/16384 of memory.  On i386: 32MB
	 * machine has 256 buckets.  >= 1GB machines have 8192 buckets. */
	if (!nf_conntrack_htable_size) {
		nf_conntrack_htable_size
			= (((num_physpages << PAGE_SHIFT) / 16384)
			   / sizeof(struct list_head));
		if (num_physpages > (1024 * 1024 * 1024 / PAGE_SIZE))
			nf_conntrack_htable_size = 8192;
		if (nf_conntrack_htable_size < 16)
			nf_conntrack_htable_size = 16;
	}
	nf_conntrack_max = 8 * nf_conntrack_htable_size;

	printk("nf_conntrack version %s (%u buckets, %d max)\n",
	       NF_CONNTRACK_VERSION, nf_conntrack_htable_size,
	       nf_conntrack_max);

	nf_conntrack_hash = alloc_hashtable(nf_conntrack_htable_size,
					    &nf_conntrack_vmalloc);
	if (!nf_conntrack_hash) {
		printk(KERN_ERR "Unable to create nf_conntrack_hash\n");
		goto err_out;
	}

	ret = nf_conntrack_register_cache(NF_CT_F_BASIC, "nf_conntrack:basic",
1719
					  sizeof(struct nf_conn));
1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
	if (ret < 0) {
		printk(KERN_ERR "Unable to create nf_conn slab cache\n");
		goto err_free_hash;
	}

	nf_conntrack_expect_cachep = kmem_cache_create("nf_conntrack_expect",
					sizeof(struct nf_conntrack_expect),
					0, 0, NULL, NULL);
	if (!nf_conntrack_expect_cachep) {
		printk(KERN_ERR "Unable to create nf_expect slab cache\n");
		goto err_free_conntrack_slab;
	}

	/* Don't NEED lock here, but good form anyway. */
	write_lock_bh(&nf_conntrack_lock);
        for (i = 0; i < PF_MAX; i++)
		nf_ct_l3protos[i] = &nf_conntrack_generic_l3proto;
        write_unlock_bh(&nf_conntrack_lock);

1739 1740 1741
	/* For use by REJECT target */
	ip_ct_attach = __nf_conntrack_attach;

1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
	/* Set up fake conntrack:
	    - to never be deleted, not in any hashes */
	atomic_set(&nf_conntrack_untracked.ct_general.use, 1);
	/*  - and look it like as a confirmed connection */
	set_bit(IPS_CONFIRMED_BIT, &nf_conntrack_untracked.status);

	return ret;

err_free_conntrack_slab:
	nf_conntrack_unregister_cache(NF_CT_F_BASIC);
err_free_hash:
	free_conntrack_hash(nf_conntrack_hash, nf_conntrack_vmalloc,
			    nf_conntrack_htable_size);
err_out:
	return -ENOMEM;
}