segment.h 22.3 KB
Newer Older
J
Jaegeuk Kim 已提交
1
/*
2 3 4 5 6 7 8 9 10
 * fs/f2fs/segment.h
 *
 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
 *             http://www.samsung.com/
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
11
#include <linux/blkdev.h>
12
#include <linux/backing-dev.h>
13

14 15
/* constant macro */
#define NULL_SEGNO			((unsigned int)(~0))
16
#define NULL_SECNO			((unsigned int)(~0))
17

18
#define DEF_RECLAIM_PREFREE_SEGMENTS	5	/* 5% over total segments */
19

N
Namjae Jeon 已提交
20
/* L: Logical segment # in volume, R: Relative segment # in main area */
21 22 23
#define GET_L2R_SEGNO(free_i, segno)	(segno - free_i->start_segno)
#define GET_R2L_SEGNO(free_i, segno)	(segno + free_i->start_segno)

24 25
#define IS_DATASEG(t)	(t <= CURSEG_COLD_DATA)
#define IS_NODESEG(t)	(t >= CURSEG_HOT_NODE)
26

27 28 29 30 31 32 33
#define IS_CURSEG(sbi, seg)						\
	((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||	\
	 (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||	\
	 (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||	\
	 (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||	\
	 (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||	\
	 (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

#define IS_CURSEC(sbi, secno)						\
	((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /		\
	  sbi->segs_per_sec) ||	\
	 (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /		\
	  sbi->segs_per_sec) ||	\
	 (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /		\
	  sbi->segs_per_sec) ||	\
	 (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /		\
	  sbi->segs_per_sec) ||	\
	 (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /		\
	  sbi->segs_per_sec) ||	\
	 (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /		\
	  sbi->segs_per_sec))	\

49 50 51 52 53 54 55 56 57 58
#define MAIN_BLKADDR(sbi)	(SM_I(sbi)->main_blkaddr)
#define SEG0_BLKADDR(sbi)	(SM_I(sbi)->seg0_blkaddr)

#define MAIN_SEGS(sbi)	(SM_I(sbi)->main_segments)
#define MAIN_SECS(sbi)	(sbi->total_sections)

#define TOTAL_SEGS(sbi)	(SM_I(sbi)->segment_count)
#define TOTAL_BLKS(sbi)	(TOTAL_SEGS(sbi) << sbi->log_blocks_per_seg)

#define MAX_BLKADDR(sbi)	(SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
59
#define SEGMENT_SIZE(sbi)	(1ULL << (sbi->log_blocksize +		\
60 61 62
					sbi->log_blocks_per_seg))

#define START_BLOCK(sbi, segno)	(SEG0_BLKADDR(sbi) +			\
63
	 (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
64

65 66 67
#define NEXT_FREE_BLKADDR(sbi, curseg)					\
	(START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)

68
#define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)	((blk_addr) - SEG0_BLKADDR(sbi))
69 70
#define GET_SEGNO_FROM_SEG0(sbi, blk_addr)				\
	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
J
Jaegeuk Kim 已提交
71 72 73
#define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)				\
	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (sbi->blocks_per_seg - 1))

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
#define GET_SEGNO(sbi, blk_addr)					\
	(((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ?		\
	NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),			\
		GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
#define GET_SECNO(sbi, segno)					\
	((segno) / sbi->segs_per_sec)
#define GET_ZONENO_FROM_SEGNO(sbi, segno)				\
	((segno / sbi->segs_per_sec) / sbi->secs_per_zone)

#define GET_SUM_BLOCK(sbi, segno)				\
	((sbi->sm_info->ssa_blkaddr) + segno)

#define GET_SUM_TYPE(footer) ((footer)->entry_type)
#define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)

#define SIT_ENTRY_OFFSET(sit_i, segno)					\
	(segno % sit_i->sents_per_block)
91
#define SIT_BLOCK_OFFSET(segno)					\
92
	(segno / SIT_ENTRY_PER_BLOCK)
93 94
#define	START_SEGNO(segno)		\
	(SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
95
#define SIT_BLK_CNT(sbi)			\
96
	((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
97 98 99
#define f2fs_bitmap_size(nr)			\
	(BITS_TO_LONGS(nr) * sizeof(unsigned long))

C
Chao Yu 已提交
100 101 102 103
#define SECTOR_FROM_BLOCK(blk_addr)					\
	(((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
#define SECTOR_TO_BLOCK(sectors)					\
	(sectors >> F2FS_LOG_SECTORS_PER_BLOCK)
J
Jaegeuk Kim 已提交
104 105
#define MAX_BIO_BLOCKS(sbi)						\
	((int)min((int)max_hw_blocks(sbi), BIO_MAX_PAGES))
106

107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
/*
 * indicate a block allocation direction: RIGHT and LEFT.
 * RIGHT means allocating new sections towards the end of volume.
 * LEFT means the opposite direction.
 */
enum {
	ALLOC_RIGHT = 0,
	ALLOC_LEFT
};

/*
 * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
 * LFS writes data sequentially with cleaning operations.
 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
 */
enum {
	LFS = 0,
	SSR
};

/*
 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
 * GC_CB is based on cost-benefit algorithm.
 * GC_GREEDY is based on greedy algorithm.
 */
enum {
	GC_CB = 0,
	GC_GREEDY
};

/*
 * BG_GC means the background cleaning job.
 * FG_GC means the on-demand cleaning job.
 */
enum {
	BG_GC = 0,
	FG_GC
};

/* for a function parameter to select a victim segment */
struct victim_sel_policy {
	int alloc_mode;			/* LFS or SSR */
	int gc_mode;			/* GC_CB or GC_GREEDY */
	unsigned long *dirty_segmap;	/* dirty segment bitmap */
151
	unsigned int max_search;	/* maximum # of segments to search */
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
	unsigned int offset;		/* last scanned bitmap offset */
	unsigned int ofs_unit;		/* bitmap search unit */
	unsigned int min_cost;		/* minimum cost */
	unsigned int min_segno;		/* segment # having min. cost */
};

struct seg_entry {
	unsigned short valid_blocks;	/* # of valid blocks */
	unsigned char *cur_valid_map;	/* validity bitmap of blocks */
	/*
	 * # of valid blocks and the validity bitmap stored in the the last
	 * checkpoint pack. This information is used by the SSR mode.
	 */
	unsigned short ckpt_valid_blocks;
	unsigned char *ckpt_valid_map;
167
	unsigned char *discard_map;
168 169 170 171 172 173 174 175 176 177 178 179
	unsigned char type;		/* segment type like CURSEG_XXX_TYPE */
	unsigned long long mtime;	/* modification time of the segment */
};

struct sec_entry {
	unsigned int valid_blocks;	/* # of valid blocks in a section */
};

struct segment_allocation {
	void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
};

J
Jaegeuk Kim 已提交
180 181 182 183 184
struct inmem_pages {
	struct list_head list;
	struct page *page;
};

185 186 187 188 189 190 191 192 193
struct sit_info {
	const struct segment_allocation *s_ops;

	block_t sit_base_addr;		/* start block address of SIT area */
	block_t sit_blocks;		/* # of blocks used by SIT area */
	block_t written_valid_blocks;	/* # of valid blocks in main area */
	char *sit_bitmap;		/* SIT bitmap pointer */
	unsigned int bitmap_size;	/* SIT bitmap size */

J
Jaegeuk Kim 已提交
194
	unsigned long *tmp_map;			/* bitmap for temporal use */
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
	unsigned long *dirty_sentries_bitmap;	/* bitmap for dirty sentries */
	unsigned int dirty_sentries;		/* # of dirty sentries */
	unsigned int sents_per_block;		/* # of SIT entries per block */
	struct mutex sentry_lock;		/* to protect SIT cache */
	struct seg_entry *sentries;		/* SIT segment-level cache */
	struct sec_entry *sec_entries;		/* SIT section-level cache */

	/* for cost-benefit algorithm in cleaning procedure */
	unsigned long long elapsed_time;	/* elapsed time after mount */
	unsigned long long mounted_time;	/* mount time */
	unsigned long long min_mtime;		/* min. modification time */
	unsigned long long max_mtime;		/* max. modification time */
};

struct free_segmap_info {
	unsigned int start_segno;	/* start segment number logically */
	unsigned int free_segments;	/* # of free segments */
	unsigned int free_sections;	/* # of free sections */
213
	spinlock_t segmap_lock;		/* free segmap lock */
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
	unsigned long *free_segmap;	/* free segment bitmap */
	unsigned long *free_secmap;	/* free section bitmap */
};

/* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
enum dirty_type {
	DIRTY_HOT_DATA,		/* dirty segments assigned as hot data logs */
	DIRTY_WARM_DATA,	/* dirty segments assigned as warm data logs */
	DIRTY_COLD_DATA,	/* dirty segments assigned as cold data logs */
	DIRTY_HOT_NODE,		/* dirty segments assigned as hot node logs */
	DIRTY_WARM_NODE,	/* dirty segments assigned as warm node logs */
	DIRTY_COLD_NODE,	/* dirty segments assigned as cold node logs */
	DIRTY,			/* to count # of dirty segments */
	PRE,			/* to count # of entirely obsolete segments */
	NR_DIRTY_TYPE
};

struct dirty_seglist_info {
	const struct victim_selection *v_ops;	/* victim selction operation */
	unsigned long *dirty_segmap[NR_DIRTY_TYPE];
	struct mutex seglist_lock;		/* lock for segment bitmaps */
	int nr_dirty[NR_DIRTY_TYPE];		/* # of dirty segments */
236
	unsigned long *victim_secmap;		/* background GC victims */
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
};

/* victim selection function for cleaning and SSR */
struct victim_selection {
	int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
							int, int, char);
};

/* for active log information */
struct curseg_info {
	struct mutex curseg_mutex;		/* lock for consistency */
	struct f2fs_summary_block *sum_blk;	/* cached summary block */
	unsigned char alloc_type;		/* current allocation type */
	unsigned int segno;			/* current segment number */
	unsigned short next_blkoff;		/* next block offset to write */
	unsigned int zone;			/* current zone number */
	unsigned int next_segno;		/* preallocated segment */
};

256 257 258 259 260 261
struct sit_entry_set {
	struct list_head set_list;	/* link with all sit sets */
	unsigned int start_segno;	/* start segno of sits in set */
	unsigned int entry_cnt;		/* the # of sit entries in set */
};

262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
/*
 * inline functions
 */
static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
{
	return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
}

static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
						unsigned int segno)
{
	struct sit_info *sit_i = SIT_I(sbi);
	return &sit_i->sentries[segno];
}

static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
						unsigned int segno)
{
	struct sit_info *sit_i = SIT_I(sbi);
	return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
}

static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
				unsigned int segno, int section)
{
	/*
	 * In order to get # of valid blocks in a section instantly from many
	 * segments, f2fs manages two counting structures separately.
	 */
	if (section > 1)
		return get_sec_entry(sbi, segno)->valid_blocks;
	else
		return get_seg_entry(sbi, segno)->valid_blocks;
}

static inline void seg_info_from_raw_sit(struct seg_entry *se,
					struct f2fs_sit_entry *rs)
{
	se->valid_blocks = GET_SIT_VBLOCKS(rs);
	se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
	memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
	se->type = GET_SIT_TYPE(rs);
	se->mtime = le64_to_cpu(rs->mtime);
}

static inline void seg_info_to_raw_sit(struct seg_entry *se,
					struct f2fs_sit_entry *rs)
{
	unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
					se->valid_blocks;
	rs->vblocks = cpu_to_le16(raw_vblocks);
	memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
	se->ckpt_valid_blocks = se->valid_blocks;
	rs->mtime = cpu_to_le64(se->mtime);
}

static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
		unsigned int max, unsigned int segno)
{
	unsigned int ret;
324
	spin_lock(&free_i->segmap_lock);
325
	ret = find_next_bit(free_i->free_segmap, max, segno);
326
	spin_unlock(&free_i->segmap_lock);
327 328 329 330 331 332 333 334 335 336
	return ret;
}

static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
{
	struct free_segmap_info *free_i = FREE_I(sbi);
	unsigned int secno = segno / sbi->segs_per_sec;
	unsigned int start_segno = secno * sbi->segs_per_sec;
	unsigned int next;

337
	spin_lock(&free_i->segmap_lock);
338 339 340
	clear_bit(segno, free_i->free_segmap);
	free_i->free_segments++;

341 342
	next = find_next_bit(free_i->free_segmap,
			start_segno + sbi->segs_per_sec, start_segno);
343 344 345 346
	if (next >= start_segno + sbi->segs_per_sec) {
		clear_bit(secno, free_i->free_secmap);
		free_i->free_sections++;
	}
347
	spin_unlock(&free_i->segmap_lock);
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
}

static inline void __set_inuse(struct f2fs_sb_info *sbi,
		unsigned int segno)
{
	struct free_segmap_info *free_i = FREE_I(sbi);
	unsigned int secno = segno / sbi->segs_per_sec;
	set_bit(segno, free_i->free_segmap);
	free_i->free_segments--;
	if (!test_and_set_bit(secno, free_i->free_secmap))
		free_i->free_sections--;
}

static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
		unsigned int segno)
{
	struct free_segmap_info *free_i = FREE_I(sbi);
	unsigned int secno = segno / sbi->segs_per_sec;
	unsigned int start_segno = secno * sbi->segs_per_sec;
	unsigned int next;

369
	spin_lock(&free_i->segmap_lock);
370 371 372
	if (test_and_clear_bit(segno, free_i->free_segmap)) {
		free_i->free_segments++;

373 374
		next = find_next_bit(free_i->free_segmap,
				start_segno + sbi->segs_per_sec, start_segno);
375 376 377 378 379
		if (next >= start_segno + sbi->segs_per_sec) {
			if (test_and_clear_bit(secno, free_i->free_secmap))
				free_i->free_sections++;
		}
	}
380
	spin_unlock(&free_i->segmap_lock);
381 382 383 384 385 386 387
}

static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
		unsigned int segno)
{
	struct free_segmap_info *free_i = FREE_I(sbi);
	unsigned int secno = segno / sbi->segs_per_sec;
388
	spin_lock(&free_i->segmap_lock);
389 390 391 392 393
	if (!test_and_set_bit(segno, free_i->free_segmap)) {
		free_i->free_segments--;
		if (!test_and_set_bit(secno, free_i->free_secmap))
			free_i->free_sections--;
	}
394
	spin_unlock(&free_i->segmap_lock);
395 396 397 398 399 400 401 402 403 404 405
}

static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
		void *dst_addr)
{
	struct sit_info *sit_i = SIT_I(sbi);
	memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
}

static inline block_t written_block_count(struct f2fs_sb_info *sbi)
{
406
	return SIT_I(sbi)->written_valid_blocks;
407 408 409 410
}

static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
{
411
	return FREE_I(sbi)->free_segments;
412 413 414 415 416 417 418 419 420
}

static inline int reserved_segments(struct f2fs_sb_info *sbi)
{
	return SM_I(sbi)->reserved_segments;
}

static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
{
421
	return FREE_I(sbi)->free_sections;
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
}

static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
{
	return DIRTY_I(sbi)->nr_dirty[PRE];
}

static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
{
	return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
		DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
}

static inline int overprovision_segments(struct f2fs_sb_info *sbi)
{
	return SM_I(sbi)->ovp_segments;
}

static inline int overprovision_sections(struct f2fs_sb_info *sbi)
{
	return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
}

static inline int reserved_sections(struct f2fs_sb_info *sbi)
{
	return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
}

static inline bool need_SSR(struct f2fs_sb_info *sbi)
{
456 457 458 459
	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
	return free_sections(sbi) <= (node_secs + 2 * dent_secs +
						reserved_sections(sbi) + 1);
460 461
}

462
static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed)
463
{
464 465
	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
466

467
	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
468 469
		return false;

C
Chris Fries 已提交
470 471
	return (free_sections(sbi) + freed) <= (node_secs + 2 * dent_secs +
						reserved_sections(sbi));
472 473
}

474 475
static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
{
C
Chris Fries 已提交
476
	return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
477 478
}

479 480
static inline int utilization(struct f2fs_sb_info *sbi)
{
C
Chris Fries 已提交
481 482
	return div_u64((u64)valid_user_blocks(sbi) * 100,
					sbi->user_block_count);
483 484 485 486
}

/*
 * Sometimes f2fs may be better to drop out-of-place update policy.
487 488 489 490 491 492 493
 * And, users can control the policy through sysfs entries.
 * There are five policies with triggering conditions as follows.
 * F2FS_IPU_FORCE - all the time,
 * F2FS_IPU_SSR - if SSR mode is activated,
 * F2FS_IPU_UTIL - if FS utilization is over threashold,
 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
 *                     threashold,
494 495 496
 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
 *                     storages. IPU will be triggered only if the # of dirty
 *                     pages over min_fsync_blocks.
497
 * F2FS_IPUT_DISABLE - disable IPU. (=default option)
498
 */
499
#define DEF_MIN_IPU_UTIL	70
500
#define DEF_MIN_FSYNC_BLOCKS	8
501 502 503 504 505 506

enum {
	F2FS_IPU_FORCE,
	F2FS_IPU_SSR,
	F2FS_IPU_UTIL,
	F2FS_IPU_SSR_UTIL,
507
	F2FS_IPU_FSYNC,
508 509
};

510 511
static inline bool need_inplace_update(struct inode *inode)
{
512
	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
513
	unsigned int policy = SM_I(sbi)->ipu_policy;
514 515

	/* IPU can be done only for the user data */
J
Jaegeuk Kim 已提交
516
	if (S_ISDIR(inode->i_mode) || f2fs_is_atomic_file(inode))
517
		return false;
518

519
	if (policy & (0x1 << F2FS_IPU_FORCE))
520
		return true;
521 522 523 524 525 526 527 528 529 530 531 532 533 534
	if (policy & (0x1 << F2FS_IPU_SSR) && need_SSR(sbi))
		return true;
	if (policy & (0x1 << F2FS_IPU_UTIL) &&
			utilization(sbi) > SM_I(sbi)->min_ipu_util)
		return true;
	if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && need_SSR(sbi) &&
			utilization(sbi) > SM_I(sbi)->min_ipu_util)
		return true;

	/* this is only set during fdatasync */
	if (policy & (0x1 << F2FS_IPU_FSYNC) &&
			is_inode_flag_set(F2FS_I(inode), FI_NEED_IPU))
		return true;

535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
	return false;
}

static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
		int type)
{
	struct curseg_info *curseg = CURSEG_I(sbi, type);
	return curseg->segno;
}

static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
		int type)
{
	struct curseg_info *curseg = CURSEG_I(sbi, type);
	return curseg->alloc_type;
}

static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
{
	struct curseg_info *curseg = CURSEG_I(sbi, type);
	return curseg->next_blkoff;
}

558
#ifdef CONFIG_F2FS_CHECK_FS
559 560
static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
{
561
	BUG_ON(segno > TOTAL_SEGS(sbi) - 1);
562 563 564 565
}

static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
{
566 567
	BUG_ON(blk_addr < SEG0_BLKADDR(sbi));
	BUG_ON(blk_addr >= MAX_BLKADDR(sbi));
568 569 570
}

/*
A
arter97 已提交
571
 * Summary block is always treated as an invalid block
572 573 574 575
 */
static inline void check_block_count(struct f2fs_sb_info *sbi,
		int segno, struct f2fs_sit_entry *raw_sit)
{
576
	bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
577
	int valid_blocks = 0;
578
	int cur_pos = 0, next_pos;
579 580 581 582 583

	/* check segment usage */
	BUG_ON(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg);

	/* check boundary of a given segment number */
584
	BUG_ON(segno > TOTAL_SEGS(sbi) - 1);
585 586

	/* check bitmap with valid block count */
587 588 589 590 591 592 593 594 595 596 597 598 599
	do {
		if (is_valid) {
			next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
					sbi->blocks_per_seg,
					cur_pos);
			valid_blocks += next_pos - cur_pos;
		} else
			next_pos = find_next_bit_le(&raw_sit->valid_map,
					sbi->blocks_per_seg,
					cur_pos);
		cur_pos = next_pos;
		is_valid = !is_valid;
	} while (cur_pos < sbi->blocks_per_seg);
600 601
	BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
}
602
#else
603 604
static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
{
605
	if (segno > TOTAL_SEGS(sbi) - 1)
606
		set_sbi_flag(sbi, SBI_NEED_FSCK);
607 608 609 610
}

static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
{
611
	if (blk_addr < SEG0_BLKADDR(sbi) || blk_addr >= MAX_BLKADDR(sbi))
612
		set_sbi_flag(sbi, SBI_NEED_FSCK);
613 614 615 616 617 618 619 620 621 622
}

/*
 * Summary block is always treated as an invalid block
 */
static inline void check_block_count(struct f2fs_sb_info *sbi,
		int segno, struct f2fs_sit_entry *raw_sit)
{
	/* check segment usage */
	if (GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg)
623
		set_sbi_flag(sbi, SBI_NEED_FSCK);
624 625

	/* check boundary of a given segment number */
626
	if (segno > TOTAL_SEGS(sbi) - 1)
627
		set_sbi_flag(sbi, SBI_NEED_FSCK);
628
}
629
#endif
630 631 632 633 634

static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
						unsigned int start)
{
	struct sit_info *sit_i = SIT_I(sbi);
635
	unsigned int offset = SIT_BLOCK_OFFSET(start);
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
	block_t blk_addr = sit_i->sit_base_addr + offset;

	check_seg_range(sbi, start);

	/* calculate sit block address */
	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
		blk_addr += sit_i->sit_blocks;

	return blk_addr;
}

static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
						pgoff_t block_addr)
{
	struct sit_info *sit_i = SIT_I(sbi);
	block_addr -= sit_i->sit_base_addr;
	if (block_addr < sit_i->sit_blocks)
		block_addr += sit_i->sit_blocks;
	else
		block_addr -= sit_i->sit_blocks;

	return block_addr + sit_i->sit_base_addr;
}

static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
{
662
	unsigned int block_off = SIT_BLOCK_OFFSET(start);
663

664
	f2fs_change_bit(block_off, sit_i->sit_bitmap);
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
}

static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
{
	struct sit_info *sit_i = SIT_I(sbi);
	return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
						sit_i->mounted_time;
}

static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
			unsigned int ofs_in_node, unsigned char version)
{
	sum->nid = cpu_to_le32(nid);
	sum->ofs_in_node = cpu_to_le16(ofs_in_node);
	sum->version = version;
}

static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
{
	return __start_cp_addr(sbi) +
		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
}

static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
{
	return __start_cp_addr(sbi) +
		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
				- (base + 1) + type;
}
694 695 696 697 698 699 700

static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
{
	if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
		return true;
	return false;
}
701 702 703 704 705

static inline unsigned int max_hw_blocks(struct f2fs_sb_info *sbi)
{
	struct block_device *bdev = sbi->sb->s_bdev;
	struct request_queue *q = bdev_get_queue(bdev);
C
Chao Yu 已提交
706
	return SECTOR_TO_BLOCK(queue_max_sectors(q));
707
}
708 709 710 711 712 713 714 715 716 717

/*
 * It is very important to gather dirty pages and write at once, so that we can
 * submit a big bio without interfering other data writes.
 * By default, 512 pages for directory data,
 * 512 pages (2MB) * 3 for three types of nodes, and
 * max_bio_blocks for meta are set.
 */
static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
{
718
	if (sbi->sb->s_bdi->wb.dirty_exceeded)
719 720
		return 0;

721 722 723 724 725
	if (type == DATA)
		return sbi->blocks_per_seg;
	else if (type == NODE)
		return 3 * sbi->blocks_per_seg;
	else if (type == META)
J
Jaegeuk Kim 已提交
726
		return MAX_BIO_BLOCKS(sbi);
727 728 729
	else
		return 0;
}
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748

/*
 * When writing pages, it'd better align nr_to_write for segment size.
 */
static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
					struct writeback_control *wbc)
{
	long nr_to_write, desired;

	if (wbc->sync_mode != WB_SYNC_NONE)
		return 0;

	nr_to_write = wbc->nr_to_write;

	if (type == DATA)
		desired = 4096;
	else if (type == NODE)
		desired = 3 * max_hw_blocks(sbi);
	else
J
Jaegeuk Kim 已提交
749
		desired = MAX_BIO_BLOCKS(sbi);
750 751 752 753

	wbc->nr_to_write = desired;
	return desired - nr_to_write;
}