i915_gem_request.c 28.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2008-2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25
#include <linux/prefetch.h>
26
#include <linux/dma-fence-array.h>
27

28 29
#include "i915_drv.h"

30
static const char *i915_fence_get_driver_name(struct dma_fence *fence)
31 32 33 34
{
	return "i915";
}

35
static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
36 37 38 39 40 41 42
{
	/* Timelines are bound by eviction to a VM. However, since
	 * we only have a global seqno at the moment, we only have
	 * a single timeline. Note that each timeline will have
	 * multiple execution contexts (fence contexts) as we allow
	 * engines within a single timeline to execute in parallel.
	 */
43
	return to_request(fence)->timeline->common->name;
44 45
}

46
static bool i915_fence_signaled(struct dma_fence *fence)
47 48 49 50
{
	return i915_gem_request_completed(to_request(fence));
}

51
static bool i915_fence_enable_signaling(struct dma_fence *fence)
52 53 54 55 56 57 58 59
{
	if (i915_fence_signaled(fence))
		return false;

	intel_engine_enable_signaling(to_request(fence));
	return true;
}

60
static signed long i915_fence_wait(struct dma_fence *fence,
61
				   bool interruptible,
62
				   signed long timeout)
63
{
64
	return i915_wait_request(to_request(fence), interruptible, timeout);
65 66
}

67
static void i915_fence_value_str(struct dma_fence *fence, char *str, int size)
68 69 70 71
{
	snprintf(str, size, "%u", fence->seqno);
}

72
static void i915_fence_timeline_value_str(struct dma_fence *fence, char *str,
73 74 75 76 77 78
					  int size)
{
	snprintf(str, size, "%u",
		 intel_engine_get_seqno(to_request(fence)->engine));
}

79
static void i915_fence_release(struct dma_fence *fence)
80 81 82 83 84 85
{
	struct drm_i915_gem_request *req = to_request(fence);

	kmem_cache_free(req->i915->requests, req);
}

86
const struct dma_fence_ops i915_fence_ops = {
87 88 89 90 91 92 93 94 95 96
	.get_driver_name = i915_fence_get_driver_name,
	.get_timeline_name = i915_fence_get_timeline_name,
	.enable_signaling = i915_fence_enable_signaling,
	.signaled = i915_fence_signaled,
	.wait = i915_fence_wait,
	.release = i915_fence_release,
	.fence_value_str = i915_fence_value_str,
	.timeline_value_str = i915_fence_timeline_value_str,
};

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
				   struct drm_file *file)
{
	struct drm_i915_private *dev_private;
	struct drm_i915_file_private *file_priv;

	WARN_ON(!req || !file || req->file_priv);

	if (!req || !file)
		return -EINVAL;

	if (req->file_priv)
		return -EINVAL;

	dev_private = req->i915;
	file_priv = file->driver_priv;

	spin_lock(&file_priv->mm.lock);
	req->file_priv = file_priv;
	list_add_tail(&req->client_list, &file_priv->mm.request_list);
	spin_unlock(&file_priv->mm.lock);

	return 0;
}

static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
{
	struct drm_i915_file_private *file_priv = request->file_priv;

	if (!file_priv)
		return;

	spin_lock(&file_priv->mm.lock);
	list_del(&request->client_list);
	request->file_priv = NULL;
	spin_unlock(&file_priv->mm.lock);
}

136 137 138 139 140 141
void i915_gem_retire_noop(struct i915_gem_active *active,
			  struct drm_i915_gem_request *request)
{
	/* Space left intentionally blank */
}

142 143
static void i915_gem_request_retire(struct drm_i915_gem_request *request)
{
144 145
	struct i915_gem_active *active, *next;

146 147 148
	lockdep_assert_held(&request->i915->drm.struct_mutex);
	GEM_BUG_ON(!i915_gem_request_completed(request));

149
	trace_i915_gem_request_retire(request);
150
	list_del_init(&request->link);
151 152 153 154 155 156 157 158 159

	/* We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
160
	list_del(&request->ring_link);
161
	request->ring->last_retired_head = request->postfix;
162
	request->i915->gt.active_requests--;
163

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
	/* Walk through the active list, calling retire on each. This allows
	 * objects to track their GPU activity and mark themselves as idle
	 * when their *last* active request is completed (updating state
	 * tracking lists for eviction, active references for GEM, etc).
	 *
	 * As the ->retire() may free the node, we decouple it first and
	 * pass along the auxiliary information (to avoid dereferencing
	 * the node after the callback).
	 */
	list_for_each_entry_safe(active, next, &request->active_list, link) {
		/* In microbenchmarks or focusing upon time inside the kernel,
		 * we may spend an inordinate amount of time simply handling
		 * the retirement of requests and processing their callbacks.
		 * Of which, this loop itself is particularly hot due to the
		 * cache misses when jumping around the list of i915_gem_active.
		 * So we try to keep this loop as streamlined as possible and
		 * also prefetch the next i915_gem_active to try and hide
		 * the likely cache miss.
		 */
		prefetchw(next);

		INIT_LIST_HEAD(&active->link);
186
		RCU_INIT_POINTER(active->request, NULL);
187 188 189 190

		active->retire(active, request);
	}

191 192 193 194 195 196 197 198
	i915_gem_request_remove_from_client(request);

	if (request->previous_context) {
		if (i915.enable_execlists)
			intel_lr_context_unpin(request->previous_context,
					       request->engine);
	}

199
	i915_gem_context_put(request->ctx);
200 201

	dma_fence_signal(&request->fence);
202
	i915_gem_request_put(request);
203 204 205 206 207 208 209 210
}

void i915_gem_request_retire_upto(struct drm_i915_gem_request *req)
{
	struct intel_engine_cs *engine = req->engine;
	struct drm_i915_gem_request *tmp;

	lockdep_assert_held(&req->i915->drm.struct_mutex);
211 212
	if (list_empty(&req->link))
		return;
213 214

	do {
215
		tmp = list_first_entry(&engine->timeline->requests,
216
				       typeof(*tmp), link);
217 218 219 220 221

		i915_gem_request_retire(tmp);
	} while (tmp != req);
}

222
static int i915_gem_check_wedge(struct drm_i915_private *dev_priv)
223
{
224 225 226
	struct i915_gpu_error *error = &dev_priv->gpu_error;

	if (i915_terminally_wedged(error))
227 228
		return -EIO;

229
	if (i915_reset_in_progress(error)) {
230 231 232
		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these.
		 */
233
		if (!dev_priv->mm.interruptible)
234 235 236 237 238 239 240 241
			return -EIO;

		return -EAGAIN;
	}

	return 0;
}

242
static int i915_gem_init_global_seqno(struct drm_i915_private *i915, u32 seqno)
243
{
244
	struct i915_gem_timeline *timeline = &i915->gt.global_timeline;
245
	struct intel_engine_cs *engine;
246
	enum intel_engine_id id;
247 248 249
	int ret;

	/* Carefully retire all requests without writing to the rings */
250
	ret = i915_gem_wait_for_idle(i915,
251 252 253 254 255
				     I915_WAIT_INTERRUPTIBLE |
				     I915_WAIT_LOCKED);
	if (ret)
		return ret;

256
	i915_gem_retire_requests(i915);
257
	GEM_BUG_ON(i915->gt.active_requests > 1);
258 259

	/* If the seqno wraps around, we need to clear the breadcrumb rbtree */
260
	if (!i915_seqno_passed(seqno, atomic_read(&timeline->next_seqno))) {
261
		while (intel_kick_waiters(i915) || intel_kick_signalers(i915))
262
			yield();
263
		yield();
264
	}
265
	atomic_set(&timeline->next_seqno, seqno);
266 267

	/* Finally reset hw state */
268
	for_each_engine(engine, i915, id)
269
		intel_engine_init_global_seqno(engine, seqno);
270

271 272 273 274 275 276 277 278
	list_for_each_entry(timeline, &i915->gt.timelines, link) {
		for_each_engine(engine, i915, id) {
			struct intel_timeline *tl = &timeline->engine[id];

			memset(tl->sync_seqno, 0, sizeof(tl->sync_seqno));
		}
	}

279 280 281
	return 0;
}

282
int i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno)
283 284 285
{
	struct drm_i915_private *dev_priv = to_i915(dev);

286 287
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

288 289 290 291 292 293
	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
294
	return i915_gem_init_global_seqno(dev_priv, seqno - 1);
295 296
}

297
static int reserve_global_seqno(struct drm_i915_private *i915)
298
{
299 300 301
	u32 active_requests = ++i915->gt.active_requests;
	u32 next_seqno = atomic_read(&i915->gt.global_timeline.next_seqno);
	int ret;
302

303 304 305
	/* Reservation is fine until we need to wrap around */
	if (likely(next_seqno + active_requests > next_seqno))
		return 0;
306

307 308 309 310
	ret = i915_gem_init_global_seqno(i915, 0);
	if (ret) {
		i915->gt.active_requests--;
		return ret;
311 312 313 314 315
	}

	return 0;
}

316 317 318 319 320
static u32 timeline_get_seqno(struct i915_gem_timeline *tl)
{
	return atomic_inc_return(&tl->next_seqno);
}

321 322 323 324 325
static int __i915_sw_fence_call
submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
{
	struct drm_i915_gem_request *request =
		container_of(fence, typeof(*request), submit);
326
	struct intel_engine_cs *engine = request->engine;
327

C
Chris Wilson 已提交
328 329 330
	if (state != FENCE_COMPLETE)
		return NOTIFY_DONE;

331 332
	/* Will be called from irq-context when using foreign DMA fences */

C
Chris Wilson 已提交
333
	engine->timeline->last_submitted_seqno = request->fence.seqno;
334

C
Chris Wilson 已提交
335 336 337
	engine->emit_breadcrumb(request,
				request->ring->vaddr + request->postfix);
	engine->submit_request(request);
338 339 340 341

	return NOTIFY_DONE;
}

342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
/**
 * i915_gem_request_alloc - allocate a request structure
 *
 * @engine: engine that we wish to issue the request on.
 * @ctx: context that the request will be associated with.
 *       This can be NULL if the request is not directly related to
 *       any specific user context, in which case this function will
 *       choose an appropriate context to use.
 *
 * Returns a pointer to the allocated request if successful,
 * or an error code if not.
 */
struct drm_i915_gem_request *
i915_gem_request_alloc(struct intel_engine_cs *engine,
		       struct i915_gem_context *ctx)
357 358 359 360 361
{
	struct drm_i915_private *dev_priv = engine->i915;
	struct drm_i915_gem_request *req;
	int ret;

362 363
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

364 365 366 367
	/* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
	 * EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
	 * and restart.
	 */
368
	ret = i915_gem_check_wedge(dev_priv);
369
	if (ret)
370
		return ERR_PTR(ret);
371

372 373 374 375
	ret = reserve_global_seqno(dev_priv);
	if (ret)
		return ERR_PTR(ret);

376
	/* Move the oldest request to the slab-cache (if not in use!) */
377
	req = list_first_entry_or_null(&engine->timeline->requests,
378
				       typeof(*req), link);
379 380
	if (req && i915_gem_request_completed(req))
		i915_gem_request_retire(req);
381

382 383 384 385 386
	/* Beware: Dragons be flying overhead.
	 *
	 * We use RCU to look up requests in flight. The lookups may
	 * race with the request being allocated from the slab freelist.
	 * That is the request we are writing to here, may be in the process
387
	 * of being read by __i915_gem_active_get_rcu(). As such,
388 389
	 * we have to be very careful when overwriting the contents. During
	 * the RCU lookup, we change chase the request->engine pointer,
390
	 * read the request->global_seqno and increment the reference count.
391 392 393 394
	 *
	 * The reference count is incremented atomically. If it is zero,
	 * the lookup knows the request is unallocated and complete. Otherwise,
	 * it is either still in use, or has been reallocated and reset
395 396
	 * with dma_fence_init(). This increment is safe for release as we
	 * check that the request we have a reference to and matches the active
397 398 399 400 401 402 403 404 405 406 407 408 409 410
	 * request.
	 *
	 * Before we increment the refcount, we chase the request->engine
	 * pointer. We must not call kmem_cache_zalloc() or else we set
	 * that pointer to NULL and cause a crash during the lookup. If
	 * we see the request is completed (based on the value of the
	 * old engine and seqno), the lookup is complete and reports NULL.
	 * If we decide the request is not completed (new engine or seqno),
	 * then we grab a reference and double check that it is still the
	 * active request - which it won't be and restart the lookup.
	 *
	 * Do not use kmem_cache_zalloc() here!
	 */
	req = kmem_cache_alloc(dev_priv->requests, GFP_KERNEL);
411 412 413 414
	if (!req) {
		ret = -ENOMEM;
		goto err_unreserve;
	}
415

416 417
	req->timeline = engine->timeline;

418
	spin_lock_init(&req->lock);
419 420 421
	dma_fence_init(&req->fence,
		       &i915_fence_ops,
		       &req->lock,
422
		       req->timeline->fence_context,
423
		       timeline_get_seqno(req->timeline->common));
424

425 426
	i915_sw_fence_init(&req->submit, submit_notify);

427
	INIT_LIST_HEAD(&req->active_list);
428 429
	req->i915 = dev_priv;
	req->engine = engine;
430
	req->global_seqno = req->fence.seqno;
431
	req->ctx = i915_gem_context_get(ctx);
432

433 434 435
	/* No zalloc, must clear what we need by hand */
	req->previous_context = NULL;
	req->file_priv = NULL;
C
Chris Wilson 已提交
436
	req->batch = NULL;
437

438 439 440 441 442 443 444 445
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
	 * i915_add_request() call can't fail. Note that the reserve may need
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
	 */
	req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
446
	GEM_BUG_ON(req->reserved_space < engine->emit_breadcrumb_sz);
447 448 449 450 451 452 453 454

	if (i915.enable_execlists)
		ret = intel_logical_ring_alloc_request_extras(req);
	else
		ret = intel_ring_alloc_request_extras(req);
	if (ret)
		goto err_ctx;

455 456 457 458 459 460 461
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
	req->head = req->ring->tail;

462
	return req;
463 464

err_ctx:
465
	i915_gem_context_put(ctx);
466
	kmem_cache_free(dev_priv->requests, req);
467 468
err_unreserve:
	dev_priv->gt.active_requests--;
469
	return ERR_PTR(ret);
470 471
}

472 473 474 475
static int
i915_gem_request_await_request(struct drm_i915_gem_request *to,
			       struct drm_i915_gem_request *from)
{
476
	int ret;
477 478 479

	GEM_BUG_ON(to == from);

480
	if (to->timeline == from->timeline)
481 482
		return 0;

483 484 485 486 487 488 489
	if (to->engine == from->engine) {
		ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
						       &from->submit,
						       GFP_KERNEL);
		return ret < 0 ? ret : 0;
	}

490 491 492 493 494 495 496
	if (!from->global_seqno) {
		ret = i915_sw_fence_await_dma_fence(&to->submit,
						    &from->fence, 0,
						    GFP_KERNEL);
		return ret < 0 ? ret : 0;
	}

497
	if (from->global_seqno <= to->timeline->sync_seqno[from->engine->id])
498 499 500 501
		return 0;

	trace_i915_gem_ring_sync_to(to, from);
	if (!i915.semaphores) {
502 503 504 505 506 507 508
		if (!i915_spin_request(from, TASK_INTERRUPTIBLE, 2)) {
			ret = i915_sw_fence_await_dma_fence(&to->submit,
							    &from->fence, 0,
							    GFP_KERNEL);
			if (ret < 0)
				return ret;
		}
509 510 511 512 513 514
	} else {
		ret = to->engine->semaphore.sync_to(to, from);
		if (ret)
			return ret;
	}

515
	to->timeline->sync_seqno[from->engine->id] = from->global_seqno;
516 517 518
	return 0;
}

519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
int
i915_gem_request_await_dma_fence(struct drm_i915_gem_request *req,
				 struct dma_fence *fence)
{
	struct dma_fence_array *array;
	int ret;
	int i;

	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return 0;

	if (dma_fence_is_i915(fence))
		return i915_gem_request_await_request(req, to_request(fence));

	if (!dma_fence_is_array(fence)) {
		ret = i915_sw_fence_await_dma_fence(&req->submit,
						    fence, I915_FENCE_TIMEOUT,
						    GFP_KERNEL);
		return ret < 0 ? ret : 0;
	}

	/* Note that if the fence-array was created in signal-on-any mode,
	 * we should *not* decompose it into its individual fences. However,
	 * we don't currently store which mode the fence-array is operating
	 * in. Fortunately, the only user of signal-on-any is private to
	 * amdgpu and we should not see any incoming fence-array from
	 * sync-file being in signal-on-any mode.
	 */

	array = to_dma_fence_array(fence);
	for (i = 0; i < array->num_fences; i++) {
		struct dma_fence *child = array->fences[i];

		if (dma_fence_is_i915(child))
			ret = i915_gem_request_await_request(req,
							     to_request(child));
		else
			ret = i915_sw_fence_await_dma_fence(&req->submit,
							    child, I915_FENCE_TIMEOUT,
							    GFP_KERNEL);
		if (ret < 0)
			return ret;
	}

	return 0;
}

566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
/**
 * i915_gem_request_await_object - set this request to (async) wait upon a bo
 *
 * @to: request we are wishing to use
 * @obj: object which may be in use on another ring.
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Conceptually we serialise writes between engines inside the GPU.
 * We only allow one engine to write into a buffer at any time, but
 * multiple readers. To ensure each has a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
int
i915_gem_request_await_object(struct drm_i915_gem_request *to,
			      struct drm_i915_gem_object *obj,
			      bool write)
{
591 592
	struct dma_fence *excl;
	int ret = 0;
593 594

	if (write) {
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
		struct dma_fence **shared;
		unsigned int count, i;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
			ret = i915_gem_request_await_dma_fence(to, shared[i]);
			if (ret)
				break;

			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
614
	} else {
615
		excl = reservation_object_get_excl_rcu(obj->resv);
616 617
	}

618 619 620
	if (excl) {
		if (ret == 0)
			ret = i915_gem_request_await_dma_fence(to, excl);
621

622
		dma_fence_put(excl);
623 624
	}

625
	return ret;
626 627
}

628 629 630 631 632 633 634 635 636 637
static void i915_gem_mark_busy(const struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;

	if (dev_priv->gt.awake)
		return;

	intel_runtime_pm_get_noresume(dev_priv);
	dev_priv->gt.awake = true;

638
	intel_enable_gt_powersave(dev_priv);
639 640 641 642 643 644 645 646 647 648 649 650 651 652
	i915_update_gfx_val(dev_priv);
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_busy(dev_priv);

	queue_delayed_work(dev_priv->wq,
			   &dev_priv->gt.retire_work,
			   round_jiffies_up_relative(HZ));
}

/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
653
void __i915_add_request(struct drm_i915_gem_request *request, bool flush_caches)
654
{
655 656
	struct intel_engine_cs *engine = request->engine;
	struct intel_ring *ring = request->ring;
657
	struct intel_timeline *timeline = request->timeline;
658
	struct drm_i915_gem_request *prev;
C
Chris Wilson 已提交
659
	int err;
660

661
	lockdep_assert_held(&request->i915->drm.struct_mutex);
662 663
	trace_i915_gem_request_add(request);

664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
	request->reserved_space = 0;

	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
	if (flush_caches) {
C
Chris Wilson 已提交
679
		err = engine->emit_flush(request, EMIT_FLUSH);
680

681
		/* Not allowed to fail! */
C
Chris Wilson 已提交
682
		WARN(err, "engine->emit_flush() failed: %d!\n", err);
683 684
	}

685
	/* Record the position of the start of the breadcrumb so that
686 687
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
688
	 * position of the ring's HEAD.
689
	 */
C
Chris Wilson 已提交
690 691
	err = intel_ring_begin(request, engine->emit_breadcrumb_sz);
	GEM_BUG_ON(err);
692
	request->postfix = ring->tail;
C
Chris Wilson 已提交
693
	ring->tail += engine->emit_breadcrumb_sz * sizeof(u32);
694

695 696 697 698 699
	/* Seal the request and mark it as pending execution. Note that
	 * we may inspect this state, without holding any locks, during
	 * hangcheck. Hence we apply the barrier to ensure that we do not
	 * see a more recent value in the hws than we are tracking.
	 */
700

701
	prev = i915_gem_active_raw(&timeline->last_request,
702 703 704 705 706
				   &request->i915->drm.struct_mutex);
	if (prev)
		i915_sw_fence_await_sw_fence(&request->submit, &prev->submit,
					     &request->submitq);

707 708 709
	GEM_BUG_ON(i915_seqno_passed(timeline->last_submitted_seqno,
				     request->fence.seqno));

710
	request->emitted_jiffies = jiffies;
711 712 713 714
	request->previous_seqno = timeline->last_pending_seqno;
	timeline->last_pending_seqno = request->fence.seqno;
	i915_gem_active_set(&timeline->last_request, request);
	list_add_tail(&request->link, &timeline->requests);
715 716
	list_add_tail(&request->ring_link, &ring->request_list);

717
	i915_gem_mark_busy(engine);
718 719 720 721

	local_bh_disable();
	i915_sw_fence_commit(&request->submit);
	local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
722 723
}

724 725 726 727 728 729 730 731 732 733
static void reset_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	if (list_empty(&wait->task_list))
		__add_wait_queue(q, wait);
	spin_unlock_irqrestore(&q->lock, flags);
}

734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
static unsigned long local_clock_us(unsigned int *cpu)
{
	unsigned long t;

	/* Cheaply and approximately convert from nanoseconds to microseconds.
	 * The result and subsequent calculations are also defined in the same
	 * approximate microseconds units. The principal source of timing
	 * error here is from the simple truncation.
	 *
	 * Note that local_clock() is only defined wrt to the current CPU;
	 * the comparisons are no longer valid if we switch CPUs. Instead of
	 * blocking preemption for the entire busywait, we can detect the CPU
	 * switch and use that as indicator of system load and a reason to
	 * stop busywaiting, see busywait_stop().
	 */
	*cpu = get_cpu();
	t = local_clock() >> 10;
	put_cpu();

	return t;
}

static bool busywait_stop(unsigned long timeout, unsigned int cpu)
{
	unsigned int this_cpu;

	if (time_after(local_clock_us(&this_cpu), timeout))
		return true;

	return this_cpu != cpu;
}

bool __i915_spin_request(const struct drm_i915_gem_request *req,
			 int state, unsigned long timeout_us)
{
	unsigned int cpu;

	/* When waiting for high frequency requests, e.g. during synchronous
	 * rendering split between the CPU and GPU, the finite amount of time
	 * required to set up the irq and wait upon it limits the response
	 * rate. By busywaiting on the request completion for a short while we
	 * can service the high frequency waits as quick as possible. However,
	 * if it is a slow request, we want to sleep as quickly as possible.
	 * The tradeoff between waiting and sleeping is roughly the time it
	 * takes to sleep on a request, on the order of a microsecond.
	 */

	timeout_us += local_clock_us(&cpu);
	do {
783
		if (__i915_gem_request_completed(req))
784 785 786 787 788 789 790 791 792 793 794 795 796 797
			return true;

		if (signal_pending_state(state, current))
			break;

		if (busywait_stop(timeout_us, cpu))
			break;

		cpu_relax_lowlatency();
	} while (!need_resched());

	return false;
}

798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
static long
__i915_request_wait_for_submit(struct drm_i915_gem_request *request,
			       unsigned int flags,
			       long timeout)
{
	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
	wait_queue_head_t *q = &request->i915->gpu_error.wait_queue;
	DEFINE_WAIT(reset);
	DEFINE_WAIT(wait);

	if (flags & I915_WAIT_LOCKED)
		add_wait_queue(q, &reset);

	do {
		prepare_to_wait(&request->submit.wait, &wait, state);

		if (i915_sw_fence_done(&request->submit))
			break;

		if (flags & I915_WAIT_LOCKED &&
		    i915_reset_in_progress(&request->i915->gpu_error)) {
			__set_current_state(TASK_RUNNING);
			i915_reset(request->i915);
			reset_wait_queue(q, &reset);
			continue;
		}

		if (signal_pending_state(state, current)) {
			timeout = -ERESTARTSYS;
			break;
		}

		timeout = io_schedule_timeout(timeout);
	} while (timeout);
	finish_wait(&request->submit.wait, &wait);

	if (flags & I915_WAIT_LOCKED)
		remove_wait_queue(q, &reset);

	return timeout;
}

841
/**
842
 * i915_wait_request - wait until execution of request has finished
843
 * @req: the request to wait upon
844
 * @flags: how to wait
845 846 847 848 849
 * @timeout: how long to wait in jiffies
 *
 * i915_wait_request() waits for the request to be completed, for a
 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
 * unbounded wait).
850
 *
851 852 853
 * If the caller holds the struct_mutex, the caller must pass I915_WAIT_LOCKED
 * in via the flags, and vice versa if the struct_mutex is not held, the caller
 * must not specify that the wait is locked.
854
 *
855 856 857 858
 * Returns the remaining time (in jiffies) if the request completed, which may
 * be zero or -ETIME if the request is unfinished after the timeout expires.
 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
 * pending before the request completes.
859
 */
860 861 862
long i915_wait_request(struct drm_i915_gem_request *req,
		       unsigned int flags,
		       long timeout)
863
{
864 865
	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
866 867 868 869
	DEFINE_WAIT(reset);
	struct intel_wait wait;

	might_sleep();
870
#if IS_ENABLED(CONFIG_LOCKDEP)
871 872
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&req->i915->drm.struct_mutex) !=
873 874
		   !!(flags & I915_WAIT_LOCKED));
#endif
875
	GEM_BUG_ON(timeout < 0);
876 877

	if (i915_gem_request_completed(req))
878
		return timeout;
879

880 881
	if (!timeout)
		return -ETIME;
882 883 884

	trace_i915_gem_request_wait_begin(req);

885 886 887 888 889 890 891
	if (!i915_sw_fence_done(&req->submit)) {
		timeout = __i915_request_wait_for_submit(req, flags, timeout);
		if (timeout < 0)
			goto complete;

		GEM_BUG_ON(!i915_sw_fence_done(&req->submit));
	}
892
	GEM_BUG_ON(!req->global_seqno);
893

894
	/* Optimistic short spin before touching IRQs */
895 896 897 898
	if (i915_spin_request(req, state, 5))
		goto complete;

	set_current_state(state);
899 900
	if (flags & I915_WAIT_LOCKED)
		add_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
901

902
	intel_wait_init(&wait, req->global_seqno);
903 904 905 906 907 908 909 910 911
	if (intel_engine_add_wait(req->engine, &wait))
		/* In order to check that we haven't missed the interrupt
		 * as we enabled it, we need to kick ourselves to do a
		 * coherent check on the seqno before we sleep.
		 */
		goto wakeup;

	for (;;) {
		if (signal_pending_state(state, current)) {
912
			timeout = -ERESTARTSYS;
913 914 915
			break;
		}

916 917
		if (!timeout) {
			timeout = -ETIME;
918 919 920
			break;
		}

921 922
		timeout = io_schedule_timeout(timeout);

923 924 925 926 927 928 929 930 931 932 933 934 935 936
		if (intel_wait_complete(&wait))
			break;

		set_current_state(state);

wakeup:
		/* Carefully check if the request is complete, giving time
		 * for the seqno to be visible following the interrupt.
		 * We also have to check in case we are kicked by the GPU
		 * reset in order to drop the struct_mutex.
		 */
		if (__i915_request_irq_complete(req))
			break;

937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
		/* If the GPU is hung, and we hold the lock, reset the GPU
		 * and then check for completion. On a full reset, the engine's
		 * HW seqno will be advanced passed us and we are complete.
		 * If we do a partial reset, we have to wait for the GPU to
		 * resume and update the breadcrumb.
		 *
		 * If we don't hold the mutex, we can just wait for the worker
		 * to come along and update the breadcrumb (either directly
		 * itself, or indirectly by recovering the GPU).
		 */
		if (flags & I915_WAIT_LOCKED &&
		    i915_reset_in_progress(&req->i915->gpu_error)) {
			__set_current_state(TASK_RUNNING);
			i915_reset(req->i915);
			reset_wait_queue(&req->i915->gpu_error.wait_queue,
					 &reset);
			continue;
		}

956 957 958 959 960 961
		/* Only spin if we know the GPU is processing this request */
		if (i915_spin_request(req, state, 2))
			break;
	}

	intel_engine_remove_wait(req->engine, &wait);
962 963
	if (flags & I915_WAIT_LOCKED)
		remove_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
964
	__set_current_state(TASK_RUNNING);
965

966 967 968
complete:
	trace_i915_gem_request_wait_end(req);

969
	return timeout;
970
}
971

972
static void engine_retire_requests(struct intel_engine_cs *engine)
973 974 975
{
	struct drm_i915_gem_request *request, *next;

976 977
	list_for_each_entry_safe(request, next,
				 &engine->timeline->requests, link) {
978
		if (!i915_gem_request_completed(request))
979
			return;
980 981 982 983 984 985 986 987

		i915_gem_request_retire(request);
	}
}

void i915_gem_retire_requests(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
988
	enum intel_engine_id id;
989 990 991

	lockdep_assert_held(&dev_priv->drm.struct_mutex);

992
	if (!dev_priv->gt.active_requests)
993 994 995 996
		return;

	GEM_BUG_ON(!dev_priv->gt.awake);

997 998
	for_each_engine(engine, dev_priv, id)
		engine_retire_requests(engine);
999

1000
	if (!dev_priv->gt.active_requests)
1001 1002 1003 1004
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.idle_work,
				   msecs_to_jiffies(100));
}