segment.h 22.2 KB
Newer Older
J
Jaegeuk Kim 已提交
1
/*
2 3 4 5 6 7 8 9 10
 * fs/f2fs/segment.h
 *
 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
 *             http://www.samsung.com/
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
11
#include <linux/blkdev.h>
12
#include <linux/backing-dev.h>
13

14 15
/* constant macro */
#define NULL_SEGNO			((unsigned int)(~0))
16
#define NULL_SECNO			((unsigned int)(~0))
17

18
#define DEF_RECLAIM_PREFREE_SEGMENTS	5	/* 5% over total segments */
J
Jaegeuk Kim 已提交
19
#define DEF_MAX_RECLAIM_PREFREE_SEGMENTS	4096	/* 8GB in maximum */
20

N
Namjae Jeon 已提交
21
/* L: Logical segment # in volume, R: Relative segment # in main area */
22 23 24
#define GET_L2R_SEGNO(free_i, segno)	(segno - free_i->start_segno)
#define GET_R2L_SEGNO(free_i, segno)	(segno + free_i->start_segno)

25 26
#define IS_DATASEG(t)	(t <= CURSEG_COLD_DATA)
#define IS_NODESEG(t)	(t >= CURSEG_HOT_NODE)
27

28 29 30 31 32 33 34
#define IS_CURSEG(sbi, seg)						\
	((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||	\
	 (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||	\
	 (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||	\
	 (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||	\
	 (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||	\
	 (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

#define IS_CURSEC(sbi, secno)						\
	((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /		\
	  sbi->segs_per_sec) ||	\
	 (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /		\
	  sbi->segs_per_sec) ||	\
	 (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /		\
	  sbi->segs_per_sec) ||	\
	 (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /		\
	  sbi->segs_per_sec) ||	\
	 (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /		\
	  sbi->segs_per_sec) ||	\
	 (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /		\
	  sbi->segs_per_sec))	\

50 51 52 53 54 55 56 57 58 59
#define MAIN_BLKADDR(sbi)	(SM_I(sbi)->main_blkaddr)
#define SEG0_BLKADDR(sbi)	(SM_I(sbi)->seg0_blkaddr)

#define MAIN_SEGS(sbi)	(SM_I(sbi)->main_segments)
#define MAIN_SECS(sbi)	(sbi->total_sections)

#define TOTAL_SEGS(sbi)	(SM_I(sbi)->segment_count)
#define TOTAL_BLKS(sbi)	(TOTAL_SEGS(sbi) << sbi->log_blocks_per_seg)

#define MAX_BLKADDR(sbi)	(SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
60
#define SEGMENT_SIZE(sbi)	(1ULL << (sbi->log_blocksize +		\
61 62 63
					sbi->log_blocks_per_seg))

#define START_BLOCK(sbi, segno)	(SEG0_BLKADDR(sbi) +			\
64
	 (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
65

66 67 68
#define NEXT_FREE_BLKADDR(sbi, curseg)					\
	(START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)

69
#define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)	((blk_addr) - SEG0_BLKADDR(sbi))
70 71
#define GET_SEGNO_FROM_SEG0(sbi, blk_addr)				\
	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
J
Jaegeuk Kim 已提交
72 73 74
#define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)				\
	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (sbi->blocks_per_seg - 1))

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
#define GET_SEGNO(sbi, blk_addr)					\
	(((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ?		\
	NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),			\
		GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
#define GET_SECNO(sbi, segno)					\
	((segno) / sbi->segs_per_sec)
#define GET_ZONENO_FROM_SEGNO(sbi, segno)				\
	((segno / sbi->segs_per_sec) / sbi->secs_per_zone)

#define GET_SUM_BLOCK(sbi, segno)				\
	((sbi->sm_info->ssa_blkaddr) + segno)

#define GET_SUM_TYPE(footer) ((footer)->entry_type)
#define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)

#define SIT_ENTRY_OFFSET(sit_i, segno)					\
	(segno % sit_i->sents_per_block)
92
#define SIT_BLOCK_OFFSET(segno)					\
93
	(segno / SIT_ENTRY_PER_BLOCK)
94 95
#define	START_SEGNO(segno)		\
	(SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
96
#define SIT_BLK_CNT(sbi)			\
97
	((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
98 99 100
#define f2fs_bitmap_size(nr)			\
	(BITS_TO_LONGS(nr) * sizeof(unsigned long))

C
Chao Yu 已提交
101 102 103 104
#define SECTOR_FROM_BLOCK(blk_addr)					\
	(((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
#define SECTOR_TO_BLOCK(sectors)					\
	(sectors >> F2FS_LOG_SECTORS_PER_BLOCK)
105

106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
/*
 * indicate a block allocation direction: RIGHT and LEFT.
 * RIGHT means allocating new sections towards the end of volume.
 * LEFT means the opposite direction.
 */
enum {
	ALLOC_RIGHT = 0,
	ALLOC_LEFT
};

/*
 * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
 * LFS writes data sequentially with cleaning operations.
 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
 */
enum {
	LFS = 0,
	SSR
};

/*
 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
 * GC_CB is based on cost-benefit algorithm.
 * GC_GREEDY is based on greedy algorithm.
 */
enum {
	GC_CB = 0,
	GC_GREEDY
};

/*
 * BG_GC means the background cleaning job.
 * FG_GC means the on-demand cleaning job.
139
 * FORCE_FG_GC means on-demand cleaning job in background.
140 141 142
 */
enum {
	BG_GC = 0,
143 144
	FG_GC,
	FORCE_FG_GC,
145 146 147 148 149 150 151
};

/* for a function parameter to select a victim segment */
struct victim_sel_policy {
	int alloc_mode;			/* LFS or SSR */
	int gc_mode;			/* GC_CB or GC_GREEDY */
	unsigned long *dirty_segmap;	/* dirty segment bitmap */
152
	unsigned int max_search;	/* maximum # of segments to search */
153 154 155 156 157 158 159
	unsigned int offset;		/* last scanned bitmap offset */
	unsigned int ofs_unit;		/* bitmap search unit */
	unsigned int min_cost;		/* minimum cost */
	unsigned int min_segno;		/* segment # having min. cost */
};

struct seg_entry {
C
Chao Yu 已提交
160 161 162 163
	unsigned int type:6;		/* segment type like CURSEG_XXX_TYPE */
	unsigned int valid_blocks:10;	/* # of valid blocks */
	unsigned int ckpt_valid_blocks:10;	/* # of valid blocks last cp */
	unsigned int padding:6;		/* padding */
164 165 166 167 168
	unsigned char *cur_valid_map;	/* validity bitmap of blocks */
	/*
	 * # of valid blocks and the validity bitmap stored in the the last
	 * checkpoint pack. This information is used by the SSR mode.
	 */
C
Chao Yu 已提交
169
	unsigned char *ckpt_valid_map;	/* validity bitmap of blocks last cp */
170
	unsigned char *discard_map;
171 172 173 174 175 176 177 178 179 180 181
	unsigned long long mtime;	/* modification time of the segment */
};

struct sec_entry {
	unsigned int valid_blocks;	/* # of valid blocks in a section */
};

struct segment_allocation {
	void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
};

C
Chao Yu 已提交
182 183 184 185
/*
 * this value is set in page as a private data which indicate that
 * the page is atomically written, and it is in inmem_pages list.
 */
186
#define ATOMIC_WRITTEN_PAGE		((unsigned long)-1)
C
Chao Yu 已提交
187 188 189 190

#define IS_ATOMIC_WRITTEN_PAGE(page)			\
		(page_private(page) == (unsigned long)ATOMIC_WRITTEN_PAGE)

J
Jaegeuk Kim 已提交
191 192 193
struct inmem_pages {
	struct list_head list;
	struct page *page;
194
	block_t old_addr;		/* for revoking when fail to commit */
J
Jaegeuk Kim 已提交
195 196
};

197 198 199 200 201 202 203 204 205
struct sit_info {
	const struct segment_allocation *s_ops;

	block_t sit_base_addr;		/* start block address of SIT area */
	block_t sit_blocks;		/* # of blocks used by SIT area */
	block_t written_valid_blocks;	/* # of valid blocks in main area */
	char *sit_bitmap;		/* SIT bitmap pointer */
	unsigned int bitmap_size;	/* SIT bitmap size */

J
Jaegeuk Kim 已提交
206
	unsigned long *tmp_map;			/* bitmap for temporal use */
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
	unsigned long *dirty_sentries_bitmap;	/* bitmap for dirty sentries */
	unsigned int dirty_sentries;		/* # of dirty sentries */
	unsigned int sents_per_block;		/* # of SIT entries per block */
	struct mutex sentry_lock;		/* to protect SIT cache */
	struct seg_entry *sentries;		/* SIT segment-level cache */
	struct sec_entry *sec_entries;		/* SIT section-level cache */

	/* for cost-benefit algorithm in cleaning procedure */
	unsigned long long elapsed_time;	/* elapsed time after mount */
	unsigned long long mounted_time;	/* mount time */
	unsigned long long min_mtime;		/* min. modification time */
	unsigned long long max_mtime;		/* max. modification time */
};

struct free_segmap_info {
	unsigned int start_segno;	/* start segment number logically */
	unsigned int free_segments;	/* # of free segments */
	unsigned int free_sections;	/* # of free sections */
225
	spinlock_t segmap_lock;		/* free segmap lock */
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
	unsigned long *free_segmap;	/* free segment bitmap */
	unsigned long *free_secmap;	/* free section bitmap */
};

/* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
enum dirty_type {
	DIRTY_HOT_DATA,		/* dirty segments assigned as hot data logs */
	DIRTY_WARM_DATA,	/* dirty segments assigned as warm data logs */
	DIRTY_COLD_DATA,	/* dirty segments assigned as cold data logs */
	DIRTY_HOT_NODE,		/* dirty segments assigned as hot node logs */
	DIRTY_WARM_NODE,	/* dirty segments assigned as warm node logs */
	DIRTY_COLD_NODE,	/* dirty segments assigned as cold node logs */
	DIRTY,			/* to count # of dirty segments */
	PRE,			/* to count # of entirely obsolete segments */
	NR_DIRTY_TYPE
};

struct dirty_seglist_info {
	const struct victim_selection *v_ops;	/* victim selction operation */
	unsigned long *dirty_segmap[NR_DIRTY_TYPE];
	struct mutex seglist_lock;		/* lock for segment bitmaps */
	int nr_dirty[NR_DIRTY_TYPE];		/* # of dirty segments */
248
	unsigned long *victim_secmap;		/* background GC victims */
249 250 251 252 253 254 255 256 257 258 259 260
};

/* victim selection function for cleaning and SSR */
struct victim_selection {
	int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
							int, int, char);
};

/* for active log information */
struct curseg_info {
	struct mutex curseg_mutex;		/* lock for consistency */
	struct f2fs_summary_block *sum_blk;	/* cached summary block */
261 262
	struct rw_semaphore journal_rwsem;	/* protect journal area */
	struct f2fs_journal *journal;		/* cached journal info */
263 264 265 266 267 268 269
	unsigned char alloc_type;		/* current allocation type */
	unsigned int segno;			/* current segment number */
	unsigned short next_blkoff;		/* next block offset to write */
	unsigned int zone;			/* current zone number */
	unsigned int next_segno;		/* preallocated segment */
};

270 271 272 273 274 275
struct sit_entry_set {
	struct list_head set_list;	/* link with all sit sets */
	unsigned int start_segno;	/* start segno of sits in set */
	unsigned int entry_cnt;		/* the # of sit entries in set */
};

276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
/*
 * inline functions
 */
static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
{
	return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
}

static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
						unsigned int segno)
{
	struct sit_info *sit_i = SIT_I(sbi);
	return &sit_i->sentries[segno];
}

static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
						unsigned int segno)
{
	struct sit_info *sit_i = SIT_I(sbi);
	return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
}

static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
				unsigned int segno, int section)
{
	/*
	 * In order to get # of valid blocks in a section instantly from many
	 * segments, f2fs manages two counting structures separately.
	 */
	if (section > 1)
		return get_sec_entry(sbi, segno)->valid_blocks;
	else
		return get_seg_entry(sbi, segno)->valid_blocks;
}

static inline void seg_info_from_raw_sit(struct seg_entry *se,
					struct f2fs_sit_entry *rs)
{
	se->valid_blocks = GET_SIT_VBLOCKS(rs);
	se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
	memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
	se->type = GET_SIT_TYPE(rs);
	se->mtime = le64_to_cpu(rs->mtime);
}

static inline void seg_info_to_raw_sit(struct seg_entry *se,
					struct f2fs_sit_entry *rs)
{
	unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
					se->valid_blocks;
	rs->vblocks = cpu_to_le16(raw_vblocks);
	memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
	se->ckpt_valid_blocks = se->valid_blocks;
	rs->mtime = cpu_to_le64(se->mtime);
}

static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
		unsigned int max, unsigned int segno)
{
	unsigned int ret;
338
	spin_lock(&free_i->segmap_lock);
339
	ret = find_next_bit(free_i->free_segmap, max, segno);
340
	spin_unlock(&free_i->segmap_lock);
341 342 343 344 345 346 347 348 349 350
	return ret;
}

static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
{
	struct free_segmap_info *free_i = FREE_I(sbi);
	unsigned int secno = segno / sbi->segs_per_sec;
	unsigned int start_segno = secno * sbi->segs_per_sec;
	unsigned int next;

351
	spin_lock(&free_i->segmap_lock);
352 353 354
	clear_bit(segno, free_i->free_segmap);
	free_i->free_segments++;

355 356
	next = find_next_bit(free_i->free_segmap,
			start_segno + sbi->segs_per_sec, start_segno);
357 358 359 360
	if (next >= start_segno + sbi->segs_per_sec) {
		clear_bit(secno, free_i->free_secmap);
		free_i->free_sections++;
	}
361
	spin_unlock(&free_i->segmap_lock);
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
}

static inline void __set_inuse(struct f2fs_sb_info *sbi,
		unsigned int segno)
{
	struct free_segmap_info *free_i = FREE_I(sbi);
	unsigned int secno = segno / sbi->segs_per_sec;
	set_bit(segno, free_i->free_segmap);
	free_i->free_segments--;
	if (!test_and_set_bit(secno, free_i->free_secmap))
		free_i->free_sections--;
}

static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
		unsigned int segno)
{
	struct free_segmap_info *free_i = FREE_I(sbi);
	unsigned int secno = segno / sbi->segs_per_sec;
	unsigned int start_segno = secno * sbi->segs_per_sec;
	unsigned int next;

383
	spin_lock(&free_i->segmap_lock);
384 385 386
	if (test_and_clear_bit(segno, free_i->free_segmap)) {
		free_i->free_segments++;

387 388
		next = find_next_bit(free_i->free_segmap,
				start_segno + sbi->segs_per_sec, start_segno);
389 390 391 392 393
		if (next >= start_segno + sbi->segs_per_sec) {
			if (test_and_clear_bit(secno, free_i->free_secmap))
				free_i->free_sections++;
		}
	}
394
	spin_unlock(&free_i->segmap_lock);
395 396 397 398 399 400 401
}

static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
		unsigned int segno)
{
	struct free_segmap_info *free_i = FREE_I(sbi);
	unsigned int secno = segno / sbi->segs_per_sec;
402
	spin_lock(&free_i->segmap_lock);
403 404 405 406 407
	if (!test_and_set_bit(segno, free_i->free_segmap)) {
		free_i->free_segments--;
		if (!test_and_set_bit(secno, free_i->free_secmap))
			free_i->free_sections--;
	}
408
	spin_unlock(&free_i->segmap_lock);
409 410 411 412 413 414 415 416 417 418 419
}

static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
		void *dst_addr)
{
	struct sit_info *sit_i = SIT_I(sbi);
	memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
}

static inline block_t written_block_count(struct f2fs_sb_info *sbi)
{
420
	return SIT_I(sbi)->written_valid_blocks;
421 422 423 424
}

static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
{
425
	return FREE_I(sbi)->free_segments;
426 427 428 429 430 431 432 433 434
}

static inline int reserved_segments(struct f2fs_sb_info *sbi)
{
	return SM_I(sbi)->reserved_segments;
}

static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
{
435
	return FREE_I(sbi)->free_sections;
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
}

static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
{
	return DIRTY_I(sbi)->nr_dirty[PRE];
}

static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
{
	return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
		DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
}

static inline int overprovision_segments(struct f2fs_sb_info *sbi)
{
	return SM_I(sbi)->ovp_segments;
}

static inline int overprovision_sections(struct f2fs_sb_info *sbi)
{
	return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
}

static inline int reserved_sections(struct f2fs_sb_info *sbi)
{
	return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
}

static inline bool need_SSR(struct f2fs_sb_info *sbi)
{
470 471
	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
472
	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
473 474 475 476

	if (test_opt(sbi, LFS))
		return false;

477
	return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
478
						reserved_sections(sbi) + 1);
479 480
}

481 482
static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
					int freed, int needed)
483
{
484 485
	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
486
	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
487

488
	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
489 490
		return false;

491
	return (free_sections(sbi) + freed) <=
492 493
		(node_secs + 2 * dent_secs + imeta_secs +
		reserved_sections(sbi) + needed);
494 495
}

496 497
static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
{
C
Chris Fries 已提交
498
	return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
499 500
}

501 502
static inline int utilization(struct f2fs_sb_info *sbi)
{
C
Chris Fries 已提交
503 504
	return div_u64((u64)valid_user_blocks(sbi) * 100,
					sbi->user_block_count);
505 506 507 508
}

/*
 * Sometimes f2fs may be better to drop out-of-place update policy.
509 510 511 512 513 514 515
 * And, users can control the policy through sysfs entries.
 * There are five policies with triggering conditions as follows.
 * F2FS_IPU_FORCE - all the time,
 * F2FS_IPU_SSR - if SSR mode is activated,
 * F2FS_IPU_UTIL - if FS utilization is over threashold,
 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
 *                     threashold,
516 517 518
 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
 *                     storages. IPU will be triggered only if the # of dirty
 *                     pages over min_fsync_blocks.
519
 * F2FS_IPUT_DISABLE - disable IPU. (=default option)
520
 */
521
#define DEF_MIN_IPU_UTIL	70
522
#define DEF_MIN_FSYNC_BLOCKS	8
523 524 525 526 527 528

enum {
	F2FS_IPU_FORCE,
	F2FS_IPU_SSR,
	F2FS_IPU_UTIL,
	F2FS_IPU_SSR_UTIL,
529
	F2FS_IPU_FSYNC,
530 531
};

532 533
static inline bool need_inplace_update(struct inode *inode)
{
534
	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
535
	unsigned int policy = SM_I(sbi)->ipu_policy;
536 537

	/* IPU can be done only for the user data */
J
Jaegeuk Kim 已提交
538
	if (S_ISDIR(inode->i_mode) || f2fs_is_atomic_file(inode))
539
		return false;
540

541 542 543
	if (test_opt(sbi, LFS))
		return false;

544
	if (policy & (0x1 << F2FS_IPU_FORCE))
545
		return true;
546 547 548 549 550 551 552 553 554 555 556
	if (policy & (0x1 << F2FS_IPU_SSR) && need_SSR(sbi))
		return true;
	if (policy & (0x1 << F2FS_IPU_UTIL) &&
			utilization(sbi) > SM_I(sbi)->min_ipu_util)
		return true;
	if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && need_SSR(sbi) &&
			utilization(sbi) > SM_I(sbi)->min_ipu_util)
		return true;

	/* this is only set during fdatasync */
	if (policy & (0x1 << F2FS_IPU_FSYNC) &&
557
			is_inode_flag_set(inode, FI_NEED_IPU))
558 559
		return true;

560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
	return false;
}

static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
		int type)
{
	struct curseg_info *curseg = CURSEG_I(sbi, type);
	return curseg->segno;
}

static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
		int type)
{
	struct curseg_info *curseg = CURSEG_I(sbi, type);
	return curseg->alloc_type;
}

static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
{
	struct curseg_info *curseg = CURSEG_I(sbi, type);
	return curseg->next_blkoff;
}

static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
{
585
	f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1);
586 587 588 589
}

static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
{
590 591
	BUG_ON(blk_addr < SEG0_BLKADDR(sbi)
			|| blk_addr >= MAX_BLKADDR(sbi));
592 593 594
}

/*
A
arter97 已提交
595
 * Summary block is always treated as an invalid block
596 597 598 599
 */
static inline void check_block_count(struct f2fs_sb_info *sbi,
		int segno, struct f2fs_sit_entry *raw_sit)
{
J
Jaegeuk Kim 已提交
600
#ifdef CONFIG_F2FS_CHECK_FS
601
	bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
602
	int valid_blocks = 0;
603
	int cur_pos = 0, next_pos;
604 605

	/* check bitmap with valid block count */
606 607 608 609 610 611 612 613 614 615 616 617 618
	do {
		if (is_valid) {
			next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
					sbi->blocks_per_seg,
					cur_pos);
			valid_blocks += next_pos - cur_pos;
		} else
			next_pos = find_next_bit_le(&raw_sit->valid_map,
					sbi->blocks_per_seg,
					cur_pos);
		cur_pos = next_pos;
		is_valid = !is_valid;
	} while (cur_pos < sbi->blocks_per_seg);
619
	BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
620
#endif
J
Jaegeuk Kim 已提交
621 622 623
	/* check segment usage, and check boundary of a given segment number */
	f2fs_bug_on(sbi, GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg
					|| segno > TOTAL_SEGS(sbi) - 1);
624
}
625 626 627 628 629

static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
						unsigned int start)
{
	struct sit_info *sit_i = SIT_I(sbi);
630
	unsigned int offset = SIT_BLOCK_OFFSET(start);
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
	block_t blk_addr = sit_i->sit_base_addr + offset;

	check_seg_range(sbi, start);

	/* calculate sit block address */
	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
		blk_addr += sit_i->sit_blocks;

	return blk_addr;
}

static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
						pgoff_t block_addr)
{
	struct sit_info *sit_i = SIT_I(sbi);
	block_addr -= sit_i->sit_base_addr;
	if (block_addr < sit_i->sit_blocks)
		block_addr += sit_i->sit_blocks;
	else
		block_addr -= sit_i->sit_blocks;

	return block_addr + sit_i->sit_base_addr;
}

static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
{
657
	unsigned int block_off = SIT_BLOCK_OFFSET(start);
658

659
	f2fs_change_bit(block_off, sit_i->sit_bitmap);
660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
}

static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
{
	struct sit_info *sit_i = SIT_I(sbi);
	return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
						sit_i->mounted_time;
}

static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
			unsigned int ofs_in_node, unsigned char version)
{
	sum->nid = cpu_to_le32(nid);
	sum->ofs_in_node = cpu_to_le16(ofs_in_node);
	sum->version = version;
}

static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
{
	return __start_cp_addr(sbi) +
		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
}

static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
{
	return __start_cp_addr(sbi) +
		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
				- (base + 1) + type;
}
689 690 691 692 693 694 695

static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
{
	if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
		return true;
	return false;
}
696

697 698 699 700 701 702 703 704 705
/*
 * It is very important to gather dirty pages and write at once, so that we can
 * submit a big bio without interfering other data writes.
 * By default, 512 pages for directory data,
 * 512 pages (2MB) * 3 for three types of nodes, and
 * max_bio_blocks for meta are set.
 */
static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
{
706
	if (sbi->sb->s_bdi->wb.dirty_exceeded)
707 708
		return 0;

709 710 711
	if (type == DATA)
		return sbi->blocks_per_seg;
	else if (type == NODE)
712
		return 8 * sbi->blocks_per_seg;
713
	else if (type == META)
714
		return 8 * BIO_MAX_PAGES;
715 716 717
	else
		return 0;
}
718 719 720 721 722 723 724 725 726 727 728 729 730

/*
 * When writing pages, it'd better align nr_to_write for segment size.
 */
static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
					struct writeback_control *wbc)
{
	long nr_to_write, desired;

	if (wbc->sync_mode != WB_SYNC_NONE)
		return 0;

	nr_to_write = wbc->nr_to_write;
731
	desired = BIO_MAX_PAGES;
732
	if (type == NODE)
733
		desired <<= 1;
734 735 736 737

	wbc->nr_to_write = desired;
	return desired - nr_to_write;
}