verifier.c 92.9 KB
Newer Older
A
Alexei Starovoitov 已提交
1
/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
A
Alexei Starovoitov 已提交
2
 * Copyright (c) 2016 Facebook
A
Alexei Starovoitov 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of version 2 of the GNU General Public
 * License as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * General Public License for more details.
 */
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/bpf.h>
17
#include <linux/bpf_verifier.h>
A
Alexei Starovoitov 已提交
18 19 20 21
#include <linux/filter.h>
#include <net/netlink.h>
#include <linux/file.h>
#include <linux/vmalloc.h>
22
#include <linux/stringify.h>
A
Alexei Starovoitov 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130

/* bpf_check() is a static code analyzer that walks eBPF program
 * instruction by instruction and updates register/stack state.
 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
 *
 * The first pass is depth-first-search to check that the program is a DAG.
 * It rejects the following programs:
 * - larger than BPF_MAXINSNS insns
 * - if loop is present (detected via back-edge)
 * - unreachable insns exist (shouldn't be a forest. program = one function)
 * - out of bounds or malformed jumps
 * The second pass is all possible path descent from the 1st insn.
 * Since it's analyzing all pathes through the program, the length of the
 * analysis is limited to 32k insn, which may be hit even if total number of
 * insn is less then 4K, but there are too many branches that change stack/regs.
 * Number of 'branches to be analyzed' is limited to 1k
 *
 * On entry to each instruction, each register has a type, and the instruction
 * changes the types of the registers depending on instruction semantics.
 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
 * copied to R1.
 *
 * All registers are 64-bit.
 * R0 - return register
 * R1-R5 argument passing registers
 * R6-R9 callee saved registers
 * R10 - frame pointer read-only
 *
 * At the start of BPF program the register R1 contains a pointer to bpf_context
 * and has type PTR_TO_CTX.
 *
 * Verifier tracks arithmetic operations on pointers in case:
 *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
 *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
 * 1st insn copies R10 (which has FRAME_PTR) type into R1
 * and 2nd arithmetic instruction is pattern matched to recognize
 * that it wants to construct a pointer to some element within stack.
 * So after 2nd insn, the register R1 has type PTR_TO_STACK
 * (and -20 constant is saved for further stack bounds checking).
 * Meaning that this reg is a pointer to stack plus known immediate constant.
 *
 * Most of the time the registers have UNKNOWN_VALUE type, which
 * means the register has some value, but it's not a valid pointer.
 * (like pointer plus pointer becomes UNKNOWN_VALUE type)
 *
 * When verifier sees load or store instructions the type of base register
 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, FRAME_PTR. These are three pointer
 * types recognized by check_mem_access() function.
 *
 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
 * and the range of [ptr, ptr + map's value_size) is accessible.
 *
 * registers used to pass values to function calls are checked against
 * function argument constraints.
 *
 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
 * It means that the register type passed to this function must be
 * PTR_TO_STACK and it will be used inside the function as
 * 'pointer to map element key'
 *
 * For example the argument constraints for bpf_map_lookup_elem():
 *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
 *   .arg1_type = ARG_CONST_MAP_PTR,
 *   .arg2_type = ARG_PTR_TO_MAP_KEY,
 *
 * ret_type says that this function returns 'pointer to map elem value or null'
 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
 * 2nd argument should be a pointer to stack, which will be used inside
 * the helper function as a pointer to map element key.
 *
 * On the kernel side the helper function looks like:
 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
 * {
 *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
 *    void *key = (void *) (unsigned long) r2;
 *    void *value;
 *
 *    here kernel can access 'key' and 'map' pointers safely, knowing that
 *    [key, key + map->key_size) bytes are valid and were initialized on
 *    the stack of eBPF program.
 * }
 *
 * Corresponding eBPF program may look like:
 *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
 *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
 *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
 *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
 * here verifier looks at prototype of map_lookup_elem() and sees:
 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
 *
 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
 * and were initialized prior to this call.
 * If it's ok, then verifier allows this BPF_CALL insn and looks at
 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
 * returns ether pointer to map value or NULL.
 *
 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
 * insn, the register holding that pointer in the true branch changes state to
 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
 * branch. See check_cond_jmp_op().
 *
 * After the call R0 is set to return type of the function and registers R1-R5
 * are set to NOT_INIT to indicate that they are no longer readable.
 */

131
/* verifier_state + insn_idx are pushed to stack when branch is encountered */
132
struct bpf_verifier_stack_elem {
133 134 135 136
	/* verifer state is 'st'
	 * before processing instruction 'insn_idx'
	 * and after processing instruction 'prev_insn_idx'
	 */
137
	struct bpf_verifier_state st;
138 139
	int insn_idx;
	int prev_insn_idx;
140
	struct bpf_verifier_stack_elem *next;
141 142
};

143 144 145
#define BPF_COMPLEXITY_LIMIT_INSNS	65536
#define BPF_COMPLEXITY_LIMIT_STACK	1024

146 147
struct bpf_call_arg_meta {
	struct bpf_map *map_ptr;
148
	bool raw_mode;
149
	bool pkt_access;
150 151
	int regno;
	int access_size;
152 153
};

154 155 156 157 158 159 160 161 162 163 164 165
/* verbose verifier prints what it's seeing
 * bpf_check() is called under lock, so no race to access these global vars
 */
static u32 log_level, log_size, log_len;
static char *log_buf;

static DEFINE_MUTEX(bpf_verifier_lock);

/* log_level controls verbosity level of eBPF verifier.
 * verbose() is used to dump the verification trace to the log, so the user
 * can figure out what's wrong with the program
 */
166
static __printf(1, 2) void verbose(const char *fmt, ...)
167 168 169 170 171 172 173 174 175 176 177
{
	va_list args;

	if (log_level == 0 || log_len >= log_size - 1)
		return;

	va_start(args, fmt);
	log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args);
	va_end(args);
}

178 179 180 181 182 183 184 185
/* string representation of 'enum bpf_reg_type' */
static const char * const reg_type_str[] = {
	[NOT_INIT]		= "?",
	[UNKNOWN_VALUE]		= "inv",
	[PTR_TO_CTX]		= "ctx",
	[CONST_PTR_TO_MAP]	= "map_ptr",
	[PTR_TO_MAP_VALUE]	= "map_value",
	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
186
	[PTR_TO_MAP_VALUE_ADJ]	= "map_value_adj",
187 188 189
	[FRAME_PTR]		= "fp",
	[PTR_TO_STACK]		= "fp",
	[CONST_IMM]		= "imm",
A
Alexei Starovoitov 已提交
190 191
	[PTR_TO_PACKET]		= "pkt",
	[PTR_TO_PACKET_END]	= "pkt_end",
192 193
};

194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
#define __BPF_FUNC_STR_FN(x) [BPF_FUNC_ ## x] = __stringify(bpf_ ## x)
static const char * const func_id_str[] = {
	__BPF_FUNC_MAPPER(__BPF_FUNC_STR_FN)
};
#undef __BPF_FUNC_STR_FN

static const char *func_id_name(int id)
{
	BUILD_BUG_ON(ARRAY_SIZE(func_id_str) != __BPF_FUNC_MAX_ID);

	if (id >= 0 && id < __BPF_FUNC_MAX_ID && func_id_str[id])
		return func_id_str[id];
	else
		return "unknown";
}

210
static void print_verifier_state(struct bpf_verifier_state *state)
211
{
212
	struct bpf_reg_state *reg;
213 214 215 216
	enum bpf_reg_type t;
	int i;

	for (i = 0; i < MAX_BPF_REG; i++) {
A
Alexei Starovoitov 已提交
217 218
		reg = &state->regs[i];
		t = reg->type;
219 220 221 222
		if (t == NOT_INIT)
			continue;
		verbose(" R%d=%s", i, reg_type_str[t]);
		if (t == CONST_IMM || t == PTR_TO_STACK)
A
Alexei Starovoitov 已提交
223 224 225 226 227 228
			verbose("%lld", reg->imm);
		else if (t == PTR_TO_PACKET)
			verbose("(id=%d,off=%d,r=%d)",
				reg->id, reg->off, reg->range);
		else if (t == UNKNOWN_VALUE && reg->imm)
			verbose("%lld", reg->imm);
229
		else if (t == CONST_PTR_TO_MAP || t == PTR_TO_MAP_VALUE ||
230 231
			 t == PTR_TO_MAP_VALUE_OR_NULL ||
			 t == PTR_TO_MAP_VALUE_ADJ)
232
			verbose("(ks=%d,vs=%d,id=%u)",
A
Alexei Starovoitov 已提交
233
				reg->map_ptr->key_size,
234 235
				reg->map_ptr->value_size,
				reg->id);
236
		if (reg->min_value != BPF_REGISTER_MIN_RANGE)
237 238
			verbose(",min_value=%lld",
				(long long)reg->min_value);
239 240 241
		if (reg->max_value != BPF_REGISTER_MAX_RANGE)
			verbose(",max_value=%llu",
				(unsigned long long)reg->max_value);
242
	}
243
	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
A
Alexei Starovoitov 已提交
244
		if (state->stack_slot_type[i] == STACK_SPILL)
245
			verbose(" fp%d=%s", -MAX_BPF_STACK + i,
A
Alexei Starovoitov 已提交
246
				reg_type_str[state->spilled_regs[i / BPF_REG_SIZE].type]);
247 248 249 250
	}
	verbose("\n");
}

251 252 253 254 255 256 257 258 259 260 261
static const char *const bpf_class_string[] = {
	[BPF_LD]    = "ld",
	[BPF_LDX]   = "ldx",
	[BPF_ST]    = "st",
	[BPF_STX]   = "stx",
	[BPF_ALU]   = "alu",
	[BPF_JMP]   = "jmp",
	[BPF_RET]   = "BUG",
	[BPF_ALU64] = "alu64",
};

262
static const char *const bpf_alu_string[16] = {
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
	[BPF_ADD >> 4]  = "+=",
	[BPF_SUB >> 4]  = "-=",
	[BPF_MUL >> 4]  = "*=",
	[BPF_DIV >> 4]  = "/=",
	[BPF_OR  >> 4]  = "|=",
	[BPF_AND >> 4]  = "&=",
	[BPF_LSH >> 4]  = "<<=",
	[BPF_RSH >> 4]  = ">>=",
	[BPF_NEG >> 4]  = "neg",
	[BPF_MOD >> 4]  = "%=",
	[BPF_XOR >> 4]  = "^=",
	[BPF_MOV >> 4]  = "=",
	[BPF_ARSH >> 4] = "s>>=",
	[BPF_END >> 4]  = "endian",
};

static const char *const bpf_ldst_string[] = {
	[BPF_W >> 3]  = "u32",
	[BPF_H >> 3]  = "u16",
	[BPF_B >> 3]  = "u8",
	[BPF_DW >> 3] = "u64",
};

286
static const char *const bpf_jmp_string[16] = {
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
	[BPF_JA >> 4]   = "jmp",
	[BPF_JEQ >> 4]  = "==",
	[BPF_JGT >> 4]  = ">",
	[BPF_JGE >> 4]  = ">=",
	[BPF_JSET >> 4] = "&",
	[BPF_JNE >> 4]  = "!=",
	[BPF_JSGT >> 4] = "s>",
	[BPF_JSGE >> 4] = "s>=",
	[BPF_CALL >> 4] = "call",
	[BPF_EXIT >> 4] = "exit",
};

static void print_bpf_insn(struct bpf_insn *insn)
{
	u8 class = BPF_CLASS(insn->code);

	if (class == BPF_ALU || class == BPF_ALU64) {
		if (BPF_SRC(insn->code) == BPF_X)
			verbose("(%02x) %sr%d %s %sr%d\n",
				insn->code, class == BPF_ALU ? "(u32) " : "",
				insn->dst_reg,
				bpf_alu_string[BPF_OP(insn->code) >> 4],
				class == BPF_ALU ? "(u32) " : "",
				insn->src_reg);
		else
			verbose("(%02x) %sr%d %s %s%d\n",
				insn->code, class == BPF_ALU ? "(u32) " : "",
				insn->dst_reg,
				bpf_alu_string[BPF_OP(insn->code) >> 4],
				class == BPF_ALU ? "(u32) " : "",
				insn->imm);
	} else if (class == BPF_STX) {
		if (BPF_MODE(insn->code) == BPF_MEM)
			verbose("(%02x) *(%s *)(r%d %+d) = r%d\n",
				insn->code,
				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
				insn->dst_reg,
				insn->off, insn->src_reg);
		else if (BPF_MODE(insn->code) == BPF_XADD)
			verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n",
				insn->code,
				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
				insn->dst_reg, insn->off,
				insn->src_reg);
		else
			verbose("BUG_%02x\n", insn->code);
	} else if (class == BPF_ST) {
		if (BPF_MODE(insn->code) != BPF_MEM) {
			verbose("BUG_st_%02x\n", insn->code);
			return;
		}
		verbose("(%02x) *(%s *)(r%d %+d) = %d\n",
			insn->code,
			bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
			insn->dst_reg,
			insn->off, insn->imm);
	} else if (class == BPF_LDX) {
		if (BPF_MODE(insn->code) != BPF_MEM) {
			verbose("BUG_ldx_%02x\n", insn->code);
			return;
		}
		verbose("(%02x) r%d = *(%s *)(r%d %+d)\n",
			insn->code, insn->dst_reg,
			bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
			insn->src_reg, insn->off);
	} else if (class == BPF_LD) {
		if (BPF_MODE(insn->code) == BPF_ABS) {
			verbose("(%02x) r0 = *(%s *)skb[%d]\n",
				insn->code,
				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
				insn->imm);
		} else if (BPF_MODE(insn->code) == BPF_IND) {
			verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n",
				insn->code,
				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
				insn->src_reg, insn->imm);
		} else if (BPF_MODE(insn->code) == BPF_IMM) {
			verbose("(%02x) r%d = 0x%x\n",
				insn->code, insn->dst_reg, insn->imm);
		} else {
			verbose("BUG_ld_%02x\n", insn->code);
			return;
		}
	} else if (class == BPF_JMP) {
		u8 opcode = BPF_OP(insn->code);

		if (opcode == BPF_CALL) {
374 375
			verbose("(%02x) call %s#%d\n", insn->code,
				func_id_name(insn->imm), insn->imm);
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
		} else if (insn->code == (BPF_JMP | BPF_JA)) {
			verbose("(%02x) goto pc%+d\n",
				insn->code, insn->off);
		} else if (insn->code == (BPF_JMP | BPF_EXIT)) {
			verbose("(%02x) exit\n", insn->code);
		} else if (BPF_SRC(insn->code) == BPF_X) {
			verbose("(%02x) if r%d %s r%d goto pc%+d\n",
				insn->code, insn->dst_reg,
				bpf_jmp_string[BPF_OP(insn->code) >> 4],
				insn->src_reg, insn->off);
		} else {
			verbose("(%02x) if r%d %s 0x%x goto pc%+d\n",
				insn->code, insn->dst_reg,
				bpf_jmp_string[BPF_OP(insn->code) >> 4],
				insn->imm, insn->off);
		}
	} else {
		verbose("(%02x) %s\n", insn->code, bpf_class_string[class]);
	}
}

397
static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx)
398
{
399
	struct bpf_verifier_stack_elem *elem;
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
	int insn_idx;

	if (env->head == NULL)
		return -1;

	memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state));
	insn_idx = env->head->insn_idx;
	if (prev_insn_idx)
		*prev_insn_idx = env->head->prev_insn_idx;
	elem = env->head->next;
	kfree(env->head);
	env->head = elem;
	env->stack_size--;
	return insn_idx;
}

416 417
static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
					     int insn_idx, int prev_insn_idx)
418
{
419
	struct bpf_verifier_stack_elem *elem;
420

421
	elem = kmalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
422 423 424 425 426 427 428 429 430
	if (!elem)
		goto err;

	memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state));
	elem->insn_idx = insn_idx;
	elem->prev_insn_idx = prev_insn_idx;
	elem->next = env->head;
	env->head = elem;
	env->stack_size++;
431
	if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
		verbose("BPF program is too complex\n");
		goto err;
	}
	return &elem->st;
err:
	/* pop all elements and return */
	while (pop_stack(env, NULL) >= 0);
	return NULL;
}

#define CALLER_SAVED_REGS 6
static const int caller_saved[CALLER_SAVED_REGS] = {
	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
};

447
static void init_reg_state(struct bpf_reg_state *regs)
448 449 450 451 452 453
{
	int i;

	for (i = 0; i < MAX_BPF_REG; i++) {
		regs[i].type = NOT_INIT;
		regs[i].imm = 0;
454 455
		regs[i].min_value = BPF_REGISTER_MIN_RANGE;
		regs[i].max_value = BPF_REGISTER_MAX_RANGE;
456 457 458 459 460 461 462 463 464
	}

	/* frame pointer */
	regs[BPF_REG_FP].type = FRAME_PTR;

	/* 1st arg to a function */
	regs[BPF_REG_1].type = PTR_TO_CTX;
}

465
static void __mark_reg_unknown_value(struct bpf_reg_state *regs, u32 regno)
466 467
{
	regs[regno].type = UNKNOWN_VALUE;
468
	regs[regno].id = 0;
469 470 471
	regs[regno].imm = 0;
}

472 473 474 475 476 477
static void mark_reg_unknown_value(struct bpf_reg_state *regs, u32 regno)
{
	BUG_ON(regno >= MAX_BPF_REG);
	__mark_reg_unknown_value(regs, regno);
}

478 479 480 481 482 483
static void reset_reg_range_values(struct bpf_reg_state *regs, u32 regno)
{
	regs[regno].min_value = BPF_REGISTER_MIN_RANGE;
	regs[regno].max_value = BPF_REGISTER_MAX_RANGE;
}

484 485 486 487 488 489
enum reg_arg_type {
	SRC_OP,		/* register is used as source operand */
	DST_OP,		/* register is used as destination operand */
	DST_OP_NO_MARK	/* same as above, check only, don't mark */
};

490
static int check_reg_arg(struct bpf_reg_state *regs, u32 regno,
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
			 enum reg_arg_type t)
{
	if (regno >= MAX_BPF_REG) {
		verbose("R%d is invalid\n", regno);
		return -EINVAL;
	}

	if (t == SRC_OP) {
		/* check whether register used as source operand can be read */
		if (regs[regno].type == NOT_INIT) {
			verbose("R%d !read_ok\n", regno);
			return -EACCES;
		}
	} else {
		/* check whether register used as dest operand can be written to */
		if (regno == BPF_REG_FP) {
			verbose("frame pointer is read only\n");
			return -EACCES;
		}
		if (t == DST_OP)
			mark_reg_unknown_value(regs, regno);
	}
	return 0;
}

static int bpf_size_to_bytes(int bpf_size)
{
	if (bpf_size == BPF_W)
		return 4;
	else if (bpf_size == BPF_H)
		return 2;
	else if (bpf_size == BPF_B)
		return 1;
	else if (bpf_size == BPF_DW)
		return 8;
	else
		return -EINVAL;
}

530 531 532 533 534 535 536
static bool is_spillable_regtype(enum bpf_reg_type type)
{
	switch (type) {
	case PTR_TO_MAP_VALUE:
	case PTR_TO_MAP_VALUE_OR_NULL:
	case PTR_TO_STACK:
	case PTR_TO_CTX:
A
Alexei Starovoitov 已提交
537 538
	case PTR_TO_PACKET:
	case PTR_TO_PACKET_END:
539 540 541 542 543 544 545 546
	case FRAME_PTR:
	case CONST_PTR_TO_MAP:
		return true;
	default:
		return false;
	}
}

547 548 549
/* check_stack_read/write functions track spill/fill of registers,
 * stack boundary and alignment are checked in check_mem_access()
 */
550 551
static int check_stack_write(struct bpf_verifier_state *state, int off,
			     int size, int value_regno)
552 553
{
	int i;
554 555 556
	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
	 * so it's aligned access and [off, off + size) are within stack limits
	 */
557 558

	if (value_regno >= 0 &&
559
	    is_spillable_regtype(state->regs[value_regno].type)) {
560 561

		/* register containing pointer is being spilled into stack */
562
		if (size != BPF_REG_SIZE) {
563 564 565 566 567
			verbose("invalid size of register spill\n");
			return -EACCES;
		}

		/* save register state */
568 569
		state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
			state->regs[value_regno];
570

571 572 573
		for (i = 0; i < BPF_REG_SIZE; i++)
			state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL;
	} else {
574
		/* regular write of data into stack */
575
		state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
576
			(struct bpf_reg_state) {};
577 578 579

		for (i = 0; i < size; i++)
			state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC;
580 581 582 583
	}
	return 0;
}

584
static int check_stack_read(struct bpf_verifier_state *state, int off, int size,
585 586
			    int value_regno)
{
587
	u8 *slot_type;
588 589
	int i;

590
	slot_type = &state->stack_slot_type[MAX_BPF_STACK + off];
591

592 593
	if (slot_type[0] == STACK_SPILL) {
		if (size != BPF_REG_SIZE) {
594 595 596
			verbose("invalid size of register spill\n");
			return -EACCES;
		}
597 598
		for (i = 1; i < BPF_REG_SIZE; i++) {
			if (slot_type[i] != STACK_SPILL) {
599 600 601 602 603 604 605
				verbose("corrupted spill memory\n");
				return -EACCES;
			}
		}

		if (value_regno >= 0)
			/* restore register state from stack */
606 607
			state->regs[value_regno] =
				state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE];
608 609 610
		return 0;
	} else {
		for (i = 0; i < size; i++) {
611
			if (slot_type[i] != STACK_MISC) {
612 613 614 615 616 617 618 619 620 621 622 623 624
				verbose("invalid read from stack off %d+%d size %d\n",
					off, i, size);
				return -EACCES;
			}
		}
		if (value_regno >= 0)
			/* have read misc data from the stack */
			mark_reg_unknown_value(state->regs, value_regno);
		return 0;
	}
}

/* check read/write into map element returned by bpf_map_lookup_elem() */
625
static int check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
626 627 628 629 630 631 632 633 634 635 636 637
			    int size)
{
	struct bpf_map *map = env->cur_state.regs[regno].map_ptr;

	if (off < 0 || off + size > map->value_size) {
		verbose("invalid access to map value, value_size=%d off=%d size=%d\n",
			map->value_size, off, size);
		return -EACCES;
	}
	return 0;
}

A
Alexei Starovoitov 已提交
638 639
#define MAX_PACKET_OFF 0xffff

640
static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
641 642
				       const struct bpf_call_arg_meta *meta,
				       enum bpf_access_type t)
643
{
644
	switch (env->prog->type) {
645 646 647 648 649
	case BPF_PROG_TYPE_LWT_IN:
	case BPF_PROG_TYPE_LWT_OUT:
		/* dst_input() and dst_output() can't write for now */
		if (t == BPF_WRITE)
			return false;
650 651
	case BPF_PROG_TYPE_SCHED_CLS:
	case BPF_PROG_TYPE_SCHED_ACT:
652
	case BPF_PROG_TYPE_XDP:
653
	case BPF_PROG_TYPE_LWT_XMIT:
654 655 656 657
		if (meta)
			return meta->pkt_access;

		env->seen_direct_write = true;
658 659 660 661 662 663
		return true;
	default:
		return false;
	}
}

664
static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
A
Alexei Starovoitov 已提交
665 666
			       int size)
{
667 668
	struct bpf_reg_state *regs = env->cur_state.regs;
	struct bpf_reg_state *reg = &regs[regno];
A
Alexei Starovoitov 已提交
669

670
	off += reg->off;
671
	if (off < 0 || size <= 0 || off + size > reg->range) {
672 673
		verbose("invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
			off, size, regno, reg->id, reg->off, reg->range);
A
Alexei Starovoitov 已提交
674 675 676 677 678
		return -EACCES;
	}
	return 0;
}

679
/* check access to 'struct bpf_context' fields */
680
static int check_ctx_access(struct bpf_verifier_env *env, int off, int size,
681
			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
682
{
683 684 685 686
	/* for analyzer ctx accesses are already validated and converted */
	if (env->analyzer_ops)
		return 0;

687
	if (env->prog->aux->ops->is_valid_access &&
688
	    env->prog->aux->ops->is_valid_access(off, size, t, reg_type)) {
689 690 691
		/* remember the offset of last byte accessed in ctx */
		if (env->prog->aux->max_ctx_offset < off + size)
			env->prog->aux->max_ctx_offset = off + size;
692
		return 0;
693
	}
694 695 696 697 698

	verbose("invalid bpf_context access off=%d size=%d\n", off, size);
	return -EACCES;
}

699
static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
700 701 702 703 704 705 706 707 708 709 710 711 712
{
	if (env->allow_ptr_leaks)
		return false;

	switch (env->cur_state.regs[regno].type) {
	case UNKNOWN_VALUE:
	case CONST_IMM:
		return false;
	default:
		return true;
	}
}

713 714
static int check_ptr_alignment(struct bpf_verifier_env *env,
			       struct bpf_reg_state *reg, int off, int size)
A
Alexei Starovoitov 已提交
715
{
716
	if (reg->type != PTR_TO_PACKET && reg->type != PTR_TO_MAP_VALUE_ADJ) {
A
Alexei Starovoitov 已提交
717
		if (off % size != 0) {
718 719
			verbose("misaligned access off %d size %d\n",
				off, size);
A
Alexei Starovoitov 已提交
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
			return -EACCES;
		} else {
			return 0;
		}
	}

	if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
		/* misaligned access to packet is ok on x86,arm,arm64 */
		return 0;

	if (reg->id && size != 1) {
		verbose("Unknown packet alignment. Only byte-sized access allowed\n");
		return -EACCES;
	}

	/* skb->data is NET_IP_ALIGN-ed */
736 737
	if (reg->type == PTR_TO_PACKET &&
	    (NET_IP_ALIGN + reg->off + off) % size != 0) {
A
Alexei Starovoitov 已提交
738 739 740 741 742 743 744
		verbose("misaligned packet access off %d+%d+%d size %d\n",
			NET_IP_ALIGN, reg->off, off, size);
		return -EACCES;
	}
	return 0;
}

745 746 747 748 749 750
/* check whether memory at (regno + off) is accessible for t = (read | write)
 * if t==write, value_regno is a register which value is stored into memory
 * if t==read, value_regno is a register which will receive the value from memory
 * if t==write && value_regno==-1, some unknown value is stored into memory
 * if t==read && value_regno==-1, don't care what we read from memory
 */
751
static int check_mem_access(struct bpf_verifier_env *env, u32 regno, int off,
752 753 754
			    int bpf_size, enum bpf_access_type t,
			    int value_regno)
{
755 756
	struct bpf_verifier_state *state = &env->cur_state;
	struct bpf_reg_state *reg = &state->regs[regno];
757 758
	int size, err = 0;

A
Alexei Starovoitov 已提交
759 760
	if (reg->type == PTR_TO_STACK)
		off += reg->imm;
761

762 763 764 765
	size = bpf_size_to_bytes(bpf_size);
	if (size < 0)
		return size;

A
Alexei Starovoitov 已提交
766 767 768
	err = check_ptr_alignment(env, reg, off, size);
	if (err)
		return err;
769

770 771
	if (reg->type == PTR_TO_MAP_VALUE ||
	    reg->type == PTR_TO_MAP_VALUE_ADJ) {
772 773 774 775 776
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
			verbose("R%d leaks addr into map\n", value_regno);
			return -EACCES;
		}
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792

		/* If we adjusted the register to this map value at all then we
		 * need to change off and size to min_value and max_value
		 * respectively to make sure our theoretical access will be
		 * safe.
		 */
		if (reg->type == PTR_TO_MAP_VALUE_ADJ) {
			if (log_level)
				print_verifier_state(state);
			env->varlen_map_value_access = true;
			/* The minimum value is only important with signed
			 * comparisons where we can't assume the floor of a
			 * value is 0.  If we are using signed variables for our
			 * index'es we need to make sure that whatever we use
			 * will have a set floor within our range.
			 */
793
			if (reg->min_value < 0) {
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
				verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
					regno);
				return -EACCES;
			}
			err = check_map_access(env, regno, reg->min_value + off,
					       size);
			if (err) {
				verbose("R%d min value is outside of the array range\n",
					regno);
				return err;
			}

			/* If we haven't set a max value then we need to bail
			 * since we can't be sure we won't do bad things.
			 */
			if (reg->max_value == BPF_REGISTER_MAX_RANGE) {
				verbose("R%d unbounded memory access, make sure to bounds check any array access into a map\n",
					regno);
				return -EACCES;
			}
			off += reg->max_value;
		}
816 817 818 819
		err = check_map_access(env, regno, off, size);
		if (!err && t == BPF_READ && value_regno >= 0)
			mark_reg_unknown_value(state->regs, value_regno);

A
Alexei Starovoitov 已提交
820
	} else if (reg->type == PTR_TO_CTX) {
821 822
		enum bpf_reg_type reg_type = UNKNOWN_VALUE;

823 824 825 826 827
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
			verbose("R%d leaks addr into ctx\n", value_regno);
			return -EACCES;
		}
828
		err = check_ctx_access(env, off, size, t, &reg_type);
A
Alexei Starovoitov 已提交
829
		if (!err && t == BPF_READ && value_regno >= 0) {
830
			mark_reg_unknown_value(state->regs, value_regno);
831 832
			/* note that reg.[id|off|range] == 0 */
			state->regs[value_regno].type = reg_type;
A
Alexei Starovoitov 已提交
833
		}
834

A
Alexei Starovoitov 已提交
835
	} else if (reg->type == FRAME_PTR || reg->type == PTR_TO_STACK) {
836 837 838 839
		if (off >= 0 || off < -MAX_BPF_STACK) {
			verbose("invalid stack off=%d size=%d\n", off, size);
			return -EACCES;
		}
840 841 842 843 844 845 846
		if (t == BPF_WRITE) {
			if (!env->allow_ptr_leaks &&
			    state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL &&
			    size != BPF_REG_SIZE) {
				verbose("attempt to corrupt spilled pointer on stack\n");
				return -EACCES;
			}
847
			err = check_stack_write(state, off, size, value_regno);
848
		} else {
849
			err = check_stack_read(state, off, size, value_regno);
850
		}
A
Alexei Starovoitov 已提交
851
	} else if (state->regs[regno].type == PTR_TO_PACKET) {
852
		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
A
Alexei Starovoitov 已提交
853 854 855
			verbose("cannot write into packet\n");
			return -EACCES;
		}
856 857 858 859 860
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
			verbose("R%d leaks addr into packet\n", value_regno);
			return -EACCES;
		}
A
Alexei Starovoitov 已提交
861 862 863
		err = check_packet_access(env, regno, off, size);
		if (!err && t == BPF_READ && value_regno >= 0)
			mark_reg_unknown_value(state->regs, value_regno);
864 865
	} else {
		verbose("R%d invalid mem access '%s'\n",
A
Alexei Starovoitov 已提交
866
			regno, reg_type_str[reg->type]);
867 868
		return -EACCES;
	}
A
Alexei Starovoitov 已提交
869 870 871 872 873 874 875 876 877

	if (!err && size <= 2 && value_regno >= 0 && env->allow_ptr_leaks &&
	    state->regs[value_regno].type == UNKNOWN_VALUE) {
		/* 1 or 2 byte load zero-extends, determine the number of
		 * zero upper bits. Not doing it fo 4 byte load, since
		 * such values cannot be added to ptr_to_packet anyway.
		 */
		state->regs[value_regno].imm = 64 - size * 8;
	}
878 879 880
	return err;
}

881
static int check_xadd(struct bpf_verifier_env *env, struct bpf_insn *insn)
882
{
883
	struct bpf_reg_state *regs = env->cur_state.regs;
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
	int err;

	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
	    insn->imm != 0) {
		verbose("BPF_XADD uses reserved fields\n");
		return -EINVAL;
	}

	/* check src1 operand */
	err = check_reg_arg(regs, insn->src_reg, SRC_OP);
	if (err)
		return err;

	/* check src2 operand */
	err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
	if (err)
		return err;

	/* check whether atomic_add can read the memory */
	err = check_mem_access(env, insn->dst_reg, insn->off,
			       BPF_SIZE(insn->code), BPF_READ, -1);
	if (err)
		return err;

	/* check whether atomic_add can write into the same memory */
	return check_mem_access(env, insn->dst_reg, insn->off,
				BPF_SIZE(insn->code), BPF_WRITE, -1);
}

/* when register 'regno' is passed into function that will read 'access_size'
 * bytes from that pointer, make sure that it's within stack boundary
 * and all elements of stack are initialized
 */
917
static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
918 919
				int access_size, bool zero_size_allowed,
				struct bpf_call_arg_meta *meta)
920
{
921 922
	struct bpf_verifier_state *state = &env->cur_state;
	struct bpf_reg_state *regs = state->regs;
923 924
	int off, i;

925 926 927 928 929 930 931 932 933
	if (regs[regno].type != PTR_TO_STACK) {
		if (zero_size_allowed && access_size == 0 &&
		    regs[regno].type == CONST_IMM &&
		    regs[regno].imm  == 0)
			return 0;

		verbose("R%d type=%s expected=%s\n", regno,
			reg_type_str[regs[regno].type],
			reg_type_str[PTR_TO_STACK]);
934
		return -EACCES;
935
	}
936 937 938 939 940 941 942 943 944

	off = regs[regno].imm;
	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
	    access_size <= 0) {
		verbose("invalid stack type R%d off=%d access_size=%d\n",
			regno, off, access_size);
		return -EACCES;
	}

945 946 947 948 949 950
	if (meta && meta->raw_mode) {
		meta->access_size = access_size;
		meta->regno = regno;
		return 0;
	}

951
	for (i = 0; i < access_size; i++) {
952
		if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) {
953 954 955 956 957 958 959 960
			verbose("invalid indirect read from stack off %d+%d size %d\n",
				off, i, access_size);
			return -EACCES;
		}
	}
	return 0;
}

961
static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
962 963
			  enum bpf_arg_type arg_type,
			  struct bpf_call_arg_meta *meta)
964
{
965
	struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
966
	enum bpf_reg_type expected_type, type = reg->type;
967 968
	int err = 0;

969
	if (arg_type == ARG_DONTCARE)
970 971
		return 0;

972
	if (type == NOT_INIT) {
973 974 975 976
		verbose("R%d !read_ok\n", regno);
		return -EACCES;
	}

977 978 979 980 981
	if (arg_type == ARG_ANYTHING) {
		if (is_pointer_value(env, regno)) {
			verbose("R%d leaks addr into helper function\n", regno);
			return -EACCES;
		}
982
		return 0;
983
	}
984

985 986
	if (type == PTR_TO_PACKET &&
	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
987
		verbose("helper access to the packet is not allowed\n");
988 989 990
		return -EACCES;
	}

991
	if (arg_type == ARG_PTR_TO_MAP_KEY ||
992 993
	    arg_type == ARG_PTR_TO_MAP_VALUE) {
		expected_type = PTR_TO_STACK;
994 995
		if (type != PTR_TO_PACKET && type != expected_type)
			goto err_type;
996 997
	} else if (arg_type == ARG_CONST_STACK_SIZE ||
		   arg_type == ARG_CONST_STACK_SIZE_OR_ZERO) {
998
		expected_type = CONST_IMM;
999 1000
		if (type != expected_type)
			goto err_type;
1001 1002
	} else if (arg_type == ARG_CONST_MAP_PTR) {
		expected_type = CONST_PTR_TO_MAP;
1003 1004
		if (type != expected_type)
			goto err_type;
1005 1006
	} else if (arg_type == ARG_PTR_TO_CTX) {
		expected_type = PTR_TO_CTX;
1007 1008
		if (type != expected_type)
			goto err_type;
1009 1010
	} else if (arg_type == ARG_PTR_TO_STACK ||
		   arg_type == ARG_PTR_TO_RAW_STACK) {
1011 1012 1013 1014 1015
		expected_type = PTR_TO_STACK;
		/* One exception here. In case function allows for NULL to be
		 * passed in as argument, it's a CONST_IMM type. Final test
		 * happens during stack boundary checking.
		 */
1016 1017 1018 1019
		if (type == CONST_IMM && reg->imm == 0)
			/* final test in check_stack_boundary() */;
		else if (type != PTR_TO_PACKET && type != expected_type)
			goto err_type;
1020
		meta->raw_mode = arg_type == ARG_PTR_TO_RAW_STACK;
1021 1022 1023 1024 1025 1026 1027
	} else {
		verbose("unsupported arg_type %d\n", arg_type);
		return -EFAULT;
	}

	if (arg_type == ARG_CONST_MAP_PTR) {
		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
1028
		meta->map_ptr = reg->map_ptr;
1029 1030 1031 1032 1033
	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
		/* bpf_map_xxx(..., map_ptr, ..., key) call:
		 * check that [key, key + map->key_size) are within
		 * stack limits and initialized
		 */
1034
		if (!meta->map_ptr) {
1035 1036 1037 1038 1039 1040 1041 1042
			/* in function declaration map_ptr must come before
			 * map_key, so that it's verified and known before
			 * we have to check map_key here. Otherwise it means
			 * that kernel subsystem misconfigured verifier
			 */
			verbose("invalid map_ptr to access map->key\n");
			return -EACCES;
		}
1043 1044 1045 1046 1047 1048 1049
		if (type == PTR_TO_PACKET)
			err = check_packet_access(env, regno, 0,
						  meta->map_ptr->key_size);
		else
			err = check_stack_boundary(env, regno,
						   meta->map_ptr->key_size,
						   false, NULL);
1050 1051 1052 1053
	} else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
		/* bpf_map_xxx(..., map_ptr, ..., value) call:
		 * check [value, value + map->value_size) validity
		 */
1054
		if (!meta->map_ptr) {
1055 1056 1057 1058
			/* kernel subsystem misconfigured verifier */
			verbose("invalid map_ptr to access map->value\n");
			return -EACCES;
		}
1059 1060 1061 1062 1063 1064 1065
		if (type == PTR_TO_PACKET)
			err = check_packet_access(env, regno, 0,
						  meta->map_ptr->value_size);
		else
			err = check_stack_boundary(env, regno,
						   meta->map_ptr->value_size,
						   false, NULL);
1066 1067 1068
	} else if (arg_type == ARG_CONST_STACK_SIZE ||
		   arg_type == ARG_CONST_STACK_SIZE_OR_ZERO) {
		bool zero_size_allowed = (arg_type == ARG_CONST_STACK_SIZE_OR_ZERO);
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078

		/* bpf_xxx(..., buf, len) call will access 'len' bytes
		 * from stack pointer 'buf'. Check it
		 * note: regno == len, regno - 1 == buf
		 */
		if (regno == 0) {
			/* kernel subsystem misconfigured verifier */
			verbose("ARG_CONST_STACK_SIZE cannot be first argument\n");
			return -EACCES;
		}
1079 1080 1081 1082 1083
		if (regs[regno - 1].type == PTR_TO_PACKET)
			err = check_packet_access(env, regno - 1, 0, reg->imm);
		else
			err = check_stack_boundary(env, regno - 1, reg->imm,
						   zero_size_allowed, meta);
1084 1085 1086
	}

	return err;
1087 1088 1089 1090
err_type:
	verbose("R%d type=%s expected=%s\n", regno,
		reg_type_str[type], reg_type_str[expected_type]);
	return -EACCES;
1091 1092
}

1093 1094 1095 1096 1097
static int check_map_func_compatibility(struct bpf_map *map, int func_id)
{
	if (!map)
		return 0;

1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
	/* We need a two way check, first is from map perspective ... */
	switch (map->map_type) {
	case BPF_MAP_TYPE_PROG_ARRAY:
		if (func_id != BPF_FUNC_tail_call)
			goto error;
		break;
	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
		if (func_id != BPF_FUNC_perf_event_read &&
		    func_id != BPF_FUNC_perf_event_output)
			goto error;
		break;
	case BPF_MAP_TYPE_STACK_TRACE:
		if (func_id != BPF_FUNC_get_stackid)
			goto error;
		break;
1113
	case BPF_MAP_TYPE_CGROUP_ARRAY:
1114
		if (func_id != BPF_FUNC_skb_under_cgroup &&
1115
		    func_id != BPF_FUNC_current_task_under_cgroup)
1116 1117
			goto error;
		break;
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
	default:
		break;
	}

	/* ... and second from the function itself. */
	switch (func_id) {
	case BPF_FUNC_tail_call:
		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
			goto error;
		break;
	case BPF_FUNC_perf_event_read:
	case BPF_FUNC_perf_event_output:
		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
			goto error;
		break;
	case BPF_FUNC_get_stackid:
		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
			goto error;
		break;
1137
	case BPF_FUNC_current_task_under_cgroup:
1138
	case BPF_FUNC_skb_under_cgroup:
1139 1140 1141
		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
			goto error;
		break;
1142 1143
	default:
		break;
1144 1145 1146
	}

	return 0;
1147
error:
1148 1149
	verbose("cannot pass map_type %d into func %s#%d\n",
		map->map_type, func_id_name(func_id), func_id);
1150
	return -EINVAL;
1151 1152
}

1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
static int check_raw_mode(const struct bpf_func_proto *fn)
{
	int count = 0;

	if (fn->arg1_type == ARG_PTR_TO_RAW_STACK)
		count++;
	if (fn->arg2_type == ARG_PTR_TO_RAW_STACK)
		count++;
	if (fn->arg3_type == ARG_PTR_TO_RAW_STACK)
		count++;
	if (fn->arg4_type == ARG_PTR_TO_RAW_STACK)
		count++;
	if (fn->arg5_type == ARG_PTR_TO_RAW_STACK)
		count++;

	return count > 1 ? -EINVAL : 0;
}

1171
static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
A
Alexei Starovoitov 已提交
1172
{
1173 1174
	struct bpf_verifier_state *state = &env->cur_state;
	struct bpf_reg_state *regs = state->regs, *reg;
A
Alexei Starovoitov 已提交
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
	int i;

	for (i = 0; i < MAX_BPF_REG; i++)
		if (regs[i].type == PTR_TO_PACKET ||
		    regs[i].type == PTR_TO_PACKET_END)
			mark_reg_unknown_value(regs, i);

	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
		if (state->stack_slot_type[i] != STACK_SPILL)
			continue;
		reg = &state->spilled_regs[i / BPF_REG_SIZE];
		if (reg->type != PTR_TO_PACKET &&
		    reg->type != PTR_TO_PACKET_END)
			continue;
		reg->type = UNKNOWN_VALUE;
		reg->imm = 0;
	}
}

1194
static int check_call(struct bpf_verifier_env *env, int func_id)
1195
{
1196
	struct bpf_verifier_state *state = &env->cur_state;
1197
	const struct bpf_func_proto *fn = NULL;
1198 1199
	struct bpf_reg_state *regs = state->regs;
	struct bpf_reg_state *reg;
1200
	struct bpf_call_arg_meta meta;
A
Alexei Starovoitov 已提交
1201
	bool changes_data;
1202 1203 1204 1205
	int i, err;

	/* find function prototype */
	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
1206
		verbose("invalid func %s#%d\n", func_id_name(func_id), func_id);
1207 1208 1209 1210 1211 1212 1213
		return -EINVAL;
	}

	if (env->prog->aux->ops->get_func_proto)
		fn = env->prog->aux->ops->get_func_proto(func_id);

	if (!fn) {
1214
		verbose("unknown func %s#%d\n", func_id_name(func_id), func_id);
1215 1216 1217 1218
		return -EINVAL;
	}

	/* eBPF programs must be GPL compatible to use GPL-ed functions */
1219
	if (!env->prog->gpl_compatible && fn->gpl_only) {
1220 1221 1222 1223
		verbose("cannot call GPL only function from proprietary program\n");
		return -EINVAL;
	}

1224
	changes_data = bpf_helper_changes_pkt_data(fn->func);
A
Alexei Starovoitov 已提交
1225

1226
	memset(&meta, 0, sizeof(meta));
1227
	meta.pkt_access = fn->pkt_access;
1228

1229 1230 1231 1232 1233
	/* We only support one arg being in raw mode at the moment, which
	 * is sufficient for the helper functions we have right now.
	 */
	err = check_raw_mode(fn);
	if (err) {
1234 1235
		verbose("kernel subsystem misconfigured func %s#%d\n",
			func_id_name(func_id), func_id);
1236 1237 1238
		return err;
	}

1239
	/* check args */
1240
	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
1241 1242
	if (err)
		return err;
1243
	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
1244 1245
	if (err)
		return err;
1246
	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
1247 1248
	if (err)
		return err;
1249
	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
1250 1251
	if (err)
		return err;
1252
	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
1253 1254 1255
	if (err)
		return err;

1256 1257 1258 1259 1260 1261 1262 1263 1264
	/* Mark slots with STACK_MISC in case of raw mode, stack offset
	 * is inferred from register state.
	 */
	for (i = 0; i < meta.access_size; i++) {
		err = check_mem_access(env, meta.regno, i, BPF_B, BPF_WRITE, -1);
		if (err)
			return err;
	}

1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
	/* reset caller saved regs */
	for (i = 0; i < CALLER_SAVED_REGS; i++) {
		reg = regs + caller_saved[i];
		reg->type = NOT_INIT;
		reg->imm = 0;
	}

	/* update return register */
	if (fn->ret_type == RET_INTEGER) {
		regs[BPF_REG_0].type = UNKNOWN_VALUE;
	} else if (fn->ret_type == RET_VOID) {
		regs[BPF_REG_0].type = NOT_INIT;
	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
1279
		regs[BPF_REG_0].max_value = regs[BPF_REG_0].min_value = 0;
1280 1281 1282 1283
		/* remember map_ptr, so that check_map_access()
		 * can check 'value_size' boundary of memory access
		 * to map element returned from bpf_map_lookup_elem()
		 */
1284
		if (meta.map_ptr == NULL) {
1285 1286 1287
			verbose("kernel subsystem misconfigured verifier\n");
			return -EINVAL;
		}
1288
		regs[BPF_REG_0].map_ptr = meta.map_ptr;
1289
		regs[BPF_REG_0].id = ++env->id_gen;
1290
	} else {
1291 1292
		verbose("unknown return type %d of func %s#%d\n",
			fn->ret_type, func_id_name(func_id), func_id);
1293 1294
		return -EINVAL;
	}
1295

1296
	err = check_map_func_compatibility(meta.map_ptr, func_id);
1297 1298
	if (err)
		return err;
1299

A
Alexei Starovoitov 已提交
1300 1301 1302 1303 1304
	if (changes_data)
		clear_all_pkt_pointers(env);
	return 0;
}

1305 1306
static int check_packet_ptr_add(struct bpf_verifier_env *env,
				struct bpf_insn *insn)
A
Alexei Starovoitov 已提交
1307
{
1308 1309 1310 1311
	struct bpf_reg_state *regs = env->cur_state.regs;
	struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
	struct bpf_reg_state *src_reg = &regs[insn->src_reg];
	struct bpf_reg_state tmp_reg;
A
Alexei Starovoitov 已提交
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
	s32 imm;

	if (BPF_SRC(insn->code) == BPF_K) {
		/* pkt_ptr += imm */
		imm = insn->imm;

add_imm:
		if (imm <= 0) {
			verbose("addition of negative constant to packet pointer is not allowed\n");
			return -EACCES;
		}
		if (imm >= MAX_PACKET_OFF ||
		    imm + dst_reg->off >= MAX_PACKET_OFF) {
			verbose("constant %d is too large to add to packet pointer\n",
				imm);
			return -EACCES;
		}
		/* a constant was added to pkt_ptr.
		 * Remember it while keeping the same 'id'
		 */
		dst_reg->off += imm;
	} else {
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
		if (src_reg->type == PTR_TO_PACKET) {
			/* R6=pkt(id=0,off=0,r=62) R7=imm22; r7 += r6 */
			tmp_reg = *dst_reg;  /* save r7 state */
			*dst_reg = *src_reg; /* copy pkt_ptr state r6 into r7 */
			src_reg = &tmp_reg;  /* pretend it's src_reg state */
			/* if the checks below reject it, the copy won't matter,
			 * since we're rejecting the whole program. If all ok,
			 * then imm22 state will be added to r7
			 * and r7 will be pkt(id=0,off=22,r=62) while
			 * r6 will stay as pkt(id=0,off=0,r=62)
			 */
		}

A
Alexei Starovoitov 已提交
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
		if (src_reg->type == CONST_IMM) {
			/* pkt_ptr += reg where reg is known constant */
			imm = src_reg->imm;
			goto add_imm;
		}
		/* disallow pkt_ptr += reg
		 * if reg is not uknown_value with guaranteed zero upper bits
		 * otherwise pkt_ptr may overflow and addition will become
		 * subtraction which is not allowed
		 */
		if (src_reg->type != UNKNOWN_VALUE) {
			verbose("cannot add '%s' to ptr_to_packet\n",
				reg_type_str[src_reg->type]);
			return -EACCES;
		}
		if (src_reg->imm < 48) {
			verbose("cannot add integer value with %lld upper zero bits to ptr_to_packet\n",
				src_reg->imm);
			return -EACCES;
		}
		/* dst_reg stays as pkt_ptr type and since some positive
		 * integer value was added to the pointer, increment its 'id'
		 */
1370
		dst_reg->id = ++env->id_gen;
A
Alexei Starovoitov 已提交
1371 1372 1373 1374 1375 1376 1377 1378

		/* something was added to pkt_ptr, set range and off to zero */
		dst_reg->off = 0;
		dst_reg->range = 0;
	}
	return 0;
}

1379
static int evaluate_reg_alu(struct bpf_verifier_env *env, struct bpf_insn *insn)
A
Alexei Starovoitov 已提交
1380
{
1381 1382
	struct bpf_reg_state *regs = env->cur_state.regs;
	struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
A
Alexei Starovoitov 已提交
1383 1384 1385 1386 1387 1388 1389 1390 1391
	u8 opcode = BPF_OP(insn->code);
	s64 imm_log2;

	/* for type == UNKNOWN_VALUE:
	 * imm > 0 -> number of zero upper bits
	 * imm == 0 -> don't track which is the same as all bits can be non-zero
	 */

	if (BPF_SRC(insn->code) == BPF_X) {
1392
		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
A
Alexei Starovoitov 已提交
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480

		if (src_reg->type == UNKNOWN_VALUE && src_reg->imm > 0 &&
		    dst_reg->imm && opcode == BPF_ADD) {
			/* dreg += sreg
			 * where both have zero upper bits. Adding them
			 * can only result making one more bit non-zero
			 * in the larger value.
			 * Ex. 0xffff (imm=48) + 1 (imm=63) = 0x10000 (imm=47)
			 *     0xffff (imm=48) + 0xffff = 0x1fffe (imm=47)
			 */
			dst_reg->imm = min(dst_reg->imm, src_reg->imm);
			dst_reg->imm--;
			return 0;
		}
		if (src_reg->type == CONST_IMM && src_reg->imm > 0 &&
		    dst_reg->imm && opcode == BPF_ADD) {
			/* dreg += sreg
			 * where dreg has zero upper bits and sreg is const.
			 * Adding them can only result making one more bit
			 * non-zero in the larger value.
			 */
			imm_log2 = __ilog2_u64((long long)src_reg->imm);
			dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
			dst_reg->imm--;
			return 0;
		}
		/* all other cases non supported yet, just mark dst_reg */
		dst_reg->imm = 0;
		return 0;
	}

	/* sign extend 32-bit imm into 64-bit to make sure that
	 * negative values occupy bit 63. Note ilog2() would have
	 * been incorrect, since sizeof(insn->imm) == 4
	 */
	imm_log2 = __ilog2_u64((long long)insn->imm);

	if (dst_reg->imm && opcode == BPF_LSH) {
		/* reg <<= imm
		 * if reg was a result of 2 byte load, then its imm == 48
		 * which means that upper 48 bits are zero and shifting this reg
		 * left by 4 would mean that upper 44 bits are still zero
		 */
		dst_reg->imm -= insn->imm;
	} else if (dst_reg->imm && opcode == BPF_MUL) {
		/* reg *= imm
		 * if multiplying by 14 subtract 4
		 * This is conservative calculation of upper zero bits.
		 * It's not trying to special case insn->imm == 1 or 0 cases
		 */
		dst_reg->imm -= imm_log2 + 1;
	} else if (opcode == BPF_AND) {
		/* reg &= imm */
		dst_reg->imm = 63 - imm_log2;
	} else if (dst_reg->imm && opcode == BPF_ADD) {
		/* reg += imm */
		dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
		dst_reg->imm--;
	} else if (opcode == BPF_RSH) {
		/* reg >>= imm
		 * which means that after right shift, upper bits will be zero
		 * note that verifier already checked that
		 * 0 <= imm < 64 for shift insn
		 */
		dst_reg->imm += insn->imm;
		if (unlikely(dst_reg->imm > 64))
			/* some dumb code did:
			 * r2 = *(u32 *)mem;
			 * r2 >>= 32;
			 * and all bits are zero now */
			dst_reg->imm = 64;
	} else {
		/* all other alu ops, means that we don't know what will
		 * happen to the value, mark it with unknown number of zero bits
		 */
		dst_reg->imm = 0;
	}

	if (dst_reg->imm < 0) {
		/* all 64 bits of the register can contain non-zero bits
		 * and such value cannot be added to ptr_to_packet, since it
		 * may overflow, mark it as unknown to avoid further eval
		 */
		dst_reg->imm = 0;
	}
	return 0;
}

1481 1482
static int evaluate_reg_imm_alu(struct bpf_verifier_env *env,
				struct bpf_insn *insn)
A
Alexei Starovoitov 已提交
1483
{
1484 1485 1486
	struct bpf_reg_state *regs = env->cur_state.regs;
	struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
	struct bpf_reg_state *src_reg = &regs[insn->src_reg];
A
Alexei Starovoitov 已提交
1487 1488
	u8 opcode = BPF_OP(insn->code);

1489 1490
	/* dst_reg->type == CONST_IMM here, simulate execution of 'add'/'or'
	 * insn. Don't care about overflow or negative values, just add them
A
Alexei Starovoitov 已提交
1491 1492 1493 1494 1495 1496
	 */
	if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_K)
		dst_reg->imm += insn->imm;
	else if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_X &&
		 src_reg->type == CONST_IMM)
		dst_reg->imm += src_reg->imm;
1497 1498 1499 1500 1501
	else if (opcode == BPF_OR && BPF_SRC(insn->code) == BPF_K)
		dst_reg->imm |= insn->imm;
	else if (opcode == BPF_OR && BPF_SRC(insn->code) == BPF_X &&
		 src_reg->type == CONST_IMM)
		dst_reg->imm |= src_reg->imm;
A
Alexei Starovoitov 已提交
1502 1503
	else
		mark_reg_unknown_value(regs, insn->dst_reg);
1504 1505 1506
	return 0;
}

1507 1508 1509 1510
static void check_reg_overflow(struct bpf_reg_state *reg)
{
	if (reg->max_value > BPF_REGISTER_MAX_RANGE)
		reg->max_value = BPF_REGISTER_MAX_RANGE;
1511 1512
	if (reg->min_value < BPF_REGISTER_MIN_RANGE ||
	    reg->min_value > BPF_REGISTER_MAX_RANGE)
1513 1514 1515 1516 1517 1518 1519
		reg->min_value = BPF_REGISTER_MIN_RANGE;
}

static void adjust_reg_min_max_vals(struct bpf_verifier_env *env,
				    struct bpf_insn *insn)
{
	struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
1520 1521
	s64 min_val = BPF_REGISTER_MIN_RANGE;
	u64 max_val = BPF_REGISTER_MAX_RANGE;
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
	u8 opcode = BPF_OP(insn->code);

	dst_reg = &regs[insn->dst_reg];
	if (BPF_SRC(insn->code) == BPF_X) {
		check_reg_overflow(&regs[insn->src_reg]);
		min_val = regs[insn->src_reg].min_value;
		max_val = regs[insn->src_reg].max_value;

		/* If the source register is a random pointer then the
		 * min_value/max_value values represent the range of the known
		 * accesses into that value, not the actual min/max value of the
		 * register itself.  In this case we have to reset the reg range
		 * values so we know it is not safe to look at.
		 */
		if (regs[insn->src_reg].type != CONST_IMM &&
		    regs[insn->src_reg].type != UNKNOWN_VALUE) {
			min_val = BPF_REGISTER_MIN_RANGE;
			max_val = BPF_REGISTER_MAX_RANGE;
		}
	} else if (insn->imm < BPF_REGISTER_MAX_RANGE &&
		   (s64)insn->imm > BPF_REGISTER_MIN_RANGE) {
		min_val = max_val = insn->imm;
	}

	/* We don't know anything about what was done to this register, mark it
	 * as unknown.
	 */
	if (min_val == BPF_REGISTER_MIN_RANGE &&
	    max_val == BPF_REGISTER_MAX_RANGE) {
		reset_reg_range_values(regs, insn->dst_reg);
		return;
	}

1555 1556 1557 1558 1559 1560 1561 1562 1563
	/* If one of our values was at the end of our ranges then we can't just
	 * do our normal operations to the register, we need to set the values
	 * to the min/max since they are undefined.
	 */
	if (min_val == BPF_REGISTER_MIN_RANGE)
		dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
	if (max_val == BPF_REGISTER_MAX_RANGE)
		dst_reg->max_value = BPF_REGISTER_MAX_RANGE;

1564 1565
	switch (opcode) {
	case BPF_ADD:
1566 1567 1568 1569
		if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
			dst_reg->min_value += min_val;
		if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
			dst_reg->max_value += max_val;
1570 1571
		break;
	case BPF_SUB:
1572 1573 1574 1575
		if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
			dst_reg->min_value -= min_val;
		if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
			dst_reg->max_value -= max_val;
1576 1577
		break;
	case BPF_MUL:
1578 1579 1580 1581
		if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
			dst_reg->min_value *= min_val;
		if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
			dst_reg->max_value *= max_val;
1582 1583
		break;
	case BPF_AND:
1584 1585 1586 1587 1588 1589 1590 1591
		/* Disallow AND'ing of negative numbers, ain't nobody got time
		 * for that.  Otherwise the minimum is 0 and the max is the max
		 * value we could AND against.
		 */
		if (min_val < 0)
			dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
		else
			dst_reg->min_value = 0;
1592 1593 1594 1595 1596 1597 1598 1599 1600
		dst_reg->max_value = max_val;
		break;
	case BPF_LSH:
		/* Gotta have special overflow logic here, if we're shifting
		 * more than MAX_RANGE then just assume we have an invalid
		 * range.
		 */
		if (min_val > ilog2(BPF_REGISTER_MAX_RANGE))
			dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1601
		else if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1602 1603 1604 1605
			dst_reg->min_value <<= min_val;

		if (max_val > ilog2(BPF_REGISTER_MAX_RANGE))
			dst_reg->max_value = BPF_REGISTER_MAX_RANGE;
1606
		else if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1607 1608 1609
			dst_reg->max_value <<= max_val;
		break;
	case BPF_RSH:
1610 1611
		/* RSH by a negative number is undefined, and the BPF_RSH is an
		 * unsigned shift, so make the appropriate casts.
1612
		 */
1613 1614 1615 1616 1617 1618 1619
		if (min_val < 0 || dst_reg->min_value < 0)
			dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
		else
			dst_reg->min_value =
				(u64)(dst_reg->min_value) >> min_val;
		if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
			dst_reg->max_value >>= max_val;
1620 1621 1622 1623 1624 1625 1626 1627 1628
		break;
	default:
		reset_reg_range_values(regs, insn->dst_reg);
		break;
	}

	check_reg_overflow(dst_reg);
}

1629
/* check validity of 32-bit and 64-bit arithmetic operations */
1630
static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
1631
{
1632
	struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
	u8 opcode = BPF_OP(insn->code);
	int err;

	if (opcode == BPF_END || opcode == BPF_NEG) {
		if (opcode == BPF_NEG) {
			if (BPF_SRC(insn->code) != 0 ||
			    insn->src_reg != BPF_REG_0 ||
			    insn->off != 0 || insn->imm != 0) {
				verbose("BPF_NEG uses reserved fields\n");
				return -EINVAL;
			}
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64)) {
				verbose("BPF_END uses reserved fields\n");
				return -EINVAL;
			}
		}

		/* check src operand */
		err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
		if (err)
			return err;

1657 1658 1659 1660 1661 1662
		if (is_pointer_value(env, insn->dst_reg)) {
			verbose("R%d pointer arithmetic prohibited\n",
				insn->dst_reg);
			return -EACCES;
		}

1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
		/* check dest operand */
		err = check_reg_arg(regs, insn->dst_reg, DST_OP);
		if (err)
			return err;

	} else if (opcode == BPF_MOV) {

		if (BPF_SRC(insn->code) == BPF_X) {
			if (insn->imm != 0 || insn->off != 0) {
				verbose("BPF_MOV uses reserved fields\n");
				return -EINVAL;
			}

			/* check src operand */
			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
			if (err)
				return err;
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
				verbose("BPF_MOV uses reserved fields\n");
				return -EINVAL;
			}
		}

		/* check dest operand */
		err = check_reg_arg(regs, insn->dst_reg, DST_OP);
		if (err)
			return err;

1692 1693 1694 1695 1696
		/* we are setting our register to something new, we need to
		 * reset its range values.
		 */
		reset_reg_range_values(regs, insn->dst_reg);

1697 1698 1699 1700 1701 1702 1703
		if (BPF_SRC(insn->code) == BPF_X) {
			if (BPF_CLASS(insn->code) == BPF_ALU64) {
				/* case: R1 = R2
				 * copy register state to dest reg
				 */
				regs[insn->dst_reg] = regs[insn->src_reg];
			} else {
1704 1705 1706 1707 1708
				if (is_pointer_value(env, insn->src_reg)) {
					verbose("R%d partial copy of pointer\n",
						insn->src_reg);
					return -EACCES;
				}
1709
				mark_reg_unknown_value(regs, insn->dst_reg);
1710 1711 1712 1713 1714 1715 1716
			}
		} else {
			/* case: R = imm
			 * remember the value we stored into this reg
			 */
			regs[insn->dst_reg].type = CONST_IMM;
			regs[insn->dst_reg].imm = insn->imm;
1717 1718
			regs[insn->dst_reg].max_value = insn->imm;
			regs[insn->dst_reg].min_value = insn->imm;
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
		}

	} else if (opcode > BPF_END) {
		verbose("invalid BPF_ALU opcode %x\n", opcode);
		return -EINVAL;

	} else {	/* all other ALU ops: and, sub, xor, add, ... */

		if (BPF_SRC(insn->code) == BPF_X) {
			if (insn->imm != 0 || insn->off != 0) {
				verbose("BPF_ALU uses reserved fields\n");
				return -EINVAL;
			}
			/* check src1 operand */
			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
			if (err)
				return err;
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
				verbose("BPF_ALU uses reserved fields\n");
				return -EINVAL;
			}
		}

		/* check src2 operand */
		err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
		if (err)
			return err;

		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
			verbose("div by zero\n");
			return -EINVAL;
		}

R
Rabin Vincent 已提交
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;

			if (insn->imm < 0 || insn->imm >= size) {
				verbose("invalid shift %d\n", insn->imm);
				return -EINVAL;
			}
		}

A
Alexei Starovoitov 已提交
1764 1765 1766 1767 1768 1769 1770
		/* check dest operand */
		err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
		if (err)
			return err;

		dst_reg = &regs[insn->dst_reg];

1771 1772 1773
		/* first we want to adjust our ranges. */
		adjust_reg_min_max_vals(env, insn);

1774 1775
		/* pattern match 'bpf_add Rx, imm' instruction */
		if (opcode == BPF_ADD && BPF_CLASS(insn->code) == BPF_ALU64 &&
A
Alexei Starovoitov 已提交
1776 1777 1778 1779
		    dst_reg->type == FRAME_PTR && BPF_SRC(insn->code) == BPF_K) {
			dst_reg->type = PTR_TO_STACK;
			dst_reg->imm = insn->imm;
			return 0;
A
Alexei Starovoitov 已提交
1780 1781
		} else if (opcode == BPF_ADD &&
			   BPF_CLASS(insn->code) == BPF_ALU64 &&
1782 1783 1784
			   (dst_reg->type == PTR_TO_PACKET ||
			    (BPF_SRC(insn->code) == BPF_X &&
			     regs[insn->src_reg].type == PTR_TO_PACKET))) {
A
Alexei Starovoitov 已提交
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
			/* ptr_to_packet += K|X */
			return check_packet_ptr_add(env, insn);
		} else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
			   dst_reg->type == UNKNOWN_VALUE &&
			   env->allow_ptr_leaks) {
			/* unknown += K|X */
			return evaluate_reg_alu(env, insn);
		} else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
			   dst_reg->type == CONST_IMM &&
			   env->allow_ptr_leaks) {
			/* reg_imm += K|X */
			return evaluate_reg_imm_alu(env, insn);
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
		} else if (is_pointer_value(env, insn->dst_reg)) {
			verbose("R%d pointer arithmetic prohibited\n",
				insn->dst_reg);
			return -EACCES;
		} else if (BPF_SRC(insn->code) == BPF_X &&
			   is_pointer_value(env, insn->src_reg)) {
			verbose("R%d pointer arithmetic prohibited\n",
				insn->src_reg);
			return -EACCES;
		}
1807

1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
		/* If we did pointer math on a map value then just set it to our
		 * PTR_TO_MAP_VALUE_ADJ type so we can deal with any stores or
		 * loads to this register appropriately, otherwise just mark the
		 * register as unknown.
		 */
		if (env->allow_ptr_leaks &&
		    (dst_reg->type == PTR_TO_MAP_VALUE ||
		     dst_reg->type == PTR_TO_MAP_VALUE_ADJ))
			dst_reg->type = PTR_TO_MAP_VALUE_ADJ;
		else
			mark_reg_unknown_value(regs, insn->dst_reg);
1819 1820 1821 1822 1823
	}

	return 0;
}

1824 1825
static void find_good_pkt_pointers(struct bpf_verifier_state *state,
				   struct bpf_reg_state *dst_reg)
A
Alexei Starovoitov 已提交
1826
{
1827
	struct bpf_reg_state *regs = state->regs, *reg;
A
Alexei Starovoitov 已提交
1828
	int i;
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857

	/* LLVM can generate two kind of checks:
	 *
	 * Type 1:
	 *
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (r2 > pkt_end) goto <handle exception>
	 *   <access okay>
	 *
	 *   Where:
	 *     r2 == dst_reg, pkt_end == src_reg
	 *     r2=pkt(id=n,off=8,r=0)
	 *     r3=pkt(id=n,off=0,r=0)
	 *
	 * Type 2:
	 *
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (pkt_end >= r2) goto <access okay>
	 *   <handle exception>
	 *
	 *   Where:
	 *     pkt_end == dst_reg, r2 == src_reg
	 *     r2=pkt(id=n,off=8,r=0)
	 *     r3=pkt(id=n,off=0,r=0)
	 *
	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
	 * so that range of bytes [r3, r3 + 8) is safe to access.
A
Alexei Starovoitov 已提交
1858
	 */
1859

A
Alexei Starovoitov 已提交
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
	for (i = 0; i < MAX_BPF_REG; i++)
		if (regs[i].type == PTR_TO_PACKET && regs[i].id == dst_reg->id)
			regs[i].range = dst_reg->off;

	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
		if (state->stack_slot_type[i] != STACK_SPILL)
			continue;
		reg = &state->spilled_regs[i / BPF_REG_SIZE];
		if (reg->type == PTR_TO_PACKET && reg->id == dst_reg->id)
			reg->range = dst_reg->off;
	}
}

1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
/* Adjusts the register min/max values in the case that the dst_reg is the
 * variable register that we are working on, and src_reg is a constant or we're
 * simply doing a BPF_K check.
 */
static void reg_set_min_max(struct bpf_reg_state *true_reg,
			    struct bpf_reg_state *false_reg, u64 val,
			    u8 opcode)
{
	switch (opcode) {
	case BPF_JEQ:
		/* If this is false then we know nothing Jon Snow, but if it is
		 * true then we know for sure.
		 */
		true_reg->max_value = true_reg->min_value = val;
		break;
	case BPF_JNE:
		/* If this is true we know nothing Jon Snow, but if it is false
		 * we know the value for sure;
		 */
		false_reg->max_value = false_reg->min_value = val;
		break;
	case BPF_JGT:
		/* Unsigned comparison, the minimum value is 0. */
		false_reg->min_value = 0;
	case BPF_JSGT:
		/* If this is false then we know the maximum val is val,
		 * otherwise we know the min val is val+1.
		 */
		false_reg->max_value = val;
		true_reg->min_value = val + 1;
		break;
	case BPF_JGE:
		/* Unsigned comparison, the minimum value is 0. */
		false_reg->min_value = 0;
	case BPF_JSGE:
		/* If this is false then we know the maximum value is val - 1,
		 * otherwise we know the mimimum value is val.
		 */
		false_reg->max_value = val - 1;
		true_reg->min_value = val;
		break;
	default:
		break;
	}

	check_reg_overflow(false_reg);
	check_reg_overflow(true_reg);
}

/* Same as above, but for the case that dst_reg is a CONST_IMM reg and src_reg
 * is the variable reg.
 */
static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
				struct bpf_reg_state *false_reg, u64 val,
				u8 opcode)
{
	switch (opcode) {
	case BPF_JEQ:
		/* If this is false then we know nothing Jon Snow, but if it is
		 * true then we know for sure.
		 */
		true_reg->max_value = true_reg->min_value = val;
		break;
	case BPF_JNE:
		/* If this is true we know nothing Jon Snow, but if it is false
		 * we know the value for sure;
		 */
		false_reg->max_value = false_reg->min_value = val;
		break;
	case BPF_JGT:
		/* Unsigned comparison, the minimum value is 0. */
		true_reg->min_value = 0;
	case BPF_JSGT:
		/*
		 * If this is false, then the val is <= the register, if it is
		 * true the register <= to the val.
		 */
		false_reg->min_value = val;
		true_reg->max_value = val - 1;
		break;
	case BPF_JGE:
		/* Unsigned comparison, the minimum value is 0. */
		true_reg->min_value = 0;
	case BPF_JSGE:
		/* If this is false then constant < register, if it is true then
		 * the register < constant.
		 */
		false_reg->min_value = val + 1;
		true_reg->max_value = val;
		break;
	default:
		break;
	}

	check_reg_overflow(false_reg);
	check_reg_overflow(true_reg);
}

1971 1972 1973 1974 1975 1976 1977
static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
			 enum bpf_reg_type type)
{
	struct bpf_reg_state *reg = &regs[regno];

	if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
		reg->type = type;
1978 1979 1980 1981 1982
		/* We don't need id from this point onwards anymore, thus we
		 * should better reset it, so that state pruning has chances
		 * to take effect.
		 */
		reg->id = 0;
1983
		if (type == UNKNOWN_VALUE)
1984
			__mark_reg_unknown_value(regs, regno);
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
	}
}

/* The logic is similar to find_good_pkt_pointers(), both could eventually
 * be folded together at some point.
 */
static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
			  enum bpf_reg_type type)
{
	struct bpf_reg_state *regs = state->regs;
1995
	u32 id = regs[regno].id;
1996 1997 1998
	int i;

	for (i = 0; i < MAX_BPF_REG; i++)
1999
		mark_map_reg(regs, i, id, type);
2000 2001 2002 2003

	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
		if (state->stack_slot_type[i] != STACK_SPILL)
			continue;
2004
		mark_map_reg(state->spilled_regs, i / BPF_REG_SIZE, id, type);
2005 2006 2007
	}
}

2008
static int check_cond_jmp_op(struct bpf_verifier_env *env,
2009 2010
			     struct bpf_insn *insn, int *insn_idx)
{
2011 2012
	struct bpf_verifier_state *other_branch, *this_branch = &env->cur_state;
	struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
	u8 opcode = BPF_OP(insn->code);
	int err;

	if (opcode > BPF_EXIT) {
		verbose("invalid BPF_JMP opcode %x\n", opcode);
		return -EINVAL;
	}

	if (BPF_SRC(insn->code) == BPF_X) {
		if (insn->imm != 0) {
			verbose("BPF_JMP uses reserved fields\n");
			return -EINVAL;
		}

		/* check src1 operand */
		err = check_reg_arg(regs, insn->src_reg, SRC_OP);
		if (err)
			return err;
2031 2032 2033 2034 2035 2036

		if (is_pointer_value(env, insn->src_reg)) {
			verbose("R%d pointer comparison prohibited\n",
				insn->src_reg);
			return -EACCES;
		}
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
	} else {
		if (insn->src_reg != BPF_REG_0) {
			verbose("BPF_JMP uses reserved fields\n");
			return -EINVAL;
		}
	}

	/* check src2 operand */
	err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
	if (err)
		return err;

A
Alexei Starovoitov 已提交
2049 2050
	dst_reg = &regs[insn->dst_reg];

2051 2052 2053
	/* detect if R == 0 where R was initialized to zero earlier */
	if (BPF_SRC(insn->code) == BPF_K &&
	    (opcode == BPF_JEQ || opcode == BPF_JNE) &&
A
Alexei Starovoitov 已提交
2054
	    dst_reg->type == CONST_IMM && dst_reg->imm == insn->imm) {
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
		if (opcode == BPF_JEQ) {
			/* if (imm == imm) goto pc+off;
			 * only follow the goto, ignore fall-through
			 */
			*insn_idx += insn->off;
			return 0;
		} else {
			/* if (imm != imm) goto pc+off;
			 * only follow fall-through branch, since
			 * that's where the program will go
			 */
			return 0;
		}
	}

	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
	if (!other_branch)
		return -EFAULT;

2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
	/* detect if we are comparing against a constant value so we can adjust
	 * our min/max values for our dst register.
	 */
	if (BPF_SRC(insn->code) == BPF_X) {
		if (regs[insn->src_reg].type == CONST_IMM)
			reg_set_min_max(&other_branch->regs[insn->dst_reg],
					dst_reg, regs[insn->src_reg].imm,
					opcode);
		else if (dst_reg->type == CONST_IMM)
			reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
					    &regs[insn->src_reg], dst_reg->imm,
					    opcode);
	} else {
		reg_set_min_max(&other_branch->regs[insn->dst_reg],
					dst_reg, insn->imm, opcode);
	}

2091
	/* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
2092
	if (BPF_SRC(insn->code) == BPF_K &&
A
Alexei Starovoitov 已提交
2093 2094
	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
	    dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
2095 2096 2097 2098 2099 2100 2101
		/* Mark all identical map registers in each branch as either
		 * safe or unknown depending R == 0 or R != 0 conditional.
		 */
		mark_map_regs(this_branch, insn->dst_reg,
			      opcode == BPF_JEQ ? PTR_TO_MAP_VALUE : UNKNOWN_VALUE);
		mark_map_regs(other_branch, insn->dst_reg,
			      opcode == BPF_JEQ ? UNKNOWN_VALUE : PTR_TO_MAP_VALUE);
A
Alexei Starovoitov 已提交
2102 2103 2104
	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
		   dst_reg->type == PTR_TO_PACKET &&
		   regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2105 2106 2107 2108 2109
		find_good_pkt_pointers(this_branch, dst_reg);
	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
		   dst_reg->type == PTR_TO_PACKET_END &&
		   regs[insn->src_reg].type == PTR_TO_PACKET) {
		find_good_pkt_pointers(other_branch, &regs[insn->src_reg]);
2110 2111 2112
	} else if (is_pointer_value(env, insn->dst_reg)) {
		verbose("R%d pointer comparison prohibited\n", insn->dst_reg);
		return -EACCES;
2113 2114
	}
	if (log_level)
2115
		print_verifier_state(this_branch);
2116 2117 2118
	return 0;
}

2119 2120 2121 2122 2123 2124 2125 2126
/* return the map pointer stored inside BPF_LD_IMM64 instruction */
static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
{
	u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;

	return (struct bpf_map *) (unsigned long) imm64;
}

2127
/* verify BPF_LD_IMM64 instruction */
2128
static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
2129
{
2130
	struct bpf_reg_state *regs = env->cur_state.regs;
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
	int err;

	if (BPF_SIZE(insn->code) != BPF_DW) {
		verbose("invalid BPF_LD_IMM insn\n");
		return -EINVAL;
	}
	if (insn->off != 0) {
		verbose("BPF_LD_IMM64 uses reserved fields\n");
		return -EINVAL;
	}

	err = check_reg_arg(regs, insn->dst_reg, DST_OP);
	if (err)
		return err;

2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
	if (insn->src_reg == 0) {
		/* generic move 64-bit immediate into a register,
		 * only analyzer needs to collect the ld_imm value.
		 */
		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;

		if (!env->analyzer_ops)
			return 0;

		regs[insn->dst_reg].type = CONST_IMM;
		regs[insn->dst_reg].imm = imm;
2157
		return 0;
2158
	}
2159 2160 2161 2162 2163 2164 2165 2166 2167

	/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
	BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);

	regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
	regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
	return 0;
}

2168 2169 2170 2171 2172
static bool may_access_skb(enum bpf_prog_type type)
{
	switch (type) {
	case BPF_PROG_TYPE_SOCKET_FILTER:
	case BPF_PROG_TYPE_SCHED_CLS:
2173
	case BPF_PROG_TYPE_SCHED_ACT:
2174 2175 2176 2177 2178 2179
		return true;
	default:
		return false;
	}
}

2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194
/* verify safety of LD_ABS|LD_IND instructions:
 * - they can only appear in the programs where ctx == skb
 * - since they are wrappers of function calls, they scratch R1-R5 registers,
 *   preserve R6-R9, and store return value into R0
 *
 * Implicit input:
 *   ctx == skb == R6 == CTX
 *
 * Explicit input:
 *   SRC == any register
 *   IMM == 32-bit immediate
 *
 * Output:
 *   R0 - 8/16/32-bit skb data converted to cpu endianness
 */
2195
static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
2196
{
2197
	struct bpf_reg_state *regs = env->cur_state.regs;
2198
	u8 mode = BPF_MODE(insn->code);
2199
	struct bpf_reg_state *reg;
2200 2201
	int i, err;

2202
	if (!may_access_skb(env->prog->type)) {
A
Alexei Starovoitov 已提交
2203
		verbose("BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
2204 2205 2206 2207
		return -EINVAL;
	}

	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
2208
	    BPF_SIZE(insn->code) == BPF_DW ||
2209
	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
A
Alexei Starovoitov 已提交
2210
		verbose("BPF_LD_[ABS|IND] uses reserved fields\n");
2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
		return -EINVAL;
	}

	/* check whether implicit source operand (register R6) is readable */
	err = check_reg_arg(regs, BPF_REG_6, SRC_OP);
	if (err)
		return err;

	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
		verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
		return -EINVAL;
	}

	if (mode == BPF_IND) {
		/* check explicit source operand */
		err = check_reg_arg(regs, insn->src_reg, SRC_OP);
		if (err)
			return err;
	}

	/* reset caller saved regs to unreadable */
	for (i = 0; i < CALLER_SAVED_REGS; i++) {
		reg = regs + caller_saved[i];
		reg->type = NOT_INIT;
		reg->imm = 0;
	}

	/* mark destination R0 register as readable, since it contains
	 * the value fetched from the packet
	 */
	regs[BPF_REG_0].type = UNKNOWN_VALUE;
	return 0;
}

2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
/* non-recursive DFS pseudo code
 * 1  procedure DFS-iterative(G,v):
 * 2      label v as discovered
 * 3      let S be a stack
 * 4      S.push(v)
 * 5      while S is not empty
 * 6            t <- S.pop()
 * 7            if t is what we're looking for:
 * 8                return t
 * 9            for all edges e in G.adjacentEdges(t) do
 * 10               if edge e is already labelled
 * 11                   continue with the next edge
 * 12               w <- G.adjacentVertex(t,e)
 * 13               if vertex w is not discovered and not explored
 * 14                   label e as tree-edge
 * 15                   label w as discovered
 * 16                   S.push(w)
 * 17                   continue at 5
 * 18               else if vertex w is discovered
 * 19                   label e as back-edge
 * 20               else
 * 21                   // vertex w is explored
 * 22                   label e as forward- or cross-edge
 * 23           label t as explored
 * 24           S.pop()
 *
 * convention:
 * 0x10 - discovered
 * 0x11 - discovered and fall-through edge labelled
 * 0x12 - discovered and fall-through and branch edges labelled
 * 0x20 - explored
 */

enum {
	DISCOVERED = 0x10,
	EXPLORED = 0x20,
	FALLTHROUGH = 1,
	BRANCH = 2,
};

2285
#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
2286

2287 2288 2289 2290 2291 2292 2293 2294 2295
static int *insn_stack;	/* stack of insns to process */
static int cur_stack;	/* current stack index */
static int *insn_state;

/* t, w, e - match pseudo-code above:
 * t - index of current instruction
 * w - next instruction
 * e - edge
 */
2296
static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
{
	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
		return 0;

	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
		return 0;

	if (w < 0 || w >= env->prog->len) {
		verbose("jump out of range from insn %d to %d\n", t, w);
		return -EINVAL;
	}

2309 2310 2311 2312
	if (e == BRANCH)
		/* mark branch target for state pruning */
		env->explored_states[w] = STATE_LIST_MARK;

2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
	if (insn_state[w] == 0) {
		/* tree-edge */
		insn_state[t] = DISCOVERED | e;
		insn_state[w] = DISCOVERED;
		if (cur_stack >= env->prog->len)
			return -E2BIG;
		insn_stack[cur_stack++] = w;
		return 1;
	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
		verbose("back-edge from insn %d to %d\n", t, w);
		return -EINVAL;
	} else if (insn_state[w] == EXPLORED) {
		/* forward- or cross-edge */
		insn_state[t] = DISCOVERED | e;
	} else {
		verbose("insn state internal bug\n");
		return -EFAULT;
	}
	return 0;
}

/* non-recursive depth-first-search to detect loops in BPF program
 * loop == back-edge in directed graph
 */
2337
static int check_cfg(struct bpf_verifier_env *env)
2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
{
	struct bpf_insn *insns = env->prog->insnsi;
	int insn_cnt = env->prog->len;
	int ret = 0;
	int i, t;

	insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
	if (!insn_state)
		return -ENOMEM;

	insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
	if (!insn_stack) {
		kfree(insn_state);
		return -ENOMEM;
	}

	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
	insn_stack[0] = 0; /* 0 is the first instruction */
	cur_stack = 1;

peek_stack:
	if (cur_stack == 0)
		goto check_state;
	t = insn_stack[cur_stack - 1];

	if (BPF_CLASS(insns[t].code) == BPF_JMP) {
		u8 opcode = BPF_OP(insns[t].code);

		if (opcode == BPF_EXIT) {
			goto mark_explored;
		} else if (opcode == BPF_CALL) {
			ret = push_insn(t, t + 1, FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
2374 2375
			if (t + 1 < insn_cnt)
				env->explored_states[t + 1] = STATE_LIST_MARK;
2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
		} else if (opcode == BPF_JA) {
			if (BPF_SRC(insns[t].code) != BPF_K) {
				ret = -EINVAL;
				goto err_free;
			}
			/* unconditional jump with single edge */
			ret = push_insn(t, t + insns[t].off + 1,
					FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
2388 2389 2390
			/* tell verifier to check for equivalent states
			 * after every call and jump
			 */
2391 2392
			if (t + 1 < insn_cnt)
				env->explored_states[t + 1] = STATE_LIST_MARK;
2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
		} else {
			/* conditional jump with two edges */
			ret = push_insn(t, t + 1, FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;

			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
		}
	} else {
		/* all other non-branch instructions with single
		 * fall-through edge
		 */
		ret = push_insn(t, t + 1, FALLTHROUGH, env);
		if (ret == 1)
			goto peek_stack;
		else if (ret < 0)
			goto err_free;
	}

mark_explored:
	insn_state[t] = EXPLORED;
	if (cur_stack-- <= 0) {
		verbose("pop stack internal bug\n");
		ret = -EFAULT;
		goto err_free;
	}
	goto peek_stack;

check_state:
	for (i = 0; i < insn_cnt; i++) {
		if (insn_state[i] != EXPLORED) {
			verbose("unreachable insn %d\n", i);
			ret = -EINVAL;
			goto err_free;
		}
	}
	ret = 0; /* cfg looks good */

err_free:
	kfree(insn_state);
	kfree(insn_stack);
	return ret;
}

A
Alexei Starovoitov 已提交
2443 2444 2445
/* the following conditions reduce the number of explored insns
 * from ~140k to ~80k for ultra large programs that use a lot of ptr_to_packet
 */
2446 2447
static bool compare_ptrs_to_packet(struct bpf_reg_state *old,
				   struct bpf_reg_state *cur)
A
Alexei Starovoitov 已提交
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
{
	if (old->id != cur->id)
		return false;

	/* old ptr_to_packet is more conservative, since it allows smaller
	 * range. Ex:
	 * old(off=0,r=10) is equal to cur(off=0,r=20), because
	 * old(off=0,r=10) means that with range=10 the verifier proceeded
	 * further and found no issues with the program. Now we're in the same
	 * spot with cur(off=0,r=20), so we're safe too, since anything further
	 * will only be looking at most 10 bytes after this pointer.
	 */
	if (old->off == cur->off && old->range < cur->range)
		return true;

	/* old(off=20,r=10) is equal to cur(off=22,re=22 or 5 or 0)
	 * since both cannot be used for packet access and safe(old)
	 * pointer has smaller off that could be used for further
	 * 'if (ptr > data_end)' check
	 * Ex:
	 * old(off=20,r=10) and cur(off=22,r=22) and cur(off=22,r=0) mean
	 * that we cannot access the packet.
	 * The safe range is:
	 * [ptr, ptr + range - off)
	 * so whenever off >=range, it means no safe bytes from this pointer.
	 * When comparing old->off <= cur->off, it means that older code
	 * went with smaller offset and that offset was later
	 * used to figure out the safe range after 'if (ptr > data_end)' check
	 * Say, 'old' state was explored like:
	 * ... R3(off=0, r=0)
	 * R4 = R3 + 20
	 * ... now R4(off=20,r=0)  <-- here
	 * if (R4 > data_end)
	 * ... R4(off=20,r=20), R3(off=0,r=20) and R3 can be used to access.
	 * ... the code further went all the way to bpf_exit.
	 * Now the 'cur' state at the mark 'here' has R4(off=30,r=0).
	 * old_R4(off=20,r=0) equal to cur_R4(off=30,r=0), since if the verifier
	 * goes further, such cur_R4 will give larger safe packet range after
	 * 'if (R4 > data_end)' and all further insn were already good with r=20,
	 * so they will be good with r=30 and we can prune the search.
	 */
	if (old->off <= cur->off &&
	    old->off >= old->range && cur->off >= cur->range)
		return true;

	return false;
}

2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521
/* compare two verifier states
 *
 * all states stored in state_list are known to be valid, since
 * verifier reached 'bpf_exit' instruction through them
 *
 * this function is called when verifier exploring different branches of
 * execution popped from the state stack. If it sees an old state that has
 * more strict register state and more strict stack state then this execution
 * branch doesn't need to be explored further, since verifier already
 * concluded that more strict state leads to valid finish.
 *
 * Therefore two states are equivalent if register state is more conservative
 * and explored stack state is more conservative than the current one.
 * Example:
 *       explored                   current
 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
 *
 * In other words if current stack state (one being explored) has more
 * valid slots than old one that already passed validation, it means
 * the verifier can stop exploring and conclude that current state is valid too
 *
 * Similarly with registers. If explored state has register type as invalid
 * whereas register type in current state is meaningful, it means that
 * the current state will reach 'bpf_exit' instruction safely
 */
2522 2523
static bool states_equal(struct bpf_verifier_env *env,
			 struct bpf_verifier_state *old,
2524
			 struct bpf_verifier_state *cur)
2525
{
2526
	bool varlen_map_access = env->varlen_map_value_access;
2527
	struct bpf_reg_state *rold, *rcur;
2528 2529 2530
	int i;

	for (i = 0; i < MAX_BPF_REG; i++) {
A
Alexei Starovoitov 已提交
2531 2532 2533 2534 2535 2536
		rold = &old->regs[i];
		rcur = &cur->regs[i];

		if (memcmp(rold, rcur, sizeof(*rold)) == 0)
			continue;

2537 2538 2539
		/* If the ranges were not the same, but everything else was and
		 * we didn't do a variable access into a map then we are a-ok.
		 */
2540
		if (!varlen_map_access &&
A
Alexei Starovoitov 已提交
2541
		    memcmp(rold, rcur, offsetofend(struct bpf_reg_state, id)) == 0)
2542 2543
			continue;

2544 2545 2546 2547
		/* If we didn't map access then again we don't care about the
		 * mismatched range values and it's ok if our old type was
		 * UNKNOWN and we didn't go to a NOT_INIT'ed reg.
		 */
A
Alexei Starovoitov 已提交
2548
		if (rold->type == NOT_INIT ||
2549 2550
		    (!varlen_map_access && rold->type == UNKNOWN_VALUE &&
		     rcur->type != NOT_INIT))
A
Alexei Starovoitov 已提交
2551 2552
			continue;

A
Alexei Starovoitov 已提交
2553 2554 2555 2556
		if (rold->type == PTR_TO_PACKET && rcur->type == PTR_TO_PACKET &&
		    compare_ptrs_to_packet(rold, rcur))
			continue;

A
Alexei Starovoitov 已提交
2557
		return false;
2558 2559 2560
	}

	for (i = 0; i < MAX_BPF_STACK; i++) {
2561 2562 2563 2564 2565 2566 2567 2568
		if (old->stack_slot_type[i] == STACK_INVALID)
			continue;
		if (old->stack_slot_type[i] != cur->stack_slot_type[i])
			/* Ex: old explored (safe) state has STACK_SPILL in
			 * this stack slot, but current has has STACK_MISC ->
			 * this verifier states are not equivalent,
			 * return false to continue verification of this path
			 */
2569
			return false;
2570 2571 2572 2573 2574 2575 2576 2577 2578
		if (i % BPF_REG_SIZE)
			continue;
		if (memcmp(&old->spilled_regs[i / BPF_REG_SIZE],
			   &cur->spilled_regs[i / BPF_REG_SIZE],
			   sizeof(old->spilled_regs[0])))
			/* when explored and current stack slot types are
			 * the same, check that stored pointers types
			 * are the same as well.
			 * Ex: explored safe path could have stored
2579
			 * (bpf_reg_state) {.type = PTR_TO_STACK, .imm = -8}
2580
			 * but current path has stored:
2581
			 * (bpf_reg_state) {.type = PTR_TO_STACK, .imm = -16}
2582 2583 2584 2585 2586 2587
			 * such verifier states are not equivalent.
			 * return false to continue verification of this path
			 */
			return false;
		else
			continue;
2588 2589 2590 2591
	}
	return true;
}

2592
static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
2593
{
2594 2595
	struct bpf_verifier_state_list *new_sl;
	struct bpf_verifier_state_list *sl;
2596 2597 2598 2599 2600 2601 2602 2603 2604

	sl = env->explored_states[insn_idx];
	if (!sl)
		/* this 'insn_idx' instruction wasn't marked, so we will not
		 * be doing state search here
		 */
		return 0;

	while (sl != STATE_LIST_MARK) {
2605
		if (states_equal(env, &sl->state, &env->cur_state))
2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618
			/* reached equivalent register/stack state,
			 * prune the search
			 */
			return 1;
		sl = sl->next;
	}

	/* there were no equivalent states, remember current one.
	 * technically the current state is not proven to be safe yet,
	 * but it will either reach bpf_exit (which means it's safe) or
	 * it will be rejected. Since there are no loops, we won't be
	 * seeing this 'insn_idx' instruction again on the way to bpf_exit
	 */
2619
	new_sl = kmalloc(sizeof(struct bpf_verifier_state_list), GFP_USER);
2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
	if (!new_sl)
		return -ENOMEM;

	/* add new state to the head of linked list */
	memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state));
	new_sl->next = env->explored_states[insn_idx];
	env->explored_states[insn_idx] = new_sl;
	return 0;
}

2630 2631 2632 2633 2634 2635 2636 2637 2638
static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
				  int insn_idx, int prev_insn_idx)
{
	if (!env->analyzer_ops || !env->analyzer_ops->insn_hook)
		return 0;

	return env->analyzer_ops->insn_hook(env, insn_idx, prev_insn_idx);
}

2639
static int do_check(struct bpf_verifier_env *env)
2640
{
2641
	struct bpf_verifier_state *state = &env->cur_state;
2642
	struct bpf_insn *insns = env->prog->insnsi;
2643
	struct bpf_reg_state *regs = state->regs;
2644 2645 2646 2647 2648 2649 2650
	int insn_cnt = env->prog->len;
	int insn_idx, prev_insn_idx = 0;
	int insn_processed = 0;
	bool do_print_state = false;

	init_reg_state(regs);
	insn_idx = 0;
2651
	env->varlen_map_value_access = false;
2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665
	for (;;) {
		struct bpf_insn *insn;
		u8 class;
		int err;

		if (insn_idx >= insn_cnt) {
			verbose("invalid insn idx %d insn_cnt %d\n",
				insn_idx, insn_cnt);
			return -EFAULT;
		}

		insn = &insns[insn_idx];
		class = BPF_CLASS(insn->code);

2666
		if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
2667 2668 2669 2670 2671
			verbose("BPF program is too large. Proccessed %d insn\n",
				insn_processed);
			return -E2BIG;
		}

2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686
		err = is_state_visited(env, insn_idx);
		if (err < 0)
			return err;
		if (err == 1) {
			/* found equivalent state, can prune the search */
			if (log_level) {
				if (do_print_state)
					verbose("\nfrom %d to %d: safe\n",
						prev_insn_idx, insn_idx);
				else
					verbose("%d: safe\n", insn_idx);
			}
			goto process_bpf_exit;
		}

2687 2688
		if (log_level && do_print_state) {
			verbose("\nfrom %d to %d:", prev_insn_idx, insn_idx);
A
Alexei Starovoitov 已提交
2689
			print_verifier_state(&env->cur_state);
2690 2691 2692 2693 2694 2695 2696 2697
			do_print_state = false;
		}

		if (log_level) {
			verbose("%d: ", insn_idx);
			print_bpf_insn(insn);
		}

2698 2699 2700 2701
		err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
		if (err)
			return err;

2702
		if (class == BPF_ALU || class == BPF_ALU64) {
2703
			err = check_alu_op(env, insn);
2704 2705 2706 2707
			if (err)
				return err;

		} else if (class == BPF_LDX) {
2708
			enum bpf_reg_type *prev_src_type, src_reg_type;
2709 2710 2711

			/* check for reserved fields is already done */

2712 2713 2714 2715 2716 2717 2718 2719 2720
			/* check src operand */
			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
			if (err)
				return err;

			err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
			if (err)
				return err;

2721 2722
			src_reg_type = regs[insn->src_reg].type;

2723 2724 2725 2726 2727 2728 2729 2730 2731
			/* check that memory (src_reg + off) is readable,
			 * the state of dst_reg will be updated by this func
			 */
			err = check_mem_access(env, insn->src_reg, insn->off,
					       BPF_SIZE(insn->code), BPF_READ,
					       insn->dst_reg);
			if (err)
				return err;

2732
			reset_reg_range_values(regs, insn->dst_reg);
2733 2734
			if (BPF_SIZE(insn->code) != BPF_W &&
			    BPF_SIZE(insn->code) != BPF_DW) {
2735 2736 2737
				insn_idx++;
				continue;
			}
2738

2739 2740 2741
			prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;

			if (*prev_src_type == NOT_INIT) {
2742 2743
				/* saw a valid insn
				 * dst_reg = *(u32 *)(src_reg + off)
2744
				 * save type to validate intersecting paths
2745
				 */
2746
				*prev_src_type = src_reg_type;
2747

2748
			} else if (src_reg_type != *prev_src_type &&
2749
				   (src_reg_type == PTR_TO_CTX ||
2750
				    *prev_src_type == PTR_TO_CTX)) {
2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761
				/* ABuser program is trying to use the same insn
				 * dst_reg = *(u32*) (src_reg + off)
				 * with different pointer types:
				 * src_reg == ctx in one branch and
				 * src_reg == stack|map in some other branch.
				 * Reject it.
				 */
				verbose("same insn cannot be used with different pointers\n");
				return -EINVAL;
			}

2762
		} else if (class == BPF_STX) {
2763
			enum bpf_reg_type *prev_dst_type, dst_reg_type;
2764

2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781
			if (BPF_MODE(insn->code) == BPF_XADD) {
				err = check_xadd(env, insn);
				if (err)
					return err;
				insn_idx++;
				continue;
			}

			/* check src1 operand */
			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
			if (err)
				return err;
			/* check src2 operand */
			err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
			if (err)
				return err;

2782 2783
			dst_reg_type = regs[insn->dst_reg].type;

2784 2785 2786 2787 2788 2789 2790
			/* check that memory (dst_reg + off) is writeable */
			err = check_mem_access(env, insn->dst_reg, insn->off,
					       BPF_SIZE(insn->code), BPF_WRITE,
					       insn->src_reg);
			if (err)
				return err;

2791 2792 2793 2794 2795
			prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;

			if (*prev_dst_type == NOT_INIT) {
				*prev_dst_type = dst_reg_type;
			} else if (dst_reg_type != *prev_dst_type &&
2796
				   (dst_reg_type == PTR_TO_CTX ||
2797
				    *prev_dst_type == PTR_TO_CTX)) {
2798 2799 2800 2801
				verbose("same insn cannot be used with different pointers\n");
				return -EINVAL;
			}

2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866
		} else if (class == BPF_ST) {
			if (BPF_MODE(insn->code) != BPF_MEM ||
			    insn->src_reg != BPF_REG_0) {
				verbose("BPF_ST uses reserved fields\n");
				return -EINVAL;
			}
			/* check src operand */
			err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
			if (err)
				return err;

			/* check that memory (dst_reg + off) is writeable */
			err = check_mem_access(env, insn->dst_reg, insn->off,
					       BPF_SIZE(insn->code), BPF_WRITE,
					       -1);
			if (err)
				return err;

		} else if (class == BPF_JMP) {
			u8 opcode = BPF_OP(insn->code);

			if (opcode == BPF_CALL) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->off != 0 ||
				    insn->src_reg != BPF_REG_0 ||
				    insn->dst_reg != BPF_REG_0) {
					verbose("BPF_CALL uses reserved fields\n");
					return -EINVAL;
				}

				err = check_call(env, insn->imm);
				if (err)
					return err;

			} else if (opcode == BPF_JA) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->imm != 0 ||
				    insn->src_reg != BPF_REG_0 ||
				    insn->dst_reg != BPF_REG_0) {
					verbose("BPF_JA uses reserved fields\n");
					return -EINVAL;
				}

				insn_idx += insn->off + 1;
				continue;

			} else if (opcode == BPF_EXIT) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->imm != 0 ||
				    insn->src_reg != BPF_REG_0 ||
				    insn->dst_reg != BPF_REG_0) {
					verbose("BPF_EXIT uses reserved fields\n");
					return -EINVAL;
				}

				/* eBPF calling convetion is such that R0 is used
				 * to return the value from eBPF program.
				 * Make sure that it's readable at this time
				 * of bpf_exit, which means that program wrote
				 * something into it earlier
				 */
				err = check_reg_arg(regs, BPF_REG_0, SRC_OP);
				if (err)
					return err;

2867 2868 2869 2870 2871
				if (is_pointer_value(env, BPF_REG_0)) {
					verbose("R0 leaks addr as return value\n");
					return -EACCES;
				}

2872
process_bpf_exit:
2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888
				insn_idx = pop_stack(env, &prev_insn_idx);
				if (insn_idx < 0) {
					break;
				} else {
					do_print_state = true;
					continue;
				}
			} else {
				err = check_cond_jmp_op(env, insn, &insn_idx);
				if (err)
					return err;
			}
		} else if (class == BPF_LD) {
			u8 mode = BPF_MODE(insn->code);

			if (mode == BPF_ABS || mode == BPF_IND) {
2889 2890 2891 2892
				err = check_ld_abs(env, insn);
				if (err)
					return err;

2893 2894 2895 2896 2897 2898 2899 2900 2901 2902
			} else if (mode == BPF_IMM) {
				err = check_ld_imm(env, insn);
				if (err)
					return err;

				insn_idx++;
			} else {
				verbose("invalid BPF_LD mode\n");
				return -EINVAL;
			}
2903
			reset_reg_range_values(regs, insn->dst_reg);
2904 2905 2906 2907 2908 2909 2910 2911
		} else {
			verbose("unknown insn class %d\n", class);
			return -EINVAL;
		}

		insn_idx++;
	}

A
Alexei Starovoitov 已提交
2912
	verbose("processed %d insns\n", insn_processed);
2913 2914 2915
	return 0;
}

2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929
static int check_map_prog_compatibility(struct bpf_map *map,
					struct bpf_prog *prog)

{
	if (prog->type == BPF_PROG_TYPE_PERF_EVENT &&
	    (map->map_type == BPF_MAP_TYPE_HASH ||
	     map->map_type == BPF_MAP_TYPE_PERCPU_HASH) &&
	    (map->map_flags & BPF_F_NO_PREALLOC)) {
		verbose("perf_event programs can only use preallocated hash map\n");
		return -EINVAL;
	}
	return 0;
}

2930 2931 2932
/* look for pseudo eBPF instructions that access map FDs and
 * replace them with actual map pointers
 */
2933
static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
2934 2935 2936
{
	struct bpf_insn *insn = env->prog->insnsi;
	int insn_cnt = env->prog->len;
2937
	int i, j, err;
2938

2939
	err = bpf_prog_calc_tag(env->prog);
2940 2941 2942
	if (err)
		return err;

2943
	for (i = 0; i < insn_cnt; i++, insn++) {
2944
		if (BPF_CLASS(insn->code) == BPF_LDX &&
2945
		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
2946 2947 2948 2949
			verbose("BPF_LDX uses reserved fields\n");
			return -EINVAL;
		}

2950 2951 2952 2953 2954 2955 2956
		if (BPF_CLASS(insn->code) == BPF_STX &&
		    ((BPF_MODE(insn->code) != BPF_MEM &&
		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
			verbose("BPF_STX uses reserved fields\n");
			return -EINVAL;
		}

2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977
		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
			struct bpf_map *map;
			struct fd f;

			if (i == insn_cnt - 1 || insn[1].code != 0 ||
			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
			    insn[1].off != 0) {
				verbose("invalid bpf_ld_imm64 insn\n");
				return -EINVAL;
			}

			if (insn->src_reg == 0)
				/* valid generic load 64-bit imm */
				goto next_insn;

			if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
				verbose("unrecognized bpf_ld_imm64 insn\n");
				return -EINVAL;
			}

			f = fdget(insn->imm);
2978
			map = __bpf_map_get(f);
2979 2980 2981 2982 2983 2984
			if (IS_ERR(map)) {
				verbose("fd %d is not pointing to valid bpf_map\n",
					insn->imm);
				return PTR_ERR(map);
			}

2985 2986 2987 2988 2989 2990
			err = check_map_prog_compatibility(map, env->prog);
			if (err) {
				fdput(f);
				return err;
			}

2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011
			/* store map pointer inside BPF_LD_IMM64 instruction */
			insn[0].imm = (u32) (unsigned long) map;
			insn[1].imm = ((u64) (unsigned long) map) >> 32;

			/* check whether we recorded this map already */
			for (j = 0; j < env->used_map_cnt; j++)
				if (env->used_maps[j] == map) {
					fdput(f);
					goto next_insn;
				}

			if (env->used_map_cnt >= MAX_USED_MAPS) {
				fdput(f);
				return -E2BIG;
			}

			/* hold the map. If the program is rejected by verifier,
			 * the map will be released by release_maps() or it
			 * will be used by the valid program until it's unloaded
			 * and all maps are released in free_bpf_prog_info()
			 */
A
Alexei Starovoitov 已提交
3012 3013 3014 3015 3016 3017 3018
			map = bpf_map_inc(map, false);
			if (IS_ERR(map)) {
				fdput(f);
				return PTR_ERR(map);
			}
			env->used_maps[env->used_map_cnt++] = map;

3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033
			fdput(f);
next_insn:
			insn++;
			i++;
		}
	}

	/* now all pseudo BPF_LD_IMM64 instructions load valid
	 * 'struct bpf_map *' into a register instead of user map_fd.
	 * These pointers will be used later by verifier to validate map access.
	 */
	return 0;
}

/* drop refcnt of maps used by the rejected program */
3034
static void release_maps(struct bpf_verifier_env *env)
3035 3036 3037 3038 3039 3040 3041 3042
{
	int i;

	for (i = 0; i < env->used_map_cnt; i++)
		bpf_map_put(env->used_maps[i]);
}

/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
3043
static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
3044 3045 3046 3047 3048 3049 3050 3051 3052 3053
{
	struct bpf_insn *insn = env->prog->insnsi;
	int insn_cnt = env->prog->len;
	int i;

	for (i = 0; i < insn_cnt; i++, insn++)
		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
			insn->src_reg = 0;
}

3054 3055 3056
/* convert load instructions that access fields of 'struct __sk_buff'
 * into sequence of instructions that access fields of 'struct sk_buff'
 */
3057
static int convert_ctx_accesses(struct bpf_verifier_env *env)
3058
{
3059
	const struct bpf_verifier_ops *ops = env->prog->aux->ops;
3060
	const int insn_cnt = env->prog->len;
3061
	struct bpf_insn insn_buf[16], *insn;
3062
	struct bpf_prog *new_prog;
3063
	enum bpf_access_type type;
3064
	int i, cnt, delta = 0;
3065

3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077
	if (ops->gen_prologue) {
		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
					env->prog);
		if (cnt >= ARRAY_SIZE(insn_buf)) {
			verbose("bpf verifier is misconfigured\n");
			return -EINVAL;
		} else if (cnt) {
			new_prog = bpf_patch_insn_single(env->prog, 0,
							 insn_buf, cnt);
			if (!new_prog)
				return -ENOMEM;
			env->prog = new_prog;
3078
			delta += cnt - 1;
3079 3080 3081 3082
		}
	}

	if (!ops->convert_ctx_access)
3083 3084
		return 0;

3085
	insn = env->prog->insnsi + delta;
3086

3087
	for (i = 0; i < insn_cnt; i++, insn++) {
3088 3089
		if (insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
3090
			type = BPF_READ;
3091 3092
		else if (insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
3093 3094
			type = BPF_WRITE;
		else
3095 3096
			continue;

3097
		if (env->insn_aux_data[i].ptr_type != PTR_TO_CTX)
3098 3099
			continue;

3100 3101
		cnt = ops->convert_ctx_access(type, insn->dst_reg, insn->src_reg,
					      insn->off, insn_buf, env->prog);
3102 3103 3104 3105 3106
		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
			verbose("bpf verifier is misconfigured\n");
			return -EINVAL;
		}

3107 3108
		new_prog = bpf_patch_insn_single(env->prog, i + delta, insn_buf,
						 cnt);
3109 3110 3111
		if (!new_prog)
			return -ENOMEM;

3112
		delta += cnt - 1;
3113 3114 3115

		/* keep walking new program and skip insns we just inserted */
		env->prog = new_prog;
3116
		insn      = new_prog->insnsi + i + delta;
3117 3118 3119 3120 3121
	}

	return 0;
}

3122
static void free_states(struct bpf_verifier_env *env)
3123
{
3124
	struct bpf_verifier_state_list *sl, *sln;
3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143
	int i;

	if (!env->explored_states)
		return;

	for (i = 0; i < env->prog->len; i++) {
		sl = env->explored_states[i];

		if (sl)
			while (sl != STATE_LIST_MARK) {
				sln = sl->next;
				kfree(sl);
				sl = sln;
			}
	}

	kfree(env->explored_states);
}

3144
int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
A
Alexei Starovoitov 已提交
3145
{
3146
	char __user *log_ubuf = NULL;
3147
	struct bpf_verifier_env *env;
A
Alexei Starovoitov 已提交
3148 3149
	int ret = -EINVAL;

3150
	/* 'struct bpf_verifier_env' can be global, but since it's not small,
3151 3152
	 * allocate/free it every time bpf_check() is called
	 */
3153
	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
3154 3155 3156
	if (!env)
		return -ENOMEM;

3157 3158 3159 3160 3161
	env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
				     (*prog)->len);
	ret = -ENOMEM;
	if (!env->insn_aux_data)
		goto err_free_env;
3162
	env->prog = *prog;
3163

3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179
	/* grab the mutex to protect few globals used by verifier */
	mutex_lock(&bpf_verifier_lock);

	if (attr->log_level || attr->log_buf || attr->log_size) {
		/* user requested verbose verifier output
		 * and supplied buffer to store the verification trace
		 */
		log_level = attr->log_level;
		log_ubuf = (char __user *) (unsigned long) attr->log_buf;
		log_size = attr->log_size;
		log_len = 0;

		ret = -EINVAL;
		/* log_* values have to be sane */
		if (log_size < 128 || log_size > UINT_MAX >> 8 ||
		    log_level == 0 || log_ubuf == NULL)
3180
			goto err_unlock;
3181 3182 3183 3184

		ret = -ENOMEM;
		log_buf = vmalloc(log_size);
		if (!log_buf)
3185
			goto err_unlock;
3186 3187 3188 3189
	} else {
		log_level = 0;
	}

3190 3191 3192 3193
	ret = replace_map_fd_with_map_ptr(env);
	if (ret < 0)
		goto skip_full_check;

3194
	env->explored_states = kcalloc(env->prog->len,
3195
				       sizeof(struct bpf_verifier_state_list *),
3196 3197 3198 3199 3200
				       GFP_USER);
	ret = -ENOMEM;
	if (!env->explored_states)
		goto skip_full_check;

3201 3202 3203 3204
	ret = check_cfg(env);
	if (ret < 0)
		goto skip_full_check;

3205 3206
	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);

3207
	ret = do_check(env);
3208

3209
skip_full_check:
3210
	while (pop_stack(env, NULL) >= 0);
3211
	free_states(env);
3212

3213 3214 3215 3216
	if (ret == 0)
		/* program is valid, convert *(u32*)(ctx + off) accesses */
		ret = convert_ctx_accesses(env);

3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229
	if (log_level && log_len >= log_size - 1) {
		BUG_ON(log_len >= log_size);
		/* verifier log exceeded user supplied buffer */
		ret = -ENOSPC;
		/* fall through to return what was recorded */
	}

	/* copy verifier log back to user space including trailing zero */
	if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) {
		ret = -EFAULT;
		goto free_log_buf;
	}

3230 3231
	if (ret == 0 && env->used_map_cnt) {
		/* if program passed verifier, update used_maps in bpf_prog_info */
3232 3233 3234
		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
							  sizeof(env->used_maps[0]),
							  GFP_KERNEL);
3235

3236
		if (!env->prog->aux->used_maps) {
3237 3238 3239 3240
			ret = -ENOMEM;
			goto free_log_buf;
		}

3241
		memcpy(env->prog->aux->used_maps, env->used_maps,
3242
		       sizeof(env->used_maps[0]) * env->used_map_cnt);
3243
		env->prog->aux->used_map_cnt = env->used_map_cnt;
3244 3245 3246 3247 3248 3249

		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
		 * bpf_ld_imm64 instructions
		 */
		convert_pseudo_ld_imm64(env);
	}
3250 3251 3252 3253

free_log_buf:
	if (log_level)
		vfree(log_buf);
3254
	if (!env->prog->aux->used_maps)
3255 3256 3257 3258
		/* if we didn't copy map pointers into bpf_prog_info, release
		 * them now. Otherwise free_bpf_prog_info() will release them.
		 */
		release_maps(env);
3259
	*prog = env->prog;
3260
err_unlock:
3261
	mutex_unlock(&bpf_verifier_lock);
3262 3263 3264
	vfree(env->insn_aux_data);
err_free_env:
	kfree(env);
A
Alexei Starovoitov 已提交
3265 3266
	return ret;
}
3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317

int bpf_analyzer(struct bpf_prog *prog, const struct bpf_ext_analyzer_ops *ops,
		 void *priv)
{
	struct bpf_verifier_env *env;
	int ret;

	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
	if (!env)
		return -ENOMEM;

	env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
				     prog->len);
	ret = -ENOMEM;
	if (!env->insn_aux_data)
		goto err_free_env;
	env->prog = prog;
	env->analyzer_ops = ops;
	env->analyzer_priv = priv;

	/* grab the mutex to protect few globals used by verifier */
	mutex_lock(&bpf_verifier_lock);

	log_level = 0;

	env->explored_states = kcalloc(env->prog->len,
				       sizeof(struct bpf_verifier_state_list *),
				       GFP_KERNEL);
	ret = -ENOMEM;
	if (!env->explored_states)
		goto skip_full_check;

	ret = check_cfg(env);
	if (ret < 0)
		goto skip_full_check;

	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);

	ret = do_check(env);

skip_full_check:
	while (pop_stack(env, NULL) >= 0);
	free_states(env);

	mutex_unlock(&bpf_verifier_lock);
	vfree(env->insn_aux_data);
err_free_env:
	kfree(env);
	return ret;
}
EXPORT_SYMBOL_GPL(bpf_analyzer);