kfd_device_queue_manager.c 28.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * Copyright 2014 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 */

#include <linux/slab.h>
#include <linux/list.h>
#include <linux/types.h>
#include <linux/printk.h>
#include <linux/bitops.h>
29
#include <linux/sched.h>
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
#include "kfd_priv.h"
#include "kfd_device_queue_manager.h"
#include "kfd_mqd_manager.h"
#include "cik_regs.h"
#include "kfd_kernel_queue.h"

/* Size of the per-pipe EOP queue */
#define CIK_HPD_EOP_BYTES_LOG2 11
#define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2)

static int set_pasid_vmid_mapping(struct device_queue_manager *dqm,
					unsigned int pasid, unsigned int vmid);

static int create_compute_queue_nocpsch(struct device_queue_manager *dqm,
					struct queue *q,
					struct qcm_process_device *qpd);
46

47 48 49
static int execute_queues_cpsch(struct device_queue_manager *dqm, bool lock);
static int destroy_queues_cpsch(struct device_queue_manager *dqm, bool lock);

50 51 52 53 54 55
static int create_sdma_queue_nocpsch(struct device_queue_manager *dqm,
					struct queue *q,
					struct qcm_process_device *qpd);

static void deallocate_sdma_queue(struct device_queue_manager *dqm,
				unsigned int sdma_queue_id);
56

57 58
static inline
enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type)
59
{
60
	if (type == KFD_QUEUE_TYPE_SDMA)
61 62
		return KFD_MQD_TYPE_SDMA;
	return KFD_MQD_TYPE_CP;
63 64
}

65
unsigned int get_first_pipe(struct device_queue_manager *dqm)
66
{
67
	BUG_ON(!dqm || !dqm->dev);
68 69 70
	return dqm->dev->shared_resources.first_compute_pipe;
}

71 72 73 74 75 76
unsigned int get_pipes_num(struct device_queue_manager *dqm)
{
	BUG_ON(!dqm || !dqm->dev);
	return dqm->dev->shared_resources.compute_pipe_count;
}

77 78 79 80 81
static inline unsigned int get_pipes_num_cpsch(void)
{
	return PIPE_PER_ME_CP_SCHEDULING;
}

82
void program_sh_mem_settings(struct device_queue_manager *dqm,
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
					struct qcm_process_device *qpd)
{
	return kfd2kgd->program_sh_mem_settings(dqm->dev->kgd, qpd->vmid,
						qpd->sh_mem_config,
						qpd->sh_mem_ape1_base,
						qpd->sh_mem_ape1_limit,
						qpd->sh_mem_bases);
}

static int allocate_vmid(struct device_queue_manager *dqm,
			struct qcm_process_device *qpd,
			struct queue *q)
{
	int bit, allocated_vmid;

	if (dqm->vmid_bitmap == 0)
		return -ENOMEM;

	bit = find_first_bit((unsigned long *)&dqm->vmid_bitmap, CIK_VMID_NUM);
	clear_bit(bit, (unsigned long *)&dqm->vmid_bitmap);

	/* Kaveri kfd vmid's starts from vmid 8 */
	allocated_vmid = bit + KFD_VMID_START_OFFSET;
	pr_debug("kfd: vmid allocation %d\n", allocated_vmid);
	qpd->vmid = allocated_vmid;
	q->properties.vmid = allocated_vmid;

	set_pasid_vmid_mapping(dqm, q->process->pasid, q->properties.vmid);
	program_sh_mem_settings(dqm, qpd);

	return 0;
}

static void deallocate_vmid(struct device_queue_manager *dqm,
				struct qcm_process_device *qpd,
				struct queue *q)
{
	int bit = qpd->vmid - KFD_VMID_START_OFFSET;

122 123 124
	/* Release the vmid mapping */
	set_pasid_vmid_mapping(dqm, 0, qpd->vmid);

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
	set_bit(bit, (unsigned long *)&dqm->vmid_bitmap);
	qpd->vmid = 0;
	q->properties.vmid = 0;
}

static int create_queue_nocpsch(struct device_queue_manager *dqm,
				struct queue *q,
				struct qcm_process_device *qpd,
				int *allocated_vmid)
{
	int retval;

	BUG_ON(!dqm || !q || !qpd || !allocated_vmid);

	pr_debug("kfd: In func %s\n", __func__);
	print_queue(q);

	mutex_lock(&dqm->lock);

144 145 146 147 148 149 150
	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
		pr_warn("amdkfd: Can't create new usermode queue because %d queues were already created\n",
				dqm->total_queue_count);
		mutex_unlock(&dqm->lock);
		return -EPERM;
	}

151 152 153 154 155 156 157 158 159 160
	if (list_empty(&qpd->queues_list)) {
		retval = allocate_vmid(dqm, qpd, q);
		if (retval != 0) {
			mutex_unlock(&dqm->lock);
			return retval;
		}
	}
	*allocated_vmid = qpd->vmid;
	q->properties.vmid = qpd->vmid;

161 162 163 164
	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
		retval = create_compute_queue_nocpsch(dqm, q, qpd);
	if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
		retval = create_sdma_queue_nocpsch(dqm, q, qpd);
165 166 167 168 169 170 171 172 173 174 175

	if (retval != 0) {
		if (list_empty(&qpd->queues_list)) {
			deallocate_vmid(dqm, qpd, q);
			*allocated_vmid = 0;
		}
		mutex_unlock(&dqm->lock);
		return retval;
	}

	list_add(&q->list, &qpd->queues_list);
176 177
	if (q->properties.is_active)
		dqm->queue_count++;
178

179 180
	if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
		dqm->sdma_queue_count++;
181

182 183 184 185 186 187 188 189
	/*
	 * Unconditionally increment this counter, regardless of the queue's
	 * type or whether the queue is active.
	 */
	dqm->total_queue_count++;
	pr_debug("Total of %d queues are accountable so far\n",
			dqm->total_queue_count);

190 191 192 193 194 195 196
	mutex_unlock(&dqm->lock);
	return 0;
}

static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q)
{
	bool set;
197
	int pipe, bit, i;
198 199 200

	set = false;

201 202
	for (pipe = dqm->next_pipe_to_allocate, i = 0; i < get_pipes_num(dqm);
			pipe = ((pipe + 1) % get_pipes_num(dqm)), ++i) {
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
		if (dqm->allocated_queues[pipe] != 0) {
			bit = find_first_bit(
				(unsigned long *)&dqm->allocated_queues[pipe],
				QUEUES_PER_PIPE);

			clear_bit(bit,
				(unsigned long *)&dqm->allocated_queues[pipe]);
			q->pipe = pipe;
			q->queue = bit;
			set = true;
			break;
		}
	}

	if (set == false)
		return -EBUSY;

	pr_debug("kfd: DQM %s hqd slot - pipe (%d) queue(%d)\n",
				__func__, q->pipe, q->queue);
	/* horizontal hqd allocation */
	dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_num(dqm);

	return 0;
}

static inline void deallocate_hqd(struct device_queue_manager *dqm,
				struct queue *q)
{
	set_bit(q->queue, (unsigned long *)&dqm->allocated_queues[q->pipe]);
}

static int create_compute_queue_nocpsch(struct device_queue_manager *dqm,
					struct queue *q,
					struct qcm_process_device *qpd)
{
	int retval;
	struct mqd_manager *mqd;

	BUG_ON(!dqm || !q || !qpd);

243
	mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_COMPUTE);
244 245 246 247 248 249 250 251 252 253 254 255 256 257
	if (mqd == NULL)
		return -ENOMEM;

	retval = allocate_hqd(dqm, q);
	if (retval != 0)
		return retval;

	retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
				&q->gart_mqd_addr, &q->properties);
	if (retval != 0) {
		deallocate_hqd(dqm, q);
		return retval;
	}

258 259 260 261 262
	pr_debug("kfd: loading mqd to hqd on pipe (%d) queue (%d)\n",
			q->pipe,
			q->queue);

	retval = mqd->load_mqd(mqd, q->mqd, q->pipe,
263
			q->queue, (uint32_t __user *) q->properties.write_ptr);
264 265 266 267 268 269
	if (retval != 0) {
		deallocate_hqd(dqm, q);
		mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
		return retval;
	}

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
	return 0;
}

static int destroy_queue_nocpsch(struct device_queue_manager *dqm,
				struct qcm_process_device *qpd,
				struct queue *q)
{
	int retval;
	struct mqd_manager *mqd;

	BUG_ON(!dqm || !q || !q->mqd || !qpd);

	retval = 0;

	pr_debug("kfd: In Func %s\n", __func__);

	mutex_lock(&dqm->lock);

288
	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) {
289
		mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_COMPUTE);
290 291 292 293 294 295
		if (mqd == NULL) {
			retval = -ENOMEM;
			goto out;
		}
		deallocate_hqd(dqm, q);
	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
296
		mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_SDMA);
297 298 299 300 301 302
		if (mqd == NULL) {
			retval = -ENOMEM;
			goto out;
		}
		dqm->sdma_queue_count--;
		deallocate_sdma_queue(dqm, q->sdma_id);
303 304 305 306
	} else {
		pr_debug("q->properties.type is invalid (%d)\n",
				q->properties.type);
		retval = -EINVAL;
307 308 309 310
		goto out;
	}

	retval = mqd->destroy_mqd(mqd, q->mqd,
311
				KFD_PREEMPT_TYPE_WAVEFRONT_RESET,
312 313 314 315 316 317 318 319 320 321 322
				QUEUE_PREEMPT_DEFAULT_TIMEOUT_MS,
				q->pipe, q->queue);

	if (retval != 0)
		goto out;

	mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);

	list_del(&q->list);
	if (list_empty(&qpd->queues_list))
		deallocate_vmid(dqm, qpd, q);
323 324
	if (q->properties.is_active)
		dqm->queue_count--;
325 326 327 328 329 330 331 332 333

	/*
	 * Unconditionally decrement this counter, regardless of the queue's
	 * type
	 */
	dqm->total_queue_count--;
	pr_debug("Total of %d queues are accountable so far\n",
			dqm->total_queue_count);

334 335 336 337 338 339 340 341 342
out:
	mutex_unlock(&dqm->lock);
	return retval;
}

static int update_queue(struct device_queue_manager *dqm, struct queue *q)
{
	int retval;
	struct mqd_manager *mqd;
343
	bool prev_active = false;
344 345 346 347

	BUG_ON(!dqm || !q || !q->mqd);

	mutex_lock(&dqm->lock);
O
Oded Gabbay 已提交
348 349
	mqd = dqm->ops.get_mqd_manager(dqm,
			get_mqd_type_from_queue_type(q->properties.type));
350 351 352 353 354 355
	if (mqd == NULL) {
		mutex_unlock(&dqm->lock);
		return -ENOMEM;
	}

	if (q->properties.is_active == true)
356 357 358 359 360 361 362 363 364
		prev_active = true;

	/*
	 *
	 * check active state vs. the previous state
	 * and modify counter accordingly
	 */
	retval = mqd->update_mqd(mqd, q->mqd, &q->properties);
	if ((q->properties.is_active == true) && (prev_active == false))
365
		dqm->queue_count++;
366
	else if ((q->properties.is_active == false) && (prev_active == true))
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
		dqm->queue_count--;

	if (sched_policy != KFD_SCHED_POLICY_NO_HWS)
		retval = execute_queues_cpsch(dqm, false);

	mutex_unlock(&dqm->lock);
	return retval;
}

static struct mqd_manager *get_mqd_manager_nocpsch(
		struct device_queue_manager *dqm, enum KFD_MQD_TYPE type)
{
	struct mqd_manager *mqd;

	BUG_ON(!dqm || type >= KFD_MQD_TYPE_MAX);

	pr_debug("kfd: In func %s mqd type %d\n", __func__, type);

	mqd = dqm->mqds[type];
	if (!mqd) {
		mqd = mqd_manager_init(type, dqm->dev);
		if (mqd == NULL)
			pr_err("kfd: mqd manager is NULL");
		dqm->mqds[type] = mqd;
	}

	return mqd;
}

static int register_process_nocpsch(struct device_queue_manager *dqm,
					struct qcm_process_device *qpd)
{
	struct device_process_node *n;
400
	int retval;
401 402 403 404 405 406 407 408 409 410 411 412 413 414

	BUG_ON(!dqm || !qpd);

	pr_debug("kfd: In func %s\n", __func__);

	n = kzalloc(sizeof(struct device_process_node), GFP_KERNEL);
	if (!n)
		return -ENOMEM;

	n->qpd = qpd;

	mutex_lock(&dqm->lock);
	list_add(&n->list, &dqm->queues);

415 416
	retval = dqm->ops_asic_specific.register_process(dqm, qpd);

417 418 419 420
	dqm->processes_count++;

	mutex_unlock(&dqm->lock);

421
	return retval;
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
}

static int unregister_process_nocpsch(struct device_queue_manager *dqm,
					struct qcm_process_device *qpd)
{
	int retval;
	struct device_process_node *cur, *next;

	BUG_ON(!dqm || !qpd);

	BUG_ON(!list_empty(&qpd->queues_list));

	pr_debug("kfd: In func %s\n", __func__);

	retval = 0;
	mutex_lock(&dqm->lock);

	list_for_each_entry_safe(cur, next, &dqm->queues, list) {
		if (qpd == cur->qpd) {
			list_del(&cur->list);
442
			kfree(cur);
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
			dqm->processes_count--;
			goto out;
		}
	}
	/* qpd not found in dqm list */
	retval = 1;
out:
	mutex_unlock(&dqm->lock);
	return retval;
}

static int
set_pasid_vmid_mapping(struct device_queue_manager *dqm, unsigned int pasid,
			unsigned int vmid)
{
	uint32_t pasid_mapping;

	pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
						ATC_VMID_PASID_MAPPING_VALID;
	return kfd2kgd->set_pasid_vmid_mapping(dqm->dev->kgd, pasid_mapping,
						vmid);
}

466
int init_pipelines(struct device_queue_manager *dqm,
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
			unsigned int pipes_num, unsigned int first_pipe)
{
	void *hpdptr;
	struct mqd_manager *mqd;
	unsigned int i, err, inx;
	uint64_t pipe_hpd_addr;

	BUG_ON(!dqm || !dqm->dev);

	pr_debug("kfd: In func %s\n", __func__);

	/*
	 * Allocate memory for the HPDs. This is hardware-owned per-pipe data.
	 * The driver never accesses this memory after zeroing it.
	 * It doesn't even have to be saved/restored on suspend/resume
	 * because it contains no data when there are no active queues.
	 */

485 486
	err = kfd_gtt_sa_allocate(dqm->dev, CIK_HPD_EOP_BYTES * pipes_num,
					&dqm->pipeline_mem);
487 488 489 490 491 492 493 494 495 496 497 498

	if (err) {
		pr_err("kfd: error allocate vidmem num pipes: %d\n",
			pipes_num);
		return -ENOMEM;
	}

	hpdptr = dqm->pipeline_mem->cpu_ptr;
	dqm->pipelines_addr = dqm->pipeline_mem->gpu_addr;

	memset(hpdptr, 0, CIK_HPD_EOP_BYTES * pipes_num);

499
	mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_COMPUTE);
500
	if (mqd == NULL) {
501
		kfd_gtt_sa_free(dqm->dev, dqm->pipeline_mem);
502 503 504 505 506
		return -ENOMEM;
	}

	for (i = 0; i < pipes_num; i++) {
		inx = i + first_pipe;
507 508 509 510
		/*
		 * HPD buffer on GTT is allocated by amdkfd, no need to waste
		 * space in GTT for pipelines we don't initialize
		 */
511 512 513
		pipe_hpd_addr = dqm->pipelines_addr + i * CIK_HPD_EOP_BYTES;
		pr_debug("kfd: pipeline address %llX\n", pipe_hpd_addr);
		/* = log2(bytes/4)-1 */
514
		kfd2kgd->init_pipeline(dqm->dev->kgd, inx,
515 516 517 518 519 520 521 522 523 524 525 526 527 528
				CIK_HPD_EOP_BYTES_LOG2 - 3, pipe_hpd_addr);
	}

	return 0;
}

static int init_scheduler(struct device_queue_manager *dqm)
{
	int retval;

	BUG_ON(!dqm);

	pr_debug("kfd: In %s\n", __func__);

529
	retval = init_pipelines(dqm, get_pipes_num(dqm), get_first_pipe(dqm));
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
	return retval;
}

static int initialize_nocpsch(struct device_queue_manager *dqm)
{
	int i;

	BUG_ON(!dqm);

	pr_debug("kfd: In func %s num of pipes: %d\n",
			__func__, get_pipes_num(dqm));

	mutex_init(&dqm->lock);
	INIT_LIST_HEAD(&dqm->queues);
	dqm->queue_count = dqm->next_pipe_to_allocate = 0;
545
	dqm->sdma_queue_count = 0;
546 547 548 549 550 551 552 553 554 555 556
	dqm->allocated_queues = kcalloc(get_pipes_num(dqm),
					sizeof(unsigned int), GFP_KERNEL);
	if (!dqm->allocated_queues) {
		mutex_destroy(&dqm->lock);
		return -ENOMEM;
	}

	for (i = 0; i < get_pipes_num(dqm); i++)
		dqm->allocated_queues[i] = (1 << QUEUES_PER_PIPE) - 1;

	dqm->vmid_bitmap = (1 << VMID_PER_DEVICE) - 1;
557
	dqm->sdma_bitmap = (1 << CIK_SDMA_QUEUES) - 1;
558 559 560 561 562 563 564

	init_scheduler(dqm);
	return 0;
}

static void uninitialize_nocpsch(struct device_queue_manager *dqm)
{
565 566
	int i;

567 568 569 570 571
	BUG_ON(!dqm);

	BUG_ON(dqm->queue_count > 0 || dqm->processes_count > 0);

	kfree(dqm->allocated_queues);
572 573
	for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++)
		kfree(dqm->mqds[i]);
574
	mutex_destroy(&dqm->lock);
575
	kfd_gtt_sa_free(dqm->dev, dqm->pipeline_mem);
576 577 578 579 580 581 582 583 584 585 586 587
}

static int start_nocpsch(struct device_queue_manager *dqm)
{
	return 0;
}

static int stop_nocpsch(struct device_queue_manager *dqm)
{
	return 0;
}

588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
static int allocate_sdma_queue(struct device_queue_manager *dqm,
				unsigned int *sdma_queue_id)
{
	int bit;

	if (dqm->sdma_bitmap == 0)
		return -ENOMEM;

	bit = find_first_bit((unsigned long *)&dqm->sdma_bitmap,
				CIK_SDMA_QUEUES);

	clear_bit(bit, (unsigned long *)&dqm->sdma_bitmap);
	*sdma_queue_id = bit;

	return 0;
}

static void deallocate_sdma_queue(struct device_queue_manager *dqm,
				unsigned int sdma_queue_id)
{
608
	if (sdma_queue_id >= CIK_SDMA_QUEUES)
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
		return;
	set_bit(sdma_queue_id, (unsigned long *)&dqm->sdma_bitmap);
}

static void init_sdma_vm(struct device_queue_manager *dqm, struct queue *q,
				struct qcm_process_device *qpd)
{
	uint32_t value = SDMA_ATC;

	if (q->process->is_32bit_user_mode)
		value |= SDMA_VA_PTR32 | get_sh_mem_bases_32(qpd_to_pdd(qpd));
	else
		value |= SDMA_VA_SHARED_BASE(get_sh_mem_bases_nybble_64(
							qpd_to_pdd(qpd)));
	q->properties.sdma_vm_addr = value;
}

static int create_sdma_queue_nocpsch(struct device_queue_manager *dqm,
					struct queue *q,
					struct qcm_process_device *qpd)
{
	struct mqd_manager *mqd;
	int retval;

633
	mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_SDMA);
634 635 636 637 638 639 640 641 642 643 644 645 646 647
	if (!mqd)
		return -ENOMEM;

	retval = allocate_sdma_queue(dqm, &q->sdma_id);
	if (retval != 0)
		return retval;

	q->properties.sdma_queue_id = q->sdma_id % CIK_SDMA_QUEUES_PER_ENGINE;
	q->properties.sdma_engine_id = q->sdma_id / CIK_SDMA_ENGINE_NUM;

	pr_debug("kfd: sdma id is:    %d\n", q->sdma_id);
	pr_debug("     sdma queue id: %d\n", q->properties.sdma_queue_id);
	pr_debug("     sdma engine id: %d\n", q->properties.sdma_engine_id);

648
	init_sdma_vm(dqm, q, qpd);
649 650 651 652 653 654 655
	retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
				&q->gart_mqd_addr, &q->properties);
	if (retval != 0) {
		deallocate_sdma_queue(dqm, q->sdma_id);
		return retval;
	}

656 657 658 659 660 661 662 663
	retval = mqd->load_mqd(mqd, q->mqd, 0,
				0, NULL);
	if (retval != 0) {
		deallocate_sdma_queue(dqm, q->sdma_id);
		mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
		return retval;
	}

664 665 666
	return 0;
}

667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
/*
 * Device Queue Manager implementation for cp scheduler
 */

static int set_sched_resources(struct device_queue_manager *dqm)
{
	struct scheduling_resources res;
	unsigned int queue_num, queue_mask;

	BUG_ON(!dqm);

	pr_debug("kfd: In func %s\n", __func__);

	queue_num = get_pipes_num_cpsch() * QUEUES_PER_PIPE;
	queue_mask = (1 << queue_num) - 1;
	res.vmid_mask = (1 << VMID_PER_DEVICE) - 1;
	res.vmid_mask <<= KFD_VMID_START_OFFSET;
	res.queue_mask = queue_mask << (get_first_pipe(dqm) * QUEUES_PER_PIPE);
	res.gws_mask = res.oac_mask = res.gds_heap_base =
						res.gds_heap_size = 0;

	pr_debug("kfd: scheduling resources:\n"
			"      vmid mask: 0x%8X\n"
			"      queue mask: 0x%8llX\n",
			res.vmid_mask, res.queue_mask);

	return pm_send_set_resources(&dqm->packets, &res);
}

static int initialize_cpsch(struct device_queue_manager *dqm)
{
	int retval;

	BUG_ON(!dqm);

	pr_debug("kfd: In func %s num of pipes: %d\n",
			__func__, get_pipes_num_cpsch());

	mutex_init(&dqm->lock);
	INIT_LIST_HEAD(&dqm->queues);
	dqm->queue_count = dqm->processes_count = 0;
708
	dqm->sdma_queue_count = 0;
709
	dqm->active_runlist = false;
710
	retval = dqm->ops_asic_specific.initialize(dqm);
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
	if (retval != 0)
		goto fail_init_pipelines;

	return 0;

fail_init_pipelines:
	mutex_destroy(&dqm->lock);
	return retval;
}

static int start_cpsch(struct device_queue_manager *dqm)
{
	struct device_process_node *node;
	int retval;

	BUG_ON(!dqm);

	retval = 0;

	retval = pm_init(&dqm->packets, dqm);
	if (retval != 0)
		goto fail_packet_manager_init;

	retval = set_sched_resources(dqm);
	if (retval != 0)
		goto fail_set_sched_resources;

	pr_debug("kfd: allocating fence memory\n");

	/* allocate fence memory on the gart */
741 742
	retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr),
					&dqm->fence_mem);
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773

	if (retval != 0)
		goto fail_allocate_vidmem;

	dqm->fence_addr = dqm->fence_mem->cpu_ptr;
	dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr;
	list_for_each_entry(node, &dqm->queues, list)
		if (node->qpd->pqm->process && dqm->dev)
			kfd_bind_process_to_device(dqm->dev,
						node->qpd->pqm->process);

	execute_queues_cpsch(dqm, true);

	return 0;
fail_allocate_vidmem:
fail_set_sched_resources:
	pm_uninit(&dqm->packets);
fail_packet_manager_init:
	return retval;
}

static int stop_cpsch(struct device_queue_manager *dqm)
{
	struct device_process_node *node;
	struct kfd_process_device *pdd;

	BUG_ON(!dqm);

	destroy_queues_cpsch(dqm, true);

	list_for_each_entry(node, &dqm->queues, list) {
774
		pdd = qpd_to_pdd(node->qpd);
775 776
		pdd->bound = false;
	}
777
	kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
778 779 780 781 782 783 784 785 786 787 788 789 790 791
	pm_uninit(&dqm->packets);

	return 0;
}

static int create_kernel_queue_cpsch(struct device_queue_manager *dqm,
					struct kernel_queue *kq,
					struct qcm_process_device *qpd)
{
	BUG_ON(!dqm || !kq || !qpd);

	pr_debug("kfd: In func %s\n", __func__);

	mutex_lock(&dqm->lock);
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
		pr_warn("amdkfd: Can't create new kernel queue because %d queues were already created\n",
				dqm->total_queue_count);
		mutex_unlock(&dqm->lock);
		return -EPERM;
	}

	/*
	 * Unconditionally increment this counter, regardless of the queue's
	 * type or whether the queue is active.
	 */
	dqm->total_queue_count++;
	pr_debug("Total of %d queues are accountable so far\n",
			dqm->total_queue_count);

807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
	list_add(&kq->list, &qpd->priv_queue_list);
	dqm->queue_count++;
	qpd->is_debug = true;
	execute_queues_cpsch(dqm, false);
	mutex_unlock(&dqm->lock);

	return 0;
}

static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm,
					struct kernel_queue *kq,
					struct qcm_process_device *qpd)
{
	BUG_ON(!dqm || !kq);

	pr_debug("kfd: In %s\n", __func__);

	mutex_lock(&dqm->lock);
	destroy_queues_cpsch(dqm, false);
	list_del(&kq->list);
	dqm->queue_count--;
	qpd->is_debug = false;
	execute_queues_cpsch(dqm, false);
830 831 832 833
	/*
	 * Unconditionally decrement this counter, regardless of the queue's
	 * type.
	 */
834
	dqm->total_queue_count--;
835 836
	pr_debug("Total of %d queues are accountable so far\n",
			dqm->total_queue_count);
837 838 839
	mutex_unlock(&dqm->lock);
}

840 841 842 843 844 845 846 847
static void select_sdma_engine_id(struct queue *q)
{
	static int sdma_id;

	q->sdma_id = sdma_id;
	sdma_id = (sdma_id + 1) % 2;
}

848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q,
			struct qcm_process_device *qpd, int *allocate_vmid)
{
	int retval;
	struct mqd_manager *mqd;

	BUG_ON(!dqm || !q || !qpd);

	retval = 0;

	if (allocate_vmid)
		*allocate_vmid = 0;

	mutex_lock(&dqm->lock);

863 864 865 866 867 868 869
	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
		pr_warn("amdkfd: Can't create new usermode queue because %d queues were already created\n",
				dqm->total_queue_count);
		retval = -EPERM;
		goto out;
	}

870 871 872
	if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
		select_sdma_engine_id(q);

873
	mqd = dqm->ops.get_mqd_manager(dqm,
874 875
			get_mqd_type_from_queue_type(q->properties.type));

876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
	if (mqd == NULL) {
		mutex_unlock(&dqm->lock);
		return -ENOMEM;
	}

	retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
				&q->gart_mqd_addr, &q->properties);
	if (retval != 0)
		goto out;

	list_add(&q->list, &qpd->queues_list);
	if (q->properties.is_active) {
		dqm->queue_count++;
		retval = execute_queues_cpsch(dqm, false);
	}

892 893
	if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
			dqm->sdma_queue_count++;
894 895 896 897 898 899 900 901 902
	/*
	 * Unconditionally increment this counter, regardless of the queue's
	 * type or whether the queue is active.
	 */
	dqm->total_queue_count++;

	pr_debug("Total of %d queues are accountable so far\n",
			dqm->total_queue_count);

903 904 905 906 907
out:
	mutex_unlock(&dqm->lock);
	return retval;
}

908 909 910
static int fence_wait_timeout(unsigned int *fence_addr,
				unsigned int fence_value,
				unsigned long timeout)
911 912 913 914 915 916 917 918 919
{
	BUG_ON(!fence_addr);
	timeout += jiffies;

	while (*fence_addr != fence_value) {
		if (time_after(jiffies, timeout)) {
			pr_err("kfd: qcm fence wait loop timeout expired\n");
			return -ETIME;
		}
920
		schedule();
921 922 923 924 925
	}

	return 0;
}

926 927 928 929 930 931 932 933
static int destroy_sdma_queues(struct device_queue_manager *dqm,
				unsigned int sdma_engine)
{
	return pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_SDMA,
			KFD_PREEMPT_TYPE_FILTER_ALL_QUEUES, 0, false,
			sdma_engine);
}

934 935 936 937 938 939 940 941 942 943 944 945
static int destroy_queues_cpsch(struct device_queue_manager *dqm, bool lock)
{
	int retval;

	BUG_ON(!dqm);

	retval = 0;

	if (lock)
		mutex_lock(&dqm->lock);
	if (dqm->active_runlist == false)
		goto out;
946 947 948 949 950 951 952 953 954

	pr_debug("kfd: Before destroying queues, sdma queue count is : %u\n",
		dqm->sdma_queue_count);

	if (dqm->sdma_queue_count > 0) {
		destroy_sdma_queues(dqm, 0);
		destroy_sdma_queues(dqm, 1);
	}

955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
	retval = pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_COMPUTE,
			KFD_PREEMPT_TYPE_FILTER_ALL_QUEUES, 0, false, 0);
	if (retval != 0)
		goto out;

	*dqm->fence_addr = KFD_FENCE_INIT;
	pm_send_query_status(&dqm->packets, dqm->fence_gpu_addr,
				KFD_FENCE_COMPLETED);
	/* should be timed out */
	fence_wait_timeout(dqm->fence_addr, KFD_FENCE_COMPLETED,
				QUEUE_PREEMPT_DEFAULT_TIMEOUT_MS);
	pm_release_ib(&dqm->packets);
	dqm->active_runlist = false;

out:
	if (lock)
		mutex_unlock(&dqm->lock);
	return retval;
}

static int execute_queues_cpsch(struct device_queue_manager *dqm, bool lock)
{
	int retval;

	BUG_ON(!dqm);

	if (lock)
		mutex_lock(&dqm->lock);

	retval = destroy_queues_cpsch(dqm, false);
	if (retval != 0) {
		pr_err("kfd: the cp might be in an unrecoverable state due to an unsuccessful queues preemption");
		goto out;
	}

	if (dqm->queue_count <= 0 || dqm->processes_count <= 0) {
		retval = 0;
		goto out;
	}

	if (dqm->active_runlist) {
		retval = 0;
		goto out;
	}

	retval = pm_send_runlist(&dqm->packets, &dqm->queues);
	if (retval != 0) {
		pr_err("kfd: failed to execute runlist");
		goto out;
	}
	dqm->active_runlist = true;

out:
	if (lock)
		mutex_unlock(&dqm->lock);
	return retval;
}

static int destroy_queue_cpsch(struct device_queue_manager *dqm,
				struct qcm_process_device *qpd,
				struct queue *q)
{
	int retval;
	struct mqd_manager *mqd;

	BUG_ON(!dqm || !qpd || !q);

	retval = 0;

	/* remove queue from list to prevent rescheduling after preemption */
	mutex_lock(&dqm->lock);
1026
	mqd = dqm->ops.get_mqd_manager(dqm,
1027
			get_mqd_type_from_queue_type(q->properties.type));
1028 1029 1030 1031 1032
	if (!mqd) {
		retval = -ENOMEM;
		goto failed;
	}

1033 1034 1035
	if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
		dqm->sdma_queue_count--;

1036
	list_del(&q->list);
1037 1038
	if (q->properties.is_active)
		dqm->queue_count--;
1039 1040 1041 1042

	execute_queues_cpsch(dqm, false);

	mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
1043 1044 1045 1046 1047 1048 1049 1050

	/*
	 * Unconditionally decrement this counter, regardless of the queue's
	 * type
	 */
	dqm->total_queue_count--;
	pr_debug("Total of %d queues are accountable so far\n",
			dqm->total_queue_count);
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075

	mutex_unlock(&dqm->lock);

	return 0;

failed:
	mutex_unlock(&dqm->lock);
	return retval;
}

/*
 * Low bits must be 0000/FFFF as required by HW, high bits must be 0 to
 * stay in user mode.
 */
#define APE1_FIXED_BITS_MASK 0xFFFF80000000FFFFULL
/* APE1 limit is inclusive and 64K aligned. */
#define APE1_LIMIT_ALIGNMENT 0xFFFF

static bool set_cache_memory_policy(struct device_queue_manager *dqm,
				   struct qcm_process_device *qpd,
				   enum cache_policy default_policy,
				   enum cache_policy alternate_policy,
				   void __user *alternate_aperture_base,
				   uint64_t alternate_aperture_size)
{
1076
	bool retval;
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112

	pr_debug("kfd: In func %s\n", __func__);

	mutex_lock(&dqm->lock);

	if (alternate_aperture_size == 0) {
		/* base > limit disables APE1 */
		qpd->sh_mem_ape1_base = 1;
		qpd->sh_mem_ape1_limit = 0;
	} else {
		/*
		 * In FSA64, APE1_Base[63:0] = { 16{SH_MEM_APE1_BASE[31]},
		 *			SH_MEM_APE1_BASE[31:0], 0x0000 }
		 * APE1_Limit[63:0] = { 16{SH_MEM_APE1_LIMIT[31]},
		 *			SH_MEM_APE1_LIMIT[31:0], 0xFFFF }
		 * Verify that the base and size parameters can be
		 * represented in this format and convert them.
		 * Additionally restrict APE1 to user-mode addresses.
		 */

		uint64_t base = (uintptr_t)alternate_aperture_base;
		uint64_t limit = base + alternate_aperture_size - 1;

		if (limit <= base)
			goto out;

		if ((base & APE1_FIXED_BITS_MASK) != 0)
			goto out;

		if ((limit & APE1_FIXED_BITS_MASK) != APE1_LIMIT_ALIGNMENT)
			goto out;

		qpd->sh_mem_ape1_base = base >> 16;
		qpd->sh_mem_ape1_limit = limit >> 16;
	}

1113 1114 1115 1116 1117 1118 1119
	retval = dqm->ops_asic_specific.set_cache_memory_policy(
			dqm,
			qpd,
			default_policy,
			alternate_policy,
			alternate_aperture_base,
			alternate_aperture_size);
1120 1121 1122 1123 1124 1125 1126 1127 1128

	if ((sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0))
		program_sh_mem_settings(dqm, qpd);

	pr_debug("kfd: sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n",
		qpd->sh_mem_config, qpd->sh_mem_ape1_base,
		qpd->sh_mem_ape1_limit);

	mutex_unlock(&dqm->lock);
1129
	return retval;
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141

out:
	mutex_unlock(&dqm->lock);
	return false;
}

struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev)
{
	struct device_queue_manager *dqm;

	BUG_ON(!dev);

1142 1143
	pr_debug("kfd: loading device queue manager\n");

1144 1145 1146 1147 1148 1149 1150 1151 1152
	dqm = kzalloc(sizeof(struct device_queue_manager), GFP_KERNEL);
	if (!dqm)
		return NULL;

	dqm->dev = dev;
	switch (sched_policy) {
	case KFD_SCHED_POLICY_HWS:
	case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION:
		/* initialize dqm for cp scheduling */
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
		dqm->ops.create_queue = create_queue_cpsch;
		dqm->ops.initialize = initialize_cpsch;
		dqm->ops.start = start_cpsch;
		dqm->ops.stop = stop_cpsch;
		dqm->ops.destroy_queue = destroy_queue_cpsch;
		dqm->ops.update_queue = update_queue;
		dqm->ops.get_mqd_manager = get_mqd_manager_nocpsch;
		dqm->ops.register_process = register_process_nocpsch;
		dqm->ops.unregister_process = unregister_process_nocpsch;
		dqm->ops.uninitialize = uninitialize_nocpsch;
		dqm->ops.create_kernel_queue = create_kernel_queue_cpsch;
		dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch;
		dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
1166 1167 1168
		break;
	case KFD_SCHED_POLICY_NO_HWS:
		/* initialize dqm for no cp scheduling */
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
		dqm->ops.start = start_nocpsch;
		dqm->ops.stop = stop_nocpsch;
		dqm->ops.create_queue = create_queue_nocpsch;
		dqm->ops.destroy_queue = destroy_queue_nocpsch;
		dqm->ops.update_queue = update_queue;
		dqm->ops.get_mqd_manager = get_mqd_manager_nocpsch;
		dqm->ops.register_process = register_process_nocpsch;
		dqm->ops.unregister_process = unregister_process_nocpsch;
		dqm->ops.initialize = initialize_nocpsch;
		dqm->ops.uninitialize = uninitialize_nocpsch;
		dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
1180 1181 1182 1183 1184 1185
		break;
	default:
		BUG();
		break;
	}

1186 1187 1188
	switch (dev->device_info->asic_family) {
	case CHIP_CARRIZO:
		device_queue_manager_init_vi(&dqm->ops_asic_specific);
1189 1190
		break;

1191 1192
	case CHIP_KAVERI:
		device_queue_manager_init_cik(&dqm->ops_asic_specific);
1193
		break;
1194 1195
	}

1196
	if (dqm->ops.initialize(dqm) != 0) {
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
		kfree(dqm);
		return NULL;
	}

	return dqm;
}

void device_queue_manager_uninit(struct device_queue_manager *dqm)
{
	BUG_ON(!dqm);

1208
	dqm->ops.uninitialize(dqm);
1209 1210
	kfree(dqm);
}