time.c 25.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * Common time routines among all ppc machines.
 *
 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
 * Paul Mackerras' version and mine for PReP and Pmac.
 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
 *
 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
 * to make clock more stable (2.4.0-test5). The only thing
 * that this code assumes is that the timebases have been synchronized
 * by firmware on SMP and are never stopped (never do sleep
 * on SMP then, nap and doze are OK).
 * 
 * Speeded up do_gettimeofday by getting rid of references to
 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
 *
 * TODO (not necessarily in this file):
 * - improve precision and reproducibility of timebase frequency
20
 * measurement at boot time.
L
Linus Torvalds 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34
 * - for astronomical applications: add a new function to get
 * non ambiguous timestamps even around leap seconds. This needs
 * a new timestamp format and a good name.
 *
 * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
 *             "A Kernel Model for Precision Timekeeping" by Dave Mills
 *
 *      This program is free software; you can redistribute it and/or
 *      modify it under the terms of the GNU General Public License
 *      as published by the Free Software Foundation; either version
 *      2 of the License, or (at your option) any later version.
 */

#include <linux/errno.h>
35
#include <linux/export.h>
L
Linus Torvalds 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/param.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/timex.h>
#include <linux/kernel_stat.h>
#include <linux/time.h>
#include <linux/init.h>
#include <linux/profile.h>
#include <linux/cpu.h>
#include <linux/security.h>
49 50
#include <linux/percpu.h>
#include <linux/rtc.h>
51
#include <linux/jiffies.h>
52
#include <linux/posix-timers.h>
53
#include <linux/irq.h>
54
#include <linux/delay.h>
55
#include <linux/irq_work.h>
56
#include <asm/trace.h>
L
Linus Torvalds 已提交
57 58 59 60 61 62 63 64 65

#include <asm/io.h>
#include <asm/processor.h>
#include <asm/nvram.h>
#include <asm/cache.h>
#include <asm/machdep.h>
#include <asm/uaccess.h>
#include <asm/time.h>
#include <asm/prom.h>
66 67
#include <asm/irq.h>
#include <asm/div64.h>
P
Paul Mackerras 已提交
68
#include <asm/smp.h>
69
#include <asm/vdso_datapage.h>
70
#include <asm/firmware.h>
M
Michael Neuling 已提交
71
#include <asm/cputime.h>
L
Linus Torvalds 已提交
72

73 74
/* powerpc clocksource/clockevent code */

75
#include <linux/clockchips.h>
76 77
#include <linux/clocksource.h>

78
static cycle_t rtc_read(struct clocksource *);
79 80 81 82 83 84 85 86
static struct clocksource clocksource_rtc = {
	.name         = "rtc",
	.rating       = 400,
	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
	.mask         = CLOCKSOURCE_MASK(64),
	.read         = rtc_read,
};

87
static cycle_t timebase_read(struct clocksource *);
88 89 90 91 92 93 94 95
static struct clocksource clocksource_timebase = {
	.name         = "timebase",
	.rating       = 400,
	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
	.mask         = CLOCKSOURCE_MASK(64),
	.read         = timebase_read,
};

96 97 98 99 100 101 102 103
#define DECREMENTER_MAX	0x7fffffff

static int decrementer_set_next_event(unsigned long evt,
				      struct clock_event_device *dev);
static void decrementer_set_mode(enum clock_event_mode mode,
				 struct clock_event_device *dev);

static struct clock_event_device decrementer_clockevent = {
104 105 106 107 108 109
	.name           = "decrementer",
	.rating         = 200,
	.irq            = 0,
	.set_next_event = decrementer_set_next_event,
	.set_mode       = decrementer_set_mode,
	.features       = CLOCK_EVT_FEAT_ONESHOT,
110 111
};

112 113
DEFINE_PER_CPU(u64, decrementers_next_tb);
static DEFINE_PER_CPU(struct clock_event_device, decrementers);
114

L
Linus Torvalds 已提交
115 116
#define XSEC_PER_SEC (1024*1024)

117 118 119 120 121 122 123
#ifdef CONFIG_PPC64
#define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
#else
/* compute ((xsec << 12) * max) >> 32 */
#define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
#endif

L
Linus Torvalds 已提交
124 125 126 127
unsigned long tb_ticks_per_jiffy;
unsigned long tb_ticks_per_usec = 100; /* sane default */
EXPORT_SYMBOL(tb_ticks_per_usec);
unsigned long tb_ticks_per_sec;
128
EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime_t conversions */
129

L
Linus Torvalds 已提交
130
DEFINE_SPINLOCK(rtc_lock);
131
EXPORT_SYMBOL_GPL(rtc_lock);
L
Linus Torvalds 已提交
132

133 134
static u64 tb_to_ns_scale __read_mostly;
static unsigned tb_to_ns_shift __read_mostly;
135
static u64 boot_tb __read_mostly;
L
Linus Torvalds 已提交
136 137

extern struct timezone sys_tz;
138
static long timezone_offset;
L
Linus Torvalds 已提交
139

140
unsigned long ppc_proc_freq;
141
EXPORT_SYMBOL_GPL(ppc_proc_freq);
142
unsigned long ppc_tb_freq;
143
EXPORT_SYMBOL_GPL(ppc_tb_freq);
144

145 146 147
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
/*
 * Factors for converting from cputime_t (timebase ticks) to
148
 * jiffies, microseconds, seconds, and clock_t (1/USER_HZ seconds).
149 150 151
 * These are all stored as 0.64 fixed-point binary fractions.
 */
u64 __cputime_jiffies_factor;
152
EXPORT_SYMBOL(__cputime_jiffies_factor);
153 154
u64 __cputime_usec_factor;
EXPORT_SYMBOL(__cputime_usec_factor);
155
u64 __cputime_sec_factor;
156
EXPORT_SYMBOL(__cputime_sec_factor);
157
u64 __cputime_clockt_factor;
158
EXPORT_SYMBOL(__cputime_clockt_factor);
M
Michael Neuling 已提交
159 160
DEFINE_PER_CPU(unsigned long, cputime_last_delta);
DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
161

162 163
cputime_t cputime_one_jiffy;

164 165
void (*dtl_consumer)(struct dtl_entry *, u64);

166 167 168 169 170 171
static void calc_cputime_factors(void)
{
	struct div_result res;

	div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
	__cputime_jiffies_factor = res.result_low;
172 173
	div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
	__cputime_usec_factor = res.result_low;
174 175 176 177 178 179 180
	div128_by_32(1, 0, tb_ticks_per_sec, &res);
	__cputime_sec_factor = res.result_low;
	div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
	__cputime_clockt_factor = res.result_low;
}

/*
181 182
 * Read the SPURR on systems that have it, otherwise the PURR,
 * or if that doesn't exist return the timebase value passed in.
183
 */
184
static u64 read_spurr(u64 tb)
185
{
186 187
	if (cpu_has_feature(CPU_FTR_SPURR))
		return mfspr(SPRN_SPURR);
188 189
	if (cpu_has_feature(CPU_FTR_PURR))
		return mfspr(SPRN_PURR);
190
	return tb;
191 192
}

193 194
#ifdef CONFIG_PPC_SPLPAR

195
/*
196 197
 * Scan the dispatch trace log and count up the stolen time.
 * Should be called with interrupts disabled.
198
 */
199
static u64 scan_dispatch_log(u64 stop_tb)
200
{
201
	u64 i = local_paca->dtl_ridx;
202 203 204 205 206 207 208
	struct dtl_entry *dtl = local_paca->dtl_curr;
	struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
	struct lppaca *vpa = local_paca->lppaca_ptr;
	u64 tb_delta;
	u64 stolen = 0;
	u64 dtb;

209 210 211
	if (!dtl)
		return 0;

212 213 214
	if (i == vpa->dtl_idx)
		return 0;
	while (i < vpa->dtl_idx) {
215 216
		if (dtl_consumer)
			dtl_consumer(dtl, i);
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
		dtb = dtl->timebase;
		tb_delta = dtl->enqueue_to_dispatch_time +
			dtl->ready_to_enqueue_time;
		barrier();
		if (i + N_DISPATCH_LOG < vpa->dtl_idx) {
			/* buffer has overflowed */
			i = vpa->dtl_idx - N_DISPATCH_LOG;
			dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
			continue;
		}
		if (dtb > stop_tb)
			break;
		stolen += tb_delta;
		++i;
		++dtl;
		if (dtl == dtl_end)
			dtl = local_paca->dispatch_log;
	}
	local_paca->dtl_ridx = i;
	local_paca->dtl_curr = dtl;
	return stolen;
238 239
}

240 241 242 243 244 245 246 247
/*
 * Accumulate stolen time by scanning the dispatch trace log.
 * Called on entry from user mode.
 */
void accumulate_stolen_time(void)
{
	u64 sst, ust;

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
	u8 save_soft_enabled = local_paca->soft_enabled;

	/* We are called early in the exception entry, before
	 * soft/hard_enabled are sync'ed to the expected state
	 * for the exception. We are hard disabled but the PACA
	 * needs to reflect that so various debug stuff doesn't
	 * complain
	 */
	local_paca->soft_enabled = 0;

	sst = scan_dispatch_log(local_paca->starttime_user);
	ust = scan_dispatch_log(local_paca->starttime);
	local_paca->system_time -= sst;
	local_paca->user_time -= ust;
	local_paca->stolen_time += ust + sst;

	local_paca->soft_enabled = save_soft_enabled;
265 266 267 268 269 270 271 272 273 274 275 276 277 278
}

static inline u64 calculate_stolen_time(u64 stop_tb)
{
	u64 stolen = 0;

	if (get_paca()->dtl_ridx != get_paca()->lppaca_ptr->dtl_idx) {
		stolen = scan_dispatch_log(stop_tb);
		get_paca()->system_time -= stolen;
	}

	stolen += get_paca()->stolen_time;
	get_paca()->stolen_time = 0;
	return stolen;
279 280
}

281 282 283 284 285 286 287 288
#else /* CONFIG_PPC_SPLPAR */
static inline u64 calculate_stolen_time(u64 stop_tb)
{
	return 0;
}

#endif /* CONFIG_PPC_SPLPAR */

289 290 291 292 293 294
/*
 * Account time for a transition between system, hard irq
 * or soft irq state.
 */
void account_system_vtime(struct task_struct *tsk)
{
295
	u64 now, nowscaled, delta, deltascaled;
296
	unsigned long flags;
297
	u64 stolen, udelta, sys_scaled, user_scaled;
298 299

	local_irq_save(flags);
300
	now = mftb();
301
	nowscaled = read_spurr(now);
302 303
	get_paca()->system_time += now - get_paca()->starttime;
	get_paca()->starttime = now;
304 305
	deltascaled = nowscaled - get_paca()->startspurr;
	get_paca()->startspurr = nowscaled;
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335

	stolen = calculate_stolen_time(now);

	delta = get_paca()->system_time;
	get_paca()->system_time = 0;
	udelta = get_paca()->user_time - get_paca()->utime_sspurr;
	get_paca()->utime_sspurr = get_paca()->user_time;

	/*
	 * Because we don't read the SPURR on every kernel entry/exit,
	 * deltascaled includes both user and system SPURR ticks.
	 * Apportion these ticks to system SPURR ticks and user
	 * SPURR ticks in the same ratio as the system time (delta)
	 * and user time (udelta) values obtained from the timebase
	 * over the same interval.  The system ticks get accounted here;
	 * the user ticks get saved up in paca->user_time_scaled to be
	 * used by account_process_tick.
	 */
	sys_scaled = delta;
	user_scaled = udelta;
	if (deltascaled != delta + udelta) {
		if (udelta) {
			sys_scaled = deltascaled * delta / (delta + udelta);
			user_scaled = deltascaled - sys_scaled;
		} else {
			sys_scaled = deltascaled;
		}
	}
	get_paca()->user_time_scaled += user_scaled;

336
	if (in_interrupt() || idle_task(smp_processor_id()) != tsk) {
337 338 339 340 341
		account_system_time(tsk, 0, delta, sys_scaled);
		if (stolen)
			account_steal_time(stolen);
	} else {
		account_idle_time(delta + stolen);
342 343 344
	}
	local_irq_restore(flags);
}
A
Alexander Graf 已提交
345
EXPORT_SYMBOL_GPL(account_system_vtime);
346 347 348 349 350 351

/*
 * Transfer the user and system times accumulated in the paca
 * by the exception entry and exit code to the generic process
 * user and system time records.
 * Must be called with interrupts disabled.
352 353 354
 * Assumes that account_system_vtime() has been called recently
 * (i.e. since the last entry from usermode) so that
 * get_paca()->user_time_scaled is up to date.
355
 */
356
void account_process_tick(struct task_struct *tsk, int user_tick)
357
{
358
	cputime_t utime, utimescaled;
359 360

	utime = get_paca()->user_time;
361
	utimescaled = get_paca()->user_time_scaled;
362
	get_paca()->user_time = 0;
363 364
	get_paca()->user_time_scaled = 0;
	get_paca()->utime_sspurr = 0;
365
	account_user_time(tsk, utime, utimescaled);
366 367 368 369 370 371
}

#else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
#define calc_cputime_factors()
#endif

372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
void __delay(unsigned long loops)
{
	unsigned long start;
	int diff;

	if (__USE_RTC()) {
		start = get_rtcl();
		do {
			/* the RTCL register wraps at 1000000000 */
			diff = get_rtcl() - start;
			if (diff < 0)
				diff += 1000000000;
		} while (diff < loops);
	} else {
		start = get_tbl();
		while (get_tbl() - start < loops)
			HMT_low();
		HMT_medium();
	}
}
EXPORT_SYMBOL(__delay);

void udelay(unsigned long usecs)
{
	__delay(tb_ticks_per_usec * usecs);
}
EXPORT_SYMBOL(udelay);

L
Linus Torvalds 已提交
400 401 402 403 404 405 406 407 408 409 410 411 412
#ifdef CONFIG_SMP
unsigned long profile_pc(struct pt_regs *regs)
{
	unsigned long pc = instruction_pointer(regs);

	if (in_lock_functions(pc))
		return regs->link;

	return pc;
}
EXPORT_SYMBOL(profile_pc);
#endif

413
#ifdef CONFIG_IRQ_WORK
414

415 416 417 418
/*
 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
 */
#ifdef CONFIG_PPC64
419
static inline unsigned long test_irq_work_pending(void)
420
{
421 422 423 424
	unsigned long x;

	asm volatile("lbz %0,%1(13)"
		: "=r" (x)
425
		: "i" (offsetof(struct paca_struct, irq_work_pending)));
426 427 428
	return x;
}

429
static inline void set_irq_work_pending_flag(void)
430 431 432
{
	asm volatile("stb %0,%1(13)" : :
		"r" (1),
433
		"i" (offsetof(struct paca_struct, irq_work_pending)));
434 435
}

436
static inline void clear_irq_work_pending(void)
437 438 439
{
	asm volatile("stb %0,%1(13)" : :
		"r" (0),
440
		"i" (offsetof(struct paca_struct, irq_work_pending)));
441 442
}

443 444
#else /* 32-bit */

445
DEFINE_PER_CPU(u8, irq_work_pending);
446

447 448 449
#define set_irq_work_pending_flag()	__get_cpu_var(irq_work_pending) = 1
#define test_irq_work_pending()		__get_cpu_var(irq_work_pending)
#define clear_irq_work_pending()	__get_cpu_var(irq_work_pending) = 0
450

451 452
#endif /* 32 vs 64 bit */

453
void arch_irq_work_raise(void)
454 455
{
	preempt_disable();
456
	set_irq_work_pending_flag();
457 458 459 460
	set_dec(1);
	preempt_enable();
}

461
#else  /* CONFIG_IRQ_WORK */
462

463 464
#define test_irq_work_pending()	0
#define clear_irq_work_pending()
465

466
#endif /* CONFIG_IRQ_WORK */
467

L
Linus Torvalds 已提交
468 469 470 471
/*
 * timer_interrupt - gets called when the decrementer overflows,
 * with interrupts disabled.
 */
472
void timer_interrupt(struct pt_regs * regs)
L
Linus Torvalds 已提交
473
{
474
	struct pt_regs *old_regs;
475 476
	u64 *next_tb = &__get_cpu_var(decrementers_next_tb);
	struct clock_event_device *evt = &__get_cpu_var(decrementers);
477

478 479 480 481 482 483 484 485 486 487 488
	/* Ensure a positive value is written to the decrementer, or else
	 * some CPUs will continue to take decrementer exceptions.
	 */
	set_dec(DECREMENTER_MAX);

	/* Some implementations of hotplug will get timer interrupts while
	 * offline, just ignore these
	 */
	if (!cpu_online(smp_processor_id()))
		return;

489 490 491 492 493
	/* Conditionally hard-enable interrupts now that the DEC has been
	 * bumped to its maximum value
	 */
	may_hard_irq_enable();

494 495
	trace_timer_interrupt_entry(regs);

496 497
	__get_cpu_var(irq_stat).timer_irqs++;

498
#if defined(CONFIG_PPC32) && defined(CONFIG_PMAC)
499 500 501
	if (atomic_read(&ppc_n_lost_interrupts) != 0)
		do_IRQ(regs);
#endif
L
Linus Torvalds 已提交
502

503
	old_regs = set_irq_regs(regs);
L
Linus Torvalds 已提交
504 505
	irq_enter();

506 507 508
	if (test_irq_work_pending()) {
		clear_irq_work_pending();
		irq_work_run();
509 510
	}

511
	*next_tb = ~(u64)0;
512 513
	if (evt->event_handler)
		evt->event_handler(evt);
L
Linus Torvalds 已提交
514

515
#ifdef CONFIG_PPC64
516
	/* collect purr register values often, for accurate calculations */
517
	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
L
Linus Torvalds 已提交
518 519 520
		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
		cu->current_tb = mfspr(SPRN_PURR);
	}
521
#endif
L
Linus Torvalds 已提交
522 523

	irq_exit();
524
	set_irq_regs(old_regs);
525 526

	trace_timer_interrupt_exit(regs);
L
Linus Torvalds 已提交
527 528
}

529
#ifdef CONFIG_SUSPEND
530
static void generic_suspend_disable_irqs(void)
531 532 533 534 535
{
	/* Disable the decrementer, so that it doesn't interfere
	 * with suspending.
	 */

536
	set_dec(DECREMENTER_MAX);
537
	local_irq_disable();
538
	set_dec(DECREMENTER_MAX);
539 540
}

541
static void generic_suspend_enable_irqs(void)
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
{
	local_irq_enable();
}

/* Overrides the weak version in kernel/power/main.c */
void arch_suspend_disable_irqs(void)
{
	if (ppc_md.suspend_disable_irqs)
		ppc_md.suspend_disable_irqs();
	generic_suspend_disable_irqs();
}

/* Overrides the weak version in kernel/power/main.c */
void arch_suspend_enable_irqs(void)
{
	generic_suspend_enable_irqs();
	if (ppc_md.suspend_enable_irqs)
		ppc_md.suspend_enable_irqs();
}
#endif

L
Linus Torvalds 已提交
563 564 565 566 567 568 569 570 571
/*
 * Scheduler clock - returns current time in nanosec units.
 *
 * Note: mulhdu(a, b) (multiply high double unsigned) returns
 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
 * are 64-bit unsigned numbers.
 */
unsigned long long sched_clock(void)
{
572 573
	if (__USE_RTC())
		return get_rtc();
574
	return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
L
Linus Torvalds 已提交
575 576
}

577
static int __init get_freq(char *name, int cells, unsigned long *val)
578 579
{
	struct device_node *cpu;
580
	const unsigned int *fp;
581
	int found = 0;
582

583
	/* The cpu node should have timebase and clock frequency properties */
584 585
	cpu = of_find_node_by_type(NULL, "cpu");

586
	if (cpu) {
587
		fp = of_get_property(cpu, name, NULL);
588
		if (fp) {
589
			found = 1;
590
			*val = of_read_ulong(fp, cells);
591
		}
592 593

		of_node_put(cpu);
594
	}
595 596 597 598

	return found;
}

599 600 601 602 603 604 605 606 607 608 609 610
/* should become __cpuinit when secondary_cpu_time_init also is */
void start_cpu_decrementer(void)
{
#if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
	/* Clear any pending timer interrupts */
	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);

	/* Enable decrementer interrupt */
	mtspr(SPRN_TCR, TCR_DIE);
#endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
}

611 612 613 614 615 616 617
void __init generic_calibrate_decr(void)
{
	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */

	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {

618 619
		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
				"(not found)\n");
620
	}
621

622 623 624 625 626 627 628
	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */

	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {

		printk(KERN_ERR "WARNING: Estimating processor frequency "
				"(not found)\n");
629 630 631
	}
}

632
int update_persistent_clock(struct timespec now)
633 634 635
{
	struct rtc_time tm;

636 637 638 639 640 641 642 643 644 645
	if (!ppc_md.set_rtc_time)
		return 0;

	to_tm(now.tv_sec + 1 + timezone_offset, &tm);
	tm.tm_year -= 1900;
	tm.tm_mon -= 1;

	return ppc_md.set_rtc_time(&tm);
}

646
static void __read_persistent_clock(struct timespec *ts)
647 648 649 650
{
	struct rtc_time tm;
	static int first = 1;

651
	ts->tv_nsec = 0;
652 653 654 655 656 657 658
	/* XXX this is a litle fragile but will work okay in the short term */
	if (first) {
		first = 0;
		if (ppc_md.time_init)
			timezone_offset = ppc_md.time_init();

		/* get_boot_time() isn't guaranteed to be safe to call late */
659 660 661 662 663 664 665 666
		if (ppc_md.get_boot_time) {
			ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
			return;
		}
	}
	if (!ppc_md.get_rtc_time) {
		ts->tv_sec = 0;
		return;
667
	}
668
	ppc_md.get_rtc_time(&tm);
669

670 671
	ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
			    tm.tm_hour, tm.tm_min, tm.tm_sec);
672 673
}

674 675 676 677 678 679 680 681 682 683 684 685
void read_persistent_clock(struct timespec *ts)
{
	__read_persistent_clock(ts);

	/* Sanitize it in case real time clock is set below EPOCH */
	if (ts->tv_sec < 0) {
		ts->tv_sec = 0;
		ts->tv_nsec = 0;
	}
		
}

686
/* clocksource code */
687
static cycle_t rtc_read(struct clocksource *cs)
688 689 690 691
{
	return (cycle_t)get_rtc();
}

692
static cycle_t timebase_read(struct clocksource *cs)
693 694 695 696
{
	return (cycle_t)get_tb();
}

697 698
void update_vsyscall(struct timespec *wall_time, struct timespec *wtm,
			struct clocksource *clock, u32 mult)
699
{
J
John Stultz 已提交
700
	u64 new_tb_to_xs, new_stamp_xsec;
701
	u32 frac_sec;
702 703 704 705 706 707 708 709

	if (clock != &clocksource_timebase)
		return;

	/* Make userspace gettimeofday spin until we're done. */
	++vdso_data->tb_update_count;
	smp_mb();

710 711
	/* 19342813113834067 ~= 2^(20+64) / 1e9 */
	new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);
J
John Stultz 已提交
712
	new_stamp_xsec = (u64) wall_time->tv_nsec * XSEC_PER_SEC;
J
John Stultz 已提交
713
	do_div(new_stamp_xsec, 1000000000);
J
John Stultz 已提交
714
	new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC;
J
John Stultz 已提交
715

716 717 718 719
	BUG_ON(wall_time->tv_nsec >= NSEC_PER_SEC);
	/* this is tv_nsec / 1e9 as a 0.32 fraction */
	frac_sec = ((u64) wall_time->tv_nsec * 18446744073ULL) >> 32;

J
John Stultz 已提交
720 721 722 723 724 725 726 727 728 729 730 731 732 733
	/*
	 * tb_update_count is used to allow the userspace gettimeofday code
	 * to assure itself that it sees a consistent view of the tb_to_xs and
	 * stamp_xsec variables.  It reads the tb_update_count, then reads
	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
	 * the two values of tb_update_count match and are even then the
	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it
	 * loops back and reads them again until this criteria is met.
	 * We expect the caller to have done the first increment of
	 * vdso_data->tb_update_count already.
	 */
	vdso_data->tb_orig_stamp = clock->cycle_last;
	vdso_data->stamp_xsec = new_stamp_xsec;
	vdso_data->tb_to_xs = new_tb_to_xs;
734 735
	vdso_data->wtom_clock_sec = wtm->tv_sec;
	vdso_data->wtom_clock_nsec = wtm->tv_nsec;
J
John Stultz 已提交
736
	vdso_data->stamp_xtime = *wall_time;
737
	vdso_data->stamp_sec_fraction = frac_sec;
J
John Stultz 已提交
738 739
	smp_wmb();
	++(vdso_data->tb_update_count);
740 741 742 743 744 745 746 747 748 749 750 751 752
}

void update_vsyscall_tz(void)
{
	/* Make userspace gettimeofday spin until we're done. */
	++vdso_data->tb_update_count;
	smp_mb();
	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
	smp_mb();
	++vdso_data->tb_update_count;
}

753
static void __init clocksource_init(void)
754 755 756 757 758 759 760 761
{
	struct clocksource *clock;

	if (__USE_RTC())
		clock = &clocksource_rtc;
	else
		clock = &clocksource_timebase;

762
	if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
763 764 765 766 767 768 769 770 771
		printk(KERN_ERR "clocksource: %s is already registered\n",
		       clock->name);
		return;
	}

	printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
	       clock->name, clock->mult, clock->shift);
}

772 773 774
static int decrementer_set_next_event(unsigned long evt,
				      struct clock_event_device *dev)
{
775
	__get_cpu_var(decrementers_next_tb) = get_tb_or_rtc() + evt;
776 777 778 779 780 781 782 783 784 785 786 787 788
	set_dec(evt);
	return 0;
}

static void decrementer_set_mode(enum clock_event_mode mode,
				 struct clock_event_device *dev)
{
	if (mode != CLOCK_EVT_MODE_ONESHOT)
		decrementer_set_next_event(DECREMENTER_MAX, dev);
}

static void register_decrementer_clockevent(int cpu)
{
789
	struct clock_event_device *dec = &per_cpu(decrementers, cpu);
790 791

	*dec = decrementer_clockevent;
792
	dec->cpumask = cpumask_of(cpu);
793

794 795
	printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
		    dec->name, dec->mult, dec->shift, cpu);
796 797 798 799

	clockevents_register_device(dec);
}

800
static void __init init_decrementer_clockevent(void)
801 802 803
{
	int cpu = smp_processor_id();

804 805
	clockevents_calc_mult_shift(&decrementer_clockevent, ppc_tb_freq, 4);

806 807
	decrementer_clockevent.max_delta_ns =
		clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
808 809
	decrementer_clockevent.min_delta_ns =
		clockevent_delta2ns(2, &decrementer_clockevent);
810 811 812 813 814 815

	register_decrementer_clockevent(cpu);
}

void secondary_cpu_time_init(void)
{
816 817 818 819 820
	/* Start the decrementer on CPUs that have manual control
	 * such as BookE
	 */
	start_cpu_decrementer();

821 822 823 824 825
	/* FIME: Should make unrelatred change to move snapshot_timebase
	 * call here ! */
	register_decrementer_clockevent(smp_processor_id());
}

826
/* This function is only called on the boot processor */
L
Linus Torvalds 已提交
827 828 829
void __init time_init(void)
{
	struct div_result res;
830
	u64 scale;
831 832
	unsigned shift;

833 834 835 836 837 838
	if (__USE_RTC()) {
		/* 601 processor: dec counts down by 128 every 128ns */
		ppc_tb_freq = 1000000000;
	} else {
		/* Normal PowerPC with timebase register */
		ppc_md.calibrate_decr();
839
		printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
840
		       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
841
		printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
842 843
		       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
	}
844 845

	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
846
	tb_ticks_per_sec = ppc_tb_freq;
847
	tb_ticks_per_usec = ppc_tb_freq / 1000000;
848
	calc_cputime_factors();
849
	setup_cputime_one_jiffy();
850

L
Linus Torvalds 已提交
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
	/*
	 * Compute scale factor for sched_clock.
	 * The calibrate_decr() function has set tb_ticks_per_sec,
	 * which is the timebase frequency.
	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
	 * the 128-bit result as a 64.64 fixed-point number.
	 * We then shift that number right until it is less than 1.0,
	 * giving us the scale factor and shift count to use in
	 * sched_clock().
	 */
	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
	scale = res.result_low;
	for (shift = 0; res.result_high != 0; ++shift) {
		scale = (scale >> 1) | (res.result_high << 63);
		res.result_high >>= 1;
	}
	tb_to_ns_scale = scale;
	tb_to_ns_shift = shift;
869
	/* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
870
	boot_tb = get_tb_or_rtc();
L
Linus Torvalds 已提交
871

872
	/* If platform provided a timezone (pmac), we correct the time */
873
	if (timezone_offset) {
874 875
		sys_tz.tz_minuteswest = -timezone_offset / 60;
		sys_tz.tz_dsttime = 0;
876
	}
877

878 879
	vdso_data->tb_update_count = 0;
	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
L
Linus Torvalds 已提交
880

881 882 883 884 885
	/* Start the decrementer on CPUs that have manual control
	 * such as BookE
	 */
	start_cpu_decrementer();

886 887
	/* Register the clocksource */
	clocksource_init();
888

889
	init_decrementer_clockevent();
L
Linus Torvalds 已提交
890 891 892 893 894 895 896
}


#define FEBRUARY	2
#define	STARTOFTIME	1970
#define SECDAY		86400L
#define SECYR		(SECDAY * 365)
897 898
#define	leapyear(year)		((year) % 4 == 0 && \
				 ((year) % 100 != 0 || (year) % 400 == 0))
L
Linus Torvalds 已提交
899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
#define	days_in_year(a) 	(leapyear(a) ? 366 : 365)
#define	days_in_month(a) 	(month_days[(a) - 1])

static int month_days[12] = {
	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
};

/*
 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
 */
void GregorianDay(struct rtc_time * tm)
{
	int leapsToDate;
	int lastYear;
	int day;
	int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };

916
	lastYear = tm->tm_year - 1;
L
Linus Torvalds 已提交
917 918 919 920

	/*
	 * Number of leap corrections to apply up to end of last year
	 */
921
	leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
L
Linus Torvalds 已提交
922 923 924 925 926

	/*
	 * This year is a leap year if it is divisible by 4 except when it is
	 * divisible by 100 unless it is divisible by 400
	 *
927
	 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
L
Linus Torvalds 已提交
928
	 */
929
	day = tm->tm_mon > 2 && leapyear(tm->tm_year);
L
Linus Torvalds 已提交
930 931 932 933

	day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
		   tm->tm_mday;

934
	tm->tm_wday = day % 7;
L
Linus Torvalds 已提交
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
}

void to_tm(int tim, struct rtc_time * tm)
{
	register int    i;
	register long   hms, day;

	day = tim / SECDAY;
	hms = tim % SECDAY;

	/* Hours, minutes, seconds are easy */
	tm->tm_hour = hms / 3600;
	tm->tm_min = (hms % 3600) / 60;
	tm->tm_sec = (hms % 3600) % 60;

	/* Number of years in days */
	for (i = STARTOFTIME; day >= days_in_year(i); i++)
		day -= days_in_year(i);
	tm->tm_year = i;

	/* Number of months in days left */
	if (leapyear(tm->tm_year))
		days_in_month(FEBRUARY) = 29;
	for (i = 1; day >= days_in_month(i); i++)
		day -= days_in_month(i);
	days_in_month(FEBRUARY) = 28;
	tm->tm_mon = i;

	/* Days are what is left over (+1) from all that. */
	tm->tm_mday = day + 1;

	/*
	 * Determine the day of week
	 */
	GregorianDay(tm);
}

/*
 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
 * result.
 */
976 977
void div128_by_32(u64 dividend_high, u64 dividend_low,
		  unsigned divisor, struct div_result *dr)
L
Linus Torvalds 已提交
978
{
979 980 981
	unsigned long a, b, c, d;
	unsigned long w, x, y, z;
	u64 ra, rb, rc;
L
Linus Torvalds 已提交
982 983 984 985 986 987

	a = dividend_high >> 32;
	b = dividend_high & 0xffffffff;
	c = dividend_low >> 32;
	d = dividend_low & 0xffffffff;

988 989 990 991 992
	w = a / divisor;
	ra = ((u64)(a - (w * divisor)) << 32) + b;

	rb = ((u64) do_div(ra, divisor) << 32) + c;
	x = ra;
L
Linus Torvalds 已提交
993

994 995 996 997 998
	rc = ((u64) do_div(rb, divisor) << 32) + d;
	y = rb;

	do_div(rc, divisor);
	z = rc;
L
Linus Torvalds 已提交
999

1000 1001
	dr->result_high = ((u64)w << 32) + x;
	dr->result_low  = ((u64)y << 32) + z;
L
Linus Torvalds 已提交
1002 1003

}
1004

1005 1006 1007 1008 1009 1010 1011 1012 1013
/* We don't need to calibrate delay, we use the CPU timebase for that */
void calibrate_delay(void)
{
	/* Some generic code (such as spinlock debug) use loops_per_jiffy
	 * as the number of __delay(1) in a jiffy, so make it so
	 */
	loops_per_jiffy = tb_ticks_per_jiffy;
}

1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
static int __init rtc_init(void)
{
	struct platform_device *pdev;

	if (!ppc_md.get_rtc_time)
		return -ENODEV;

	pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
	if (IS_ERR(pdev))
		return PTR_ERR(pdev);

	return 0;
}

module_init(rtc_init);