kfd_device_queue_manager.c 28.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * Copyright 2014 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 */

#include <linux/slab.h>
#include <linux/list.h>
#include <linux/types.h>
#include <linux/printk.h>
#include <linux/bitops.h>
29
#include <linux/sched.h>
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
#include "kfd_priv.h"
#include "kfd_device_queue_manager.h"
#include "kfd_mqd_manager.h"
#include "cik_regs.h"
#include "kfd_kernel_queue.h"

/* Size of the per-pipe EOP queue */
#define CIK_HPD_EOP_BYTES_LOG2 11
#define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2)

static int set_pasid_vmid_mapping(struct device_queue_manager *dqm,
					unsigned int pasid, unsigned int vmid);

static int create_compute_queue_nocpsch(struct device_queue_manager *dqm,
					struct queue *q,
					struct qcm_process_device *qpd);
46

47 48 49
static int execute_queues_cpsch(struct device_queue_manager *dqm, bool lock);
static int destroy_queues_cpsch(struct device_queue_manager *dqm, bool lock);

50 51 52 53 54 55 56 57 58 59 60
static int create_sdma_queue_nocpsch(struct device_queue_manager *dqm,
					struct queue *q,
					struct qcm_process_device *qpd);

static void deallocate_sdma_queue(struct device_queue_manager *dqm,
				unsigned int sdma_queue_id);

static inline
enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type)
{
	if (type == KFD_QUEUE_TYPE_SDMA)
61 62
		return KFD_MQD_TYPE_SDMA;
	return KFD_MQD_TYPE_CP;
63
}
64 65 66 67 68 69 70 71 72 73 74 75

static inline unsigned int get_first_pipe(struct device_queue_manager *dqm)
{
	BUG_ON(!dqm);
	return dqm->dev->shared_resources.first_compute_pipe;
}

static inline unsigned int get_pipes_num_cpsch(void)
{
	return PIPE_PER_ME_CP_SCHEDULING;
}

76
void program_sh_mem_settings(struct device_queue_manager *dqm,
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
					struct qcm_process_device *qpd)
{
	return kfd2kgd->program_sh_mem_settings(dqm->dev->kgd, qpd->vmid,
						qpd->sh_mem_config,
						qpd->sh_mem_ape1_base,
						qpd->sh_mem_ape1_limit,
						qpd->sh_mem_bases);
}

static int allocate_vmid(struct device_queue_manager *dqm,
			struct qcm_process_device *qpd,
			struct queue *q)
{
	int bit, allocated_vmid;

	if (dqm->vmid_bitmap == 0)
		return -ENOMEM;

	bit = find_first_bit((unsigned long *)&dqm->vmid_bitmap, CIK_VMID_NUM);
	clear_bit(bit, (unsigned long *)&dqm->vmid_bitmap);

	/* Kaveri kfd vmid's starts from vmid 8 */
	allocated_vmid = bit + KFD_VMID_START_OFFSET;
	pr_debug("kfd: vmid allocation %d\n", allocated_vmid);
	qpd->vmid = allocated_vmid;
	q->properties.vmid = allocated_vmid;

	set_pasid_vmid_mapping(dqm, q->process->pasid, q->properties.vmid);
	program_sh_mem_settings(dqm, qpd);

	return 0;
}

static void deallocate_vmid(struct device_queue_manager *dqm,
				struct qcm_process_device *qpd,
				struct queue *q)
{
	int bit = qpd->vmid - KFD_VMID_START_OFFSET;

116 117 118
	/* Release the vmid mapping */
	set_pasid_vmid_mapping(dqm, 0, qpd->vmid);

119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
	set_bit(bit, (unsigned long *)&dqm->vmid_bitmap);
	qpd->vmid = 0;
	q->properties.vmid = 0;
}

static int create_queue_nocpsch(struct device_queue_manager *dqm,
				struct queue *q,
				struct qcm_process_device *qpd,
				int *allocated_vmid)
{
	int retval;

	BUG_ON(!dqm || !q || !qpd || !allocated_vmid);

	pr_debug("kfd: In func %s\n", __func__);
	print_queue(q);

	mutex_lock(&dqm->lock);

138 139 140 141 142 143 144
	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
		pr_warn("amdkfd: Can't create new usermode queue because %d queues were already created\n",
				dqm->total_queue_count);
		mutex_unlock(&dqm->lock);
		return -EPERM;
	}

145 146 147 148 149 150 151 152 153 154
	if (list_empty(&qpd->queues_list)) {
		retval = allocate_vmid(dqm, qpd, q);
		if (retval != 0) {
			mutex_unlock(&dqm->lock);
			return retval;
		}
	}
	*allocated_vmid = qpd->vmid;
	q->properties.vmid = qpd->vmid;

155 156 157 158
	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
		retval = create_compute_queue_nocpsch(dqm, q, qpd);
	if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
		retval = create_sdma_queue_nocpsch(dqm, q, qpd);
159 160 161 162 163 164 165 166 167 168 169 170 171

	if (retval != 0) {
		if (list_empty(&qpd->queues_list)) {
			deallocate_vmid(dqm, qpd, q);
			*allocated_vmid = 0;
		}
		mutex_unlock(&dqm->lock);
		return retval;
	}

	list_add(&q->list, &qpd->queues_list);
	dqm->queue_count++;

172 173
	if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
		dqm->sdma_queue_count++;
174

175 176 177 178 179 180 181 182
	/*
	 * Unconditionally increment this counter, regardless of the queue's
	 * type or whether the queue is active.
	 */
	dqm->total_queue_count++;
	pr_debug("Total of %d queues are accountable so far\n",
			dqm->total_queue_count);

183 184 185 186 187 188 189
	mutex_unlock(&dqm->lock);
	return 0;
}

static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q)
{
	bool set;
190
	int pipe, bit, i;
191 192 193

	set = false;

194 195
	for (pipe = dqm->next_pipe_to_allocate, i = 0; i < get_pipes_num(dqm);
			pipe = ((pipe + 1) % get_pipes_num(dqm)), ++i) {
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
		if (dqm->allocated_queues[pipe] != 0) {
			bit = find_first_bit(
				(unsigned long *)&dqm->allocated_queues[pipe],
				QUEUES_PER_PIPE);

			clear_bit(bit,
				(unsigned long *)&dqm->allocated_queues[pipe]);
			q->pipe = pipe;
			q->queue = bit;
			set = true;
			break;
		}
	}

	if (set == false)
		return -EBUSY;

	pr_debug("kfd: DQM %s hqd slot - pipe (%d) queue(%d)\n",
				__func__, q->pipe, q->queue);
	/* horizontal hqd allocation */
	dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_num(dqm);

	return 0;
}

static inline void deallocate_hqd(struct device_queue_manager *dqm,
				struct queue *q)
{
	set_bit(q->queue, (unsigned long *)&dqm->allocated_queues[q->pipe]);
}

static int create_compute_queue_nocpsch(struct device_queue_manager *dqm,
					struct queue *q,
					struct qcm_process_device *qpd)
{
	int retval;
	struct mqd_manager *mqd;

	BUG_ON(!dqm || !q || !qpd);

236
	mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_COMPUTE);
237 238 239 240 241 242 243 244 245 246 247 248 249 250
	if (mqd == NULL)
		return -ENOMEM;

	retval = allocate_hqd(dqm, q);
	if (retval != 0)
		return retval;

	retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
				&q->gart_mqd_addr, &q->properties);
	if (retval != 0) {
		deallocate_hqd(dqm, q);
		return retval;
	}

251 252 253 254 255
	pr_debug("kfd: loading mqd to hqd on pipe (%d) queue (%d)\n",
			q->pipe,
			q->queue);

	retval = mqd->load_mqd(mqd, q->mqd, q->pipe,
256
			q->queue, (uint32_t __user *) q->properties.write_ptr);
257 258 259 260 261 262
	if (retval != 0) {
		deallocate_hqd(dqm, q);
		mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
		return retval;
	}

263 264 265 266 267 268 269 270
	return 0;
}

static int destroy_queue_nocpsch(struct device_queue_manager *dqm,
				struct qcm_process_device *qpd,
				struct queue *q)
{
	int retval;
271 272
	struct mqd_manager *mqd;

273 274 275 276 277 278 279 280
	BUG_ON(!dqm || !q || !q->mqd || !qpd);

	retval = 0;

	pr_debug("kfd: In Func %s\n", __func__);

	mutex_lock(&dqm->lock);

281
	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) {
282
		mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_COMPUTE);
283 284 285 286 287 288
		if (mqd == NULL) {
			retval = -ENOMEM;
			goto out;
		}
		deallocate_hqd(dqm, q);
	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
289
		mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_SDMA);
290 291 292 293 294 295
		if (mqd == NULL) {
			retval = -ENOMEM;
			goto out;
		}
		dqm->sdma_queue_count--;
		deallocate_sdma_queue(dqm, q->sdma_id);
296 297 298 299 300
	} else {
		pr_debug("q->properties.type is invalid (%d)\n",
				q->properties.type);
		retval = -EINVAL;
		goto out;
301 302
	}

303
	retval = mqd->destroy_mqd(mqd, q->mqd,
304
				KFD_PREEMPT_TYPE_WAVEFRONT_RESET,
305 306 307 308 309 310 311 312 313 314 315 316
				QUEUE_PREEMPT_DEFAULT_TIMEOUT_MS,
				q->pipe, q->queue);

	if (retval != 0)
		goto out;

	mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);

	list_del(&q->list);
	if (list_empty(&qpd->queues_list))
		deallocate_vmid(dqm, qpd, q);
	dqm->queue_count--;
317 318 319 320 321 322 323 324 325

	/*
	 * Unconditionally decrement this counter, regardless of the queue's
	 * type
	 */
	dqm->total_queue_count--;
	pr_debug("Total of %d queues are accountable so far\n",
			dqm->total_queue_count);

326 327 328 329 330 331 332 333 334
out:
	mutex_unlock(&dqm->lock);
	return retval;
}

static int update_queue(struct device_queue_manager *dqm, struct queue *q)
{
	int retval;
	struct mqd_manager *mqd;
335
	bool prev_active = false;
336 337 338 339

	BUG_ON(!dqm || !q || !q->mqd);

	mutex_lock(&dqm->lock);
O
Oded Gabbay 已提交
340 341
	mqd = dqm->ops.get_mqd_manager(dqm,
			get_mqd_type_from_queue_type(q->properties.type));
342 343 344 345 346 347
	if (mqd == NULL) {
		mutex_unlock(&dqm->lock);
		return -ENOMEM;
	}

	if (q->properties.is_active == true)
348 349 350 351 352 353 354 355 356
		prev_active = true;

	/*
	 *
	 * check active state vs. the previous state
	 * and modify counter accordingly
	 */
	retval = mqd->update_mqd(mqd, q->mqd, &q->properties);
	if ((q->properties.is_active == true) && (prev_active == false))
357
		dqm->queue_count++;
358
	else if ((q->properties.is_active == false) && (prev_active == true))
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
		dqm->queue_count--;

	if (sched_policy != KFD_SCHED_POLICY_NO_HWS)
		retval = execute_queues_cpsch(dqm, false);

	mutex_unlock(&dqm->lock);
	return retval;
}

static struct mqd_manager *get_mqd_manager_nocpsch(
		struct device_queue_manager *dqm, enum KFD_MQD_TYPE type)
{
	struct mqd_manager *mqd;

	BUG_ON(!dqm || type >= KFD_MQD_TYPE_MAX);

	pr_debug("kfd: In func %s mqd type %d\n", __func__, type);

	mqd = dqm->mqds[type];
	if (!mqd) {
		mqd = mqd_manager_init(type, dqm->dev);
		if (mqd == NULL)
			pr_err("kfd: mqd manager is NULL");
		dqm->mqds[type] = mqd;
	}

	return mqd;
}

static int register_process_nocpsch(struct device_queue_manager *dqm,
					struct qcm_process_device *qpd)
{
	struct device_process_node *n;
392
	int retval;
393 394 395 396 397 398 399 400 401 402 403 404 405 406

	BUG_ON(!dqm || !qpd);

	pr_debug("kfd: In func %s\n", __func__);

	n = kzalloc(sizeof(struct device_process_node), GFP_KERNEL);
	if (!n)
		return -ENOMEM;

	n->qpd = qpd;

	mutex_lock(&dqm->lock);
	list_add(&n->list, &dqm->queues);

407 408
	retval = dqm->ops_asic_specific.register_process(dqm, qpd);

409 410 411 412
	dqm->processes_count++;

	mutex_unlock(&dqm->lock);

413
	return retval;
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
}

static int unregister_process_nocpsch(struct device_queue_manager *dqm,
					struct qcm_process_device *qpd)
{
	int retval;
	struct device_process_node *cur, *next;

	BUG_ON(!dqm || !qpd);

	BUG_ON(!list_empty(&qpd->queues_list));

	pr_debug("kfd: In func %s\n", __func__);

	retval = 0;
	mutex_lock(&dqm->lock);

	list_for_each_entry_safe(cur, next, &dqm->queues, list) {
		if (qpd == cur->qpd) {
			list_del(&cur->list);
434
			kfree(cur);
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
			dqm->processes_count--;
			goto out;
		}
	}
	/* qpd not found in dqm list */
	retval = 1;
out:
	mutex_unlock(&dqm->lock);
	return retval;
}

static int
set_pasid_vmid_mapping(struct device_queue_manager *dqm, unsigned int pasid,
			unsigned int vmid)
{
	uint32_t pasid_mapping;

	pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
						ATC_VMID_PASID_MAPPING_VALID;
	return kfd2kgd->set_pasid_vmid_mapping(dqm->dev->kgd, pasid_mapping,
						vmid);
}

458
int init_pipelines(struct device_queue_manager *dqm,
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
			unsigned int pipes_num, unsigned int first_pipe)
{
	void *hpdptr;
	struct mqd_manager *mqd;
	unsigned int i, err, inx;
	uint64_t pipe_hpd_addr;

	BUG_ON(!dqm || !dqm->dev);

	pr_debug("kfd: In func %s\n", __func__);

	/*
	 * Allocate memory for the HPDs. This is hardware-owned per-pipe data.
	 * The driver never accesses this memory after zeroing it.
	 * It doesn't even have to be saved/restored on suspend/resume
	 * because it contains no data when there are no active queues.
	 */

477 478
	err = kfd_gtt_sa_allocate(dqm->dev, CIK_HPD_EOP_BYTES * pipes_num,
					&dqm->pipeline_mem);
479 480 481 482 483 484 485 486 487 488 489 490

	if (err) {
		pr_err("kfd: error allocate vidmem num pipes: %d\n",
			pipes_num);
		return -ENOMEM;
	}

	hpdptr = dqm->pipeline_mem->cpu_ptr;
	dqm->pipelines_addr = dqm->pipeline_mem->gpu_addr;

	memset(hpdptr, 0, CIK_HPD_EOP_BYTES * pipes_num);

491
	mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_COMPUTE);
492
	if (mqd == NULL) {
493
		kfd_gtt_sa_free(dqm->dev, dqm->pipeline_mem);
494 495 496 497 498
		return -ENOMEM;
	}

	for (i = 0; i < pipes_num; i++) {
		inx = i + first_pipe;
499 500 501 502
		/*
		 * HPD buffer on GTT is allocated by amdkfd, no need to waste
		 * space in GTT for pipelines we don't initialize
		 */
503 504 505
		pipe_hpd_addr = dqm->pipelines_addr + i * CIK_HPD_EOP_BYTES;
		pr_debug("kfd: pipeline address %llX\n", pipe_hpd_addr);
		/* = log2(bytes/4)-1 */
506
		kfd2kgd->init_pipeline(dqm->dev->kgd, inx,
507 508 509 510 511 512 513 514 515 516 517 518 519 520
				CIK_HPD_EOP_BYTES_LOG2 - 3, pipe_hpd_addr);
	}

	return 0;
}

static int init_scheduler(struct device_queue_manager *dqm)
{
	int retval;

	BUG_ON(!dqm);

	pr_debug("kfd: In %s\n", __func__);

521
	retval = init_pipelines(dqm, get_pipes_num(dqm), get_first_pipe(dqm));
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
	return retval;
}

static int initialize_nocpsch(struct device_queue_manager *dqm)
{
	int i;

	BUG_ON(!dqm);

	pr_debug("kfd: In func %s num of pipes: %d\n",
			__func__, get_pipes_num(dqm));

	mutex_init(&dqm->lock);
	INIT_LIST_HEAD(&dqm->queues);
	dqm->queue_count = dqm->next_pipe_to_allocate = 0;
537
	dqm->sdma_queue_count = 0;
538 539 540 541 542 543 544 545 546 547 548
	dqm->allocated_queues = kcalloc(get_pipes_num(dqm),
					sizeof(unsigned int), GFP_KERNEL);
	if (!dqm->allocated_queues) {
		mutex_destroy(&dqm->lock);
		return -ENOMEM;
	}

	for (i = 0; i < get_pipes_num(dqm); i++)
		dqm->allocated_queues[i] = (1 << QUEUES_PER_PIPE) - 1;

	dqm->vmid_bitmap = (1 << VMID_PER_DEVICE) - 1;
549
	dqm->sdma_bitmap = (1 << CIK_SDMA_QUEUES) - 1;
550 551 552 553 554 555 556

	init_scheduler(dqm);
	return 0;
}

static void uninitialize_nocpsch(struct device_queue_manager *dqm)
{
557 558
	int i;

559 560 561 562 563
	BUG_ON(!dqm);

	BUG_ON(dqm->queue_count > 0 || dqm->processes_count > 0);

	kfree(dqm->allocated_queues);
564 565
	for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++)
		kfree(dqm->mqds[i]);
566
	mutex_destroy(&dqm->lock);
567
	kfd_gtt_sa_free(dqm->dev, dqm->pipeline_mem);
568 569 570 571 572 573 574 575 576 577 578 579
}

static int start_nocpsch(struct device_queue_manager *dqm)
{
	return 0;
}

static int stop_nocpsch(struct device_queue_manager *dqm)
{
	return 0;
}

580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
static int allocate_sdma_queue(struct device_queue_manager *dqm,
				unsigned int *sdma_queue_id)
{
	int bit;

	if (dqm->sdma_bitmap == 0)
		return -ENOMEM;

	bit = find_first_bit((unsigned long *)&dqm->sdma_bitmap,
				CIK_SDMA_QUEUES);

	clear_bit(bit, (unsigned long *)&dqm->sdma_bitmap);
	*sdma_queue_id = bit;

	return 0;
}

static void deallocate_sdma_queue(struct device_queue_manager *dqm,
				unsigned int sdma_queue_id)
{
600
	if (sdma_queue_id >= CIK_SDMA_QUEUES)
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
		return;
	set_bit(sdma_queue_id, (unsigned long *)&dqm->sdma_bitmap);
}

static void init_sdma_vm(struct device_queue_manager *dqm, struct queue *q,
				struct qcm_process_device *qpd)
{
	uint32_t value = SDMA_ATC;

	if (q->process->is_32bit_user_mode)
		value |= SDMA_VA_PTR32 | get_sh_mem_bases_32(qpd_to_pdd(qpd));
	else
		value |= SDMA_VA_SHARED_BASE(get_sh_mem_bases_nybble_64(
							qpd_to_pdd(qpd)));
	q->properties.sdma_vm_addr = value;
}

static int create_sdma_queue_nocpsch(struct device_queue_manager *dqm,
					struct queue *q,
					struct qcm_process_device *qpd)
{
	struct mqd_manager *mqd;
	int retval;

625
	mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_SDMA);
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
	if (!mqd)
		return -ENOMEM;

	retval = allocate_sdma_queue(dqm, &q->sdma_id);
	if (retval != 0)
		return retval;

	q->properties.sdma_queue_id = q->sdma_id % CIK_SDMA_QUEUES_PER_ENGINE;
	q->properties.sdma_engine_id = q->sdma_id / CIK_SDMA_ENGINE_NUM;

	pr_debug("kfd: sdma id is:    %d\n", q->sdma_id);
	pr_debug("     sdma queue id: %d\n", q->properties.sdma_queue_id);
	pr_debug("     sdma engine id: %d\n", q->properties.sdma_engine_id);

	retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
				&q->gart_mqd_addr, &q->properties);
	if (retval != 0) {
		deallocate_sdma_queue(dqm, q->sdma_id);
		return retval;
	}

	init_sdma_vm(dqm, q, qpd);
	return 0;
}

651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
/*
 * Device Queue Manager implementation for cp scheduler
 */

static int set_sched_resources(struct device_queue_manager *dqm)
{
	struct scheduling_resources res;
	unsigned int queue_num, queue_mask;

	BUG_ON(!dqm);

	pr_debug("kfd: In func %s\n", __func__);

	queue_num = get_pipes_num_cpsch() * QUEUES_PER_PIPE;
	queue_mask = (1 << queue_num) - 1;
	res.vmid_mask = (1 << VMID_PER_DEVICE) - 1;
	res.vmid_mask <<= KFD_VMID_START_OFFSET;
	res.queue_mask = queue_mask << (get_first_pipe(dqm) * QUEUES_PER_PIPE);
	res.gws_mask = res.oac_mask = res.gds_heap_base =
						res.gds_heap_size = 0;

	pr_debug("kfd: scheduling resources:\n"
			"      vmid mask: 0x%8X\n"
			"      queue mask: 0x%8llX\n",
			res.vmid_mask, res.queue_mask);

	return pm_send_set_resources(&dqm->packets, &res);
}

static int initialize_cpsch(struct device_queue_manager *dqm)
{
	int retval;

	BUG_ON(!dqm);

	pr_debug("kfd: In func %s num of pipes: %d\n",
			__func__, get_pipes_num_cpsch());

	mutex_init(&dqm->lock);
	INIT_LIST_HEAD(&dqm->queues);
	dqm->queue_count = dqm->processes_count = 0;
692
	dqm->sdma_queue_count = 0;
693
	dqm->active_runlist = false;
694
	retval = dqm->ops_asic_specific.initialize(dqm);
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
	if (retval != 0)
		goto fail_init_pipelines;

	return 0;

fail_init_pipelines:
	mutex_destroy(&dqm->lock);
	return retval;
}

static int start_cpsch(struct device_queue_manager *dqm)
{
	struct device_process_node *node;
	int retval;

	BUG_ON(!dqm);

	retval = 0;

	retval = pm_init(&dqm->packets, dqm);
	if (retval != 0)
		goto fail_packet_manager_init;

	retval = set_sched_resources(dqm);
	if (retval != 0)
		goto fail_set_sched_resources;

	pr_debug("kfd: allocating fence memory\n");

	/* allocate fence memory on the gart */
725 726
	retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr),
					&dqm->fence_mem);
727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757

	if (retval != 0)
		goto fail_allocate_vidmem;

	dqm->fence_addr = dqm->fence_mem->cpu_ptr;
	dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr;
	list_for_each_entry(node, &dqm->queues, list)
		if (node->qpd->pqm->process && dqm->dev)
			kfd_bind_process_to_device(dqm->dev,
						node->qpd->pqm->process);

	execute_queues_cpsch(dqm, true);

	return 0;
fail_allocate_vidmem:
fail_set_sched_resources:
	pm_uninit(&dqm->packets);
fail_packet_manager_init:
	return retval;
}

static int stop_cpsch(struct device_queue_manager *dqm)
{
	struct device_process_node *node;
	struct kfd_process_device *pdd;

	BUG_ON(!dqm);

	destroy_queues_cpsch(dqm, true);

	list_for_each_entry(node, &dqm->queues, list) {
758
		pdd = qpd_to_pdd(node->qpd);
759 760
		pdd->bound = false;
	}
761
	kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
762 763 764 765 766 767 768 769 770 771 772 773 774 775
	pm_uninit(&dqm->packets);

	return 0;
}

static int create_kernel_queue_cpsch(struct device_queue_manager *dqm,
					struct kernel_queue *kq,
					struct qcm_process_device *qpd)
{
	BUG_ON(!dqm || !kq || !qpd);

	pr_debug("kfd: In func %s\n", __func__);

	mutex_lock(&dqm->lock);
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
		pr_warn("amdkfd: Can't create new kernel queue because %d queues were already created\n",
				dqm->total_queue_count);
		mutex_unlock(&dqm->lock);
		return -EPERM;
	}

	/*
	 * Unconditionally increment this counter, regardless of the queue's
	 * type or whether the queue is active.
	 */
	dqm->total_queue_count++;
	pr_debug("Total of %d queues are accountable so far\n",
			dqm->total_queue_count);

791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
	list_add(&kq->list, &qpd->priv_queue_list);
	dqm->queue_count++;
	qpd->is_debug = true;
	execute_queues_cpsch(dqm, false);
	mutex_unlock(&dqm->lock);

	return 0;
}

static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm,
					struct kernel_queue *kq,
					struct qcm_process_device *qpd)
{
	BUG_ON(!dqm || !kq);

	pr_debug("kfd: In %s\n", __func__);

	mutex_lock(&dqm->lock);
	destroy_queues_cpsch(dqm, false);
	list_del(&kq->list);
	dqm->queue_count--;
	qpd->is_debug = false;
	execute_queues_cpsch(dqm, false);
814 815 816 817 818 819 820
	/*
	 * Unconditionally decrement this counter, regardless of the queue's
	 * type.
	 */
	dqm->total_queue_count++;
	pr_debug("Total of %d queues are accountable so far\n",
			dqm->total_queue_count);
821 822 823
	mutex_unlock(&dqm->lock);
}

824 825 826 827 828 829 830 831
static void select_sdma_engine_id(struct queue *q)
{
	static int sdma_id;

	q->sdma_id = sdma_id;
	sdma_id = (sdma_id + 1) % 2;
}

832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q,
			struct qcm_process_device *qpd, int *allocate_vmid)
{
	int retval;
	struct mqd_manager *mqd;

	BUG_ON(!dqm || !q || !qpd);

	retval = 0;

	if (allocate_vmid)
		*allocate_vmid = 0;

	mutex_lock(&dqm->lock);

847 848 849 850 851 852 853
	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
		pr_warn("amdkfd: Can't create new usermode queue because %d queues were already created\n",
				dqm->total_queue_count);
		retval = -EPERM;
		goto out;
	}

854 855 856
	if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
		select_sdma_engine_id(q);

857
	mqd = dqm->ops.get_mqd_manager(dqm,
858 859
			get_mqd_type_from_queue_type(q->properties.type));

860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
	if (mqd == NULL) {
		mutex_unlock(&dqm->lock);
		return -ENOMEM;
	}

	retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
				&q->gart_mqd_addr, &q->properties);
	if (retval != 0)
		goto out;

	list_add(&q->list, &qpd->queues_list);
	if (q->properties.is_active) {
		dqm->queue_count++;
		retval = execute_queues_cpsch(dqm, false);
	}

876 877
	if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
			dqm->sdma_queue_count++;
878 879 880 881 882 883 884 885
	/*
	 * Unconditionally increment this counter, regardless of the queue's
	 * type or whether the queue is active.
	 */
	dqm->total_queue_count++;

	pr_debug("Total of %d queues are accountable so far\n",
			dqm->total_queue_count);
886

887 888 889 890 891
out:
	mutex_unlock(&dqm->lock);
	return retval;
}

892 893 894
static int fence_wait_timeout(unsigned int *fence_addr,
				unsigned int fence_value,
				unsigned long timeout)
895 896 897 898 899 900 901 902 903
{
	BUG_ON(!fence_addr);
	timeout += jiffies;

	while (*fence_addr != fence_value) {
		if (time_after(jiffies, timeout)) {
			pr_err("kfd: qcm fence wait loop timeout expired\n");
			return -ETIME;
		}
904
		schedule();
905 906 907 908 909
	}

	return 0;
}

910 911 912 913 914 915 916 917
static int destroy_sdma_queues(struct device_queue_manager *dqm,
				unsigned int sdma_engine)
{
	return pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_SDMA,
			KFD_PREEMPT_TYPE_FILTER_ALL_QUEUES, 0, false,
			sdma_engine);
}

918 919 920 921 922 923 924 925 926 927 928 929
static int destroy_queues_cpsch(struct device_queue_manager *dqm, bool lock)
{
	int retval;

	BUG_ON(!dqm);

	retval = 0;

	if (lock)
		mutex_lock(&dqm->lock);
	if (dqm->active_runlist == false)
		goto out;
930 931 932 933 934 935 936 937 938

	pr_debug("kfd: Before destroying queues, sdma queue count is : %u\n",
		dqm->sdma_queue_count);

	if (dqm->sdma_queue_count > 0) {
		destroy_sdma_queues(dqm, 0);
		destroy_sdma_queues(dqm, 1);
	}

939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
	retval = pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_COMPUTE,
			KFD_PREEMPT_TYPE_FILTER_ALL_QUEUES, 0, false, 0);
	if (retval != 0)
		goto out;

	*dqm->fence_addr = KFD_FENCE_INIT;
	pm_send_query_status(&dqm->packets, dqm->fence_gpu_addr,
				KFD_FENCE_COMPLETED);
	/* should be timed out */
	fence_wait_timeout(dqm->fence_addr, KFD_FENCE_COMPLETED,
				QUEUE_PREEMPT_DEFAULT_TIMEOUT_MS);
	pm_release_ib(&dqm->packets);
	dqm->active_runlist = false;

out:
	if (lock)
		mutex_unlock(&dqm->lock);
	return retval;
}

static int execute_queues_cpsch(struct device_queue_manager *dqm, bool lock)
{
	int retval;

	BUG_ON(!dqm);

	if (lock)
		mutex_lock(&dqm->lock);

	retval = destroy_queues_cpsch(dqm, false);
	if (retval != 0) {
		pr_err("kfd: the cp might be in an unrecoverable state due to an unsuccessful queues preemption");
		goto out;
	}

	if (dqm->queue_count <= 0 || dqm->processes_count <= 0) {
		retval = 0;
		goto out;
	}

	if (dqm->active_runlist) {
		retval = 0;
		goto out;
	}

	retval = pm_send_runlist(&dqm->packets, &dqm->queues);
	if (retval != 0) {
		pr_err("kfd: failed to execute runlist");
		goto out;
	}
	dqm->active_runlist = true;

out:
	if (lock)
		mutex_unlock(&dqm->lock);
	return retval;
}

static int destroy_queue_cpsch(struct device_queue_manager *dqm,
				struct qcm_process_device *qpd,
				struct queue *q)
{
	int retval;
	struct mqd_manager *mqd;

	BUG_ON(!dqm || !qpd || !q);

	retval = 0;

	/* remove queue from list to prevent rescheduling after preemption */
	mutex_lock(&dqm->lock);
1010
	mqd = dqm->ops.get_mqd_manager(dqm,
1011
			get_mqd_type_from_queue_type(q->properties.type));
1012 1013 1014 1015 1016
	if (!mqd) {
		retval = -ENOMEM;
		goto failed;
	}

1017 1018 1019
	if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
		dqm->sdma_queue_count--;

1020 1021 1022 1023 1024 1025 1026
	list_del(&q->list);
	dqm->queue_count--;

	execute_queues_cpsch(dqm, false);

	mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);

1027 1028 1029 1030 1031 1032 1033
	/*
	 * Unconditionally decrement this counter, regardless of the queue's
	 * type
	 */
	dqm->total_queue_count--;
	pr_debug("Total of %d queues are accountable so far\n",
			dqm->total_queue_count);
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058

	mutex_unlock(&dqm->lock);

	return 0;

failed:
	mutex_unlock(&dqm->lock);
	return retval;
}

/*
 * Low bits must be 0000/FFFF as required by HW, high bits must be 0 to
 * stay in user mode.
 */
#define APE1_FIXED_BITS_MASK 0xFFFF80000000FFFFULL
/* APE1 limit is inclusive and 64K aligned. */
#define APE1_LIMIT_ALIGNMENT 0xFFFF

static bool set_cache_memory_policy(struct device_queue_manager *dqm,
				   struct qcm_process_device *qpd,
				   enum cache_policy default_policy,
				   enum cache_policy alternate_policy,
				   void __user *alternate_aperture_base,
				   uint64_t alternate_aperture_size)
{
1059
	bool retval;
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095

	pr_debug("kfd: In func %s\n", __func__);

	mutex_lock(&dqm->lock);

	if (alternate_aperture_size == 0) {
		/* base > limit disables APE1 */
		qpd->sh_mem_ape1_base = 1;
		qpd->sh_mem_ape1_limit = 0;
	} else {
		/*
		 * In FSA64, APE1_Base[63:0] = { 16{SH_MEM_APE1_BASE[31]},
		 *			SH_MEM_APE1_BASE[31:0], 0x0000 }
		 * APE1_Limit[63:0] = { 16{SH_MEM_APE1_LIMIT[31]},
		 *			SH_MEM_APE1_LIMIT[31:0], 0xFFFF }
		 * Verify that the base and size parameters can be
		 * represented in this format and convert them.
		 * Additionally restrict APE1 to user-mode addresses.
		 */

		uint64_t base = (uintptr_t)alternate_aperture_base;
		uint64_t limit = base + alternate_aperture_size - 1;

		if (limit <= base)
			goto out;

		if ((base & APE1_FIXED_BITS_MASK) != 0)
			goto out;

		if ((limit & APE1_FIXED_BITS_MASK) != APE1_LIMIT_ALIGNMENT)
			goto out;

		qpd->sh_mem_ape1_base = base >> 16;
		qpd->sh_mem_ape1_limit = limit >> 16;
	}

1096 1097 1098 1099 1100 1101 1102
	retval = dqm->ops_asic_specific.set_cache_memory_policy(
			dqm,
			qpd,
			default_policy,
			alternate_policy,
			alternate_aperture_base,
			alternate_aperture_size);
1103 1104 1105 1106 1107 1108 1109 1110 1111

	if ((sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0))
		program_sh_mem_settings(dqm, qpd);

	pr_debug("kfd: sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n",
		qpd->sh_mem_config, qpd->sh_mem_ape1_base,
		qpd->sh_mem_ape1_limit);

	mutex_unlock(&dqm->lock);
1112
	return retval;
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124

out:
	mutex_unlock(&dqm->lock);
	return false;
}

struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev)
{
	struct device_queue_manager *dqm;

	BUG_ON(!dev);

1125 1126
	pr_debug("kfd: loading device queue manager\n");

1127 1128 1129 1130 1131 1132 1133 1134 1135
	dqm = kzalloc(sizeof(struct device_queue_manager), GFP_KERNEL);
	if (!dqm)
		return NULL;

	dqm->dev = dev;
	switch (sched_policy) {
	case KFD_SCHED_POLICY_HWS:
	case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION:
		/* initialize dqm for cp scheduling */
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
		dqm->ops.create_queue = create_queue_cpsch;
		dqm->ops.initialize = initialize_cpsch;
		dqm->ops.start = start_cpsch;
		dqm->ops.stop = stop_cpsch;
		dqm->ops.destroy_queue = destroy_queue_cpsch;
		dqm->ops.update_queue = update_queue;
		dqm->ops.get_mqd_manager = get_mqd_manager_nocpsch;
		dqm->ops.register_process = register_process_nocpsch;
		dqm->ops.unregister_process = unregister_process_nocpsch;
		dqm->ops.uninitialize = uninitialize_nocpsch;
		dqm->ops.create_kernel_queue = create_kernel_queue_cpsch;
		dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch;
		dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
1149 1150 1151
		break;
	case KFD_SCHED_POLICY_NO_HWS:
		/* initialize dqm for no cp scheduling */
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
		dqm->ops.start = start_nocpsch;
		dqm->ops.stop = stop_nocpsch;
		dqm->ops.create_queue = create_queue_nocpsch;
		dqm->ops.destroy_queue = destroy_queue_nocpsch;
		dqm->ops.update_queue = update_queue;
		dqm->ops.get_mqd_manager = get_mqd_manager_nocpsch;
		dqm->ops.register_process = register_process_nocpsch;
		dqm->ops.unregister_process = unregister_process_nocpsch;
		dqm->ops.initialize = initialize_nocpsch;
		dqm->ops.uninitialize = uninitialize_nocpsch;
		dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
1163 1164 1165 1166 1167 1168
		break;
	default:
		BUG();
		break;
	}

1169 1170 1171
	switch (dev->device_info->asic_family) {
	case CHIP_CARRIZO:
		device_queue_manager_init_vi(&dqm->ops_asic_specific);
1172 1173
		break;

1174 1175
	case CHIP_KAVERI:
		device_queue_manager_init_cik(&dqm->ops_asic_specific);
1176
		break;
1177 1178
	}

1179
	if (dqm->ops.initialize(dqm) != 0) {
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
		kfree(dqm);
		return NULL;
	}

	return dqm;
}

void device_queue_manager_uninit(struct device_queue_manager *dqm)
{
	BUG_ON(!dqm);

1191
	dqm->ops.uninitialize(dqm);
1192 1193
	kfree(dqm);
}