kvmclock.c 6.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/*  KVM paravirtual clock driver. A clocksource implementation
    Copyright (C) 2008 Glauber de Oliveira Costa, Red Hat Inc.

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
*/

#include <linux/clocksource.h>
#include <linux/kvm_para.h>
21
#include <asm/pvclock.h>
22 23 24
#include <asm/msr.h>
#include <asm/apic.h>
#include <linux/percpu.h>
25
#include <linux/hardirq.h>
26 27

#include <asm/x86_init.h>
28
#include <asm/reboot.h>
29 30

static int kvmclock = 1;
31 32
static int msr_kvm_system_time = MSR_KVM_SYSTEM_TIME;
static int msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK;
33 34 35 36 37 38 39 40 41

static int parse_no_kvmclock(char *arg)
{
	kvmclock = 0;
	return 0;
}
early_param("no-kvmclock", parse_no_kvmclock);

/* The hypervisor will put information about time periodically here */
42 43
static DEFINE_PER_CPU_SHARED_ALIGNED(struct pvclock_vcpu_time_info, hv_clock);
static struct pvclock_wall_clock wall_clock;
44 45 46 47 48 49

/*
 * The wallclock is the time of day when we booted. Since then, some time may
 * have elapsed since the hypervisor wrote the data. So we try to account for
 * that with system time
 */
I
Ingo Molnar 已提交
50
static unsigned long kvm_get_wallclock(void)
51
{
52
	struct pvclock_vcpu_time_info *vcpu_time;
53 54 55
	struct timespec ts;
	int low, high;

56 57
	low = (int)__pa_symbol(&wall_clock);
	high = ((u64)__pa_symbol(&wall_clock) >> 32);
58 59

	native_write_msr(msr_kvm_wall_clock, low, high);
60

61 62 63
	vcpu_time = &get_cpu_var(hv_clock);
	pvclock_read_wallclock(&wall_clock, vcpu_time, &ts);
	put_cpu_var(hv_clock);
64

65
	return ts.tv_sec;
66 67
}

I
Ingo Molnar 已提交
68
static int kvm_set_wallclock(unsigned long now)
69
{
70
	return -1;
71 72 73 74
}

static cycle_t kvm_clock_read(void)
{
75 76
	struct pvclock_vcpu_time_info *src;
	cycle_t ret;
77

78 79
	preempt_disable_notrace();
	src = &__get_cpu_var(hv_clock);
80
	ret = pvclock_clocksource_read(src);
81
	preempt_enable_notrace();
82
	return ret;
83
}
84

85 86 87 88 89
static cycle_t kvm_clock_get_cycles(struct clocksource *cs)
{
	return kvm_clock_read();
}

90 91 92 93 94 95 96 97 98 99 100
/*
 * If we don't do that, there is the possibility that the guest
 * will calibrate under heavy load - thus, getting a lower lpj -
 * and execute the delays themselves without load. This is wrong,
 * because no delay loop can finish beforehand.
 * Any heuristics is subject to fail, because ultimately, a large
 * poll of guests can be running and trouble each other. So we preset
 * lpj here
 */
static unsigned long kvm_get_tsc_khz(void)
{
101 102 103
	struct pvclock_vcpu_time_info *src;
	src = &per_cpu(hv_clock, 0);
	return pvclock_tsc_khz(src);
104 105 106 107 108 109 110
}

static void kvm_get_preset_lpj(void)
{
	unsigned long khz;
	u64 lpj;

111
	khz = kvm_get_tsc_khz();
112 113 114 115 116 117

	lpj = ((u64)khz * 1000);
	do_div(lpj, HZ);
	preset_lpj = lpj;
}

118 119 120 121 122 123 124 125 126 127 128 129 130 131
bool kvm_check_and_clear_guest_paused(void)
{
	bool ret = false;
	struct pvclock_vcpu_time_info *src;

	src = &__get_cpu_var(hv_clock);
	if ((src->flags & PVCLOCK_GUEST_STOPPED) != 0) {
		__this_cpu_and(hv_clock.flags, ~PVCLOCK_GUEST_STOPPED);
		ret = true;
	}

	return ret;
}

132 133
static struct clocksource kvm_clock = {
	.name = "kvm-clock",
134
	.read = kvm_clock_get_cycles,
135 136 137 138 139
	.rating = 400,
	.mask = CLOCKSOURCE_MASK(64),
	.flags = CLOCK_SOURCE_IS_CONTINUOUS,
};

140
int kvm_register_clock(char *txt)
141 142
{
	int cpu = smp_processor_id();
143 144
	int low, high, ret;

145 146
	low = (int)__pa(&per_cpu(hv_clock, cpu)) | 1;
	high = ((u64)__pa(&per_cpu(hv_clock, cpu)) >> 32);
147
	ret = native_write_msr_safe(msr_kvm_system_time, low, high);
148 149
	printk(KERN_INFO "kvm-clock: cpu %d, msr %x:%x, %s\n",
	       cpu, high, low, txt);
150

151
	return ret;
152 153
}

154 155 156 157 158 159 160 161 162
static void kvm_save_sched_clock_state(void)
{
}

static void kvm_restore_sched_clock_state(void)
{
	kvm_register_clock("primary cpu clock, resume");
}

163
#ifdef CONFIG_X86_LOCAL_APIC
A
Al Viro 已提交
164
static void __cpuinit kvm_setup_secondary_clock(void)
165 166 167 168 169
{
	/*
	 * Now that the first cpu already had this clocksource initialized,
	 * we shouldn't fail.
	 */
170
	WARN_ON(kvm_register_clock("secondary cpu clock"));
171
}
172
#endif
173

174 175 176 177 178 179 180 181 182 183 184
/*
 * After the clock is registered, the host will keep writing to the
 * registered memory location. If the guest happens to shutdown, this memory
 * won't be valid. In cases like kexec, in which you install a new kernel, this
 * means a random memory location will be kept being written. So before any
 * kind of shutdown from our side, we unregister the clock by writting anything
 * that does not have the 'enable' bit set in the msr
 */
#ifdef CONFIG_KEXEC
static void kvm_crash_shutdown(struct pt_regs *regs)
{
185
	native_write_msr(msr_kvm_system_time, 0, 0);
186
	kvm_disable_steal_time();
187 188 189 190 191 192
	native_machine_crash_shutdown(regs);
}
#endif

static void kvm_shutdown(void)
{
193
	native_write_msr(msr_kvm_system_time, 0, 0);
194
	kvm_disable_steal_time();
195 196 197
	native_machine_shutdown();
}

198 199 200 201 202
void __init kvmclock_init(void)
{
	if (!kvm_para_available())
		return;

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
	if (kvmclock && kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE2)) {
		msr_kvm_system_time = MSR_KVM_SYSTEM_TIME_NEW;
		msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK_NEW;
	} else if (!(kvmclock && kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE)))
		return;

	printk(KERN_INFO "kvm-clock: Using msrs %x and %x",
		msr_kvm_system_time, msr_kvm_wall_clock);

	if (kvm_register_clock("boot clock"))
		return;
	pv_time_ops.sched_clock = kvm_clock_read;
	x86_platform.calibrate_tsc = kvm_get_tsc_khz;
	x86_platform.get_wallclock = kvm_get_wallclock;
	x86_platform.set_wallclock = kvm_set_wallclock;
218
#ifdef CONFIG_X86_LOCAL_APIC
219
	x86_cpuinit.early_percpu_clock_init =
220
		kvm_setup_secondary_clock;
221
#endif
222 223
	x86_platform.save_sched_clock_state = kvm_save_sched_clock_state;
	x86_platform.restore_sched_clock_state = kvm_restore_sched_clock_state;
224
	machine_ops.shutdown  = kvm_shutdown;
225
#ifdef CONFIG_KEXEC
226
	machine_ops.crash_shutdown  = kvm_crash_shutdown;
227
#endif
228
	kvm_get_preset_lpj();
229
	clocksource_register_hz(&kvm_clock, NSEC_PER_SEC);
230 231
	pv_info.paravirt_enabled = 1;
	pv_info.name = "KVM";
232 233 234

	if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE_STABLE_BIT))
		pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT);
235
}