kvmclock.c 7.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/*  KVM paravirtual clock driver. A clocksource implementation
    Copyright (C) 2008 Glauber de Oliveira Costa, Red Hat Inc.

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
*/

#include <linux/clocksource.h>
#include <linux/kvm_para.h>
21
#include <asm/pvclock.h>
22 23 24
#include <asm/msr.h>
#include <asm/apic.h>
#include <linux/percpu.h>
25
#include <linux/hardirq.h>
26
#include <linux/memblock.h>
27 28

#include <asm/x86_init.h>
29
#include <asm/reboot.h>
30 31

static int kvmclock = 1;
32 33
static int msr_kvm_system_time = MSR_KVM_SYSTEM_TIME;
static int msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK;
34 35 36 37 38 39 40 41 42

static int parse_no_kvmclock(char *arg)
{
	kvmclock = 0;
	return 0;
}
early_param("no-kvmclock", parse_no_kvmclock);

/* The hypervisor will put information about time periodically here */
43
static struct pvclock_vsyscall_time_info *hv_clock;
44
static struct pvclock_wall_clock wall_clock;
45 46 47 48 49 50

/*
 * The wallclock is the time of day when we booted. Since then, some time may
 * have elapsed since the hypervisor wrote the data. So we try to account for
 * that with system time
 */
51
static void kvm_get_wallclock(struct timespec *now)
52
{
53
	struct pvclock_vcpu_time_info *vcpu_time;
54
	int low, high;
55
	int cpu;
56

57 58
	low = (int)__pa_symbol(&wall_clock);
	high = ((u64)__pa_symbol(&wall_clock) >> 32);
59 60

	native_write_msr(msr_kvm_wall_clock, low, high);
61

62 63 64
	preempt_disable();
	cpu = smp_processor_id();

65
	vcpu_time = &hv_clock[cpu].pvti;
66
	pvclock_read_wallclock(&wall_clock, vcpu_time, now);
67 68

	preempt_enable();
69 70
}

71
static int kvm_set_wallclock(const struct timespec *now)
72
{
73
	return -1;
74 75 76 77
}

static cycle_t kvm_clock_read(void)
{
78 79
	struct pvclock_vcpu_time_info *src;
	cycle_t ret;
80
	int cpu;
81

82
	preempt_disable_notrace();
83
	cpu = smp_processor_id();
84
	src = &hv_clock[cpu].pvti;
85
	ret = pvclock_clocksource_read(src);
86
	preempt_enable_notrace();
87
	return ret;
88
}
89

90 91 92 93 94
static cycle_t kvm_clock_get_cycles(struct clocksource *cs)
{
	return kvm_clock_read();
}

95 96 97 98 99 100 101 102 103 104 105
/*
 * If we don't do that, there is the possibility that the guest
 * will calibrate under heavy load - thus, getting a lower lpj -
 * and execute the delays themselves without load. This is wrong,
 * because no delay loop can finish beforehand.
 * Any heuristics is subject to fail, because ultimately, a large
 * poll of guests can be running and trouble each other. So we preset
 * lpj here
 */
static unsigned long kvm_get_tsc_khz(void)
{
106
	struct pvclock_vcpu_time_info *src;
107 108 109 110 111
	int cpu;
	unsigned long tsc_khz;

	preempt_disable();
	cpu = smp_processor_id();
112
	src = &hv_clock[cpu].pvti;
113 114 115
	tsc_khz = pvclock_tsc_khz(src);
	preempt_enable();
	return tsc_khz;
116 117 118 119 120 121 122
}

static void kvm_get_preset_lpj(void)
{
	unsigned long khz;
	u64 lpj;

123
	khz = kvm_get_tsc_khz();
124 125 126 127 128 129

	lpj = ((u64)khz * 1000);
	do_div(lpj, HZ);
	preset_lpj = lpj;
}

130 131 132 133
bool kvm_check_and_clear_guest_paused(void)
{
	bool ret = false;
	struct pvclock_vcpu_time_info *src;
134 135 136 137
	int cpu = smp_processor_id();

	if (!hv_clock)
		return ret;
138

139
	src = &hv_clock[cpu].pvti;
140
	if ((src->flags & PVCLOCK_GUEST_STOPPED) != 0) {
141
		src->flags &= ~PVCLOCK_GUEST_STOPPED;
142
		pvclock_touch_watchdogs();
143 144 145 146 147 148
		ret = true;
	}

	return ret;
}

149 150
static struct clocksource kvm_clock = {
	.name = "kvm-clock",
151
	.read = kvm_clock_get_cycles,
152 153 154 155 156
	.rating = 400,
	.mask = CLOCKSOURCE_MASK(64),
	.flags = CLOCK_SOURCE_IS_CONTINUOUS,
};

157
int kvm_register_clock(char *txt)
158 159
{
	int cpu = smp_processor_id();
160
	int low, high, ret;
161 162 163 164
	struct pvclock_vcpu_time_info *src;

	if (!hv_clock)
		return 0;
165

166
	src = &hv_clock[cpu].pvti;
167 168
	low = (int)slow_virt_to_phys(src) | 1;
	high = ((u64)slow_virt_to_phys(src) >> 32);
169
	ret = native_write_msr_safe(msr_kvm_system_time, low, high);
170 171
	printk(KERN_INFO "kvm-clock: cpu %d, msr %x:%x, %s\n",
	       cpu, high, low, txt);
172

173
	return ret;
174 175
}

176 177 178 179 180 181 182 183 184
static void kvm_save_sched_clock_state(void)
{
}

static void kvm_restore_sched_clock_state(void)
{
	kvm_register_clock("primary cpu clock, resume");
}

185
#ifdef CONFIG_X86_LOCAL_APIC
186
static void kvm_setup_secondary_clock(void)
187 188 189 190 191
{
	/*
	 * Now that the first cpu already had this clocksource initialized,
	 * we shouldn't fail.
	 */
192
	WARN_ON(kvm_register_clock("secondary cpu clock"));
193
}
194
#endif
195

196 197 198 199 200 201 202 203 204 205 206
/*
 * After the clock is registered, the host will keep writing to the
 * registered memory location. If the guest happens to shutdown, this memory
 * won't be valid. In cases like kexec, in which you install a new kernel, this
 * means a random memory location will be kept being written. So before any
 * kind of shutdown from our side, we unregister the clock by writting anything
 * that does not have the 'enable' bit set in the msr
 */
#ifdef CONFIG_KEXEC
static void kvm_crash_shutdown(struct pt_regs *regs)
{
207
	native_write_msr(msr_kvm_system_time, 0, 0);
208
	kvm_disable_steal_time();
209 210 211 212 213 214
	native_machine_crash_shutdown(regs);
}
#endif

static void kvm_shutdown(void)
{
215
	native_write_msr(msr_kvm_system_time, 0, 0);
216
	kvm_disable_steal_time();
217 218 219
	native_machine_shutdown();
}

220 221
void __init kvmclock_init(void)
{
222
	unsigned long mem;
223 224 225
	int size;

	size = PAGE_ALIGN(sizeof(struct pvclock_vsyscall_time_info)*NR_CPUS);
226

227 228 229
	if (!kvm_para_available())
		return;

230 231 232 233 234 235 236 237 238
	if (kvmclock && kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE2)) {
		msr_kvm_system_time = MSR_KVM_SYSTEM_TIME_NEW;
		msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK_NEW;
	} else if (!(kvmclock && kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE)))
		return;

	printk(KERN_INFO "kvm-clock: Using msrs %x and %x",
		msr_kvm_system_time, msr_kvm_wall_clock);

239
	mem = memblock_alloc(size, PAGE_SIZE);
240 241 242
	if (!mem)
		return;
	hv_clock = __va(mem);
243
	memset(hv_clock, 0, size);
244 245 246

	if (kvm_register_clock("boot clock")) {
		hv_clock = NULL;
247
		memblock_free(mem, size);
248
		return;
249
	}
250 251 252 253
	pv_time_ops.sched_clock = kvm_clock_read;
	x86_platform.calibrate_tsc = kvm_get_tsc_khz;
	x86_platform.get_wallclock = kvm_get_wallclock;
	x86_platform.set_wallclock = kvm_set_wallclock;
254
#ifdef CONFIG_X86_LOCAL_APIC
255
	x86_cpuinit.early_percpu_clock_init =
256
		kvm_setup_secondary_clock;
257
#endif
258 259
	x86_platform.save_sched_clock_state = kvm_save_sched_clock_state;
	x86_platform.restore_sched_clock_state = kvm_restore_sched_clock_state;
260
	machine_ops.shutdown  = kvm_shutdown;
261
#ifdef CONFIG_KEXEC
262
	machine_ops.crash_shutdown  = kvm_crash_shutdown;
263
#endif
264
	kvm_get_preset_lpj();
265
	clocksource_register_hz(&kvm_clock, NSEC_PER_SEC);
266 267
	pv_info.paravirt_enabled = 1;
	pv_info.name = "KVM";
268 269 270

	if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE_STABLE_BIT))
		pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT);
271
}
272 273 274 275 276 277 278 279 280 281

int __init kvm_setup_vsyscall_timeinfo(void)
{
#ifdef CONFIG_X86_64
	int cpu;
	int ret;
	u8 flags;
	struct pvclock_vcpu_time_info *vcpu_time;
	unsigned int size;

282 283 284
	if (!hv_clock)
		return 0;

285
	size = PAGE_ALIGN(sizeof(struct pvclock_vsyscall_time_info)*NR_CPUS);
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308

	preempt_disable();
	cpu = smp_processor_id();

	vcpu_time = &hv_clock[cpu].pvti;
	flags = pvclock_read_flags(vcpu_time);

	if (!(flags & PVCLOCK_TSC_STABLE_BIT)) {
		preempt_enable();
		return 1;
	}

	if ((ret = pvclock_init_vsyscall(hv_clock, size))) {
		preempt_enable();
		return ret;
	}

	preempt_enable();

	kvm_clock.archdata.vclock_mode = VCLOCK_PVCLOCK;
#endif
	return 0;
}