i915_gem_request.c 34.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2008-2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25
#include <linux/prefetch.h>
26
#include <linux/dma-fence-array.h>
27

28 29
#include "i915_drv.h"

30
static const char *i915_fence_get_driver_name(struct dma_fence *fence)
31 32 33 34
{
	return "i915";
}

35
static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
36
{
37
	return to_request(fence)->timeline->common->name;
38 39
}

40
static bool i915_fence_signaled(struct dma_fence *fence)
41 42 43 44
{
	return i915_gem_request_completed(to_request(fence));
}

45
static bool i915_fence_enable_signaling(struct dma_fence *fence)
46 47 48 49 50 51 52 53
{
	if (i915_fence_signaled(fence))
		return false;

	intel_engine_enable_signaling(to_request(fence));
	return true;
}

54
static signed long i915_fence_wait(struct dma_fence *fence,
55
				   bool interruptible,
56
				   signed long timeout)
57
{
58
	return i915_wait_request(to_request(fence), interruptible, timeout);
59 60
}

61
static void i915_fence_release(struct dma_fence *fence)
62 63 64
{
	struct drm_i915_gem_request *req = to_request(fence);

65 66 67 68 69 70 71 72 73
	/* The request is put onto a RCU freelist (i.e. the address
	 * is immediately reused), mark the fences as being freed now.
	 * Otherwise the debugobjects for the fences are only marked as
	 * freed when the slab cache itself is freed, and so we would get
	 * caught trying to reuse dead objects.
	 */
	i915_sw_fence_fini(&req->submit);
	i915_sw_fence_fini(&req->execute);

74 75 76
	kmem_cache_free(req->i915->requests, req);
}

77
const struct dma_fence_ops i915_fence_ops = {
78 79 80 81 82 83 84 85
	.get_driver_name = i915_fence_get_driver_name,
	.get_timeline_name = i915_fence_get_timeline_name,
	.enable_signaling = i915_fence_enable_signaling,
	.signaled = i915_fence_signaled,
	.wait = i915_fence_wait,
	.release = i915_fence_release,
};

86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
				   struct drm_file *file)
{
	struct drm_i915_private *dev_private;
	struct drm_i915_file_private *file_priv;

	WARN_ON(!req || !file || req->file_priv);

	if (!req || !file)
		return -EINVAL;

	if (req->file_priv)
		return -EINVAL;

	dev_private = req->i915;
	file_priv = file->driver_priv;

	spin_lock(&file_priv->mm.lock);
	req->file_priv = file_priv;
	list_add_tail(&req->client_list, &file_priv->mm.request_list);
	spin_unlock(&file_priv->mm.lock);

	return 0;
}

static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
{
	struct drm_i915_file_private *file_priv = request->file_priv;

	if (!file_priv)
		return;

	spin_lock(&file_priv->mm.lock);
	list_del(&request->client_list);
	request->file_priv = NULL;
	spin_unlock(&file_priv->mm.lock);
}

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
static struct i915_dependency *
i915_dependency_alloc(struct drm_i915_private *i915)
{
	return kmem_cache_alloc(i915->dependencies, GFP_KERNEL);
}

static void
i915_dependency_free(struct drm_i915_private *i915,
		     struct i915_dependency *dep)
{
	kmem_cache_free(i915->dependencies, dep);
}

static void
__i915_priotree_add_dependency(struct i915_priotree *pt,
			       struct i915_priotree *signal,
			       struct i915_dependency *dep,
			       unsigned long flags)
{
144
	INIT_LIST_HEAD(&dep->dfs_link);
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
	list_add(&dep->wait_link, &signal->waiters_list);
	list_add(&dep->signal_link, &pt->signalers_list);
	dep->signaler = signal;
	dep->flags = flags;
}

static int
i915_priotree_add_dependency(struct drm_i915_private *i915,
			     struct i915_priotree *pt,
			     struct i915_priotree *signal)
{
	struct i915_dependency *dep;

	dep = i915_dependency_alloc(i915);
	if (!dep)
		return -ENOMEM;

	__i915_priotree_add_dependency(pt, signal, dep, I915_DEPENDENCY_ALLOC);
	return 0;
}

static void
i915_priotree_fini(struct drm_i915_private *i915, struct i915_priotree *pt)
{
	struct i915_dependency *dep, *next;

171 172
	GEM_BUG_ON(!RB_EMPTY_NODE(&pt->node));

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
	/* Everyone we depended upon (the fences we wait to be signaled)
	 * should retire before us and remove themselves from our list.
	 * However, retirement is run independently on each timeline and
	 * so we may be called out-of-order.
	 */
	list_for_each_entry_safe(dep, next, &pt->signalers_list, signal_link) {
		list_del(&dep->wait_link);
		if (dep->flags & I915_DEPENDENCY_ALLOC)
			i915_dependency_free(i915, dep);
	}

	/* Remove ourselves from everyone who depends upon us */
	list_for_each_entry_safe(dep, next, &pt->waiters_list, wait_link) {
		list_del(&dep->signal_link);
		if (dep->flags & I915_DEPENDENCY_ALLOC)
			i915_dependency_free(i915, dep);
	}
}

static void
i915_priotree_init(struct i915_priotree *pt)
{
	INIT_LIST_HEAD(&pt->signalers_list);
	INIT_LIST_HEAD(&pt->waiters_list);
197 198
	RB_CLEAR_NODE(&pt->node);
	pt->priority = INT_MIN;
199 200
}

201 202 203 204 205 206
void i915_gem_retire_noop(struct i915_gem_active *active,
			  struct drm_i915_gem_request *request)
{
	/* Space left intentionally blank */
}

207 208
static void i915_gem_request_retire(struct drm_i915_gem_request *request)
{
209
	struct intel_engine_cs *engine = request->engine;
210 211
	struct i915_gem_active *active, *next;

212
	lockdep_assert_held(&request->i915->drm.struct_mutex);
213 214
	GEM_BUG_ON(!i915_sw_fence_signaled(&request->submit));
	GEM_BUG_ON(!i915_sw_fence_signaled(&request->execute));
215
	GEM_BUG_ON(!i915_gem_request_completed(request));
216
	GEM_BUG_ON(!request->i915->gt.active_requests);
217

218
	trace_i915_gem_request_retire(request);
C
Chris Wilson 已提交
219

220
	spin_lock_irq(&engine->timeline->lock);
221
	list_del_init(&request->link);
222
	spin_unlock_irq(&engine->timeline->lock);
223 224 225 226 227 228 229 230 231

	/* We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
232
	list_del(&request->ring_link);
233
	request->ring->last_retired_head = request->postfix;
234 235 236 237 238 239
	if (!--request->i915->gt.active_requests) {
		GEM_BUG_ON(!request->i915->gt.awake);
		mod_delayed_work(request->i915->wq,
				 &request->i915->gt.idle_work,
				 msecs_to_jiffies(100));
	}
240

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
	/* Walk through the active list, calling retire on each. This allows
	 * objects to track their GPU activity and mark themselves as idle
	 * when their *last* active request is completed (updating state
	 * tracking lists for eviction, active references for GEM, etc).
	 *
	 * As the ->retire() may free the node, we decouple it first and
	 * pass along the auxiliary information (to avoid dereferencing
	 * the node after the callback).
	 */
	list_for_each_entry_safe(active, next, &request->active_list, link) {
		/* In microbenchmarks or focusing upon time inside the kernel,
		 * we may spend an inordinate amount of time simply handling
		 * the retirement of requests and processing their callbacks.
		 * Of which, this loop itself is particularly hot due to the
		 * cache misses when jumping around the list of i915_gem_active.
		 * So we try to keep this loop as streamlined as possible and
		 * also prefetch the next i915_gem_active to try and hide
		 * the likely cache miss.
		 */
		prefetchw(next);

		INIT_LIST_HEAD(&active->link);
263
		RCU_INIT_POINTER(active->request, NULL);
264 265 266 267

		active->retire(active, request);
	}

268 269
	i915_gem_request_remove_from_client(request);

270
	/* Retirement decays the ban score as it is a sign of ctx progress */
271 272
	if (request->ctx->ban_score > 0)
		request->ctx->ban_score--;
273

274 275 276 277 278 279 280 281 282 283
	/* The backing object for the context is done after switching to the
	 * *next* context. Therefore we cannot retire the previous context until
	 * the next context has already started running. However, since we
	 * cannot take the required locks at i915_gem_request_submit() we
	 * defer the unpinning of the active context to now, retirement of
	 * the subsequent request.
	 */
	if (engine->last_retired_context)
		engine->context_unpin(engine, engine->last_retired_context);
	engine->last_retired_context = request->ctx;
284 285

	dma_fence_signal(&request->fence);
286 287

	i915_priotree_fini(request->i915, &request->priotree);
288
	i915_gem_request_put(request);
289 290 291 292 293 294 295 296
}

void i915_gem_request_retire_upto(struct drm_i915_gem_request *req)
{
	struct intel_engine_cs *engine = req->engine;
	struct drm_i915_gem_request *tmp;

	lockdep_assert_held(&req->i915->drm.struct_mutex);
297 298
	GEM_BUG_ON(!i915_gem_request_completed(req));

299 300
	if (list_empty(&req->link))
		return;
301 302

	do {
303
		tmp = list_first_entry(&engine->timeline->requests,
304
				       typeof(*tmp), link);
305 306 307 308 309

		i915_gem_request_retire(tmp);
	} while (tmp != req);
}

310
static int i915_gem_check_wedge(struct drm_i915_private *dev_priv)
311
{
312 313 314
	struct i915_gpu_error *error = &dev_priv->gpu_error;

	if (i915_terminally_wedged(error))
315 316
		return -EIO;

317
	if (i915_reset_in_progress(error)) {
318 319 320
		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these.
		 */
321
		if (!dev_priv->mm.interruptible)
322 323 324 325 326 327 328 329
			return -EIO;

		return -EAGAIN;
	}

	return 0;
}

330
static int i915_gem_init_global_seqno(struct drm_i915_private *i915, u32 seqno)
331
{
332
	struct i915_gem_timeline *timeline = &i915->gt.global_timeline;
333
	struct intel_engine_cs *engine;
334
	enum intel_engine_id id;
335 336 337
	int ret;

	/* Carefully retire all requests without writing to the rings */
338
	ret = i915_gem_wait_for_idle(i915,
339 340 341 342 343
				     I915_WAIT_INTERRUPTIBLE |
				     I915_WAIT_LOCKED);
	if (ret)
		return ret;

344
	i915_gem_retire_requests(i915);
345
	GEM_BUG_ON(i915->gt.active_requests > 1);
346 347

	/* If the seqno wraps around, we need to clear the breadcrumb rbtree */
348
	if (!i915_seqno_passed(seqno, atomic_read(&timeline->seqno))) {
349 350
		while (intel_breadcrumbs_busy(i915))
			cond_resched(); /* spin until threads are complete */
351
	}
352
	atomic_set(&timeline->seqno, seqno);
353 354

	/* Finally reset hw state */
355
	for_each_engine(engine, i915, id)
356
		intel_engine_init_global_seqno(engine, seqno);
357

358 359 360 361 362 363 364 365
	list_for_each_entry(timeline, &i915->gt.timelines, link) {
		for_each_engine(engine, i915, id) {
			struct intel_timeline *tl = &timeline->engine[id];

			memset(tl->sync_seqno, 0, sizeof(tl->sync_seqno));
		}
	}

366 367 368
	return 0;
}

369
int i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno)
370 371 372
{
	struct drm_i915_private *dev_priv = to_i915(dev);

373 374
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

375 376 377 378 379 380
	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
381
	return i915_gem_init_global_seqno(dev_priv, seqno - 1);
382 383
}

384
static int reserve_global_seqno(struct drm_i915_private *i915)
385
{
386
	u32 active_requests = ++i915->gt.active_requests;
387
	u32 seqno = atomic_read(&i915->gt.global_timeline.seqno);
388
	int ret;
389

390
	/* Reservation is fine until we need to wrap around */
391
	if (likely(seqno + active_requests > seqno))
392
		return 0;
393

394 395 396 397
	ret = i915_gem_init_global_seqno(i915, 0);
	if (ret) {
		i915->gt.active_requests--;
		return ret;
398 399 400 401 402
	}

	return 0;
}

C
Chris Wilson 已提交
403 404
static u32 __timeline_get_seqno(struct i915_gem_timeline *tl)
{
405 406
	/* seqno only incremented under a mutex */
	return ++tl->seqno.counter;
C
Chris Wilson 已提交
407 408
}

409 410
static u32 timeline_get_seqno(struct i915_gem_timeline *tl)
{
411
	return atomic_inc_return(&tl->seqno);
412 413
}

414
void __i915_gem_request_submit(struct drm_i915_gem_request *request)
415
{
416
	struct intel_engine_cs *engine = request->engine;
417 418
	struct intel_timeline *timeline;
	u32 seqno;
419

C
Chris Wilson 已提交
420 421 422
	/* Transfer from per-context onto the global per-engine timeline */
	timeline = engine->timeline;
	GEM_BUG_ON(timeline == request->timeline);
423
	assert_spin_locked(&timeline->lock);
424

C
Chris Wilson 已提交
425
	seqno = timeline_get_seqno(timeline->common);
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
	GEM_BUG_ON(!seqno);
	GEM_BUG_ON(i915_seqno_passed(intel_engine_get_seqno(engine), seqno));

	GEM_BUG_ON(i915_seqno_passed(timeline->last_submitted_seqno, seqno));
	request->previous_seqno = timeline->last_submitted_seqno;
	timeline->last_submitted_seqno = seqno;

	/* We may be recursing from the signal callback of another i915 fence */
	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
	request->global_seqno = seqno;
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
		intel_engine_enable_signaling(request);
	spin_unlock(&request->lock);

	GEM_BUG_ON(!request->global_seqno);
C
Chris Wilson 已提交
441 442
	engine->emit_breadcrumb(request,
				request->ring->vaddr + request->postfix);
443

444
	spin_lock(&request->timeline->lock);
C
Chris Wilson 已提交
445 446 447
	list_move_tail(&request->link, &timeline->requests);
	spin_unlock(&request->timeline->lock);

448
	i915_sw_fence_commit(&request->execute);
449 450 451 452 453 454
}

void i915_gem_request_submit(struct drm_i915_gem_request *request)
{
	struct intel_engine_cs *engine = request->engine;
	unsigned long flags;
455

456 457 458 459 460 461 462 463 464 465 466
	/* Will be called from irq-context when using foreign fences. */
	spin_lock_irqsave(&engine->timeline->lock, flags);

	__i915_gem_request_submit(request);

	spin_unlock_irqrestore(&engine->timeline->lock, flags);
}

static int __i915_sw_fence_call
submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
{
467 468
	struct drm_i915_gem_request *request =
		container_of(fence, typeof(*request), submit);
469

470 471
	switch (state) {
	case FENCE_COMPLETE:
472
		request->engine->submit_request(request);
473 474 475 476 477
		break;

	case FENCE_FREE:
		i915_gem_request_put(request);
		break;
478
	}
C
Chris Wilson 已提交
479

480 481 482
	return NOTIFY_DONE;
}

483 484 485
static int __i915_sw_fence_call
execute_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
{
486 487 488 489 490 491 492 493 494 495 496 497
	struct drm_i915_gem_request *request =
		container_of(fence, typeof(*request), execute);

	switch (state) {
	case FENCE_COMPLETE:
		break;

	case FENCE_FREE:
		i915_gem_request_put(request);
		break;
	}

498 499 500
	return NOTIFY_DONE;
}

501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
/**
 * i915_gem_request_alloc - allocate a request structure
 *
 * @engine: engine that we wish to issue the request on.
 * @ctx: context that the request will be associated with.
 *       This can be NULL if the request is not directly related to
 *       any specific user context, in which case this function will
 *       choose an appropriate context to use.
 *
 * Returns a pointer to the allocated request if successful,
 * or an error code if not.
 */
struct drm_i915_gem_request *
i915_gem_request_alloc(struct intel_engine_cs *engine,
		       struct i915_gem_context *ctx)
516 517 518 519 520
{
	struct drm_i915_private *dev_priv = engine->i915;
	struct drm_i915_gem_request *req;
	int ret;

521 522
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

523 524 525 526
	/* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
	 * EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
	 * and restart.
	 */
527
	ret = i915_gem_check_wedge(dev_priv);
528
	if (ret)
529
		return ERR_PTR(ret);
530

531 532 533 534 535
	/* Pinning the contexts may generate requests in order to acquire
	 * GGTT space, so do this first before we reserve a seqno for
	 * ourselves.
	 */
	ret = engine->context_pin(engine, ctx);
536 537 538
	if (ret)
		return ERR_PTR(ret);

539 540 541 542
	ret = reserve_global_seqno(dev_priv);
	if (ret)
		goto err_unpin;

543
	/* Move the oldest request to the slab-cache (if not in use!) */
544
	req = list_first_entry_or_null(&engine->timeline->requests,
545
				       typeof(*req), link);
C
Chris Wilson 已提交
546
	if (req && __i915_gem_request_completed(req))
547
		i915_gem_request_retire(req);
548

549 550 551 552 553
	/* Beware: Dragons be flying overhead.
	 *
	 * We use RCU to look up requests in flight. The lookups may
	 * race with the request being allocated from the slab freelist.
	 * That is the request we are writing to here, may be in the process
554
	 * of being read by __i915_gem_active_get_rcu(). As such,
555 556
	 * we have to be very careful when overwriting the contents. During
	 * the RCU lookup, we change chase the request->engine pointer,
557
	 * read the request->global_seqno and increment the reference count.
558 559 560 561
	 *
	 * The reference count is incremented atomically. If it is zero,
	 * the lookup knows the request is unallocated and complete. Otherwise,
	 * it is either still in use, or has been reallocated and reset
562 563
	 * with dma_fence_init(). This increment is safe for release as we
	 * check that the request we have a reference to and matches the active
564 565 566 567 568 569 570 571 572 573 574 575 576 577
	 * request.
	 *
	 * Before we increment the refcount, we chase the request->engine
	 * pointer. We must not call kmem_cache_zalloc() or else we set
	 * that pointer to NULL and cause a crash during the lookup. If
	 * we see the request is completed (based on the value of the
	 * old engine and seqno), the lookup is complete and reports NULL.
	 * If we decide the request is not completed (new engine or seqno),
	 * then we grab a reference and double check that it is still the
	 * active request - which it won't be and restart the lookup.
	 *
	 * Do not use kmem_cache_zalloc() here!
	 */
	req = kmem_cache_alloc(dev_priv->requests, GFP_KERNEL);
578 579 580 581
	if (!req) {
		ret = -ENOMEM;
		goto err_unreserve;
	}
582

C
Chris Wilson 已提交
583 584
	req->timeline = i915_gem_context_lookup_timeline(ctx, engine);
	GEM_BUG_ON(req->timeline == engine->timeline);
585

586
	spin_lock_init(&req->lock);
587 588 589
	dma_fence_init(&req->fence,
		       &i915_fence_ops,
		       &req->lock,
590
		       req->timeline->fence_context,
C
Chris Wilson 已提交
591
		       __timeline_get_seqno(req->timeline->common));
592

593 594 595 596
	/* We bump the ref for the fence chain */
	i915_sw_fence_init(&i915_gem_request_get(req)->submit, submit_notify);
	i915_sw_fence_init(&i915_gem_request_get(req)->execute, execute_notify);

597 598 599 600 601
	/* Ensure that the execute fence completes after the submit fence -
	 * as we complete the execute fence from within the submit fence
	 * callback, its completion would otherwise be visible first.
	 */
	i915_sw_fence_await_sw_fence(&req->execute, &req->submit, &req->execq);
602

603 604
	i915_priotree_init(&req->priotree);

605
	INIT_LIST_HEAD(&req->active_list);
606 607
	req->i915 = dev_priv;
	req->engine = engine;
608
	req->ctx = ctx;
609

610
	/* No zalloc, must clear what we need by hand */
611
	req->global_seqno = 0;
612
	req->file_priv = NULL;
C
Chris Wilson 已提交
613
	req->batch = NULL;
614

615 616 617 618 619 620 621 622
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
	 * i915_add_request() call can't fail. Note that the reserve may need
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
	 */
	req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
623
	GEM_BUG_ON(req->reserved_space < engine->emit_breadcrumb_sz);
624

625
	ret = engine->request_alloc(req);
626 627 628
	if (ret)
		goto err_ctx;

629 630 631 632 633 634 635
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
	req->head = req->ring->tail;

636
	return req;
637 638

err_ctx:
639 640 641 642 643
	/* Make sure we didn't add ourselves to external state before freeing */
	GEM_BUG_ON(!list_empty(&req->active_list));
	GEM_BUG_ON(!list_empty(&req->priotree.signalers_list));
	GEM_BUG_ON(!list_empty(&req->priotree.waiters_list));

644
	kmem_cache_free(dev_priv->requests, req);
645 646
err_unreserve:
	dev_priv->gt.active_requests--;
647 648
err_unpin:
	engine->context_unpin(engine, ctx);
649
	return ERR_PTR(ret);
650 651
}

652 653 654 655
static int
i915_gem_request_await_request(struct drm_i915_gem_request *to,
			       struct drm_i915_gem_request *from)
{
656
	int ret;
657 658 659

	GEM_BUG_ON(to == from);

660 661 662 663 664 665 666 667
	if (to->engine->schedule) {
		ret = i915_priotree_add_dependency(to->i915,
						   &to->priotree,
						   &from->priotree);
		if (ret < 0)
			return ret;
	}

668
	if (to->timeline == from->timeline)
669 670
		return 0;

671 672 673 674 675 676 677
	if (to->engine == from->engine) {
		ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
						       &from->submit,
						       GFP_KERNEL);
		return ret < 0 ? ret : 0;
	}

678 679 680 681 682 683 684
	if (!from->global_seqno) {
		ret = i915_sw_fence_await_dma_fence(&to->submit,
						    &from->fence, 0,
						    GFP_KERNEL);
		return ret < 0 ? ret : 0;
	}

685
	if (from->global_seqno <= to->timeline->sync_seqno[from->engine->id])
686 687 688 689
		return 0;

	trace_i915_gem_ring_sync_to(to, from);
	if (!i915.semaphores) {
690 691 692 693 694 695 696
		if (!i915_spin_request(from, TASK_INTERRUPTIBLE, 2)) {
			ret = i915_sw_fence_await_dma_fence(&to->submit,
							    &from->fence, 0,
							    GFP_KERNEL);
			if (ret < 0)
				return ret;
		}
697 698 699 700 701 702
	} else {
		ret = to->engine->semaphore.sync_to(to, from);
		if (ret)
			return ret;
	}

703
	to->timeline->sync_seqno[from->engine->id] = from->global_seqno;
704 705 706
	return 0;
}

707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
int
i915_gem_request_await_dma_fence(struct drm_i915_gem_request *req,
				 struct dma_fence *fence)
{
	struct dma_fence_array *array;
	int ret;
	int i;

	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return 0;

	if (dma_fence_is_i915(fence))
		return i915_gem_request_await_request(req, to_request(fence));

	if (!dma_fence_is_array(fence)) {
		ret = i915_sw_fence_await_dma_fence(&req->submit,
						    fence, I915_FENCE_TIMEOUT,
						    GFP_KERNEL);
		return ret < 0 ? ret : 0;
	}

	/* Note that if the fence-array was created in signal-on-any mode,
	 * we should *not* decompose it into its individual fences. However,
	 * we don't currently store which mode the fence-array is operating
	 * in. Fortunately, the only user of signal-on-any is private to
	 * amdgpu and we should not see any incoming fence-array from
	 * sync-file being in signal-on-any mode.
	 */

	array = to_dma_fence_array(fence);
	for (i = 0; i < array->num_fences; i++) {
		struct dma_fence *child = array->fences[i];

		if (dma_fence_is_i915(child))
			ret = i915_gem_request_await_request(req,
							     to_request(child));
		else
			ret = i915_sw_fence_await_dma_fence(&req->submit,
							    child, I915_FENCE_TIMEOUT,
							    GFP_KERNEL);
		if (ret < 0)
			return ret;
	}

	return 0;
}

754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
/**
 * i915_gem_request_await_object - set this request to (async) wait upon a bo
 *
 * @to: request we are wishing to use
 * @obj: object which may be in use on another ring.
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Conceptually we serialise writes between engines inside the GPU.
 * We only allow one engine to write into a buffer at any time, but
 * multiple readers. To ensure each has a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
int
i915_gem_request_await_object(struct drm_i915_gem_request *to,
			      struct drm_i915_gem_object *obj,
			      bool write)
{
779 780
	struct dma_fence *excl;
	int ret = 0;
781 782

	if (write) {
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
		struct dma_fence **shared;
		unsigned int count, i;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
			ret = i915_gem_request_await_dma_fence(to, shared[i]);
			if (ret)
				break;

			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
802
	} else {
803
		excl = reservation_object_get_excl_rcu(obj->resv);
804 805
	}

806 807 808
	if (excl) {
		if (ret == 0)
			ret = i915_gem_request_await_dma_fence(to, excl);
809

810
		dma_fence_put(excl);
811 812
	}

813
	return ret;
814 815
}

816 817 818 819 820 821 822
static void i915_gem_mark_busy(const struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;

	if (dev_priv->gt.awake)
		return;

823 824
	GEM_BUG_ON(!dev_priv->gt.active_requests);

825 826 827
	intel_runtime_pm_get_noresume(dev_priv);
	dev_priv->gt.awake = true;

828
	intel_enable_gt_powersave(dev_priv);
829 830 831 832 833 834 835 836 837 838 839 840 841 842
	i915_update_gfx_val(dev_priv);
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_busy(dev_priv);

	queue_delayed_work(dev_priv->wq,
			   &dev_priv->gt.retire_work,
			   round_jiffies_up_relative(HZ));
}

/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
843
void __i915_add_request(struct drm_i915_gem_request *request, bool flush_caches)
844
{
845 846
	struct intel_engine_cs *engine = request->engine;
	struct intel_ring *ring = request->ring;
847
	struct intel_timeline *timeline = request->timeline;
848
	struct drm_i915_gem_request *prev;
C
Chris Wilson 已提交
849
	int err;
850

851
	lockdep_assert_held(&request->i915->drm.struct_mutex);
852 853
	trace_i915_gem_request_add(request);

854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
	request->reserved_space = 0;

	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
	if (flush_caches) {
C
Chris Wilson 已提交
869
		err = engine->emit_flush(request, EMIT_FLUSH);
870

871
		/* Not allowed to fail! */
C
Chris Wilson 已提交
872
		WARN(err, "engine->emit_flush() failed: %d!\n", err);
873 874
	}

875
	/* Record the position of the start of the breadcrumb so that
876 877
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
878
	 * position of the ring's HEAD.
879
	 */
C
Chris Wilson 已提交
880 881
	err = intel_ring_begin(request, engine->emit_breadcrumb_sz);
	GEM_BUG_ON(err);
882
	request->postfix = ring->tail;
C
Chris Wilson 已提交
883
	ring->tail += engine->emit_breadcrumb_sz * sizeof(u32);
884

885 886 887 888 889
	/* Seal the request and mark it as pending execution. Note that
	 * we may inspect this state, without holding any locks, during
	 * hangcheck. Hence we apply the barrier to ensure that we do not
	 * see a more recent value in the hws than we are tracking.
	 */
890

891
	prev = i915_gem_active_raw(&timeline->last_request,
892
				   &request->i915->drm.struct_mutex);
893
	if (prev) {
894 895
		i915_sw_fence_await_sw_fence(&request->submit, &prev->submit,
					     &request->submitq);
896 897 898 899 900 901
		if (engine->schedule)
			__i915_priotree_add_dependency(&request->priotree,
						       &prev->priotree,
						       &request->dep,
						       0);
	}
902

C
Chris Wilson 已提交
903
	spin_lock_irq(&timeline->lock);
904
	list_add_tail(&request->link, &timeline->requests);
C
Chris Wilson 已提交
905 906 907 908
	spin_unlock_irq(&timeline->lock);

	GEM_BUG_ON(i915_seqno_passed(timeline->last_submitted_seqno,
				     request->fence.seqno));
909

C
Chris Wilson 已提交
910
	timeline->last_submitted_seqno = request->fence.seqno;
911
	i915_gem_active_set(&timeline->last_request, request);
912

913
	list_add_tail(&request->ring_link, &ring->request_list);
914
	request->emitted_jiffies = jiffies;
915

916
	i915_gem_mark_busy(engine);
917

918 919 920 921 922 923 924 925 926 927 928
	/* Let the backend know a new request has arrived that may need
	 * to adjust the existing execution schedule due to a high priority
	 * request - i.e. we may want to preempt the current request in order
	 * to run a high priority dependency chain *before* we can execute this
	 * request.
	 *
	 * This is called before the request is ready to run so that we can
	 * decide whether to preempt the entire chain so that it is ready to
	 * run at the earliest possible convenience.
	 */
	if (engine->schedule)
929
		engine->schedule(request, request->ctx->priority);
930

931 932 933
	local_bh_disable();
	i915_sw_fence_commit(&request->submit);
	local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
934 935
}

936 937 938 939 940 941 942 943 944 945
static void reset_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	if (list_empty(&wait->task_list))
		__add_wait_queue(q, wait);
	spin_unlock_irqrestore(&q->lock, flags);
}

946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
static unsigned long local_clock_us(unsigned int *cpu)
{
	unsigned long t;

	/* Cheaply and approximately convert from nanoseconds to microseconds.
	 * The result and subsequent calculations are also defined in the same
	 * approximate microseconds units. The principal source of timing
	 * error here is from the simple truncation.
	 *
	 * Note that local_clock() is only defined wrt to the current CPU;
	 * the comparisons are no longer valid if we switch CPUs. Instead of
	 * blocking preemption for the entire busywait, we can detect the CPU
	 * switch and use that as indicator of system load and a reason to
	 * stop busywaiting, see busywait_stop().
	 */
	*cpu = get_cpu();
	t = local_clock() >> 10;
	put_cpu();

	return t;
}

static bool busywait_stop(unsigned long timeout, unsigned int cpu)
{
	unsigned int this_cpu;

	if (time_after(local_clock_us(&this_cpu), timeout))
		return true;

	return this_cpu != cpu;
}

bool __i915_spin_request(const struct drm_i915_gem_request *req,
			 int state, unsigned long timeout_us)
{
	unsigned int cpu;

	/* When waiting for high frequency requests, e.g. during synchronous
	 * rendering split between the CPU and GPU, the finite amount of time
	 * required to set up the irq and wait upon it limits the response
	 * rate. By busywaiting on the request completion for a short while we
	 * can service the high frequency waits as quick as possible. However,
	 * if it is a slow request, we want to sleep as quickly as possible.
	 * The tradeoff between waiting and sleeping is roughly the time it
	 * takes to sleep on a request, on the order of a microsecond.
	 */

	timeout_us += local_clock_us(&cpu);
	do {
995
		if (__i915_gem_request_completed(req))
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
			return true;

		if (signal_pending_state(state, current))
			break;

		if (busywait_stop(timeout_us, cpu))
			break;

		cpu_relax_lowlatency();
	} while (!need_resched());

	return false;
}

1010
static long
1011 1012 1013
__i915_request_wait_for_execute(struct drm_i915_gem_request *request,
				unsigned int flags,
				long timeout)
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
{
	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
	wait_queue_head_t *q = &request->i915->gpu_error.wait_queue;
	DEFINE_WAIT(reset);
	DEFINE_WAIT(wait);

	if (flags & I915_WAIT_LOCKED)
		add_wait_queue(q, &reset);

	do {
1025
		prepare_to_wait(&request->execute.wait, &wait, state);
1026

1027
		if (i915_sw_fence_done(&request->execute))
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
			break;

		if (flags & I915_WAIT_LOCKED &&
		    i915_reset_in_progress(&request->i915->gpu_error)) {
			__set_current_state(TASK_RUNNING);
			i915_reset(request->i915);
			reset_wait_queue(q, &reset);
			continue;
		}

		if (signal_pending_state(state, current)) {
			timeout = -ERESTARTSYS;
			break;
		}

		timeout = io_schedule_timeout(timeout);
	} while (timeout);
1045
	finish_wait(&request->execute.wait, &wait);
1046 1047 1048 1049 1050 1051 1052

	if (flags & I915_WAIT_LOCKED)
		remove_wait_queue(q, &reset);

	return timeout;
}

1053
/**
1054
 * i915_wait_request - wait until execution of request has finished
1055
 * @req: the request to wait upon
1056
 * @flags: how to wait
1057 1058 1059 1060 1061
 * @timeout: how long to wait in jiffies
 *
 * i915_wait_request() waits for the request to be completed, for a
 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
 * unbounded wait).
1062
 *
1063 1064 1065
 * If the caller holds the struct_mutex, the caller must pass I915_WAIT_LOCKED
 * in via the flags, and vice versa if the struct_mutex is not held, the caller
 * must not specify that the wait is locked.
1066
 *
1067 1068 1069 1070
 * Returns the remaining time (in jiffies) if the request completed, which may
 * be zero or -ETIME if the request is unfinished after the timeout expires.
 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
 * pending before the request completes.
1071
 */
1072 1073 1074
long i915_wait_request(struct drm_i915_gem_request *req,
		       unsigned int flags,
		       long timeout)
1075
{
1076 1077
	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1078 1079 1080 1081
	DEFINE_WAIT(reset);
	struct intel_wait wait;

	might_sleep();
1082
#if IS_ENABLED(CONFIG_LOCKDEP)
1083 1084
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&req->i915->drm.struct_mutex) !=
1085 1086
		   !!(flags & I915_WAIT_LOCKED));
#endif
1087
	GEM_BUG_ON(timeout < 0);
1088 1089

	if (i915_gem_request_completed(req))
1090
		return timeout;
1091

1092 1093
	if (!timeout)
		return -ETIME;
1094 1095 1096

	trace_i915_gem_request_wait_begin(req);

1097 1098
	if (!i915_sw_fence_done(&req->execute)) {
		timeout = __i915_request_wait_for_execute(req, flags, timeout);
1099 1100 1101
		if (timeout < 0)
			goto complete;

1102
		GEM_BUG_ON(!i915_sw_fence_done(&req->execute));
1103
	}
1104
	GEM_BUG_ON(!i915_sw_fence_done(&req->submit));
1105
	GEM_BUG_ON(!req->global_seqno);
1106

1107
	/* Optimistic short spin before touching IRQs */
1108 1109 1110 1111
	if (i915_spin_request(req, state, 5))
		goto complete;

	set_current_state(state);
1112 1113
	if (flags & I915_WAIT_LOCKED)
		add_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
1114

1115
	intel_wait_init(&wait, req->global_seqno);
1116 1117 1118 1119 1120 1121 1122 1123 1124
	if (intel_engine_add_wait(req->engine, &wait))
		/* In order to check that we haven't missed the interrupt
		 * as we enabled it, we need to kick ourselves to do a
		 * coherent check on the seqno before we sleep.
		 */
		goto wakeup;

	for (;;) {
		if (signal_pending_state(state, current)) {
1125
			timeout = -ERESTARTSYS;
1126 1127 1128
			break;
		}

1129 1130
		if (!timeout) {
			timeout = -ETIME;
1131 1132 1133
			break;
		}

1134 1135
		timeout = io_schedule_timeout(timeout);

1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
		if (intel_wait_complete(&wait))
			break;

		set_current_state(state);

wakeup:
		/* Carefully check if the request is complete, giving time
		 * for the seqno to be visible following the interrupt.
		 * We also have to check in case we are kicked by the GPU
		 * reset in order to drop the struct_mutex.
		 */
		if (__i915_request_irq_complete(req))
			break;

1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
		/* If the GPU is hung, and we hold the lock, reset the GPU
		 * and then check for completion. On a full reset, the engine's
		 * HW seqno will be advanced passed us and we are complete.
		 * If we do a partial reset, we have to wait for the GPU to
		 * resume and update the breadcrumb.
		 *
		 * If we don't hold the mutex, we can just wait for the worker
		 * to come along and update the breadcrumb (either directly
		 * itself, or indirectly by recovering the GPU).
		 */
		if (flags & I915_WAIT_LOCKED &&
		    i915_reset_in_progress(&req->i915->gpu_error)) {
			__set_current_state(TASK_RUNNING);
			i915_reset(req->i915);
			reset_wait_queue(&req->i915->gpu_error.wait_queue,
					 &reset);
			continue;
		}

1169 1170 1171 1172 1173 1174
		/* Only spin if we know the GPU is processing this request */
		if (i915_spin_request(req, state, 2))
			break;
	}

	intel_engine_remove_wait(req->engine, &wait);
1175 1176
	if (flags & I915_WAIT_LOCKED)
		remove_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
1177
	__set_current_state(TASK_RUNNING);
1178

1179 1180 1181
complete:
	trace_i915_gem_request_wait_end(req);

1182
	return timeout;
1183
}
1184

1185
static void engine_retire_requests(struct intel_engine_cs *engine)
1186 1187 1188
{
	struct drm_i915_gem_request *request, *next;

1189 1190
	list_for_each_entry_safe(request, next,
				 &engine->timeline->requests, link) {
C
Chris Wilson 已提交
1191
		if (!__i915_gem_request_completed(request))
1192
			return;
1193 1194 1195 1196 1197 1198 1199 1200

		i915_gem_request_retire(request);
	}
}

void i915_gem_retire_requests(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
1201
	enum intel_engine_id id;
1202 1203 1204

	lockdep_assert_held(&dev_priv->drm.struct_mutex);

1205
	if (!dev_priv->gt.active_requests)
1206 1207
		return;

1208 1209
	for_each_engine(engine, dev_priv, id)
		engine_retire_requests(engine);
1210
}