slub.c 126.2 KB
Newer Older
C
Christoph Lameter 已提交
1 2 3 4
/*
 * SLUB: A slab allocator that limits cache line use instead of queuing
 * objects in per cpu and per node lists.
 *
5 6
 * The allocator synchronizes using per slab locks or atomic operatios
 * and only uses a centralized lock to manage a pool of partial slabs.
C
Christoph Lameter 已提交
7
 *
C
Christoph Lameter 已提交
8
 * (C) 2007 SGI, Christoph Lameter
9
 * (C) 2011 Linux Foundation, Christoph Lameter
C
Christoph Lameter 已提交
10 11 12
 */

#include <linux/mm.h>
N
Nick Piggin 已提交
13
#include <linux/swap.h> /* struct reclaim_state */
C
Christoph Lameter 已提交
14 15 16 17 18
#include <linux/module.h>
#include <linux/bit_spinlock.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/slab.h>
19
#include "slab.h"
20
#include <linux/proc_fs.h>
21
#include <linux/notifier.h>
C
Christoph Lameter 已提交
22
#include <linux/seq_file.h>
V
Vegard Nossum 已提交
23
#include <linux/kmemcheck.h>
C
Christoph Lameter 已提交
24 25 26 27
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/mempolicy.h>
#include <linux/ctype.h>
28
#include <linux/debugobjects.h>
C
Christoph Lameter 已提交
29
#include <linux/kallsyms.h>
30
#include <linux/memory.h>
R
Roman Zippel 已提交
31
#include <linux/math64.h>
A
Akinobu Mita 已提交
32
#include <linux/fault-inject.h>
33
#include <linux/stacktrace.h>
34
#include <linux/prefetch.h>
35
#include <linux/memcontrol.h>
C
Christoph Lameter 已提交
36

37 38
#include <trace/events/kmem.h>

39 40
#include "internal.h"

C
Christoph Lameter 已提交
41 42
/*
 * Lock order:
43
 *   1. slab_mutex (Global Mutex)
44 45
 *   2. node->list_lock
 *   3. slab_lock(page) (Only on some arches and for debugging)
C
Christoph Lameter 已提交
46
 *
47
 *   slab_mutex
48
 *
49
 *   The role of the slab_mutex is to protect the list of all the slabs
50 51 52 53 54 55 56 57 58 59 60 61 62 63
 *   and to synchronize major metadata changes to slab cache structures.
 *
 *   The slab_lock is only used for debugging and on arches that do not
 *   have the ability to do a cmpxchg_double. It only protects the second
 *   double word in the page struct. Meaning
 *	A. page->freelist	-> List of object free in a page
 *	B. page->counters	-> Counters of objects
 *	C. page->frozen		-> frozen state
 *
 *   If a slab is frozen then it is exempt from list management. It is not
 *   on any list. The processor that froze the slab is the one who can
 *   perform list operations on the page. Other processors may put objects
 *   onto the freelist but the processor that froze the slab is the only
 *   one that can retrieve the objects from the page's freelist.
C
Christoph Lameter 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
 *
 *   The list_lock protects the partial and full list on each node and
 *   the partial slab counter. If taken then no new slabs may be added or
 *   removed from the lists nor make the number of partial slabs be modified.
 *   (Note that the total number of slabs is an atomic value that may be
 *   modified without taking the list lock).
 *
 *   The list_lock is a centralized lock and thus we avoid taking it as
 *   much as possible. As long as SLUB does not have to handle partial
 *   slabs, operations can continue without any centralized lock. F.e.
 *   allocating a long series of objects that fill up slabs does not require
 *   the list lock.
 *   Interrupts are disabled during allocation and deallocation in order to
 *   make the slab allocator safe to use in the context of an irq. In addition
 *   interrupts are disabled to ensure that the processor does not change
 *   while handling per_cpu slabs, due to kernel preemption.
 *
 * SLUB assigns one slab for allocation to each processor.
 * Allocations only occur from these slabs called cpu slabs.
 *
C
Christoph Lameter 已提交
84 85
 * Slabs with free elements are kept on a partial list and during regular
 * operations no list for full slabs is used. If an object in a full slab is
C
Christoph Lameter 已提交
86
 * freed then the slab will show up again on the partial lists.
C
Christoph Lameter 已提交
87 88
 * We track full slabs for debugging purposes though because otherwise we
 * cannot scan all objects.
C
Christoph Lameter 已提交
89 90 91 92 93 94 95
 *
 * Slabs are freed when they become empty. Teardown and setup is
 * minimal so we rely on the page allocators per cpu caches for
 * fast frees and allocs.
 *
 * Overloading of page flags that are otherwise used for LRU management.
 *
96 97 98 99 100 101 102 103 104 105 106 107
 * PageActive 		The slab is frozen and exempt from list processing.
 * 			This means that the slab is dedicated to a purpose
 * 			such as satisfying allocations for a specific
 * 			processor. Objects may be freed in the slab while
 * 			it is frozen but slab_free will then skip the usual
 * 			list operations. It is up to the processor holding
 * 			the slab to integrate the slab into the slab lists
 * 			when the slab is no longer needed.
 *
 * 			One use of this flag is to mark slabs that are
 * 			used for allocations. Then such a slab becomes a cpu
 * 			slab. The cpu slab may be equipped with an additional
108
 * 			freelist that allows lockless access to
109 110
 * 			free objects in addition to the regular freelist
 * 			that requires the slab lock.
C
Christoph Lameter 已提交
111 112 113
 *
 * PageError		Slab requires special handling due to debug
 * 			options set. This moves	slab handling out of
114
 * 			the fast path and disables lockless freelists.
C
Christoph Lameter 已提交
115 116
 */

117 118
static inline int kmem_cache_debug(struct kmem_cache *s)
{
119
#ifdef CONFIG_SLUB_DEBUG
120
	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
121
#else
122
	return 0;
123
#endif
124
}
125

126 127 128 129 130 131 132 133 134
static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_CPU_PARTIAL
	return !kmem_cache_debug(s);
#else
	return false;
#endif
}

C
Christoph Lameter 已提交
135 136 137 138 139 140 141 142 143 144 145
/*
 * Issues still to be resolved:
 *
 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 *
 * - Variable sizing of the per node arrays
 */

/* Enable to test recovery from slab corruption on boot */
#undef SLUB_RESILIENCY_TEST

146 147 148
/* Enable to log cmpxchg failures */
#undef SLUB_DEBUG_CMPXCHG

149 150 151 152
/*
 * Mininum number of partial slabs. These will be left on the partial
 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 */
C
Christoph Lameter 已提交
153
#define MIN_PARTIAL 5
C
Christoph Lameter 已提交
154

155 156 157 158 159 160 161
/*
 * Maximum number of desirable partial slabs.
 * The existence of more partial slabs makes kmem_cache_shrink
 * sort the partial list by the number of objects in the.
 */
#define MAX_PARTIAL 10

C
Christoph Lameter 已提交
162 163
#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
				SLAB_POISON | SLAB_STORE_USER)
C
Christoph Lameter 已提交
164

165
/*
166 167 168
 * Debugging flags that require metadata to be stored in the slab.  These get
 * disabled when slub_debug=O is used and a cache's min order increases with
 * metadata.
169
 */
170
#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
171

C
Christoph Lameter 已提交
172 173 174 175
/*
 * Set of flags that will prevent slab merging
 */
#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
176 177
		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
		SLAB_FAILSLAB)
C
Christoph Lameter 已提交
178 179

#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
V
Vegard Nossum 已提交
180
		SLAB_CACHE_DMA | SLAB_NOTRACK)
C
Christoph Lameter 已提交
181

182 183
#define OO_SHIFT	16
#define OO_MASK		((1 << OO_SHIFT) - 1)
184
#define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
185

C
Christoph Lameter 已提交
186
/* Internal SLUB flags */
C
Christoph Lameter 已提交
187
#define __OBJECT_POISON		0x80000000UL /* Poison object */
188
#define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
C
Christoph Lameter 已提交
189 190 191 192 193

#ifdef CONFIG_SMP
static struct notifier_block slab_notifier;
#endif

194 195 196
/*
 * Tracking user of a slab.
 */
197
#define TRACK_ADDRS_COUNT 16
198
struct track {
199
	unsigned long addr;	/* Called from address */
200 201 202
#ifdef CONFIG_STACKTRACE
	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
#endif
203 204 205 206 207 208 209
	int cpu;		/* Was running on cpu */
	int pid;		/* Pid context */
	unsigned long when;	/* When did the operation occur */
};

enum track_item { TRACK_ALLOC, TRACK_FREE };

210
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
211 212 213
static int sysfs_slab_add(struct kmem_cache *);
static int sysfs_slab_alias(struct kmem_cache *, const char *);
static void sysfs_slab_remove(struct kmem_cache *);
214
static void memcg_propagate_slab_attrs(struct kmem_cache *s);
C
Christoph Lameter 已提交
215
#else
216 217 218
static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
							{ return 0; }
219
static inline void sysfs_slab_remove(struct kmem_cache *s) { }
220

221
static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
C
Christoph Lameter 已提交
222 223
#endif

224
static inline void stat(const struct kmem_cache *s, enum stat_item si)
225 226
{
#ifdef CONFIG_SLUB_STATS
227
	__this_cpu_inc(s->cpu_slab->stat[si]);
228 229 230
#endif
}

C
Christoph Lameter 已提交
231 232 233 234 235 236 237 238 239
/********************************************************************
 * 			Core slab cache functions
 *******************************************************************/

static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
{
	return s->node[node];
}

C
Christoph Lameter 已提交
240
/* Verify that a pointer has an address that is valid within a slab page */
241 242 243 244 245
static inline int check_valid_pointer(struct kmem_cache *s,
				struct page *page, const void *object)
{
	void *base;

246
	if (!object)
247 248
		return 1;

249
	base = page_address(page);
250
	if (object < base || object >= base + page->objects * s->size ||
251 252 253 254 255 256 257
		(object - base) % s->size) {
		return 0;
	}

	return 1;
}

258 259 260 261 262
static inline void *get_freepointer(struct kmem_cache *s, void *object)
{
	return *(void **)(object + s->offset);
}

263 264 265 266 267
static void prefetch_freepointer(const struct kmem_cache *s, void *object)
{
	prefetch(object + s->offset);
}

268 269 270 271 272 273 274 275 276 277 278 279
static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
{
	void *p;

#ifdef CONFIG_DEBUG_PAGEALLOC
	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
#else
	p = get_freepointer(s, object);
#endif
	return p;
}

280 281 282 283 284 285
static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
{
	*(void **)(object + s->offset) = fp;
}

/* Loop over all objects in a slab */
286 287
#define for_each_object(__p, __s, __addr, __objects) \
	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
288 289 290 291 292 293 294 295
			__p += (__s)->size)

/* Determine object index from a given position */
static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
{
	return (p - addr) / s->size;
}

296 297 298 299 300 301 302 303
static inline size_t slab_ksize(const struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_DEBUG
	/*
	 * Debugging requires use of the padding between object
	 * and whatever may come after it.
	 */
	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
304
		return s->object_size;
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319

#endif
	/*
	 * If we have the need to store the freelist pointer
	 * back there or track user information then we can
	 * only use the space before that information.
	 */
	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
		return s->inuse;
	/*
	 * Else we can use all the padding etc for the allocation
	 */
	return s->size;
}

320 321 322 323 324
static inline int order_objects(int order, unsigned long size, int reserved)
{
	return ((PAGE_SIZE << order) - reserved) / size;
}

325
static inline struct kmem_cache_order_objects oo_make(int order,
326
		unsigned long size, int reserved)
327 328
{
	struct kmem_cache_order_objects x = {
329
		(order << OO_SHIFT) + order_objects(order, size, reserved)
330 331 332 333 334 335 336
	};

	return x;
}

static inline int oo_order(struct kmem_cache_order_objects x)
{
337
	return x.x >> OO_SHIFT;
338 339 340 341
}

static inline int oo_objects(struct kmem_cache_order_objects x)
{
342
	return x.x & OO_MASK;
343 344
}

345 346 347 348 349 350 351 352 353 354 355 356 357
/*
 * Per slab locking using the pagelock
 */
static __always_inline void slab_lock(struct page *page)
{
	bit_spin_lock(PG_locked, &page->flags);
}

static __always_inline void slab_unlock(struct page *page)
{
	__bit_spin_unlock(PG_locked, &page->flags);
}

358 359 360 361 362 363 364
/* Interrupts must be disabled (for the fallback code to work right) */
static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
	VM_BUG_ON(!irqs_disabled());
365 366
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
367
	if (s->flags & __CMPXCHG_DOUBLE) {
368
		if (cmpxchg_double(&page->freelist, &page->counters,
369 370 371 372 373 374 375
			freelist_old, counters_old,
			freelist_new, counters_new))
		return 1;
	} else
#endif
	{
		slab_lock(page);
376 377
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
			page->freelist = freelist_new;
			page->counters = counters_new;
			slab_unlock(page);
			return 1;
		}
		slab_unlock(page);
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
#endif

	return 0;
}

396 397 398 399 400
static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
401 402
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
403
	if (s->flags & __CMPXCHG_DOUBLE) {
404
		if (cmpxchg_double(&page->freelist, &page->counters,
405 406 407 408 409 410
			freelist_old, counters_old,
			freelist_new, counters_new))
		return 1;
	} else
#endif
	{
411 412 413
		unsigned long flags;

		local_irq_save(flags);
414
		slab_lock(page);
415 416
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
417 418
			page->freelist = freelist_new;
			page->counters = counters_new;
419
			slab_unlock(page);
420
			local_irq_restore(flags);
421 422
			return 1;
		}
423
		slab_unlock(page);
424
		local_irq_restore(flags);
425 426 427 428 429 430 431 432 433 434 435 436
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
#endif

	return 0;
}

C
Christoph Lameter 已提交
437
#ifdef CONFIG_SLUB_DEBUG
438 439 440
/*
 * Determine a map of object in use on a page.
 *
441
 * Node listlock must be held to guarantee that the page does
442 443 444 445 446 447 448 449 450 451 452
 * not vanish from under us.
 */
static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
{
	void *p;
	void *addr = page_address(page);

	for (p = page->freelist; p; p = get_freepointer(s, p))
		set_bit(slab_index(p, s, addr), map);
}

C
Christoph Lameter 已提交
453 454 455
/*
 * Debug settings:
 */
456 457 458
#ifdef CONFIG_SLUB_DEBUG_ON
static int slub_debug = DEBUG_DEFAULT_FLAGS;
#else
C
Christoph Lameter 已提交
459
static int slub_debug;
460
#endif
C
Christoph Lameter 已提交
461 462

static char *slub_debug_slabs;
463
static int disable_higher_order_debug;
C
Christoph Lameter 已提交
464

C
Christoph Lameter 已提交
465 466 467 468 469
/*
 * Object debugging
 */
static void print_section(char *text, u8 *addr, unsigned int length)
{
470 471
	print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
			length, 1);
C
Christoph Lameter 已提交
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
}

static struct track *get_track(struct kmem_cache *s, void *object,
	enum track_item alloc)
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	return p + alloc;
}

static void set_track(struct kmem_cache *s, void *object,
488
			enum track_item alloc, unsigned long addr)
C
Christoph Lameter 已提交
489
{
A
Akinobu Mita 已提交
490
	struct track *p = get_track(s, object, alloc);
C
Christoph Lameter 已提交
491 492

	if (addr) {
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
#ifdef CONFIG_STACKTRACE
		struct stack_trace trace;
		int i;

		trace.nr_entries = 0;
		trace.max_entries = TRACK_ADDRS_COUNT;
		trace.entries = p->addrs;
		trace.skip = 3;
		save_stack_trace(&trace);

		/* See rant in lockdep.c */
		if (trace.nr_entries != 0 &&
		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
			trace.nr_entries--;

		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
			p->addrs[i] = 0;
#endif
C
Christoph Lameter 已提交
511 512
		p->addr = addr;
		p->cpu = smp_processor_id();
A
Alexey Dobriyan 已提交
513
		p->pid = current->pid;
C
Christoph Lameter 已提交
514 515 516 517 518 519 520
		p->when = jiffies;
	} else
		memset(p, 0, sizeof(struct track));
}

static void init_tracking(struct kmem_cache *s, void *object)
{
521 522 523
	if (!(s->flags & SLAB_STORE_USER))
		return;

524 525
	set_track(s, object, TRACK_FREE, 0UL);
	set_track(s, object, TRACK_ALLOC, 0UL);
C
Christoph Lameter 已提交
526 527 528 529 530 531 532
}

static void print_track(const char *s, struct track *t)
{
	if (!t->addr)
		return;

533
	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
534
		s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
535 536 537 538 539 540 541 542 543 544
#ifdef CONFIG_STACKTRACE
	{
		int i;
		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
			if (t->addrs[i])
				printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
			else
				break;
	}
#endif
545 546 547 548 549 550 551 552 553 554 555 556 557
}

static void print_tracking(struct kmem_cache *s, void *object)
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
	print_track("Freed", get_track(s, object, TRACK_FREE));
}

static void print_page_info(struct page *page)
{
558 559 560
	printk(KERN_ERR
	       "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
	       page, page->objects, page->inuse, page->freelist, page->flags);
561 562 563 564 565 566 567 568 569 570 571 572 573

}

static void slab_bug(struct kmem_cache *s, char *fmt, ...)
{
	va_list args;
	char buf[100];

	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
	va_end(args);
	printk(KERN_ERR "========================================"
			"=====================================\n");
574
	printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
575 576
	printk(KERN_ERR "----------------------------------------"
			"-------------------------------------\n\n");
577

578
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
C
Christoph Lameter 已提交
579 580
}

581 582 583 584 585 586 587 588 589 590 591 592
static void slab_fix(struct kmem_cache *s, char *fmt, ...)
{
	va_list args;
	char buf[100];

	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
	va_end(args);
	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
}

static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
C
Christoph Lameter 已提交
593 594
{
	unsigned int off;	/* Offset of last byte */
595
	u8 *addr = page_address(page);
596 597 598 599 600 601 602 603 604

	print_tracking(s, p);

	print_page_info(page);

	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
			p, p - addr, get_freepointer(s, p));

	if (p > addr + 16)
605
		print_section("Bytes b4 ", p - 16, 16);
C
Christoph Lameter 已提交
606

607
	print_section("Object ", p, min_t(unsigned long, s->object_size,
608
				PAGE_SIZE));
C
Christoph Lameter 已提交
609
	if (s->flags & SLAB_RED_ZONE)
610 611
		print_section("Redzone ", p + s->object_size,
			s->inuse - s->object_size);
C
Christoph Lameter 已提交
612 613 614 615 616 617

	if (s->offset)
		off = s->offset + sizeof(void *);
	else
		off = s->inuse;

618
	if (s->flags & SLAB_STORE_USER)
C
Christoph Lameter 已提交
619 620 621 622
		off += 2 * sizeof(struct track);

	if (off != s->size)
		/* Beginning of the filler is the free pointer */
623
		print_section("Padding ", p + off, s->size - off);
624 625

	dump_stack();
C
Christoph Lameter 已提交
626 627 628 629 630
}

static void object_err(struct kmem_cache *s, struct page *page,
			u8 *object, char *reason)
{
631
	slab_bug(s, "%s", reason);
632
	print_trailer(s, page, object);
C
Christoph Lameter 已提交
633 634
}

635 636
static void slab_err(struct kmem_cache *s, struct page *page,
			const char *fmt, ...)
C
Christoph Lameter 已提交
637 638 639 640
{
	va_list args;
	char buf[100];

641 642
	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
C
Christoph Lameter 已提交
643
	va_end(args);
644
	slab_bug(s, "%s", buf);
645
	print_page_info(page);
C
Christoph Lameter 已提交
646 647 648
	dump_stack();
}

649
static void init_object(struct kmem_cache *s, void *object, u8 val)
C
Christoph Lameter 已提交
650 651 652 653
{
	u8 *p = object;

	if (s->flags & __OBJECT_POISON) {
654 655
		memset(p, POISON_FREE, s->object_size - 1);
		p[s->object_size - 1] = POISON_END;
C
Christoph Lameter 已提交
656 657 658
	}

	if (s->flags & SLAB_RED_ZONE)
659
		memset(p + s->object_size, val, s->inuse - s->object_size);
C
Christoph Lameter 已提交
660 661
}

662 663 664 665 666 667 668 669 670
static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
						void *from, void *to)
{
	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
	memset(from, data, to - from);
}

static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
			u8 *object, char *what,
P
Pekka Enberg 已提交
671
			u8 *start, unsigned int value, unsigned int bytes)
672 673 674 675
{
	u8 *fault;
	u8 *end;

676
	fault = memchr_inv(start, value, bytes);
677 678 679 680 681 682 683 684 685 686 687 688 689 690
	if (!fault)
		return 1;

	end = start + bytes;
	while (end > fault && end[-1] == value)
		end--;

	slab_bug(s, "%s overwritten", what);
	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
					fault, end - 1, fault[0], value);
	print_trailer(s, page, object);

	restore_bytes(s, what, value, fault, end);
	return 0;
C
Christoph Lameter 已提交
691 692 693 694 695 696 697 698 699
}

/*
 * Object layout:
 *
 * object address
 * 	Bytes of the object to be managed.
 * 	If the freepointer may overlay the object then the free
 * 	pointer is the first word of the object.
C
Christoph Lameter 已提交
700
 *
C
Christoph Lameter 已提交
701 702 703
 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 * 	0xa5 (POISON_END)
 *
704
 * object + s->object_size
C
Christoph Lameter 已提交
705
 * 	Padding to reach word boundary. This is also used for Redzoning.
C
Christoph Lameter 已提交
706
 * 	Padding is extended by another word if Redzoning is enabled and
707
 * 	object_size == inuse.
C
Christoph Lameter 已提交
708
 *
C
Christoph Lameter 已提交
709 710 711 712
 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 * 	0xcc (RED_ACTIVE) for objects in use.
 *
 * object + s->inuse
C
Christoph Lameter 已提交
713 714
 * 	Meta data starts here.
 *
C
Christoph Lameter 已提交
715 716
 * 	A. Free pointer (if we cannot overwrite object on free)
 * 	B. Tracking data for SLAB_STORE_USER
C
Christoph Lameter 已提交
717
 * 	C. Padding to reach required alignment boundary or at mininum
C
Christoph Lameter 已提交
718
 * 		one word if debugging is on to be able to detect writes
C
Christoph Lameter 已提交
719 720 721
 * 		before the word boundary.
 *
 *	Padding is done using 0x5a (POISON_INUSE)
C
Christoph Lameter 已提交
722 723
 *
 * object + s->size
C
Christoph Lameter 已提交
724
 * 	Nothing is used beyond s->size.
C
Christoph Lameter 已提交
725
 *
726
 * If slabcaches are merged then the object_size and inuse boundaries are mostly
C
Christoph Lameter 已提交
727
 * ignored. And therefore no slab options that rely on these boundaries
C
Christoph Lameter 已提交
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
 * may be used with merged slabcaches.
 */

static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
{
	unsigned long off = s->inuse;	/* The end of info */

	if (s->offset)
		/* Freepointer is placed after the object. */
		off += sizeof(void *);

	if (s->flags & SLAB_STORE_USER)
		/* We also have user information there */
		off += 2 * sizeof(struct track);

	if (s->size == off)
		return 1;

746 747
	return check_bytes_and_report(s, page, p, "Object padding",
				p + off, POISON_INUSE, s->size - off);
C
Christoph Lameter 已提交
748 749
}

750
/* Check the pad bytes at the end of a slab page */
C
Christoph Lameter 已提交
751 752
static int slab_pad_check(struct kmem_cache *s, struct page *page)
{
753 754 755 756 757
	u8 *start;
	u8 *fault;
	u8 *end;
	int length;
	int remainder;
C
Christoph Lameter 已提交
758 759 760 761

	if (!(s->flags & SLAB_POISON))
		return 1;

762
	start = page_address(page);
763
	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
764 765
	end = start + length;
	remainder = length % s->size;
C
Christoph Lameter 已提交
766 767 768
	if (!remainder)
		return 1;

769
	fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
770 771 772 773 774 775
	if (!fault)
		return 1;
	while (end > fault && end[-1] == POISON_INUSE)
		end--;

	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
776
	print_section("Padding ", end - remainder, remainder);
777

E
Eric Dumazet 已提交
778
	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
779
	return 0;
C
Christoph Lameter 已提交
780 781 782
}

static int check_object(struct kmem_cache *s, struct page *page,
783
					void *object, u8 val)
C
Christoph Lameter 已提交
784 785
{
	u8 *p = object;
786
	u8 *endobject = object + s->object_size;
C
Christoph Lameter 已提交
787 788

	if (s->flags & SLAB_RED_ZONE) {
789
		if (!check_bytes_and_report(s, page, object, "Redzone",
790
			endobject, val, s->inuse - s->object_size))
C
Christoph Lameter 已提交
791 792
			return 0;
	} else {
793
		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
I
Ingo Molnar 已提交
794
			check_bytes_and_report(s, page, p, "Alignment padding",
795 796
				endobject, POISON_INUSE,
				s->inuse - s->object_size);
I
Ingo Molnar 已提交
797
		}
C
Christoph Lameter 已提交
798 799 800
	}

	if (s->flags & SLAB_POISON) {
801
		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
802
			(!check_bytes_and_report(s, page, p, "Poison", p,
803
					POISON_FREE, s->object_size - 1) ||
804
			 !check_bytes_and_report(s, page, p, "Poison",
805
				p + s->object_size - 1, POISON_END, 1)))
C
Christoph Lameter 已提交
806 807 808 809 810 811 812
			return 0;
		/*
		 * check_pad_bytes cleans up on its own.
		 */
		check_pad_bytes(s, page, p);
	}

813
	if (!s->offset && val == SLUB_RED_ACTIVE)
C
Christoph Lameter 已提交
814 815 816 817 818 819 820 821 822 823
		/*
		 * Object and freepointer overlap. Cannot check
		 * freepointer while object is allocated.
		 */
		return 1;

	/* Check free pointer validity */
	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
		object_err(s, page, p, "Freepointer corrupt");
		/*
N
Nick Andrew 已提交
824
		 * No choice but to zap it and thus lose the remainder
C
Christoph Lameter 已提交
825
		 * of the free objects in this slab. May cause
C
Christoph Lameter 已提交
826
		 * another error because the object count is now wrong.
C
Christoph Lameter 已提交
827
		 */
828
		set_freepointer(s, p, NULL);
C
Christoph Lameter 已提交
829 830 831 832 833 834 835
		return 0;
	}
	return 1;
}

static int check_slab(struct kmem_cache *s, struct page *page)
{
836 837
	int maxobj;

C
Christoph Lameter 已提交
838 839 840
	VM_BUG_ON(!irqs_disabled());

	if (!PageSlab(page)) {
841
		slab_err(s, page, "Not a valid slab page");
C
Christoph Lameter 已提交
842 843
		return 0;
	}
844

845
	maxobj = order_objects(compound_order(page), s->size, s->reserved);
846 847 848 849 850 851
	if (page->objects > maxobj) {
		slab_err(s, page, "objects %u > max %u",
			s->name, page->objects, maxobj);
		return 0;
	}
	if (page->inuse > page->objects) {
852
		slab_err(s, page, "inuse %u > max %u",
853
			s->name, page->inuse, page->objects);
C
Christoph Lameter 已提交
854 855 856 857 858 859 860 861
		return 0;
	}
	/* Slab_pad_check fixes things up after itself */
	slab_pad_check(s, page);
	return 1;
}

/*
C
Christoph Lameter 已提交
862 863
 * Determine if a certain object on a page is on the freelist. Must hold the
 * slab lock to guarantee that the chains are in a consistent state.
C
Christoph Lameter 已提交
864 865 866 867
 */
static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
{
	int nr = 0;
868
	void *fp;
C
Christoph Lameter 已提交
869
	void *object = NULL;
870
	unsigned long max_objects;
C
Christoph Lameter 已提交
871

872
	fp = page->freelist;
873
	while (fp && nr <= page->objects) {
C
Christoph Lameter 已提交
874 875 876 877 878 879
		if (fp == search)
			return 1;
		if (!check_valid_pointer(s, page, fp)) {
			if (object) {
				object_err(s, page, object,
					"Freechain corrupt");
880
				set_freepointer(s, object, NULL);
C
Christoph Lameter 已提交
881
			} else {
882
				slab_err(s, page, "Freepointer corrupt");
883
				page->freelist = NULL;
884
				page->inuse = page->objects;
885
				slab_fix(s, "Freelist cleared");
C
Christoph Lameter 已提交
886 887 888 889 890 891 892 893 894
				return 0;
			}
			break;
		}
		object = fp;
		fp = get_freepointer(s, object);
		nr++;
	}

895
	max_objects = order_objects(compound_order(page), s->size, s->reserved);
896 897
	if (max_objects > MAX_OBJS_PER_PAGE)
		max_objects = MAX_OBJS_PER_PAGE;
898 899 900 901 902 903 904

	if (page->objects != max_objects) {
		slab_err(s, page, "Wrong number of objects. Found %d but "
			"should be %d", page->objects, max_objects);
		page->objects = max_objects;
		slab_fix(s, "Number of objects adjusted.");
	}
905
	if (page->inuse != page->objects - nr) {
906
		slab_err(s, page, "Wrong object count. Counter is %d but "
907 908
			"counted were %d", page->inuse, page->objects - nr);
		page->inuse = page->objects - nr;
909
		slab_fix(s, "Object count adjusted.");
C
Christoph Lameter 已提交
910 911 912 913
	}
	return search == NULL;
}

914 915
static void trace(struct kmem_cache *s, struct page *page, void *object,
								int alloc)
C
Christoph Lameter 已提交
916 917 918 919 920 921 922 923 924
{
	if (s->flags & SLAB_TRACE) {
		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
			s->name,
			alloc ? "alloc" : "free",
			object, page->inuse,
			page->freelist);

		if (!alloc)
925 926
			print_section("Object ", (void *)object,
					s->object_size);
C
Christoph Lameter 已提交
927 928 929 930 931

		dump_stack();
	}
}

932 933 934 935 936 937
/*
 * Hooks for other subsystems that check memory allocations. In a typical
 * production configuration these hooks all should produce no code at all.
 */
static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
{
938
	flags &= gfp_allowed_mask;
939 940 941
	lockdep_trace_alloc(flags);
	might_sleep_if(flags & __GFP_WAIT);

942
	return should_failslab(s->object_size, flags, s->flags);
943 944
}

945 946
static inline void slab_post_alloc_hook(struct kmem_cache *s,
					gfp_t flags, void *object)
947
{
948
	flags &= gfp_allowed_mask;
949
	kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
950
	kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
951 952 953 954 955 956
}

static inline void slab_free_hook(struct kmem_cache *s, void *x)
{
	kmemleak_free_recursive(x, s->flags);

957 958 959 960 961 962 963 964 965 966
	/*
	 * Trouble is that we may no longer disable interupts in the fast path
	 * So in order to make the debug calls that expect irqs to be
	 * disabled we need to disable interrupts temporarily.
	 */
#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
	{
		unsigned long flags;

		local_irq_save(flags);
967 968
		kmemcheck_slab_free(s, x, s->object_size);
		debug_check_no_locks_freed(x, s->object_size);
969 970 971
		local_irq_restore(flags);
	}
#endif
972
	if (!(s->flags & SLAB_DEBUG_OBJECTS))
973
		debug_check_no_obj_freed(x, s->object_size);
974 975
}

976
/*
C
Christoph Lameter 已提交
977
 * Tracking of fully allocated slabs for debugging purposes.
978 979
 *
 * list_lock must be held.
980
 */
981 982
static void add_full(struct kmem_cache *s,
	struct kmem_cache_node *n, struct page *page)
983
{
984 985 986
	if (!(s->flags & SLAB_STORE_USER))
		return;

987 988 989
	list_add(&page->lru, &n->full);
}

990 991 992
/*
 * list_lock must be held.
 */
993 994 995 996 997 998 999 1000
static void remove_full(struct kmem_cache *s, struct page *page)
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

	list_del(&page->lru);
}

1001 1002 1003 1004 1005 1006 1007 1008
/* Tracking of the number of slabs for debugging purposes */
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
{
	struct kmem_cache_node *n = get_node(s, node);

	return atomic_long_read(&n->nr_slabs);
}

1009 1010 1011 1012 1013
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->nr_slabs);
}

1014
static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1015 1016 1017 1018 1019 1020 1021 1022 1023
{
	struct kmem_cache_node *n = get_node(s, node);

	/*
	 * May be called early in order to allocate a slab for the
	 * kmem_cache_node structure. Solve the chicken-egg
	 * dilemma by deferring the increment of the count during
	 * bootstrap (see early_kmem_cache_node_alloc).
	 */
1024
	if (likely(n)) {
1025
		atomic_long_inc(&n->nr_slabs);
1026 1027
		atomic_long_add(objects, &n->total_objects);
	}
1028
}
1029
static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1030 1031 1032 1033
{
	struct kmem_cache_node *n = get_node(s, node);

	atomic_long_dec(&n->nr_slabs);
1034
	atomic_long_sub(objects, &n->total_objects);
1035 1036 1037
}

/* Object debug checks for alloc/free paths */
C
Christoph Lameter 已提交
1038 1039 1040 1041 1042 1043
static void setup_object_debug(struct kmem_cache *s, struct page *page,
								void *object)
{
	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
		return;

1044
	init_object(s, object, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1045 1046 1047
	init_tracking(s, object);
}

1048 1049
static noinline int alloc_debug_processing(struct kmem_cache *s,
					struct page *page,
1050
					void *object, unsigned long addr)
C
Christoph Lameter 已提交
1051 1052 1053 1054 1055 1056
{
	if (!check_slab(s, page))
		goto bad;

	if (!check_valid_pointer(s, page, object)) {
		object_err(s, page, object, "Freelist Pointer check fails");
1057
		goto bad;
C
Christoph Lameter 已提交
1058 1059
	}

1060
	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
C
Christoph Lameter 已提交
1061 1062
		goto bad;

C
Christoph Lameter 已提交
1063 1064 1065 1066
	/* Success perform special debug activities for allocs */
	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_ALLOC, addr);
	trace(s, page, object, 1);
1067
	init_object(s, object, SLUB_RED_ACTIVE);
C
Christoph Lameter 已提交
1068
	return 1;
C
Christoph Lameter 已提交
1069

C
Christoph Lameter 已提交
1070 1071 1072 1073 1074
bad:
	if (PageSlab(page)) {
		/*
		 * If this is a slab page then lets do the best we can
		 * to avoid issues in the future. Marking all objects
C
Christoph Lameter 已提交
1075
		 * as used avoids touching the remaining objects.
C
Christoph Lameter 已提交
1076
		 */
1077
		slab_fix(s, "Marking all objects used");
1078
		page->inuse = page->objects;
1079
		page->freelist = NULL;
C
Christoph Lameter 已提交
1080 1081 1082 1083
	}
	return 0;
}

1084 1085 1086
static noinline struct kmem_cache_node *free_debug_processing(
	struct kmem_cache *s, struct page *page, void *object,
	unsigned long addr, unsigned long *flags)
C
Christoph Lameter 已提交
1087
{
1088
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1089

1090
	spin_lock_irqsave(&n->list_lock, *flags);
1091 1092
	slab_lock(page);

C
Christoph Lameter 已提交
1093 1094 1095 1096
	if (!check_slab(s, page))
		goto fail;

	if (!check_valid_pointer(s, page, object)) {
1097
		slab_err(s, page, "Invalid object pointer 0x%p", object);
C
Christoph Lameter 已提交
1098 1099 1100 1101
		goto fail;
	}

	if (on_freelist(s, page, object)) {
1102
		object_err(s, page, object, "Object already free");
C
Christoph Lameter 已提交
1103 1104 1105
		goto fail;
	}

1106
	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1107
		goto out;
C
Christoph Lameter 已提交
1108

1109
	if (unlikely(s != page->slab_cache)) {
I
Ingo Molnar 已提交
1110
		if (!PageSlab(page)) {
1111 1112
			slab_err(s, page, "Attempt to free object(0x%p) "
				"outside of slab", object);
1113
		} else if (!page->slab_cache) {
C
Christoph Lameter 已提交
1114
			printk(KERN_ERR
1115
				"SLUB <none>: no slab for object 0x%p.\n",
C
Christoph Lameter 已提交
1116
						object);
1117
			dump_stack();
P
Pekka Enberg 已提交
1118
		} else
1119 1120
			object_err(s, page, object,
					"page slab pointer corrupt.");
C
Christoph Lameter 已提交
1121 1122
		goto fail;
	}
C
Christoph Lameter 已提交
1123 1124 1125 1126

	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_FREE, addr);
	trace(s, page, object, 0);
1127
	init_object(s, object, SLUB_RED_INACTIVE);
1128
out:
1129
	slab_unlock(page);
1130 1131 1132 1133 1134
	/*
	 * Keep node_lock to preserve integrity
	 * until the object is actually freed
	 */
	return n;
C
Christoph Lameter 已提交
1135

C
Christoph Lameter 已提交
1136
fail:
1137 1138
	slab_unlock(page);
	spin_unlock_irqrestore(&n->list_lock, *flags);
1139
	slab_fix(s, "Object at 0x%p not freed", object);
1140
	return NULL;
C
Christoph Lameter 已提交
1141 1142
}

C
Christoph Lameter 已提交
1143 1144
static int __init setup_slub_debug(char *str)
{
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
	slub_debug = DEBUG_DEFAULT_FLAGS;
	if (*str++ != '=' || !*str)
		/*
		 * No options specified. Switch on full debugging.
		 */
		goto out;

	if (*str == ',')
		/*
		 * No options but restriction on slabs. This means full
		 * debugging for slabs matching a pattern.
		 */
		goto check_slabs;

1159 1160 1161 1162 1163 1164 1165 1166 1167
	if (tolower(*str) == 'o') {
		/*
		 * Avoid enabling debugging on caches if its minimum order
		 * would increase as a result.
		 */
		disable_higher_order_debug = 1;
		goto out;
	}

1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
	slub_debug = 0;
	if (*str == '-')
		/*
		 * Switch off all debugging measures.
		 */
		goto out;

	/*
	 * Determine which debug features should be switched on
	 */
P
Pekka Enberg 已提交
1178
	for (; *str && *str != ','; str++) {
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
		switch (tolower(*str)) {
		case 'f':
			slub_debug |= SLAB_DEBUG_FREE;
			break;
		case 'z':
			slub_debug |= SLAB_RED_ZONE;
			break;
		case 'p':
			slub_debug |= SLAB_POISON;
			break;
		case 'u':
			slub_debug |= SLAB_STORE_USER;
			break;
		case 't':
			slub_debug |= SLAB_TRACE;
			break;
1195 1196 1197
		case 'a':
			slub_debug |= SLAB_FAILSLAB;
			break;
1198 1199
		default:
			printk(KERN_ERR "slub_debug option '%c' "
P
Pekka Enberg 已提交
1200
				"unknown. skipped\n", *str);
1201
		}
C
Christoph Lameter 已提交
1202 1203
	}

1204
check_slabs:
C
Christoph Lameter 已提交
1205 1206
	if (*str == ',')
		slub_debug_slabs = str + 1;
1207
out:
C
Christoph Lameter 已提交
1208 1209 1210 1211 1212
	return 1;
}

__setup("slub_debug", setup_slub_debug);

1213
static unsigned long kmem_cache_flags(unsigned long object_size,
1214
	unsigned long flags, const char *name,
1215
	void (*ctor)(void *))
C
Christoph Lameter 已提交
1216 1217
{
	/*
1218
	 * Enable debugging if selected on the kernel commandline.
C
Christoph Lameter 已提交
1219
	 */
1220
	if (slub_debug && (!slub_debug_slabs ||
1221 1222
		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
		flags |= slub_debug;
1223 1224

	return flags;
C
Christoph Lameter 已提交
1225 1226
}
#else
C
Christoph Lameter 已提交
1227 1228
static inline void setup_object_debug(struct kmem_cache *s,
			struct page *page, void *object) {}
C
Christoph Lameter 已提交
1229

C
Christoph Lameter 已提交
1230
static inline int alloc_debug_processing(struct kmem_cache *s,
1231
	struct page *page, void *object, unsigned long addr) { return 0; }
C
Christoph Lameter 已提交
1232

1233 1234 1235
static inline struct kmem_cache_node *free_debug_processing(
	struct kmem_cache *s, struct page *page, void *object,
	unsigned long addr, unsigned long *flags) { return NULL; }
C
Christoph Lameter 已提交
1236 1237 1238 1239

static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
			{ return 1; }
static inline int check_object(struct kmem_cache *s, struct page *page,
1240
			void *object, u8 val) { return 1; }
1241 1242
static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
1243
static inline void remove_full(struct kmem_cache *s, struct page *page) {}
1244
static inline unsigned long kmem_cache_flags(unsigned long object_size,
1245
	unsigned long flags, const char *name,
1246
	void (*ctor)(void *))
1247 1248 1249
{
	return flags;
}
C
Christoph Lameter 已提交
1250
#define slub_debug 0
1251

1252 1253
#define disable_higher_order_debug 0

1254 1255
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
							{ return 0; }
1256 1257
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
							{ return 0; }
1258 1259 1260 1261
static inline void inc_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
static inline void dec_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
1262 1263 1264 1265 1266 1267 1268 1269 1270

static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
							{ return 0; }

static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
		void *object) {}

static inline void slab_free_hook(struct kmem_cache *s, void *x) {}

1271
#endif /* CONFIG_SLUB_DEBUG */
1272

C
Christoph Lameter 已提交
1273 1274 1275
/*
 * Slab allocation and freeing
 */
1276 1277 1278 1279 1280
static inline struct page *alloc_slab_page(gfp_t flags, int node,
					struct kmem_cache_order_objects oo)
{
	int order = oo_order(oo);

1281 1282
	flags |= __GFP_NOTRACK;

1283
	if (node == NUMA_NO_NODE)
1284 1285
		return alloc_pages(flags, order);
	else
1286
		return alloc_pages_exact_node(node, flags, order);
1287 1288
}

C
Christoph Lameter 已提交
1289 1290
static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
{
P
Pekka Enberg 已提交
1291
	struct page *page;
1292
	struct kmem_cache_order_objects oo = s->oo;
1293
	gfp_t alloc_gfp;
C
Christoph Lameter 已提交
1294

1295 1296 1297 1298 1299
	flags &= gfp_allowed_mask;

	if (flags & __GFP_WAIT)
		local_irq_enable();

1300
	flags |= s->allocflags;
1301

1302 1303 1304 1305 1306 1307 1308
	/*
	 * Let the initial higher-order allocation fail under memory pressure
	 * so we fall-back to the minimum order allocation.
	 */
	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;

	page = alloc_slab_page(alloc_gfp, node, oo);
1309 1310 1311 1312 1313 1314 1315
	if (unlikely(!page)) {
		oo = s->min;
		/*
		 * Allocation may have failed due to fragmentation.
		 * Try a lower order alloc if possible
		 */
		page = alloc_slab_page(flags, node, oo);
C
Christoph Lameter 已提交
1316

1317 1318
		if (page)
			stat(s, ORDER_FALLBACK);
1319
	}
V
Vegard Nossum 已提交
1320

1321
	if (kmemcheck_enabled && page
1322
		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
		int pages = 1 << oo_order(oo);

		kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);

		/*
		 * Objects from caches that have a constructor don't get
		 * cleared when they're allocated, so we need to do it here.
		 */
		if (s->ctor)
			kmemcheck_mark_uninitialized_pages(page, pages);
		else
			kmemcheck_mark_unallocated_pages(page, pages);
V
Vegard Nossum 已提交
1335 1336
	}

1337 1338 1339 1340 1341
	if (flags & __GFP_WAIT)
		local_irq_disable();
	if (!page)
		return NULL;

1342
	page->objects = oo_objects(oo);
C
Christoph Lameter 已提交
1343 1344 1345
	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1346
		1 << oo_order(oo));
C
Christoph Lameter 已提交
1347 1348 1349 1350 1351 1352 1353

	return page;
}

static void setup_object(struct kmem_cache *s, struct page *page,
				void *object)
{
C
Christoph Lameter 已提交
1354
	setup_object_debug(s, page, object);
1355
	if (unlikely(s->ctor))
1356
		s->ctor(object);
C
Christoph Lameter 已提交
1357 1358 1359 1360 1361 1362 1363 1364
}

static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
{
	struct page *page;
	void *start;
	void *last;
	void *p;
G
Glauber Costa 已提交
1365
	int order;
C
Christoph Lameter 已提交
1366

C
Christoph Lameter 已提交
1367
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
C
Christoph Lameter 已提交
1368

C
Christoph Lameter 已提交
1369 1370
	page = allocate_slab(s,
		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
C
Christoph Lameter 已提交
1371 1372 1373
	if (!page)
		goto out;

G
Glauber Costa 已提交
1374
	order = compound_order(page);
1375
	inc_slabs_node(s, page_to_nid(page), page->objects);
G
Glauber Costa 已提交
1376
	memcg_bind_pages(s, order);
1377
	page->slab_cache = s;
1378
	__SetPageSlab(page);
1379 1380
	if (page->pfmemalloc)
		SetPageSlabPfmemalloc(page);
C
Christoph Lameter 已提交
1381 1382 1383 1384

	start = page_address(page);

	if (unlikely(s->flags & SLAB_POISON))
G
Glauber Costa 已提交
1385
		memset(start, POISON_INUSE, PAGE_SIZE << order);
C
Christoph Lameter 已提交
1386 1387

	last = start;
1388
	for_each_object(p, s, start, page->objects) {
C
Christoph Lameter 已提交
1389 1390 1391 1392 1393
		setup_object(s, page, last);
		set_freepointer(s, last, p);
		last = p;
	}
	setup_object(s, page, last);
1394
	set_freepointer(s, last, NULL);
C
Christoph Lameter 已提交
1395 1396

	page->freelist = start;
1397
	page->inuse = page->objects;
1398
	page->frozen = 1;
C
Christoph Lameter 已提交
1399 1400 1401 1402 1403 1404
out:
	return page;
}

static void __free_slab(struct kmem_cache *s, struct page *page)
{
1405 1406
	int order = compound_order(page);
	int pages = 1 << order;
C
Christoph Lameter 已提交
1407

1408
	if (kmem_cache_debug(s)) {
C
Christoph Lameter 已提交
1409 1410 1411
		void *p;

		slab_pad_check(s, page);
1412 1413
		for_each_object(p, s, page_address(page),
						page->objects)
1414
			check_object(s, page, p, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1415 1416
	}

1417
	kmemcheck_free_shadow(page, compound_order(page));
V
Vegard Nossum 已提交
1418

C
Christoph Lameter 已提交
1419 1420 1421
	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
P
Pekka Enberg 已提交
1422
		-pages);
C
Christoph Lameter 已提交
1423

1424
	__ClearPageSlabPfmemalloc(page);
1425
	__ClearPageSlab(page);
G
Glauber Costa 已提交
1426 1427

	memcg_release_pages(s, order);
1428
	page_mapcount_reset(page);
N
Nick Piggin 已提交
1429 1430
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += pages;
1431
	__free_memcg_kmem_pages(page, order);
C
Christoph Lameter 已提交
1432 1433
}

1434 1435 1436
#define need_reserve_slab_rcu						\
	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))

C
Christoph Lameter 已提交
1437 1438 1439 1440
static void rcu_free_slab(struct rcu_head *h)
{
	struct page *page;

1441 1442 1443 1444 1445
	if (need_reserve_slab_rcu)
		page = virt_to_head_page(h);
	else
		page = container_of((struct list_head *)h, struct page, lru);

1446
	__free_slab(page->slab_cache, page);
C
Christoph Lameter 已提交
1447 1448 1449 1450 1451
}

static void free_slab(struct kmem_cache *s, struct page *page)
{
	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
		struct rcu_head *head;

		if (need_reserve_slab_rcu) {
			int order = compound_order(page);
			int offset = (PAGE_SIZE << order) - s->reserved;

			VM_BUG_ON(s->reserved != sizeof(*head));
			head = page_address(page) + offset;
		} else {
			/*
			 * RCU free overloads the RCU head over the LRU
			 */
			head = (void *)&page->lru;
		}
C
Christoph Lameter 已提交
1466 1467 1468 1469 1470 1471 1472 1473

		call_rcu(head, rcu_free_slab);
	} else
		__free_slab(s, page);
}

static void discard_slab(struct kmem_cache *s, struct page *page)
{
1474
	dec_slabs_node(s, page_to_nid(page), page->objects);
C
Christoph Lameter 已提交
1475 1476 1477 1478
	free_slab(s, page);
}

/*
1479 1480 1481
 * Management of partially allocated slabs.
 *
 * list_lock must be held.
C
Christoph Lameter 已提交
1482
 */
1483
static inline void add_partial(struct kmem_cache_node *n,
1484
				struct page *page, int tail)
C
Christoph Lameter 已提交
1485
{
C
Christoph Lameter 已提交
1486
	n->nr_partial++;
1487
	if (tail == DEACTIVATE_TO_TAIL)
1488 1489 1490
		list_add_tail(&page->lru, &n->partial);
	else
		list_add(&page->lru, &n->partial);
C
Christoph Lameter 已提交
1491 1492
}

1493 1494 1495 1496
/*
 * list_lock must be held.
 */
static inline void remove_partial(struct kmem_cache_node *n,
1497 1498 1499 1500 1501 1502
					struct page *page)
{
	list_del(&page->lru);
	n->nr_partial--;
}

C
Christoph Lameter 已提交
1503
/*
1504 1505
 * Remove slab from the partial list, freeze it and
 * return the pointer to the freelist.
C
Christoph Lameter 已提交
1506
 *
1507 1508
 * Returns a list of objects or NULL if it fails.
 *
1509
 * Must hold list_lock since we modify the partial list.
C
Christoph Lameter 已提交
1510
 */
1511
static inline void *acquire_slab(struct kmem_cache *s,
1512
		struct kmem_cache_node *n, struct page *page,
1513
		int mode, int *objects)
C
Christoph Lameter 已提交
1514
{
1515 1516 1517 1518 1519 1520 1521 1522 1523
	void *freelist;
	unsigned long counters;
	struct page new;

	/*
	 * Zap the freelist and set the frozen bit.
	 * The old freelist is the list of objects for the
	 * per cpu allocation list.
	 */
1524 1525 1526
	freelist = page->freelist;
	counters = page->counters;
	new.counters = counters;
1527
	*objects = new.objects - new.inuse;
1528
	if (mode) {
1529
		new.inuse = page->objects;
1530 1531 1532 1533
		new.freelist = NULL;
	} else {
		new.freelist = freelist;
	}
1534

1535 1536
	VM_BUG_ON(new.frozen);
	new.frozen = 1;
1537

1538
	if (!__cmpxchg_double_slab(s, page,
1539
			freelist, counters,
1540
			new.freelist, new.counters,
1541 1542
			"acquire_slab"))
		return NULL;
1543 1544

	remove_partial(n, page);
1545
	WARN_ON(!freelist);
1546
	return freelist;
C
Christoph Lameter 已提交
1547 1548
}

1549
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1550
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1551

C
Christoph Lameter 已提交
1552
/*
C
Christoph Lameter 已提交
1553
 * Try to allocate a partial slab from a specific node.
C
Christoph Lameter 已提交
1554
 */
1555 1556
static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
				struct kmem_cache_cpu *c, gfp_t flags)
C
Christoph Lameter 已提交
1557
{
1558 1559
	struct page *page, *page2;
	void *object = NULL;
1560 1561
	int available = 0;
	int objects;
C
Christoph Lameter 已提交
1562 1563 1564 1565

	/*
	 * Racy check. If we mistakenly see no partial slabs then we
	 * just allocate an empty slab. If we mistakenly try to get a
C
Christoph Lameter 已提交
1566 1567
	 * partial slab and there is none available then get_partials()
	 * will return NULL.
C
Christoph Lameter 已提交
1568 1569 1570 1571 1572
	 */
	if (!n || !n->nr_partial)
		return NULL;

	spin_lock(&n->list_lock);
1573
	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1574
		void *t;
1575

1576 1577 1578
		if (!pfmemalloc_match(page, flags))
			continue;

1579
		t = acquire_slab(s, n, page, object == NULL, &objects);
1580 1581 1582
		if (!t)
			break;

1583
		available += objects;
1584
		if (!object) {
1585 1586 1587 1588
			c->page = page;
			stat(s, ALLOC_FROM_PARTIAL);
			object = t;
		} else {
1589
			put_cpu_partial(s, page, 0);
1590
			stat(s, CPU_PARTIAL_NODE);
1591
		}
1592 1593
		if (!kmem_cache_has_cpu_partial(s)
			|| available > s->cpu_partial / 2)
1594 1595
			break;

1596
	}
C
Christoph Lameter 已提交
1597
	spin_unlock(&n->list_lock);
1598
	return object;
C
Christoph Lameter 已提交
1599 1600 1601
}

/*
C
Christoph Lameter 已提交
1602
 * Get a page from somewhere. Search in increasing NUMA distances.
C
Christoph Lameter 已提交
1603
 */
1604
static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1605
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1606 1607 1608
{
#ifdef CONFIG_NUMA
	struct zonelist *zonelist;
1609
	struct zoneref *z;
1610 1611
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
1612
	void *object;
1613
	unsigned int cpuset_mems_cookie;
C
Christoph Lameter 已提交
1614 1615

	/*
C
Christoph Lameter 已提交
1616 1617 1618 1619
	 * The defrag ratio allows a configuration of the tradeoffs between
	 * inter node defragmentation and node local allocations. A lower
	 * defrag_ratio increases the tendency to do local allocations
	 * instead of attempting to obtain partial slabs from other nodes.
C
Christoph Lameter 已提交
1620
	 *
C
Christoph Lameter 已提交
1621 1622 1623 1624
	 * If the defrag_ratio is set to 0 then kmalloc() always
	 * returns node local objects. If the ratio is higher then kmalloc()
	 * may return off node objects because partial slabs are obtained
	 * from other nodes and filled up.
C
Christoph Lameter 已提交
1625
	 *
C
Christoph Lameter 已提交
1626
	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
C
Christoph Lameter 已提交
1627 1628 1629 1630 1631
	 * defrag_ratio = 1000) then every (well almost) allocation will
	 * first attempt to defrag slab caches on other nodes. This means
	 * scanning over all nodes to look for partial slabs which may be
	 * expensive if we do it every time we are trying to find a slab
	 * with available objects.
C
Christoph Lameter 已提交
1632
	 */
1633 1634
	if (!s->remote_node_defrag_ratio ||
			get_cycles() % 1024 > s->remote_node_defrag_ratio)
C
Christoph Lameter 已提交
1635 1636
		return NULL;

1637 1638
	do {
		cpuset_mems_cookie = get_mems_allowed();
1639
		zonelist = node_zonelist(slab_node(), flags);
1640 1641 1642 1643 1644 1645 1646
		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
			struct kmem_cache_node *n;

			n = get_node(s, zone_to_nid(zone));

			if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
					n->nr_partial > s->min_partial) {
1647
				object = get_partial_node(s, n, c, flags);
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
				if (object) {
					/*
					 * Return the object even if
					 * put_mems_allowed indicated that
					 * the cpuset mems_allowed was
					 * updated in parallel. It's a
					 * harmless race between the alloc
					 * and the cpuset update.
					 */
					put_mems_allowed(cpuset_mems_cookie);
					return object;
				}
1660
			}
C
Christoph Lameter 已提交
1661
		}
1662
	} while (!put_mems_allowed(cpuset_mems_cookie));
C
Christoph Lameter 已提交
1663 1664 1665 1666 1667 1668 1669
#endif
	return NULL;
}

/*
 * Get a partial page, lock it and return it.
 */
1670
static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1671
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1672
{
1673
	void *object;
1674
	int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
C
Christoph Lameter 已提交
1675

1676
	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1677 1678
	if (object || node != NUMA_NO_NODE)
		return object;
C
Christoph Lameter 已提交
1679

1680
	return get_any_partial(s, flags, c);
C
Christoph Lameter 已提交
1681 1682
}

1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
#ifdef CONFIG_PREEMPT
/*
 * Calculate the next globally unique transaction for disambiguiation
 * during cmpxchg. The transactions start with the cpu number and are then
 * incremented by CONFIG_NR_CPUS.
 */
#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
#else
/*
 * No preemption supported therefore also no need to check for
 * different cpus.
 */
#define TID_STEP 1
#endif

static inline unsigned long next_tid(unsigned long tid)
{
	return tid + TID_STEP;
}

static inline unsigned int tid_to_cpu(unsigned long tid)
{
	return tid % TID_STEP;
}

static inline unsigned long tid_to_event(unsigned long tid)
{
	return tid / TID_STEP;
}

static inline unsigned int init_tid(int cpu)
{
	return cpu;
}

static inline void note_cmpxchg_failure(const char *n,
		const struct kmem_cache *s, unsigned long tid)
{
#ifdef SLUB_DEBUG_CMPXCHG
	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);

	printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);

#ifdef CONFIG_PREEMPT
	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
		printk("due to cpu change %d -> %d\n",
			tid_to_cpu(tid), tid_to_cpu(actual_tid));
	else
#endif
	if (tid_to_event(tid) != tid_to_event(actual_tid))
		printk("due to cpu running other code. Event %ld->%ld\n",
			tid_to_event(tid), tid_to_event(actual_tid));
	else
		printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
			actual_tid, tid, next_tid(tid));
#endif
1739
	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1740 1741
}

1742
static void init_kmem_cache_cpus(struct kmem_cache *s)
1743 1744 1745 1746 1747 1748
{
	int cpu;

	for_each_possible_cpu(cpu)
		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
}
1749

C
Christoph Lameter 已提交
1750 1751 1752
/*
 * Remove the cpu slab
 */
1753 1754
static void deactivate_slab(struct kmem_cache *s, struct page *page,
				void *freelist)
C
Christoph Lameter 已提交
1755
{
1756 1757 1758 1759 1760
	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
	int lock = 0;
	enum slab_modes l = M_NONE, m = M_NONE;
	void *nextfree;
1761
	int tail = DEACTIVATE_TO_HEAD;
1762 1763 1764 1765
	struct page new;
	struct page old;

	if (page->freelist) {
1766
		stat(s, DEACTIVATE_REMOTE_FREES);
1767
		tail = DEACTIVATE_TO_TAIL;
1768 1769
	}

1770
	/*
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
	 * Stage one: Free all available per cpu objects back
	 * to the page freelist while it is still frozen. Leave the
	 * last one.
	 *
	 * There is no need to take the list->lock because the page
	 * is still frozen.
	 */
	while (freelist && (nextfree = get_freepointer(s, freelist))) {
		void *prior;
		unsigned long counters;

		do {
			prior = page->freelist;
			counters = page->counters;
			set_freepointer(s, freelist, prior);
			new.counters = counters;
			new.inuse--;
			VM_BUG_ON(!new.frozen);

1790
		} while (!__cmpxchg_double_slab(s, page,
1791 1792 1793 1794 1795 1796 1797
			prior, counters,
			freelist, new.counters,
			"drain percpu freelist"));

		freelist = nextfree;
	}

1798
	/*
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
	 * Stage two: Ensure that the page is unfrozen while the
	 * list presence reflects the actual number of objects
	 * during unfreeze.
	 *
	 * We setup the list membership and then perform a cmpxchg
	 * with the count. If there is a mismatch then the page
	 * is not unfrozen but the page is on the wrong list.
	 *
	 * Then we restart the process which may have to remove
	 * the page from the list that we just put it on again
	 * because the number of objects in the slab may have
	 * changed.
1811
	 */
1812
redo:
1813

1814 1815 1816
	old.freelist = page->freelist;
	old.counters = page->counters;
	VM_BUG_ON(!old.frozen);
1817

1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
	/* Determine target state of the slab */
	new.counters = old.counters;
	if (freelist) {
		new.inuse--;
		set_freepointer(s, freelist, old.freelist);
		new.freelist = freelist;
	} else
		new.freelist = old.freelist;

	new.frozen = 0;

1829
	if (!new.inuse && n->nr_partial > s->min_partial)
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
		m = M_FREE;
	else if (new.freelist) {
		m = M_PARTIAL;
		if (!lock) {
			lock = 1;
			/*
			 * Taking the spinlock removes the possiblity
			 * that acquire_slab() will see a slab page that
			 * is frozen
			 */
			spin_lock(&n->list_lock);
		}
	} else {
		m = M_FULL;
		if (kmem_cache_debug(s) && !lock) {
			lock = 1;
			/*
			 * This also ensures that the scanning of full
			 * slabs from diagnostic functions will not see
			 * any frozen slabs.
			 */
			spin_lock(&n->list_lock);
		}
	}

	if (l != m) {

		if (l == M_PARTIAL)

			remove_partial(n, page);

		else if (l == M_FULL)
1862

1863 1864 1865 1866 1867
			remove_full(s, page);

		if (m == M_PARTIAL) {

			add_partial(n, page, tail);
1868
			stat(s, tail);
1869 1870

		} else if (m == M_FULL) {
1871

1872 1873 1874 1875 1876 1877 1878
			stat(s, DEACTIVATE_FULL);
			add_full(s, n, page);

		}
	}

	l = m;
1879
	if (!__cmpxchg_double_slab(s, page,
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"))
		goto redo;

	if (lock)
		spin_unlock(&n->list_lock);

	if (m == M_FREE) {
		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
1892
	}
C
Christoph Lameter 已提交
1893 1894
}

1895 1896 1897
/*
 * Unfreeze all the cpu partial slabs.
 *
1898 1899 1900
 * This function must be called with interrupts disabled
 * for the cpu using c (or some other guarantee must be there
 * to guarantee no concurrent accesses).
1901
 */
1902 1903
static void unfreeze_partials(struct kmem_cache *s,
		struct kmem_cache_cpu *c)
1904
{
1905
#ifdef CONFIG_SLUB_CPU_PARTIAL
1906
	struct kmem_cache_node *n = NULL, *n2 = NULL;
1907
	struct page *page, *discard_page = NULL;
1908 1909 1910 1911 1912 1913

	while ((page = c->partial)) {
		struct page new;
		struct page old;

		c->partial = page->next;
1914 1915 1916 1917 1918 1919 1920 1921 1922

		n2 = get_node(s, page_to_nid(page));
		if (n != n2) {
			if (n)
				spin_unlock(&n->list_lock);

			n = n2;
			spin_lock(&n->list_lock);
		}
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934

		do {

			old.freelist = page->freelist;
			old.counters = page->counters;
			VM_BUG_ON(!old.frozen);

			new.counters = old.counters;
			new.freelist = old.freelist;

			new.frozen = 0;

1935
		} while (!__cmpxchg_double_slab(s, page,
1936 1937 1938 1939
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"));

1940
		if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
1941 1942
			page->next = discard_page;
			discard_page = page;
1943 1944 1945
		} else {
			add_partial(n, page, DEACTIVATE_TO_TAIL);
			stat(s, FREE_ADD_PARTIAL);
1946 1947 1948 1949 1950
		}
	}

	if (n)
		spin_unlock(&n->list_lock);
1951 1952 1953 1954 1955 1956 1957 1958 1959

	while (discard_page) {
		page = discard_page;
		discard_page = discard_page->next;

		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
	}
1960
#endif
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
}

/*
 * Put a page that was just frozen (in __slab_free) into a partial page
 * slot if available. This is done without interrupts disabled and without
 * preemption disabled. The cmpxchg is racy and may put the partial page
 * onto a random cpus partial slot.
 *
 * If we did not find a slot then simply move all the partials to the
 * per node partial list.
 */
1972
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1973
{
1974
#ifdef CONFIG_SLUB_CPU_PARTIAL
1975 1976 1977 1978
	struct page *oldpage;
	int pages;
	int pobjects;

1979 1980 1981
	if (!s->cpu_partial)
		return;

1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
	do {
		pages = 0;
		pobjects = 0;
		oldpage = this_cpu_read(s->cpu_slab->partial);

		if (oldpage) {
			pobjects = oldpage->pobjects;
			pages = oldpage->pages;
			if (drain && pobjects > s->cpu_partial) {
				unsigned long flags;
				/*
				 * partial array is full. Move the existing
				 * set to the per node partial list.
				 */
				local_irq_save(flags);
1997
				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
1998
				local_irq_restore(flags);
1999
				oldpage = NULL;
2000 2001
				pobjects = 0;
				pages = 0;
2002
				stat(s, CPU_PARTIAL_DRAIN);
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
			}
		}

		pages++;
		pobjects += page->objects - page->inuse;

		page->pages = pages;
		page->pobjects = pobjects;
		page->next = oldpage;

2013 2014
	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
								!= oldpage);
2015
#endif
2016 2017
}

2018
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2019
{
2020
	stat(s, CPUSLAB_FLUSH);
2021 2022 2023 2024 2025
	deactivate_slab(s, c->page, c->freelist);

	c->tid = next_tid(c->tid);
	c->page = NULL;
	c->freelist = NULL;
C
Christoph Lameter 已提交
2026 2027 2028 2029
}

/*
 * Flush cpu slab.
C
Christoph Lameter 已提交
2030
 *
C
Christoph Lameter 已提交
2031 2032
 * Called from IPI handler with interrupts disabled.
 */
2033
static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
C
Christoph Lameter 已提交
2034
{
2035
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
C
Christoph Lameter 已提交
2036

2037 2038 2039 2040
	if (likely(c)) {
		if (c->page)
			flush_slab(s, c);

2041
		unfreeze_partials(s, c);
2042
	}
C
Christoph Lameter 已提交
2043 2044 2045 2046 2047 2048
}

static void flush_cpu_slab(void *d)
{
	struct kmem_cache *s = d;

2049
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
2050 2051
}

2052 2053 2054 2055 2056
static bool has_cpu_slab(int cpu, void *info)
{
	struct kmem_cache *s = info;
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);

2057
	return c->page || c->partial;
2058 2059
}

C
Christoph Lameter 已提交
2060 2061
static void flush_all(struct kmem_cache *s)
{
2062
	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
C
Christoph Lameter 已提交
2063 2064
}

2065 2066 2067 2068
/*
 * Check if the objects in a per cpu structure fit numa
 * locality expectations.
 */
2069
static inline int node_match(struct page *page, int node)
2070 2071
{
#ifdef CONFIG_NUMA
2072
	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2073 2074 2075 2076 2077
		return 0;
#endif
	return 1;
}

P
Pekka Enberg 已提交
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
static int count_free(struct page *page)
{
	return page->objects - page->inuse;
}

static unsigned long count_partial(struct kmem_cache_node *n,
					int (*get_count)(struct page *))
{
	unsigned long flags;
	unsigned long x = 0;
	struct page *page;

	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry(page, &n->partial, lru)
		x += get_count(page);
	spin_unlock_irqrestore(&n->list_lock, flags);
	return x;
}

2097 2098 2099 2100 2101 2102 2103 2104 2105
static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
{
#ifdef CONFIG_SLUB_DEBUG
	return atomic_long_read(&n->total_objects);
#else
	return 0;
#endif
}

P
Pekka Enberg 已提交
2106 2107 2108 2109 2110 2111 2112 2113 2114
static noinline void
slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
{
	int node;

	printk(KERN_WARNING
		"SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
		nid, gfpflags);
	printk(KERN_WARNING "  cache: %s, object size: %d, buffer size: %d, "
2115
		"default order: %d, min order: %d\n", s->name, s->object_size,
P
Pekka Enberg 已提交
2116 2117
		s->size, oo_order(s->oo), oo_order(s->min));

2118
	if (oo_order(s->min) > get_order(s->object_size))
2119 2120 2121
		printk(KERN_WARNING "  %s debugging increased min order, use "
		       "slub_debug=O to disable.\n", s->name);

P
Pekka Enberg 已提交
2122 2123 2124 2125 2126 2127 2128 2129 2130
	for_each_online_node(node) {
		struct kmem_cache_node *n = get_node(s, node);
		unsigned long nr_slabs;
		unsigned long nr_objs;
		unsigned long nr_free;

		if (!n)
			continue;

2131 2132 2133
		nr_free  = count_partial(n, count_free);
		nr_slabs = node_nr_slabs(n);
		nr_objs  = node_nr_objs(n);
P
Pekka Enberg 已提交
2134 2135 2136 2137 2138 2139 2140

		printk(KERN_WARNING
			"  node %d: slabs: %ld, objs: %ld, free: %ld\n",
			node, nr_slabs, nr_objs, nr_free);
	}
}

2141 2142 2143
static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
			int node, struct kmem_cache_cpu **pc)
{
2144
	void *freelist;
2145 2146
	struct kmem_cache_cpu *c = *pc;
	struct page *page;
2147

2148
	freelist = get_partial(s, flags, node, c);
2149

2150 2151 2152 2153
	if (freelist)
		return freelist;

	page = new_slab(s, flags, node);
2154 2155 2156 2157 2158 2159 2160 2161 2162
	if (page) {
		c = __this_cpu_ptr(s->cpu_slab);
		if (c->page)
			flush_slab(s, c);

		/*
		 * No other reference to the page yet so we can
		 * muck around with it freely without cmpxchg
		 */
2163
		freelist = page->freelist;
2164 2165 2166 2167 2168 2169
		page->freelist = NULL;

		stat(s, ALLOC_SLAB);
		c->page = page;
		*pc = c;
	} else
2170
		freelist = NULL;
2171

2172
	return freelist;
2173 2174
}

2175 2176 2177 2178 2179 2180 2181 2182
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
{
	if (unlikely(PageSlabPfmemalloc(page)))
		return gfp_pfmemalloc_allowed(gfpflags);

	return true;
}

2183
/*
2184 2185
 * Check the page->freelist of a page and either transfer the freelist to the
 * per cpu freelist or deactivate the page.
2186 2187 2188 2189
 *
 * The page is still frozen if the return value is not NULL.
 *
 * If this function returns NULL then the page has been unfrozen.
2190 2191
 *
 * This function must be called with interrupt disabled.
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
 */
static inline void *get_freelist(struct kmem_cache *s, struct page *page)
{
	struct page new;
	unsigned long counters;
	void *freelist;

	do {
		freelist = page->freelist;
		counters = page->counters;
2202

2203 2204 2205 2206 2207 2208
		new.counters = counters;
		VM_BUG_ON(!new.frozen);

		new.inuse = page->objects;
		new.frozen = freelist != NULL;

2209
	} while (!__cmpxchg_double_slab(s, page,
2210 2211 2212 2213 2214 2215 2216
		freelist, counters,
		NULL, new.counters,
		"get_freelist"));

	return freelist;
}

C
Christoph Lameter 已提交
2217
/*
2218 2219 2220 2221 2222 2223
 * Slow path. The lockless freelist is empty or we need to perform
 * debugging duties.
 *
 * Processing is still very fast if new objects have been freed to the
 * regular freelist. In that case we simply take over the regular freelist
 * as the lockless freelist and zap the regular freelist.
C
Christoph Lameter 已提交
2224
 *
2225 2226 2227
 * If that is not working then we fall back to the partial lists. We take the
 * first element of the freelist as the object to allocate now and move the
 * rest of the freelist to the lockless freelist.
C
Christoph Lameter 已提交
2228
 *
2229
 * And if we were unable to get a new slab from the partial slab lists then
C
Christoph Lameter 已提交
2230 2231
 * we need to allocate a new slab. This is the slowest path since it involves
 * a call to the page allocator and the setup of a new slab.
C
Christoph Lameter 已提交
2232
 */
2233 2234
static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
			  unsigned long addr, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2235
{
2236
	void *freelist;
2237
	struct page *page;
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
	unsigned long flags;

	local_irq_save(flags);
#ifdef CONFIG_PREEMPT
	/*
	 * We may have been preempted and rescheduled on a different
	 * cpu before disabling interrupts. Need to reload cpu area
	 * pointer.
	 */
	c = this_cpu_ptr(s->cpu_slab);
#endif
C
Christoph Lameter 已提交
2249

2250 2251
	page = c->page;
	if (!page)
C
Christoph Lameter 已提交
2252
		goto new_slab;
2253
redo:
2254

2255
	if (unlikely(!node_match(page, node))) {
2256
		stat(s, ALLOC_NODE_MISMATCH);
2257
		deactivate_slab(s, page, c->freelist);
2258 2259
		c->page = NULL;
		c->freelist = NULL;
2260 2261
		goto new_slab;
	}
C
Christoph Lameter 已提交
2262

2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
	/*
	 * By rights, we should be searching for a slab page that was
	 * PFMEMALLOC but right now, we are losing the pfmemalloc
	 * information when the page leaves the per-cpu allocator
	 */
	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
		deactivate_slab(s, page, c->freelist);
		c->page = NULL;
		c->freelist = NULL;
		goto new_slab;
	}

2275
	/* must check again c->freelist in case of cpu migration or IRQ */
2276 2277
	freelist = c->freelist;
	if (freelist)
2278
		goto load_freelist;
2279

2280
	stat(s, ALLOC_SLOWPATH);
2281

2282
	freelist = get_freelist(s, page);
C
Christoph Lameter 已提交
2283

2284
	if (!freelist) {
2285 2286
		c->page = NULL;
		stat(s, DEACTIVATE_BYPASS);
2287
		goto new_slab;
2288
	}
C
Christoph Lameter 已提交
2289

2290
	stat(s, ALLOC_REFILL);
C
Christoph Lameter 已提交
2291

2292
load_freelist:
2293 2294 2295 2296 2297 2298
	/*
	 * freelist is pointing to the list of objects to be used.
	 * page is pointing to the page from which the objects are obtained.
	 * That page must be frozen for per cpu allocations to work.
	 */
	VM_BUG_ON(!c->page->frozen);
2299
	c->freelist = get_freepointer(s, freelist);
2300 2301
	c->tid = next_tid(c->tid);
	local_irq_restore(flags);
2302
	return freelist;
C
Christoph Lameter 已提交
2303 2304

new_slab:
2305

2306
	if (c->partial) {
2307 2308
		page = c->page = c->partial;
		c->partial = page->next;
2309 2310 2311
		stat(s, CPU_PARTIAL_ALLOC);
		c->freelist = NULL;
		goto redo;
C
Christoph Lameter 已提交
2312 2313
	}

2314
	freelist = new_slab_objects(s, gfpflags, node, &c);
2315

2316 2317 2318
	if (unlikely(!freelist)) {
		if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
			slab_out_of_memory(s, gfpflags, node);
2319

2320 2321
		local_irq_restore(flags);
		return NULL;
C
Christoph Lameter 已提交
2322
	}
2323

2324
	page = c->page;
2325
	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2326
		goto load_freelist;
2327

2328
	/* Only entered in the debug case */
2329 2330
	if (kmem_cache_debug(s) &&
			!alloc_debug_processing(s, page, freelist, addr))
2331
		goto new_slab;	/* Slab failed checks. Next slab needed */
2332

2333
	deactivate_slab(s, page, get_freepointer(s, freelist));
2334 2335
	c->page = NULL;
	c->freelist = NULL;
2336
	local_irq_restore(flags);
2337
	return freelist;
2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349
}

/*
 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
 * have the fastpath folded into their functions. So no function call
 * overhead for requests that can be satisfied on the fastpath.
 *
 * The fastpath works by first checking if the lockless freelist can be used.
 * If not then __slab_alloc is called for slow processing.
 *
 * Otherwise we can simply pick the next object from the lockless free list.
 */
2350
static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2351
		gfp_t gfpflags, int node, unsigned long addr)
2352 2353
{
	void **object;
2354
	struct kmem_cache_cpu *c;
2355
	struct page *page;
2356
	unsigned long tid;
2357

2358
	if (slab_pre_alloc_hook(s, gfpflags))
A
Akinobu Mita 已提交
2359
		return NULL;
2360

2361
	s = memcg_kmem_get_cache(s, gfpflags);
2362 2363 2364 2365 2366 2367
redo:
	/*
	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
	 * enabled. We may switch back and forth between cpus while
	 * reading from one cpu area. That does not matter as long
	 * as we end up on the original cpu again when doing the cmpxchg.
2368 2369 2370 2371 2372
	 *
	 * Preemption is disabled for the retrieval of the tid because that
	 * must occur from the current processor. We cannot allow rescheduling
	 * on a different processor between the determination of the pointer
	 * and the retrieval of the tid.
2373
	 */
2374
	preempt_disable();
2375
	c = __this_cpu_ptr(s->cpu_slab);
2376 2377 2378 2379 2380 2381 2382 2383

	/*
	 * The transaction ids are globally unique per cpu and per operation on
	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
	 * occurs on the right processor and that there was no operation on the
	 * linked list in between.
	 */
	tid = c->tid;
2384
	preempt_enable();
2385

2386
	object = c->freelist;
2387
	page = c->page;
L
Libin 已提交
2388
	if (unlikely(!object || !node_match(page, node)))
2389
		object = __slab_alloc(s, gfpflags, node, addr, c);
2390 2391

	else {
2392 2393
		void *next_object = get_freepointer_safe(s, object);

2394
		/*
L
Lucas De Marchi 已提交
2395
		 * The cmpxchg will only match if there was no additional
2396 2397
		 * operation and if we are on the right processor.
		 *
2398 2399
		 * The cmpxchg does the following atomically (without lock
		 * semantics!)
2400 2401 2402 2403
		 * 1. Relocate first pointer to the current per cpu area.
		 * 2. Verify that tid and freelist have not been changed
		 * 3. If they were not changed replace tid and freelist
		 *
2404 2405 2406
		 * Since this is without lock semantics the protection is only
		 * against code executing on this cpu *not* from access by
		 * other cpus.
2407
		 */
2408
		if (unlikely(!this_cpu_cmpxchg_double(
2409 2410
				s->cpu_slab->freelist, s->cpu_slab->tid,
				object, tid,
2411
				next_object, next_tid(tid)))) {
2412 2413 2414 2415

			note_cmpxchg_failure("slab_alloc", s, tid);
			goto redo;
		}
2416
		prefetch_freepointer(s, next_object);
2417
		stat(s, ALLOC_FASTPATH);
2418
	}
2419

2420
	if (unlikely(gfpflags & __GFP_ZERO) && object)
2421
		memset(object, 0, s->object_size);
2422

2423
	slab_post_alloc_hook(s, gfpflags, object);
V
Vegard Nossum 已提交
2424

2425
	return object;
C
Christoph Lameter 已提交
2426 2427
}

2428 2429 2430 2431 2432 2433
static __always_inline void *slab_alloc(struct kmem_cache *s,
		gfp_t gfpflags, unsigned long addr)
{
	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
}

C
Christoph Lameter 已提交
2434 2435
void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
{
2436
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2437

2438 2439
	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
				s->size, gfpflags);
E
Eduard - Gabriel Munteanu 已提交
2440 2441

	return ret;
C
Christoph Lameter 已提交
2442 2443 2444
}
EXPORT_SYMBOL(kmem_cache_alloc);

2445
#ifdef CONFIG_TRACING
2446 2447
void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
{
2448
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2449 2450 2451 2452
	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
	return ret;
}
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
2453 2454
#endif

C
Christoph Lameter 已提交
2455 2456 2457
#ifdef CONFIG_NUMA
void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
{
2458
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2459

2460
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2461
				    s->object_size, s->size, gfpflags, node);
E
Eduard - Gabriel Munteanu 已提交
2462 2463

	return ret;
C
Christoph Lameter 已提交
2464 2465 2466
}
EXPORT_SYMBOL(kmem_cache_alloc_node);

2467
#ifdef CONFIG_TRACING
2468
void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
E
Eduard - Gabriel Munteanu 已提交
2469
				    gfp_t gfpflags,
2470
				    int node, size_t size)
E
Eduard - Gabriel Munteanu 已提交
2471
{
2472
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2473 2474 2475 2476

	trace_kmalloc_node(_RET_IP_, ret,
			   size, s->size, gfpflags, node);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
2477
}
2478
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
2479
#endif
2480
#endif
E
Eduard - Gabriel Munteanu 已提交
2481

C
Christoph Lameter 已提交
2482
/*
2483 2484
 * Slow patch handling. This may still be called frequently since objects
 * have a longer lifetime than the cpu slabs in most processing loads.
C
Christoph Lameter 已提交
2485
 *
2486 2487 2488
 * So we still attempt to reduce cache line usage. Just take the slab
 * lock and free the item. If there is no additional partial page
 * handling required then we can return immediately.
C
Christoph Lameter 已提交
2489
 */
2490
static void __slab_free(struct kmem_cache *s, struct page *page,
2491
			void *x, unsigned long addr)
C
Christoph Lameter 已提交
2492 2493 2494
{
	void *prior;
	void **object = (void *)x;
2495 2496 2497 2498
	int was_frozen;
	struct page new;
	unsigned long counters;
	struct kmem_cache_node *n = NULL;
2499
	unsigned long uninitialized_var(flags);
C
Christoph Lameter 已提交
2500

2501
	stat(s, FREE_SLOWPATH);
C
Christoph Lameter 已提交
2502

2503 2504
	if (kmem_cache_debug(s) &&
		!(n = free_debug_processing(s, page, x, addr, &flags)))
2505
		return;
C
Christoph Lameter 已提交
2506

2507
	do {
2508 2509 2510 2511
		if (unlikely(n)) {
			spin_unlock_irqrestore(&n->list_lock, flags);
			n = NULL;
		}
2512 2513 2514 2515 2516 2517
		prior = page->freelist;
		counters = page->counters;
		set_freepointer(s, object, prior);
		new.counters = counters;
		was_frozen = new.frozen;
		new.inuse--;
2518
		if ((!new.inuse || !prior) && !was_frozen) {
2519

2520
			if (kmem_cache_has_cpu_partial(s) && !prior)
2521 2522

				/*
2523 2524 2525 2526
				 * Slab was on no list before and will be
				 * partially empty
				 * We can defer the list move and instead
				 * freeze it.
2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
				 */
				new.frozen = 1;

			else { /* Needs to be taken off a list */

	                        n = get_node(s, page_to_nid(page));
				/*
				 * Speculatively acquire the list_lock.
				 * If the cmpxchg does not succeed then we may
				 * drop the list_lock without any processing.
				 *
				 * Otherwise the list_lock will synchronize with
				 * other processors updating the list of slabs.
				 */
				spin_lock_irqsave(&n->list_lock, flags);

			}
2544
		}
C
Christoph Lameter 已提交
2545

2546 2547 2548 2549
	} while (!cmpxchg_double_slab(s, page,
		prior, counters,
		object, new.counters,
		"__slab_free"));
C
Christoph Lameter 已提交
2550

2551
	if (likely(!n)) {
2552 2553 2554 2555 2556

		/*
		 * If we just froze the page then put it onto the
		 * per cpu partial list.
		 */
2557
		if (new.frozen && !was_frozen) {
2558
			put_cpu_partial(s, page, 1);
2559 2560
			stat(s, CPU_PARTIAL_FREE);
		}
2561
		/*
2562 2563 2564 2565 2566
		 * The list lock was not taken therefore no list
		 * activity can be necessary.
		 */
                if (was_frozen)
                        stat(s, FREE_FROZEN);
2567
                return;
2568
        }
C
Christoph Lameter 已提交
2569

2570 2571 2572
	if (unlikely(!new.inuse && n->nr_partial > s->min_partial))
		goto slab_empty;

C
Christoph Lameter 已提交
2573
	/*
2574 2575
	 * Objects left in the slab. If it was not on the partial list before
	 * then add it.
C
Christoph Lameter 已提交
2576
	 */
2577 2578 2579
	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
		if (kmem_cache_debug(s))
			remove_full(s, page);
2580 2581
		add_partial(n, page, DEACTIVATE_TO_TAIL);
		stat(s, FREE_ADD_PARTIAL);
2582
	}
2583
	spin_unlock_irqrestore(&n->list_lock, flags);
C
Christoph Lameter 已提交
2584 2585 2586
	return;

slab_empty:
2587
	if (prior) {
C
Christoph Lameter 已提交
2588
		/*
2589
		 * Slab on the partial list.
C
Christoph Lameter 已提交
2590
		 */
2591
		remove_partial(n, page);
2592
		stat(s, FREE_REMOVE_PARTIAL);
2593 2594 2595
	} else
		/* Slab must be on the full list */
		remove_full(s, page);
2596

2597
	spin_unlock_irqrestore(&n->list_lock, flags);
2598
	stat(s, FREE_SLAB);
C
Christoph Lameter 已提交
2599 2600 2601
	discard_slab(s, page);
}

2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
/*
 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
 * can perform fastpath freeing without additional function calls.
 *
 * The fastpath is only possible if we are freeing to the current cpu slab
 * of this processor. This typically the case if we have just allocated
 * the item before.
 *
 * If fastpath is not possible then fall back to __slab_free where we deal
 * with all sorts of special processing.
 */
P
Pekka Enberg 已提交
2613
static __always_inline void slab_free(struct kmem_cache *s,
2614
			struct page *page, void *x, unsigned long addr)
2615 2616
{
	void **object = (void *)x;
2617
	struct kmem_cache_cpu *c;
2618
	unsigned long tid;
2619

2620 2621
	slab_free_hook(s, x);

2622 2623 2624 2625 2626 2627 2628
redo:
	/*
	 * Determine the currently cpus per cpu slab.
	 * The cpu may change afterward. However that does not matter since
	 * data is retrieved via this pointer. If we are on the same cpu
	 * during the cmpxchg then the free will succedd.
	 */
2629
	preempt_disable();
2630
	c = __this_cpu_ptr(s->cpu_slab);
2631

2632
	tid = c->tid;
2633
	preempt_enable();
2634

2635
	if (likely(page == c->page)) {
2636
		set_freepointer(s, object, c->freelist);
2637

2638
		if (unlikely(!this_cpu_cmpxchg_double(
2639 2640 2641 2642 2643 2644 2645
				s->cpu_slab->freelist, s->cpu_slab->tid,
				c->freelist, tid,
				object, next_tid(tid)))) {

			note_cmpxchg_failure("slab_free", s, tid);
			goto redo;
		}
2646
		stat(s, FREE_FASTPATH);
2647
	} else
2648
		__slab_free(s, page, x, addr);
2649 2650 2651

}

C
Christoph Lameter 已提交
2652 2653
void kmem_cache_free(struct kmem_cache *s, void *x)
{
2654 2655
	s = cache_from_obj(s, x);
	if (!s)
2656
		return;
2657
	slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2658
	trace_kmem_cache_free(_RET_IP_, x);
C
Christoph Lameter 已提交
2659 2660 2661 2662
}
EXPORT_SYMBOL(kmem_cache_free);

/*
C
Christoph Lameter 已提交
2663 2664 2665 2666
 * Object placement in a slab is made very easy because we always start at
 * offset 0. If we tune the size of the object to the alignment then we can
 * get the required alignment by putting one properly sized object after
 * another.
C
Christoph Lameter 已提交
2667 2668 2669 2670
 *
 * Notice that the allocation order determines the sizes of the per cpu
 * caches. Each processor has always one slab available for allocations.
 * Increasing the allocation order reduces the number of times that slabs
C
Christoph Lameter 已提交
2671
 * must be moved on and off the partial lists and is therefore a factor in
C
Christoph Lameter 已提交
2672 2673 2674 2675 2676 2677 2678 2679 2680 2681
 * locking overhead.
 */

/*
 * Mininum / Maximum order of slab pages. This influences locking overhead
 * and slab fragmentation. A higher order reduces the number of partial slabs
 * and increases the number of allocations possible without having to
 * take the list_lock.
 */
static int slub_min_order;
2682
static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2683
static int slub_min_objects;
C
Christoph Lameter 已提交
2684 2685 2686

/*
 * Merge control. If this is set then no merging of slab caches will occur.
C
Christoph Lameter 已提交
2687
 * (Could be removed. This was introduced to pacify the merge skeptics.)
C
Christoph Lameter 已提交
2688 2689 2690 2691 2692 2693
 */
static int slub_nomerge;

/*
 * Calculate the order of allocation given an slab object size.
 *
C
Christoph Lameter 已提交
2694 2695 2696 2697
 * The order of allocation has significant impact on performance and other
 * system components. Generally order 0 allocations should be preferred since
 * order 0 does not cause fragmentation in the page allocator. Larger objects
 * be problematic to put into order 0 slabs because there may be too much
C
Christoph Lameter 已提交
2698
 * unused space left. We go to a higher order if more than 1/16th of the slab
C
Christoph Lameter 已提交
2699 2700 2701 2702 2703 2704
 * would be wasted.
 *
 * In order to reach satisfactory performance we must ensure that a minimum
 * number of objects is in one slab. Otherwise we may generate too much
 * activity on the partial lists which requires taking the list_lock. This is
 * less a concern for large slabs though which are rarely used.
C
Christoph Lameter 已提交
2705
 *
C
Christoph Lameter 已提交
2706 2707 2708 2709
 * slub_max_order specifies the order where we begin to stop considering the
 * number of objects in a slab as critical. If we reach slub_max_order then
 * we try to keep the page order as low as possible. So we accept more waste
 * of space in favor of a small page order.
C
Christoph Lameter 已提交
2710
 *
C
Christoph Lameter 已提交
2711 2712 2713 2714
 * Higher order allocations also allow the placement of more objects in a
 * slab and thereby reduce object handling overhead. If the user has
 * requested a higher mininum order then we start with that one instead of
 * the smallest order which will fit the object.
C
Christoph Lameter 已提交
2715
 */
2716
static inline int slab_order(int size, int min_objects,
2717
				int max_order, int fract_leftover, int reserved)
C
Christoph Lameter 已提交
2718 2719 2720
{
	int order;
	int rem;
2721
	int min_order = slub_min_order;
C
Christoph Lameter 已提交
2722

2723
	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2724
		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2725

2726
	for (order = max(min_order,
2727 2728
				fls(min_objects * size - 1) - PAGE_SHIFT);
			order <= max_order; order++) {
C
Christoph Lameter 已提交
2729

2730
		unsigned long slab_size = PAGE_SIZE << order;
C
Christoph Lameter 已提交
2731

2732
		if (slab_size < min_objects * size + reserved)
C
Christoph Lameter 已提交
2733 2734
			continue;

2735
		rem = (slab_size - reserved) % size;
C
Christoph Lameter 已提交
2736

2737
		if (rem <= slab_size / fract_leftover)
C
Christoph Lameter 已提交
2738 2739 2740
			break;

	}
C
Christoph Lameter 已提交
2741

C
Christoph Lameter 已提交
2742 2743 2744
	return order;
}

2745
static inline int calculate_order(int size, int reserved)
2746 2747 2748 2749
{
	int order;
	int min_objects;
	int fraction;
2750
	int max_objects;
2751 2752 2753 2754 2755 2756 2757 2758 2759 2760

	/*
	 * Attempt to find best configuration for a slab. This
	 * works by first attempting to generate a layout with
	 * the best configuration and backing off gradually.
	 *
	 * First we reduce the acceptable waste in a slab. Then
	 * we reduce the minimum objects required in a slab.
	 */
	min_objects = slub_min_objects;
2761 2762
	if (!min_objects)
		min_objects = 4 * (fls(nr_cpu_ids) + 1);
2763
	max_objects = order_objects(slub_max_order, size, reserved);
2764 2765
	min_objects = min(min_objects, max_objects);

2766
	while (min_objects > 1) {
C
Christoph Lameter 已提交
2767
		fraction = 16;
2768 2769
		while (fraction >= 4) {
			order = slab_order(size, min_objects,
2770
					slub_max_order, fraction, reserved);
2771 2772 2773 2774
			if (order <= slub_max_order)
				return order;
			fraction /= 2;
		}
2775
		min_objects--;
2776 2777 2778 2779 2780 2781
	}

	/*
	 * We were unable to place multiple objects in a slab. Now
	 * lets see if we can place a single object there.
	 */
2782
	order = slab_order(size, 1, slub_max_order, 1, reserved);
2783 2784 2785 2786 2787 2788
	if (order <= slub_max_order)
		return order;

	/*
	 * Doh this slab cannot be placed using slub_max_order.
	 */
2789
	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
D
David Rientjes 已提交
2790
	if (order < MAX_ORDER)
2791 2792 2793 2794
		return order;
	return -ENOSYS;
}

2795
static void
2796
init_kmem_cache_node(struct kmem_cache_node *n)
C
Christoph Lameter 已提交
2797 2798 2799 2800
{
	n->nr_partial = 0;
	spin_lock_init(&n->list_lock);
	INIT_LIST_HEAD(&n->partial);
2801
#ifdef CONFIG_SLUB_DEBUG
2802
	atomic_long_set(&n->nr_slabs, 0);
2803
	atomic_long_set(&n->total_objects, 0);
2804
	INIT_LIST_HEAD(&n->full);
2805
#endif
C
Christoph Lameter 已提交
2806 2807
}

2808
static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2809
{
2810
	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2811
			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
2812

2813
	/*
2814 2815
	 * Must align to double word boundary for the double cmpxchg
	 * instructions to work; see __pcpu_double_call_return_bool().
2816
	 */
2817 2818
	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
				     2 * sizeof(void *));
2819 2820 2821 2822 2823

	if (!s->cpu_slab)
		return 0;

	init_kmem_cache_cpus(s);
2824

2825
	return 1;
2826 2827
}

2828 2829
static struct kmem_cache *kmem_cache_node;

C
Christoph Lameter 已提交
2830 2831 2832 2833 2834 2835
/*
 * No kmalloc_node yet so do it by hand. We know that this is the first
 * slab on the node for this slabcache. There are no concurrent accesses
 * possible.
 *
 * Note that this function only works on the kmalloc_node_cache
2836 2837
 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
 * memory on a fresh node that has no slab structures yet.
C
Christoph Lameter 已提交
2838
 */
2839
static void early_kmem_cache_node_alloc(int node)
C
Christoph Lameter 已提交
2840 2841 2842 2843
{
	struct page *page;
	struct kmem_cache_node *n;

2844
	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
C
Christoph Lameter 已提交
2845

2846
	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
C
Christoph Lameter 已提交
2847 2848

	BUG_ON(!page);
2849 2850 2851 2852 2853 2854 2855
	if (page_to_nid(page) != node) {
		printk(KERN_ERR "SLUB: Unable to allocate memory from "
				"node %d\n", node);
		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
				"in order to be able to continue\n");
	}

C
Christoph Lameter 已提交
2856 2857
	n = page->freelist;
	BUG_ON(!n);
2858
	page->freelist = get_freepointer(kmem_cache_node, n);
2859
	page->inuse = 1;
2860
	page->frozen = 0;
2861
	kmem_cache_node->node[node] = n;
2862
#ifdef CONFIG_SLUB_DEBUG
2863
	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2864
	init_tracking(kmem_cache_node, n);
2865
#endif
2866
	init_kmem_cache_node(n);
2867
	inc_slabs_node(kmem_cache_node, node, page->objects);
C
Christoph Lameter 已提交
2868

2869
	add_partial(n, page, DEACTIVATE_TO_HEAD);
C
Christoph Lameter 已提交
2870 2871 2872 2873 2874 2875
}

static void free_kmem_cache_nodes(struct kmem_cache *s)
{
	int node;

C
Christoph Lameter 已提交
2876
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2877
		struct kmem_cache_node *n = s->node[node];
2878

2879
		if (n)
2880 2881
			kmem_cache_free(kmem_cache_node, n);

C
Christoph Lameter 已提交
2882 2883 2884 2885
		s->node[node] = NULL;
	}
}

2886
static int init_kmem_cache_nodes(struct kmem_cache *s)
C
Christoph Lameter 已提交
2887 2888 2889
{
	int node;

C
Christoph Lameter 已提交
2890
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2891 2892
		struct kmem_cache_node *n;

2893
		if (slab_state == DOWN) {
2894
			early_kmem_cache_node_alloc(node);
2895 2896
			continue;
		}
2897
		n = kmem_cache_alloc_node(kmem_cache_node,
2898
						GFP_KERNEL, node);
C
Christoph Lameter 已提交
2899

2900 2901 2902
		if (!n) {
			free_kmem_cache_nodes(s);
			return 0;
C
Christoph Lameter 已提交
2903
		}
2904

C
Christoph Lameter 已提交
2905
		s->node[node] = n;
2906
		init_kmem_cache_node(n);
C
Christoph Lameter 已提交
2907 2908 2909 2910
	}
	return 1;
}

2911
static void set_min_partial(struct kmem_cache *s, unsigned long min)
2912 2913 2914 2915 2916 2917 2918 2919
{
	if (min < MIN_PARTIAL)
		min = MIN_PARTIAL;
	else if (min > MAX_PARTIAL)
		min = MAX_PARTIAL;
	s->min_partial = min;
}

C
Christoph Lameter 已提交
2920 2921 2922 2923
/*
 * calculate_sizes() determines the order and the distribution of data within
 * a slab object.
 */
2924
static int calculate_sizes(struct kmem_cache *s, int forced_order)
C
Christoph Lameter 已提交
2925 2926
{
	unsigned long flags = s->flags;
2927
	unsigned long size = s->object_size;
2928
	int order;
C
Christoph Lameter 已提交
2929

2930 2931 2932 2933 2934 2935 2936 2937
	/*
	 * Round up object size to the next word boundary. We can only
	 * place the free pointer at word boundaries and this determines
	 * the possible location of the free pointer.
	 */
	size = ALIGN(size, sizeof(void *));

#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
2938 2939 2940 2941 2942 2943
	/*
	 * Determine if we can poison the object itself. If the user of
	 * the slab may touch the object after free or before allocation
	 * then we should never poison the object itself.
	 */
	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2944
			!s->ctor)
C
Christoph Lameter 已提交
2945 2946 2947 2948 2949 2950
		s->flags |= __OBJECT_POISON;
	else
		s->flags &= ~__OBJECT_POISON;


	/*
C
Christoph Lameter 已提交
2951
	 * If we are Redzoning then check if there is some space between the
C
Christoph Lameter 已提交
2952
	 * end of the object and the free pointer. If not then add an
C
Christoph Lameter 已提交
2953
	 * additional word to have some bytes to store Redzone information.
C
Christoph Lameter 已提交
2954
	 */
2955
	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
C
Christoph Lameter 已提交
2956
		size += sizeof(void *);
C
Christoph Lameter 已提交
2957
#endif
C
Christoph Lameter 已提交
2958 2959

	/*
C
Christoph Lameter 已提交
2960 2961
	 * With that we have determined the number of bytes in actual use
	 * by the object. This is the potential offset to the free pointer.
C
Christoph Lameter 已提交
2962 2963 2964 2965
	 */
	s->inuse = size;

	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2966
		s->ctor)) {
C
Christoph Lameter 已提交
2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978
		/*
		 * Relocate free pointer after the object if it is not
		 * permitted to overwrite the first word of the object on
		 * kmem_cache_free.
		 *
		 * This is the case if we do RCU, have a constructor or
		 * destructor or are poisoning the objects.
		 */
		s->offset = size;
		size += sizeof(void *);
	}

2979
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
2980 2981 2982 2983 2984 2985 2986
	if (flags & SLAB_STORE_USER)
		/*
		 * Need to store information about allocs and frees after
		 * the object.
		 */
		size += 2 * sizeof(struct track);

2987
	if (flags & SLAB_RED_ZONE)
C
Christoph Lameter 已提交
2988 2989 2990 2991
		/*
		 * Add some empty padding so that we can catch
		 * overwrites from earlier objects rather than let
		 * tracking information or the free pointer be
2992
		 * corrupted if a user writes before the start
C
Christoph Lameter 已提交
2993 2994 2995
		 * of the object.
		 */
		size += sizeof(void *);
C
Christoph Lameter 已提交
2996
#endif
C
Christoph Lameter 已提交
2997

C
Christoph Lameter 已提交
2998 2999 3000 3001 3002
	/*
	 * SLUB stores one object immediately after another beginning from
	 * offset 0. In order to align the objects we have to simply size
	 * each object to conform to the alignment.
	 */
3003
	size = ALIGN(size, s->align);
C
Christoph Lameter 已提交
3004
	s->size = size;
3005 3006 3007
	if (forced_order >= 0)
		order = forced_order;
	else
3008
		order = calculate_order(size, s->reserved);
C
Christoph Lameter 已提交
3009

3010
	if (order < 0)
C
Christoph Lameter 已提交
3011 3012
		return 0;

3013
	s->allocflags = 0;
3014
	if (order)
3015 3016 3017
		s->allocflags |= __GFP_COMP;

	if (s->flags & SLAB_CACHE_DMA)
3018
		s->allocflags |= GFP_DMA;
3019 3020 3021 3022

	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		s->allocflags |= __GFP_RECLAIMABLE;

C
Christoph Lameter 已提交
3023 3024 3025
	/*
	 * Determine the number of objects per slab
	 */
3026 3027
	s->oo = oo_make(order, size, s->reserved);
	s->min = oo_make(get_order(size), size, s->reserved);
3028 3029
	if (oo_objects(s->oo) > oo_objects(s->max))
		s->max = s->oo;
C
Christoph Lameter 已提交
3030

3031
	return !!oo_objects(s->oo);
C
Christoph Lameter 已提交
3032 3033
}

3034
static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
C
Christoph Lameter 已提交
3035
{
3036
	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3037
	s->reserved = 0;
C
Christoph Lameter 已提交
3038

3039 3040
	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
		s->reserved = sizeof(struct rcu_head);
C
Christoph Lameter 已提交
3041

3042
	if (!calculate_sizes(s, -1))
C
Christoph Lameter 已提交
3043
		goto error;
3044 3045 3046 3047 3048
	if (disable_higher_order_debug) {
		/*
		 * Disable debugging flags that store metadata if the min slab
		 * order increased.
		 */
3049
		if (get_order(s->size) > get_order(s->object_size)) {
3050 3051 3052 3053 3054 3055
			s->flags &= ~DEBUG_METADATA_FLAGS;
			s->offset = 0;
			if (!calculate_sizes(s, -1))
				goto error;
		}
	}
C
Christoph Lameter 已提交
3056

3057 3058
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3059 3060 3061 3062 3063
	if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
		/* Enable fast mode */
		s->flags |= __CMPXCHG_DOUBLE;
#endif

3064 3065 3066 3067
	/*
	 * The larger the object size is, the more pages we want on the partial
	 * list to avoid pounding the page allocator excessively.
	 */
3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
	set_min_partial(s, ilog2(s->size) / 2);

	/*
	 * cpu_partial determined the maximum number of objects kept in the
	 * per cpu partial lists of a processor.
	 *
	 * Per cpu partial lists mainly contain slabs that just have one
	 * object freed. If they are used for allocation then they can be
	 * filled up again with minimal effort. The slab will never hit the
	 * per node partial lists and therefore no locking will be required.
	 *
	 * This setting also determines
	 *
	 * A) The number of objects from per cpu partial slabs dumped to the
	 *    per node list when we reach the limit.
3083
	 * B) The number of objects in cpu partial slabs to extract from the
3084 3085
	 *    per node list when we run out of per cpu objects. We only fetch
	 *    50% to keep some capacity around for frees.
3086
	 */
3087
	if (!kmem_cache_has_cpu_partial(s))
3088 3089
		s->cpu_partial = 0;
	else if (s->size >= PAGE_SIZE)
3090 3091 3092 3093 3094 3095 3096 3097
		s->cpu_partial = 2;
	else if (s->size >= 1024)
		s->cpu_partial = 6;
	else if (s->size >= 256)
		s->cpu_partial = 13;
	else
		s->cpu_partial = 30;

C
Christoph Lameter 已提交
3098
#ifdef CONFIG_NUMA
3099
	s->remote_node_defrag_ratio = 1000;
C
Christoph Lameter 已提交
3100
#endif
3101
	if (!init_kmem_cache_nodes(s))
3102
		goto error;
C
Christoph Lameter 已提交
3103

3104
	if (alloc_kmem_cache_cpus(s))
3105
		return 0;
3106

3107
	free_kmem_cache_nodes(s);
C
Christoph Lameter 已提交
3108 3109 3110 3111
error:
	if (flags & SLAB_PANIC)
		panic("Cannot create slab %s size=%lu realsize=%u "
			"order=%u offset=%u flags=%lx\n",
3112 3113
			s->name, (unsigned long)s->size, s->size,
			oo_order(s->oo), s->offset, flags);
3114
	return -EINVAL;
C
Christoph Lameter 已提交
3115 3116
}

3117 3118 3119 3120 3121 3122
static void list_slab_objects(struct kmem_cache *s, struct page *page,
							const char *text)
{
#ifdef CONFIG_SLUB_DEBUG
	void *addr = page_address(page);
	void *p;
N
Namhyung Kim 已提交
3123 3124
	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
				     sizeof(long), GFP_ATOMIC);
E
Eric Dumazet 已提交
3125 3126
	if (!map)
		return;
3127
	slab_err(s, page, text, s->name);
3128 3129
	slab_lock(page);

3130
	get_map(s, page, map);
3131 3132 3133 3134 3135 3136 3137 3138 3139
	for_each_object(p, s, addr, page->objects) {

		if (!test_bit(slab_index(p, s, addr), map)) {
			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
							p, p - addr);
			print_tracking(s, p);
		}
	}
	slab_unlock(page);
E
Eric Dumazet 已提交
3140
	kfree(map);
3141 3142 3143
#endif
}

C
Christoph Lameter 已提交
3144
/*
C
Christoph Lameter 已提交
3145
 * Attempt to free all partial slabs on a node.
3146 3147
 * This is called from kmem_cache_close(). We must be the last thread
 * using the cache and therefore we do not need to lock anymore.
C
Christoph Lameter 已提交
3148
 */
C
Christoph Lameter 已提交
3149
static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
C
Christoph Lameter 已提交
3150 3151 3152
{
	struct page *page, *h;

3153
	list_for_each_entry_safe(page, h, &n->partial, lru) {
C
Christoph Lameter 已提交
3154
		if (!page->inuse) {
3155
			remove_partial(n, page);
C
Christoph Lameter 已提交
3156
			discard_slab(s, page);
3157 3158
		} else {
			list_slab_objects(s, page,
3159
			"Objects remaining in %s on kmem_cache_close()");
C
Christoph Lameter 已提交
3160
		}
3161
	}
C
Christoph Lameter 已提交
3162 3163 3164
}

/*
C
Christoph Lameter 已提交
3165
 * Release all resources used by a slab cache.
C
Christoph Lameter 已提交
3166
 */
3167
static inline int kmem_cache_close(struct kmem_cache *s)
C
Christoph Lameter 已提交
3168 3169 3170 3171 3172
{
	int node;

	flush_all(s);
	/* Attempt to free all objects */
C
Christoph Lameter 已提交
3173
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
3174 3175
		struct kmem_cache_node *n = get_node(s, node);

C
Christoph Lameter 已提交
3176 3177
		free_partial(s, n);
		if (n->nr_partial || slabs_node(s, node))
C
Christoph Lameter 已提交
3178 3179
			return 1;
	}
3180
	free_percpu(s->cpu_slab);
C
Christoph Lameter 已提交
3181 3182 3183 3184
	free_kmem_cache_nodes(s);
	return 0;
}

3185
int __kmem_cache_shutdown(struct kmem_cache *s)
C
Christoph Lameter 已提交
3186
{
3187
	int rc = kmem_cache_close(s);
3188

3189 3190 3191 3192 3193 3194 3195 3196 3197 3198
	if (!rc) {
		/*
		 * We do the same lock strategy around sysfs_slab_add, see
		 * __kmem_cache_create. Because this is pretty much the last
		 * operation we do and the lock will be released shortly after
		 * that in slab_common.c, we could just move sysfs_slab_remove
		 * to a later point in common code. We should do that when we
		 * have a common sysfs framework for all allocators.
		 */
		mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
3199
		sysfs_slab_remove(s);
3200 3201
		mutex_lock(&slab_mutex);
	}
3202 3203

	return rc;
C
Christoph Lameter 已提交
3204 3205 3206 3207 3208 3209 3210 3211
}

/********************************************************************
 *		Kmalloc subsystem
 *******************************************************************/

static int __init setup_slub_min_order(char *str)
{
P
Pekka Enberg 已提交
3212
	get_option(&str, &slub_min_order);
C
Christoph Lameter 已提交
3213 3214 3215 3216 3217 3218 3219 3220

	return 1;
}

__setup("slub_min_order=", setup_slub_min_order);

static int __init setup_slub_max_order(char *str)
{
P
Pekka Enberg 已提交
3221
	get_option(&str, &slub_max_order);
D
David Rientjes 已提交
3222
	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
C
Christoph Lameter 已提交
3223 3224 3225 3226 3227 3228 3229 3230

	return 1;
}

__setup("slub_max_order=", setup_slub_max_order);

static int __init setup_slub_min_objects(char *str)
{
P
Pekka Enberg 已提交
3231
	get_option(&str, &slub_min_objects);
C
Christoph Lameter 已提交
3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247

	return 1;
}

__setup("slub_min_objects=", setup_slub_min_objects);

static int __init setup_slub_nomerge(char *str)
{
	slub_nomerge = 1;
	return 1;
}

__setup("slub_nomerge", setup_slub_nomerge);

void *__kmalloc(size_t size, gfp_t flags)
{
3248
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3249
	void *ret;
C
Christoph Lameter 已提交
3250

3251
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3252
		return kmalloc_large(size, flags);
3253

3254
	s = kmalloc_slab(size, flags);
3255 3256

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3257 3258
		return s;

3259
	ret = slab_alloc(s, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3260

3261
	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3262 3263

	return ret;
C
Christoph Lameter 已提交
3264 3265 3266
}
EXPORT_SYMBOL(__kmalloc);

3267
#ifdef CONFIG_NUMA
3268 3269
static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
{
3270
	struct page *page;
3271
	void *ptr = NULL;
3272

3273
	flags |= __GFP_COMP | __GFP_NOTRACK | __GFP_KMEMCG;
3274
	page = alloc_pages_node(node, flags, get_order(size));
3275
	if (page)
3276 3277 3278 3279
		ptr = page_address(page);

	kmemleak_alloc(ptr, size, 1, flags);
	return ptr;
3280 3281
}

C
Christoph Lameter 已提交
3282 3283
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3284
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3285
	void *ret;
C
Christoph Lameter 已提交
3286

3287
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
E
Eduard - Gabriel Munteanu 已提交
3288 3289
		ret = kmalloc_large_node(size, flags, node);

3290 3291 3292
		trace_kmalloc_node(_RET_IP_, ret,
				   size, PAGE_SIZE << get_order(size),
				   flags, node);
E
Eduard - Gabriel Munteanu 已提交
3293 3294 3295

		return ret;
	}
3296

3297
	s = kmalloc_slab(size, flags);
3298 3299

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3300 3301
		return s;

3302
	ret = slab_alloc_node(s, flags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3303

3304
	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
E
Eduard - Gabriel Munteanu 已提交
3305 3306

	return ret;
C
Christoph Lameter 已提交
3307 3308 3309 3310 3311 3312
}
EXPORT_SYMBOL(__kmalloc_node);
#endif

size_t ksize(const void *object)
{
3313
	struct page *page;
C
Christoph Lameter 已提交
3314

3315
	if (unlikely(object == ZERO_SIZE_PTR))
3316 3317
		return 0;

3318 3319
	page = virt_to_head_page(object);

P
Pekka Enberg 已提交
3320 3321
	if (unlikely(!PageSlab(page))) {
		WARN_ON(!PageCompound(page));
3322
		return PAGE_SIZE << compound_order(page);
P
Pekka Enberg 已提交
3323
	}
C
Christoph Lameter 已提交
3324

3325
	return slab_ksize(page->slab_cache);
C
Christoph Lameter 已提交
3326
}
K
Kirill A. Shutemov 已提交
3327
EXPORT_SYMBOL(ksize);
C
Christoph Lameter 已提交
3328

3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349
#ifdef CONFIG_SLUB_DEBUG
bool verify_mem_not_deleted(const void *x)
{
	struct page *page;
	void *object = (void *)x;
	unsigned long flags;
	bool rv;

	if (unlikely(ZERO_OR_NULL_PTR(x)))
		return false;

	local_irq_save(flags);

	page = virt_to_head_page(x);
	if (unlikely(!PageSlab(page))) {
		/* maybe it was from stack? */
		rv = true;
		goto out_unlock;
	}

	slab_lock(page);
3350
	if (on_freelist(page->slab_cache, page, object)) {
3351 3352
		object_err(page->slab_cache, page, object,
				"Object is on free-list");
3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365
		rv = false;
	} else {
		rv = true;
	}
	slab_unlock(page);

out_unlock:
	local_irq_restore(flags);
	return rv;
}
EXPORT_SYMBOL(verify_mem_not_deleted);
#endif

C
Christoph Lameter 已提交
3366 3367 3368
void kfree(const void *x)
{
	struct page *page;
3369
	void *object = (void *)x;
C
Christoph Lameter 已提交
3370

3371 3372
	trace_kfree(_RET_IP_, x);

3373
	if (unlikely(ZERO_OR_NULL_PTR(x)))
C
Christoph Lameter 已提交
3374 3375
		return;

3376
	page = virt_to_head_page(x);
3377
	if (unlikely(!PageSlab(page))) {
3378
		BUG_ON(!PageCompound(page));
3379
		kmemleak_free(x);
3380
		__free_memcg_kmem_pages(page, compound_order(page));
3381 3382
		return;
	}
3383
	slab_free(page->slab_cache, page, object, _RET_IP_);
C
Christoph Lameter 已提交
3384 3385 3386
}
EXPORT_SYMBOL(kfree);

3387
/*
C
Christoph Lameter 已提交
3388 3389 3390 3391 3392 3393 3394 3395
 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
 * the remaining slabs by the number of items in use. The slabs with the
 * most items in use come first. New allocations will then fill those up
 * and thus they can be removed from the partial lists.
 *
 * The slabs with the least items are placed last. This results in them
 * being allocated from last increasing the chance that the last objects
 * are freed in them.
3396 3397 3398 3399 3400 3401 3402 3403
 */
int kmem_cache_shrink(struct kmem_cache *s)
{
	int node;
	int i;
	struct kmem_cache_node *n;
	struct page *page;
	struct page *t;
3404
	int objects = oo_objects(s->max);
3405
	struct list_head *slabs_by_inuse =
3406
		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3407 3408 3409 3410 3411 3412
	unsigned long flags;

	if (!slabs_by_inuse)
		return -ENOMEM;

	flush_all(s);
C
Christoph Lameter 已提交
3413
	for_each_node_state(node, N_NORMAL_MEMORY) {
3414 3415 3416 3417 3418
		n = get_node(s, node);

		if (!n->nr_partial)
			continue;

3419
		for (i = 0; i < objects; i++)
3420 3421 3422 3423 3424
			INIT_LIST_HEAD(slabs_by_inuse + i);

		spin_lock_irqsave(&n->list_lock, flags);

		/*
C
Christoph Lameter 已提交
3425
		 * Build lists indexed by the items in use in each slab.
3426
		 *
C
Christoph Lameter 已提交
3427 3428
		 * Note that concurrent frees may occur while we hold the
		 * list_lock. page->inuse here is the upper limit.
3429 3430
		 */
		list_for_each_entry_safe(page, t, &n->partial, lru) {
3431 3432 3433
			list_move(&page->lru, slabs_by_inuse + page->inuse);
			if (!page->inuse)
				n->nr_partial--;
3434 3435 3436
		}

		/*
C
Christoph Lameter 已提交
3437 3438
		 * Rebuild the partial list with the slabs filled up most
		 * first and the least used slabs at the end.
3439
		 */
3440
		for (i = objects - 1; i > 0; i--)
3441 3442 3443
			list_splice(slabs_by_inuse + i, n->partial.prev);

		spin_unlock_irqrestore(&n->list_lock, flags);
3444 3445 3446 3447

		/* Release empty slabs */
		list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
			discard_slab(s, page);
3448 3449 3450 3451 3452 3453 3454
	}

	kfree(slabs_by_inuse);
	return 0;
}
EXPORT_SYMBOL(kmem_cache_shrink);

3455 3456 3457 3458
static int slab_mem_going_offline_callback(void *arg)
{
	struct kmem_cache *s;

3459
	mutex_lock(&slab_mutex);
3460 3461
	list_for_each_entry(s, &slab_caches, list)
		kmem_cache_shrink(s);
3462
	mutex_unlock(&slab_mutex);
3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473

	return 0;
}

static void slab_mem_offline_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
	int offline_node;

3474
	offline_node = marg->status_change_nid_normal;
3475 3476 3477 3478 3479 3480 3481 3482

	/*
	 * If the node still has available memory. we need kmem_cache_node
	 * for it yet.
	 */
	if (offline_node < 0)
		return;

3483
	mutex_lock(&slab_mutex);
3484 3485 3486 3487 3488 3489
	list_for_each_entry(s, &slab_caches, list) {
		n = get_node(s, offline_node);
		if (n) {
			/*
			 * if n->nr_slabs > 0, slabs still exist on the node
			 * that is going down. We were unable to free them,
3490
			 * and offline_pages() function shouldn't call this
3491 3492
			 * callback. So, we must fail.
			 */
3493
			BUG_ON(slabs_node(s, offline_node));
3494 3495

			s->node[offline_node] = NULL;
3496
			kmem_cache_free(kmem_cache_node, n);
3497 3498
		}
	}
3499
	mutex_unlock(&slab_mutex);
3500 3501 3502 3503 3504 3505 3506
}

static int slab_mem_going_online_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
3507
	int nid = marg->status_change_nid_normal;
3508 3509 3510 3511 3512 3513 3514 3515 3516 3517
	int ret = 0;

	/*
	 * If the node's memory is already available, then kmem_cache_node is
	 * already created. Nothing to do.
	 */
	if (nid < 0)
		return 0;

	/*
3518
	 * We are bringing a node online. No memory is available yet. We must
3519 3520 3521
	 * allocate a kmem_cache_node structure in order to bring the node
	 * online.
	 */
3522
	mutex_lock(&slab_mutex);
3523 3524 3525 3526 3527 3528
	list_for_each_entry(s, &slab_caches, list) {
		/*
		 * XXX: kmem_cache_alloc_node will fallback to other nodes
		 *      since memory is not yet available from the node that
		 *      is brought up.
		 */
3529
		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3530 3531 3532 3533
		if (!n) {
			ret = -ENOMEM;
			goto out;
		}
3534
		init_kmem_cache_node(n);
3535 3536 3537
		s->node[nid] = n;
	}
out:
3538
	mutex_unlock(&slab_mutex);
3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561
	return ret;
}

static int slab_memory_callback(struct notifier_block *self,
				unsigned long action, void *arg)
{
	int ret = 0;

	switch (action) {
	case MEM_GOING_ONLINE:
		ret = slab_mem_going_online_callback(arg);
		break;
	case MEM_GOING_OFFLINE:
		ret = slab_mem_going_offline_callback(arg);
		break;
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
		slab_mem_offline_callback(arg);
		break;
	case MEM_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
3562 3563 3564 3565
	if (ret)
		ret = notifier_from_errno(ret);
	else
		ret = NOTIFY_OK;
3566 3567 3568
	return ret;
}

3569 3570 3571 3572
static struct notifier_block slab_memory_callback_nb = {
	.notifier_call = slab_memory_callback,
	.priority = SLAB_CALLBACK_PRI,
};
3573

C
Christoph Lameter 已提交
3574 3575 3576 3577
/********************************************************************
 *			Basic setup of slabs
 *******************************************************************/

3578 3579
/*
 * Used for early kmem_cache structures that were allocated using
3580 3581
 * the page allocator. Allocate them properly then fix up the pointers
 * that may be pointing to the wrong kmem_cache structure.
3582 3583
 */

3584
static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3585 3586
{
	int node;
3587
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3588

3589
	memcpy(s, static_cache, kmem_cache->object_size);
3590

3591 3592 3593 3594 3595 3596
	/*
	 * This runs very early, and only the boot processor is supposed to be
	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
	 * IPIs around.
	 */
	__flush_cpu_slab(s, smp_processor_id());
3597 3598 3599 3600 3601 3602
	for_each_node_state(node, N_NORMAL_MEMORY) {
		struct kmem_cache_node *n = get_node(s, node);
		struct page *p;

		if (n) {
			list_for_each_entry(p, &n->partial, lru)
3603
				p->slab_cache = s;
3604

L
Li Zefan 已提交
3605
#ifdef CONFIG_SLUB_DEBUG
3606
			list_for_each_entry(p, &n->full, lru)
3607
				p->slab_cache = s;
3608 3609 3610
#endif
		}
	}
3611 3612
	list_add(&s->list, &slab_caches);
	return s;
3613 3614
}

C
Christoph Lameter 已提交
3615 3616
void __init kmem_cache_init(void)
{
3617 3618
	static __initdata struct kmem_cache boot_kmem_cache,
		boot_kmem_cache_node;
3619

3620 3621 3622
	if (debug_guardpage_minorder())
		slub_max_order = 0;

3623 3624
	kmem_cache_node = &boot_kmem_cache_node;
	kmem_cache = &boot_kmem_cache;
3625

3626 3627
	create_boot_cache(kmem_cache_node, "kmem_cache_node",
		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3628

3629
	register_hotmemory_notifier(&slab_memory_callback_nb);
C
Christoph Lameter 已提交
3630 3631 3632 3633

	/* Able to allocate the per node structures */
	slab_state = PARTIAL;

3634 3635 3636 3637
	create_boot_cache(kmem_cache, "kmem_cache",
			offsetof(struct kmem_cache, node) +
				nr_node_ids * sizeof(struct kmem_cache_node *),
		       SLAB_HWCACHE_ALIGN);
3638

3639
	kmem_cache = bootstrap(&boot_kmem_cache);
C
Christoph Lameter 已提交
3640

3641 3642 3643 3644 3645
	/*
	 * Allocate kmem_cache_node properly from the kmem_cache slab.
	 * kmem_cache_node is separately allocated so no need to
	 * update any list pointers.
	 */
3646
	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3647 3648

	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3649
	create_kmalloc_caches(0);
C
Christoph Lameter 已提交
3650 3651 3652

#ifdef CONFIG_SMP
	register_cpu_notifier(&slab_notifier);
3653
#endif
C
Christoph Lameter 已提交
3654

I
Ingo Molnar 已提交
3655
	printk(KERN_INFO
3656
		"SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d,"
3657
		" CPUs=%d, Nodes=%d\n",
3658
		cache_line_size(),
C
Christoph Lameter 已提交
3659 3660 3661 3662
		slub_min_order, slub_max_order, slub_min_objects,
		nr_cpu_ids, nr_node_ids);
}

3663 3664 3665 3666
void __init kmem_cache_init_late(void)
{
}

C
Christoph Lameter 已提交
3667 3668 3669 3670 3671 3672 3673 3674
/*
 * Find a mergeable slab cache
 */
static int slab_unmergeable(struct kmem_cache *s)
{
	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
		return 1;

3675
	if (s->ctor)
C
Christoph Lameter 已提交
3676 3677
		return 1;

3678 3679 3680 3681 3682 3683
	/*
	 * We may have set a slab to be unmergeable during bootstrap.
	 */
	if (s->refcount < 0)
		return 1;

C
Christoph Lameter 已提交
3684 3685 3686
	return 0;
}

3687
static struct kmem_cache *find_mergeable(struct mem_cgroup *memcg, size_t size,
3688
		size_t align, unsigned long flags, const char *name,
3689
		void (*ctor)(void *))
C
Christoph Lameter 已提交
3690
{
3691
	struct kmem_cache *s;
C
Christoph Lameter 已提交
3692 3693 3694 3695

	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
		return NULL;

3696
	if (ctor)
C
Christoph Lameter 已提交
3697 3698 3699 3700 3701
		return NULL;

	size = ALIGN(size, sizeof(void *));
	align = calculate_alignment(flags, align, size);
	size = ALIGN(size, align);
3702
	flags = kmem_cache_flags(size, flags, name, NULL);
C
Christoph Lameter 已提交
3703

3704
	list_for_each_entry(s, &slab_caches, list) {
C
Christoph Lameter 已提交
3705 3706 3707 3708 3709 3710
		if (slab_unmergeable(s))
			continue;

		if (size > s->size)
			continue;

3711
		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
C
Christoph Lameter 已提交
3712 3713 3714 3715 3716
				continue;
		/*
		 * Check if alignment is compatible.
		 * Courtesy of Adrian Drzewiecki
		 */
P
Pekka Enberg 已提交
3717
		if ((s->size & ~(align - 1)) != s->size)
C
Christoph Lameter 已提交
3718 3719 3720 3721 3722
			continue;

		if (s->size - size >= sizeof(void *))
			continue;

3723 3724 3725
		if (!cache_match_memcg(s, memcg))
			continue;

C
Christoph Lameter 已提交
3726 3727 3728 3729 3730
		return s;
	}
	return NULL;
}

3731 3732 3733
struct kmem_cache *
__kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size,
		   size_t align, unsigned long flags, void (*ctor)(void *))
C
Christoph Lameter 已提交
3734 3735 3736
{
	struct kmem_cache *s;

3737
	s = find_mergeable(memcg, size, align, flags, name, ctor);
C
Christoph Lameter 已提交
3738 3739 3740 3741 3742 3743
	if (s) {
		s->refcount++;
		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
3744
		s->object_size = max(s->object_size, (int)size);
C
Christoph Lameter 已提交
3745
		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
C
Christoph Lameter 已提交
3746

3747 3748
		if (sysfs_slab_alias(s, name)) {
			s->refcount--;
3749
			s = NULL;
3750
		}
3751
	}
C
Christoph Lameter 已提交
3752

3753 3754
	return s;
}
P
Pekka Enberg 已提交
3755

3756
int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3757
{
3758 3759 3760 3761 3762
	int err;

	err = kmem_cache_open(s, flags);
	if (err)
		return err;
3763

3764 3765 3766 3767
	/* Mutex is not taken during early boot */
	if (slab_state <= UP)
		return 0;

3768
	memcg_propagate_slab_attrs(s);
3769 3770 3771
	mutex_unlock(&slab_mutex);
	err = sysfs_slab_add(s);
	mutex_lock(&slab_mutex);
3772

3773 3774
	if (err)
		kmem_cache_close(s);
3775

3776
	return err;
C
Christoph Lameter 已提交
3777 3778 3779 3780
}

#ifdef CONFIG_SMP
/*
C
Christoph Lameter 已提交
3781 3782
 * Use the cpu notifier to insure that the cpu slabs are flushed when
 * necessary.
C
Christoph Lameter 已提交
3783 3784 3785 3786 3787
 */
static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
		unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
3788 3789
	struct kmem_cache *s;
	unsigned long flags;
C
Christoph Lameter 已提交
3790 3791 3792

	switch (action) {
	case CPU_UP_CANCELED:
3793
	case CPU_UP_CANCELED_FROZEN:
C
Christoph Lameter 已提交
3794
	case CPU_DEAD:
3795
	case CPU_DEAD_FROZEN:
3796
		mutex_lock(&slab_mutex);
3797 3798 3799 3800 3801
		list_for_each_entry(s, &slab_caches, list) {
			local_irq_save(flags);
			__flush_cpu_slab(s, cpu);
			local_irq_restore(flags);
		}
3802
		mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
3803 3804 3805 3806 3807 3808 3809
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

P
Pekka Enberg 已提交
3810
static struct notifier_block __cpuinitdata slab_notifier = {
I
Ingo Molnar 已提交
3811
	.notifier_call = slab_cpuup_callback
P
Pekka Enberg 已提交
3812
};
C
Christoph Lameter 已提交
3813 3814 3815

#endif

3816
void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
C
Christoph Lameter 已提交
3817
{
3818
	struct kmem_cache *s;
3819
	void *ret;
3820

3821
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3822 3823
		return kmalloc_large(size, gfpflags);

3824
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
3825

3826
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3827
		return s;
C
Christoph Lameter 已提交
3828

3829
	ret = slab_alloc(s, gfpflags, caller);
3830

L
Lucas De Marchi 已提交
3831
	/* Honor the call site pointer we received. */
3832
	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3833 3834

	return ret;
C
Christoph Lameter 已提交
3835 3836
}

3837
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
3838
void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3839
					int node, unsigned long caller)
C
Christoph Lameter 已提交
3840
{
3841
	struct kmem_cache *s;
3842
	void *ret;
3843

3844
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3845 3846 3847 3848 3849 3850 3851 3852
		ret = kmalloc_large_node(size, gfpflags, node);

		trace_kmalloc_node(caller, ret,
				   size, PAGE_SIZE << get_order(size),
				   gfpflags, node);

		return ret;
	}
3853

3854
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
3855

3856
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3857
		return s;
C
Christoph Lameter 已提交
3858

3859
	ret = slab_alloc_node(s, gfpflags, node, caller);
3860

L
Lucas De Marchi 已提交
3861
	/* Honor the call site pointer we received. */
3862
	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3863 3864

	return ret;
C
Christoph Lameter 已提交
3865
}
3866
#endif
C
Christoph Lameter 已提交
3867

3868
#ifdef CONFIG_SYSFS
3869 3870 3871 3872 3873 3874 3875 3876 3877
static int count_inuse(struct page *page)
{
	return page->inuse;
}

static int count_total(struct page *page)
{
	return page->objects;
}
3878
#endif
3879

3880
#ifdef CONFIG_SLUB_DEBUG
3881 3882
static int validate_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
3883 3884
{
	void *p;
3885
	void *addr = page_address(page);
3886 3887 3888 3889 3890 3891

	if (!check_slab(s, page) ||
			!on_freelist(s, page, NULL))
		return 0;

	/* Now we know that a valid freelist exists */
3892
	bitmap_zero(map, page->objects);
3893

3894 3895 3896 3897 3898
	get_map(s, page, map);
	for_each_object(p, s, addr, page->objects) {
		if (test_bit(slab_index(p, s, addr), map))
			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
				return 0;
3899 3900
	}

3901
	for_each_object(p, s, addr, page->objects)
3902
		if (!test_bit(slab_index(p, s, addr), map))
3903
			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3904 3905 3906 3907
				return 0;
	return 1;
}

3908 3909
static void validate_slab_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
3910
{
3911 3912 3913
	slab_lock(page);
	validate_slab(s, page, map);
	slab_unlock(page);
3914 3915
}

3916 3917
static int validate_slab_node(struct kmem_cache *s,
		struct kmem_cache_node *n, unsigned long *map)
3918 3919 3920 3921 3922 3923 3924 3925
{
	unsigned long count = 0;
	struct page *page;
	unsigned long flags;

	spin_lock_irqsave(&n->list_lock, flags);

	list_for_each_entry(page, &n->partial, lru) {
3926
		validate_slab_slab(s, page, map);
3927 3928 3929 3930 3931 3932 3933 3934 3935 3936
		count++;
	}
	if (count != n->nr_partial)
		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
			"counter=%ld\n", s->name, count, n->nr_partial);

	if (!(s->flags & SLAB_STORE_USER))
		goto out;

	list_for_each_entry(page, &n->full, lru) {
3937
		validate_slab_slab(s, page, map);
3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949
		count++;
	}
	if (count != atomic_long_read(&n->nr_slabs))
		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
			"counter=%ld\n", s->name, count,
			atomic_long_read(&n->nr_slabs));

out:
	spin_unlock_irqrestore(&n->list_lock, flags);
	return count;
}

3950
static long validate_slab_cache(struct kmem_cache *s)
3951 3952 3953
{
	int node;
	unsigned long count = 0;
3954
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3955 3956 3957 3958
				sizeof(unsigned long), GFP_KERNEL);

	if (!map)
		return -ENOMEM;
3959 3960

	flush_all(s);
C
Christoph Lameter 已提交
3961
	for_each_node_state(node, N_NORMAL_MEMORY) {
3962 3963
		struct kmem_cache_node *n = get_node(s, node);

3964
		count += validate_slab_node(s, n, map);
3965
	}
3966
	kfree(map);
3967 3968
	return count;
}
3969
/*
C
Christoph Lameter 已提交
3970
 * Generate lists of code addresses where slabcache objects are allocated
3971 3972 3973 3974 3975
 * and freed.
 */

struct location {
	unsigned long count;
3976
	unsigned long addr;
3977 3978 3979 3980 3981
	long long sum_time;
	long min_time;
	long max_time;
	long min_pid;
	long max_pid;
R
Rusty Russell 已提交
3982
	DECLARE_BITMAP(cpus, NR_CPUS);
3983
	nodemask_t nodes;
3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998
};

struct loc_track {
	unsigned long max;
	unsigned long count;
	struct location *loc;
};

static void free_loc_track(struct loc_track *t)
{
	if (t->max)
		free_pages((unsigned long)t->loc,
			get_order(sizeof(struct location) * t->max));
}

3999
static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4000 4001 4002 4003 4004 4005
{
	struct location *l;
	int order;

	order = get_order(sizeof(struct location) * max);

4006
	l = (void *)__get_free_pages(flags, order);
4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019
	if (!l)
		return 0;

	if (t->count) {
		memcpy(l, t->loc, sizeof(struct location) * t->count);
		free_loc_track(t);
	}
	t->max = max;
	t->loc = l;
	return 1;
}

static int add_location(struct loc_track *t, struct kmem_cache *s,
4020
				const struct track *track)
4021 4022 4023
{
	long start, end, pos;
	struct location *l;
4024
	unsigned long caddr;
4025
	unsigned long age = jiffies - track->when;
4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040

	start = -1;
	end = t->count;

	for ( ; ; ) {
		pos = start + (end - start + 1) / 2;

		/*
		 * There is nothing at "end". If we end up there
		 * we need to add something to before end.
		 */
		if (pos == end)
			break;

		caddr = t->loc[pos].addr;
4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056
		if (track->addr == caddr) {

			l = &t->loc[pos];
			l->count++;
			if (track->when) {
				l->sum_time += age;
				if (age < l->min_time)
					l->min_time = age;
				if (age > l->max_time)
					l->max_time = age;

				if (track->pid < l->min_pid)
					l->min_pid = track->pid;
				if (track->pid > l->max_pid)
					l->max_pid = track->pid;

R
Rusty Russell 已提交
4057 4058
				cpumask_set_cpu(track->cpu,
						to_cpumask(l->cpus));
4059 4060
			}
			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4061 4062 4063
			return 1;
		}

4064
		if (track->addr < caddr)
4065 4066 4067 4068 4069 4070
			end = pos;
		else
			start = pos;
	}

	/*
C
Christoph Lameter 已提交
4071
	 * Not found. Insert new tracking element.
4072
	 */
4073
	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4074 4075 4076 4077 4078 4079 4080 4081
		return 0;

	l = t->loc + pos;
	if (pos < t->count)
		memmove(l + 1, l,
			(t->count - pos) * sizeof(struct location));
	t->count++;
	l->count = 1;
4082 4083 4084 4085 4086 4087
	l->addr = track->addr;
	l->sum_time = age;
	l->min_time = age;
	l->max_time = age;
	l->min_pid = track->pid;
	l->max_pid = track->pid;
R
Rusty Russell 已提交
4088 4089
	cpumask_clear(to_cpumask(l->cpus));
	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4090 4091
	nodes_clear(l->nodes);
	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4092 4093 4094 4095
	return 1;
}

static void process_slab(struct loc_track *t, struct kmem_cache *s,
E
Eric Dumazet 已提交
4096
		struct page *page, enum track_item alloc,
N
Namhyung Kim 已提交
4097
		unsigned long *map)
4098
{
4099
	void *addr = page_address(page);
4100 4101
	void *p;

4102
	bitmap_zero(map, page->objects);
4103
	get_map(s, page, map);
4104

4105
	for_each_object(p, s, addr, page->objects)
4106 4107
		if (!test_bit(slab_index(p, s, addr), map))
			add_location(t, s, get_track(s, p, alloc));
4108 4109 4110 4111 4112
}

static int list_locations(struct kmem_cache *s, char *buf,
					enum track_item alloc)
{
4113
	int len = 0;
4114
	unsigned long i;
4115
	struct loc_track t = { 0, 0, NULL };
4116
	int node;
E
Eric Dumazet 已提交
4117 4118
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
				     sizeof(unsigned long), GFP_KERNEL);
4119

E
Eric Dumazet 已提交
4120 4121 4122
	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
				     GFP_TEMPORARY)) {
		kfree(map);
4123
		return sprintf(buf, "Out of memory\n");
E
Eric Dumazet 已提交
4124
	}
4125 4126 4127
	/* Push back cpu slabs */
	flush_all(s);

C
Christoph Lameter 已提交
4128
	for_each_node_state(node, N_NORMAL_MEMORY) {
4129 4130 4131 4132
		struct kmem_cache_node *n = get_node(s, node);
		unsigned long flags;
		struct page *page;

4133
		if (!atomic_long_read(&n->nr_slabs))
4134 4135 4136 4137
			continue;

		spin_lock_irqsave(&n->list_lock, flags);
		list_for_each_entry(page, &n->partial, lru)
E
Eric Dumazet 已提交
4138
			process_slab(&t, s, page, alloc, map);
4139
		list_for_each_entry(page, &n->full, lru)
E
Eric Dumazet 已提交
4140
			process_slab(&t, s, page, alloc, map);
4141 4142 4143 4144
		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	for (i = 0; i < t.count; i++) {
4145
		struct location *l = &t.loc[i];
4146

H
Hugh Dickins 已提交
4147
		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4148
			break;
4149
		len += sprintf(buf + len, "%7ld ", l->count);
4150 4151

		if (l->addr)
J
Joe Perches 已提交
4152
			len += sprintf(buf + len, "%pS", (void *)l->addr);
4153
		else
4154
			len += sprintf(buf + len, "<not-available>");
4155 4156

		if (l->sum_time != l->min_time) {
4157
			len += sprintf(buf + len, " age=%ld/%ld/%ld",
R
Roman Zippel 已提交
4158 4159 4160
				l->min_time,
				(long)div_u64(l->sum_time, l->count),
				l->max_time);
4161
		} else
4162
			len += sprintf(buf + len, " age=%ld",
4163 4164 4165
				l->min_time);

		if (l->min_pid != l->max_pid)
4166
			len += sprintf(buf + len, " pid=%ld-%ld",
4167 4168
				l->min_pid, l->max_pid);
		else
4169
			len += sprintf(buf + len, " pid=%ld",
4170 4171
				l->min_pid);

R
Rusty Russell 已提交
4172 4173
		if (num_online_cpus() > 1 &&
				!cpumask_empty(to_cpumask(l->cpus)) &&
4174 4175
				len < PAGE_SIZE - 60) {
			len += sprintf(buf + len, " cpus=");
4176 4177
			len += cpulist_scnprintf(buf + len,
						 PAGE_SIZE - len - 50,
R
Rusty Russell 已提交
4178
						 to_cpumask(l->cpus));
4179 4180
		}

4181
		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4182 4183
				len < PAGE_SIZE - 60) {
			len += sprintf(buf + len, " nodes=");
4184 4185 4186
			len += nodelist_scnprintf(buf + len,
						  PAGE_SIZE - len - 50,
						  l->nodes);
4187 4188
		}

4189
		len += sprintf(buf + len, "\n");
4190 4191 4192
	}

	free_loc_track(&t);
E
Eric Dumazet 已提交
4193
	kfree(map);
4194
	if (!t.count)
4195 4196
		len += sprintf(buf, "No data\n");
	return len;
4197
}
4198
#endif
4199

4200 4201 4202 4203 4204
#ifdef SLUB_RESILIENCY_TEST
static void resiliency_test(void)
{
	u8 *p;

4205
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261

	printk(KERN_ERR "SLUB resiliency testing\n");
	printk(KERN_ERR "-----------------------\n");
	printk(KERN_ERR "A. Corruption after allocation\n");

	p = kzalloc(16, GFP_KERNEL);
	p[16] = 0x12;
	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
			" 0x12->0x%p\n\n", p + 16);

	validate_slab_cache(kmalloc_caches[4]);

	/* Hmmm... The next two are dangerous */
	p = kzalloc(32, GFP_KERNEL);
	p[32 + sizeof(void *)] = 0x34;
	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
			" 0x34 -> -0x%p\n", p);
	printk(KERN_ERR
		"If allocated object is overwritten then not detectable\n\n");

	validate_slab_cache(kmalloc_caches[5]);
	p = kzalloc(64, GFP_KERNEL);
	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
	*p = 0x56;
	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
									p);
	printk(KERN_ERR
		"If allocated object is overwritten then not detectable\n\n");
	validate_slab_cache(kmalloc_caches[6]);

	printk(KERN_ERR "\nB. Corruption after free\n");
	p = kzalloc(128, GFP_KERNEL);
	kfree(p);
	*p = 0x78;
	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
	validate_slab_cache(kmalloc_caches[7]);

	p = kzalloc(256, GFP_KERNEL);
	kfree(p);
	p[50] = 0x9a;
	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
			p);
	validate_slab_cache(kmalloc_caches[8]);

	p = kzalloc(512, GFP_KERNEL);
	kfree(p);
	p[512] = 0xab;
	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
	validate_slab_cache(kmalloc_caches[9]);
}
#else
#ifdef CONFIG_SYSFS
static void resiliency_test(void) {};
#endif
#endif

4262
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
4263
enum slab_stat_type {
4264 4265 4266 4267 4268
	SL_ALL,			/* All slabs */
	SL_PARTIAL,		/* Only partially allocated slabs */
	SL_CPU,			/* Only slabs used for cpu caches */
	SL_OBJECTS,		/* Determine allocated objects not slabs */
	SL_TOTAL		/* Determine object capacity not slabs */
C
Christoph Lameter 已提交
4269 4270
};

4271
#define SO_ALL		(1 << SL_ALL)
C
Christoph Lameter 已提交
4272 4273 4274
#define SO_PARTIAL	(1 << SL_PARTIAL)
#define SO_CPU		(1 << SL_CPU)
#define SO_OBJECTS	(1 << SL_OBJECTS)
4275
#define SO_TOTAL	(1 << SL_TOTAL)
C
Christoph Lameter 已提交
4276

4277 4278
static ssize_t show_slab_objects(struct kmem_cache *s,
			    char *buf, unsigned long flags)
C
Christoph Lameter 已提交
4279 4280 4281 4282 4283 4284
{
	unsigned long total = 0;
	int node;
	int x;
	unsigned long *nodes;

4285
	nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4286 4287
	if (!nodes)
		return -ENOMEM;
C
Christoph Lameter 已提交
4288

4289 4290
	if (flags & SO_CPU) {
		int cpu;
C
Christoph Lameter 已提交
4291

4292
		for_each_possible_cpu(cpu) {
4293 4294
			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
							       cpu);
4295
			int node;
4296
			struct page *page;
4297

4298
			page = ACCESS_ONCE(c->page);
4299 4300
			if (!page)
				continue;
4301

4302 4303 4304 4305 4306 4307 4308
			node = page_to_nid(page);
			if (flags & SO_TOTAL)
				x = page->objects;
			else if (flags & SO_OBJECTS)
				x = page->inuse;
			else
				x = 1;
4309

4310 4311 4312 4313
			total += x;
			nodes[node] += x;

			page = ACCESS_ONCE(c->partial);
4314 4315
			if (page) {
				x = page->pobjects;
4316 4317
				total += x;
				nodes[node] += x;
4318
			}
C
Christoph Lameter 已提交
4319 4320 4321
		}
	}

4322
	lock_memory_hotplug();
4323
#ifdef CONFIG_SLUB_DEBUG
4324 4325 4326 4327
	if (flags & SO_ALL) {
		for_each_node_state(node, N_NORMAL_MEMORY) {
			struct kmem_cache_node *n = get_node(s, node);

4328 4329 4330 4331 4332
			if (flags & SO_TOTAL)
				x = atomic_long_read(&n->total_objects);
			else if (flags & SO_OBJECTS)
				x = atomic_long_read(&n->total_objects) -
					count_partial(n, count_free);
C
Christoph Lameter 已提交
4333
			else
4334
				x = atomic_long_read(&n->nr_slabs);
C
Christoph Lameter 已提交
4335 4336 4337 4338
			total += x;
			nodes[node] += x;
		}

4339 4340 4341
	} else
#endif
	if (flags & SO_PARTIAL) {
4342 4343
		for_each_node_state(node, N_NORMAL_MEMORY) {
			struct kmem_cache_node *n = get_node(s, node);
C
Christoph Lameter 已提交
4344

4345 4346 4347 4348
			if (flags & SO_TOTAL)
				x = count_partial(n, count_total);
			else if (flags & SO_OBJECTS)
				x = count_partial(n, count_inuse);
C
Christoph Lameter 已提交
4349
			else
4350
				x = n->nr_partial;
C
Christoph Lameter 已提交
4351 4352 4353 4354 4355 4356
			total += x;
			nodes[node] += x;
		}
	}
	x = sprintf(buf, "%lu", total);
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
4357
	for_each_node_state(node, N_NORMAL_MEMORY)
C
Christoph Lameter 已提交
4358 4359 4360 4361
		if (nodes[node])
			x += sprintf(buf + x, " N%d=%lu",
					node, nodes[node]);
#endif
4362
	unlock_memory_hotplug();
C
Christoph Lameter 已提交
4363 4364 4365 4366
	kfree(nodes);
	return x + sprintf(buf + x, "\n");
}

4367
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
4368 4369 4370 4371
static int any_slab_objects(struct kmem_cache *s)
{
	int node;

4372
	for_each_online_node(node) {
C
Christoph Lameter 已提交
4373 4374
		struct kmem_cache_node *n = get_node(s, node);

4375 4376 4377
		if (!n)
			continue;

4378
		if (atomic_long_read(&n->total_objects))
C
Christoph Lameter 已提交
4379 4380 4381 4382
			return 1;
	}
	return 0;
}
4383
#endif
C
Christoph Lameter 已提交
4384 4385

#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4386
#define to_slab(n) container_of(n, struct kmem_cache, kobj)
C
Christoph Lameter 已提交
4387 4388 4389 4390 4391 4392 4393 4394

struct slab_attribute {
	struct attribute attr;
	ssize_t (*show)(struct kmem_cache *s, char *buf);
	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
};

#define SLAB_ATTR_RO(_name) \
4395 4396
	static struct slab_attribute _name##_attr = \
	__ATTR(_name, 0400, _name##_show, NULL)
C
Christoph Lameter 已提交
4397 4398 4399

#define SLAB_ATTR(_name) \
	static struct slab_attribute _name##_attr =  \
4400
	__ATTR(_name, 0600, _name##_show, _name##_store)
C
Christoph Lameter 已提交
4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415

static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->size);
}
SLAB_ATTR_RO(slab_size);

static ssize_t align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->align);
}
SLAB_ATTR_RO(align);

static ssize_t object_size_show(struct kmem_cache *s, char *buf)
{
4416
	return sprintf(buf, "%d\n", s->object_size);
C
Christoph Lameter 已提交
4417 4418 4419 4420 4421
}
SLAB_ATTR_RO(object_size);

static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
{
4422
	return sprintf(buf, "%d\n", oo_objects(s->oo));
C
Christoph Lameter 已提交
4423 4424 4425
}
SLAB_ATTR_RO(objs_per_slab);

4426 4427 4428
static ssize_t order_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
4429 4430 4431 4432 4433 4434
	unsigned long order;
	int err;

	err = strict_strtoul(buf, 10, &order);
	if (err)
		return err;
4435 4436 4437 4438 4439 4440 4441 4442

	if (order > slub_max_order || order < slub_min_order)
		return -EINVAL;

	calculate_sizes(s, order);
	return length;
}

C
Christoph Lameter 已提交
4443 4444
static ssize_t order_show(struct kmem_cache *s, char *buf)
{
4445
	return sprintf(buf, "%d\n", oo_order(s->oo));
C
Christoph Lameter 已提交
4446
}
4447
SLAB_ATTR(order);
C
Christoph Lameter 已提交
4448

4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463
static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%lu\n", s->min_partial);
}

static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long min;
	int err;

	err = strict_strtoul(buf, 10, &min);
	if (err)
		return err;

4464
	set_min_partial(s, min);
4465 4466 4467 4468
	return length;
}
SLAB_ATTR(min_partial);

4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482
static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%u\n", s->cpu_partial);
}

static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long objects;
	int err;

	err = strict_strtoul(buf, 10, &objects);
	if (err)
		return err;
4483
	if (objects && !kmem_cache_has_cpu_partial(s))
4484
		return -EINVAL;
4485 4486 4487 4488 4489 4490 4491

	s->cpu_partial = objects;
	flush_all(s);
	return length;
}
SLAB_ATTR(cpu_partial);

C
Christoph Lameter 已提交
4492 4493
static ssize_t ctor_show(struct kmem_cache *s, char *buf)
{
J
Joe Perches 已提交
4494 4495 4496
	if (!s->ctor)
		return 0;
	return sprintf(buf, "%pS\n", s->ctor);
C
Christoph Lameter 已提交
4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507
}
SLAB_ATTR_RO(ctor);

static ssize_t aliases_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->refcount - 1);
}
SLAB_ATTR_RO(aliases);

static ssize_t partial_show(struct kmem_cache *s, char *buf)
{
4508
	return show_slab_objects(s, buf, SO_PARTIAL);
C
Christoph Lameter 已提交
4509 4510 4511 4512 4513
}
SLAB_ATTR_RO(partial);

static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
{
4514
	return show_slab_objects(s, buf, SO_CPU);
C
Christoph Lameter 已提交
4515 4516 4517 4518 4519
}
SLAB_ATTR_RO(cpu_slabs);

static ssize_t objects_show(struct kmem_cache *s, char *buf)
{
4520
	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
C
Christoph Lameter 已提交
4521 4522 4523
}
SLAB_ATTR_RO(objects);

4524 4525 4526 4527 4528 4529
static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
}
SLAB_ATTR_RO(objects_partial);

4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560
static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
{
	int objects = 0;
	int pages = 0;
	int cpu;
	int len;

	for_each_online_cpu(cpu) {
		struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;

		if (page) {
			pages += page->pages;
			objects += page->pobjects;
		}
	}

	len = sprintf(buf, "%d(%d)", objects, pages);

#ifdef CONFIG_SMP
	for_each_online_cpu(cpu) {
		struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;

		if (page && len < PAGE_SIZE - 20)
			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
				page->pobjects, page->pages);
	}
#endif
	return len + sprintf(buf + len, "\n");
}
SLAB_ATTR_RO(slabs_cpu_partial);

4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595
static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
}

static ssize_t reclaim_account_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
	if (buf[0] == '1')
		s->flags |= SLAB_RECLAIM_ACCOUNT;
	return length;
}
SLAB_ATTR(reclaim_account);

static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
}
SLAB_ATTR_RO(hwcache_align);

#ifdef CONFIG_ZONE_DMA
static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
}
SLAB_ATTR_RO(cache_dma);
#endif

static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
}
SLAB_ATTR_RO(destroy_by_rcu);

4596 4597 4598 4599 4600 4601
static ssize_t reserved_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->reserved);
}
SLAB_ATTR_RO(reserved);

4602
#ifdef CONFIG_SLUB_DEBUG
4603 4604 4605 4606 4607 4608
static ssize_t slabs_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL);
}
SLAB_ATTR_RO(slabs);

4609 4610 4611 4612 4613 4614
static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
}
SLAB_ATTR_RO(total_objects);

C
Christoph Lameter 已提交
4615 4616 4617 4618 4619 4620 4621 4622 4623
static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
}

static ssize_t sanity_checks_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_DEBUG_FREE;
4624 4625
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4626
		s->flags |= SLAB_DEBUG_FREE;
4627
	}
C
Christoph Lameter 已提交
4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640
	return length;
}
SLAB_ATTR(sanity_checks);

static ssize_t trace_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
}

static ssize_t trace_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
	s->flags &= ~SLAB_TRACE;
4641 4642
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4643
		s->flags |= SLAB_TRACE;
4644
	}
C
Christoph Lameter 已提交
4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660
	return length;
}
SLAB_ATTR(trace);

static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
}

static ssize_t red_zone_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_RED_ZONE;
4661 4662
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4663
		s->flags |= SLAB_RED_ZONE;
4664
	}
4665
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681
	return length;
}
SLAB_ATTR(red_zone);

static ssize_t poison_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
}

static ssize_t poison_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_POISON;
4682 4683
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4684
		s->flags |= SLAB_POISON;
4685
	}
4686
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702
	return length;
}
SLAB_ATTR(poison);

static ssize_t store_user_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
}

static ssize_t store_user_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_STORE_USER;
4703 4704
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4705
		s->flags |= SLAB_STORE_USER;
4706
	}
4707
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4708 4709 4710 4711
	return length;
}
SLAB_ATTR(store_user);

4712 4713 4714 4715 4716 4717 4718 4719
static ssize_t validate_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t validate_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
4720 4721 4722 4723 4724 4725 4726 4727
	int ret = -EINVAL;

	if (buf[0] == '1') {
		ret = validate_slab_cache(s);
		if (ret >= 0)
			ret = length;
	}
	return ret;
4728 4729
}
SLAB_ATTR(validate);
4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762

static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_ALLOC);
}
SLAB_ATTR_RO(alloc_calls);

static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_FREE);
}
SLAB_ATTR_RO(free_calls);
#endif /* CONFIG_SLUB_DEBUG */

#ifdef CONFIG_FAILSLAB
static ssize_t failslab_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
}

static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
	s->flags &= ~SLAB_FAILSLAB;
	if (buf[0] == '1')
		s->flags |= SLAB_FAILSLAB;
	return length;
}
SLAB_ATTR(failslab);
4763
#endif
4764

4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783
static ssize_t shrink_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t shrink_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
	if (buf[0] == '1') {
		int rc = kmem_cache_shrink(s);

		if (rc)
			return rc;
	} else
		return -EINVAL;
	return length;
}
SLAB_ATTR(shrink);

C
Christoph Lameter 已提交
4784
#ifdef CONFIG_NUMA
4785
static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
C
Christoph Lameter 已提交
4786
{
4787
	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
C
Christoph Lameter 已提交
4788 4789
}

4790
static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
C
Christoph Lameter 已提交
4791 4792
				const char *buf, size_t length)
{
4793 4794 4795 4796 4797 4798 4799
	unsigned long ratio;
	int err;

	err = strict_strtoul(buf, 10, &ratio);
	if (err)
		return err;

4800
	if (ratio <= 100)
4801
		s->remote_node_defrag_ratio = ratio * 10;
C
Christoph Lameter 已提交
4802 4803 4804

	return length;
}
4805
SLAB_ATTR(remote_node_defrag_ratio);
C
Christoph Lameter 已提交
4806 4807
#endif

4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819
#ifdef CONFIG_SLUB_STATS
static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
{
	unsigned long sum  = 0;
	int cpu;
	int len;
	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);

	if (!data)
		return -ENOMEM;

	for_each_online_cpu(cpu) {
4820
		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4821 4822 4823 4824 4825 4826 4827

		data[cpu] = x;
		sum += x;
	}

	len = sprintf(buf, "%lu", sum);

4828
#ifdef CONFIG_SMP
4829 4830
	for_each_online_cpu(cpu) {
		if (data[cpu] && len < PAGE_SIZE - 20)
4831
			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4832
	}
4833
#endif
4834 4835 4836 4837
	kfree(data);
	return len + sprintf(buf + len, "\n");
}

D
David Rientjes 已提交
4838 4839 4840 4841 4842
static void clear_stat(struct kmem_cache *s, enum stat_item si)
{
	int cpu;

	for_each_online_cpu(cpu)
4843
		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
D
David Rientjes 已提交
4844 4845
}

4846 4847 4848 4849 4850
#define STAT_ATTR(si, text) 					\
static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
{								\
	return show_stat(s, buf, si);				\
}								\
D
David Rientjes 已提交
4851 4852 4853 4854 4855 4856 4857 4858 4859
static ssize_t text##_store(struct kmem_cache *s,		\
				const char *buf, size_t length)	\
{								\
	if (buf[0] != '0')					\
		return -EINVAL;					\
	clear_stat(s, si);					\
	return length;						\
}								\
SLAB_ATTR(text);						\
4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870

STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
STAT_ATTR(FREE_FASTPATH, free_fastpath);
STAT_ATTR(FREE_SLOWPATH, free_slowpath);
STAT_ATTR(FREE_FROZEN, free_frozen);
STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
STAT_ATTR(ALLOC_SLAB, alloc_slab);
STAT_ATTR(ALLOC_REFILL, alloc_refill);
4871
STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4872 4873 4874 4875 4876 4877 4878
STAT_ATTR(FREE_SLAB, free_slab);
STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4879
STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4880
STAT_ATTR(ORDER_FALLBACK, order_fallback);
4881 4882
STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4883 4884
STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4885 4886
STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
4887 4888
#endif

P
Pekka Enberg 已提交
4889
static struct attribute *slab_attrs[] = {
C
Christoph Lameter 已提交
4890 4891 4892 4893
	&slab_size_attr.attr,
	&object_size_attr.attr,
	&objs_per_slab_attr.attr,
	&order_attr.attr,
4894
	&min_partial_attr.attr,
4895
	&cpu_partial_attr.attr,
C
Christoph Lameter 已提交
4896
	&objects_attr.attr,
4897
	&objects_partial_attr.attr,
C
Christoph Lameter 已提交
4898 4899 4900 4901 4902 4903 4904 4905
	&partial_attr.attr,
	&cpu_slabs_attr.attr,
	&ctor_attr.attr,
	&aliases_attr.attr,
	&align_attr.attr,
	&hwcache_align_attr.attr,
	&reclaim_account_attr.attr,
	&destroy_by_rcu_attr.attr,
4906
	&shrink_attr.attr,
4907
	&reserved_attr.attr,
4908
	&slabs_cpu_partial_attr.attr,
4909
#ifdef CONFIG_SLUB_DEBUG
4910 4911 4912 4913
	&total_objects_attr.attr,
	&slabs_attr.attr,
	&sanity_checks_attr.attr,
	&trace_attr.attr,
C
Christoph Lameter 已提交
4914 4915 4916
	&red_zone_attr.attr,
	&poison_attr.attr,
	&store_user_attr.attr,
4917
	&validate_attr.attr,
4918 4919
	&alloc_calls_attr.attr,
	&free_calls_attr.attr,
4920
#endif
C
Christoph Lameter 已提交
4921 4922 4923 4924
#ifdef CONFIG_ZONE_DMA
	&cache_dma_attr.attr,
#endif
#ifdef CONFIG_NUMA
4925
	&remote_node_defrag_ratio_attr.attr,
4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937
#endif
#ifdef CONFIG_SLUB_STATS
	&alloc_fastpath_attr.attr,
	&alloc_slowpath_attr.attr,
	&free_fastpath_attr.attr,
	&free_slowpath_attr.attr,
	&free_frozen_attr.attr,
	&free_add_partial_attr.attr,
	&free_remove_partial_attr.attr,
	&alloc_from_partial_attr.attr,
	&alloc_slab_attr.attr,
	&alloc_refill_attr.attr,
4938
	&alloc_node_mismatch_attr.attr,
4939 4940 4941 4942 4943 4944 4945
	&free_slab_attr.attr,
	&cpuslab_flush_attr.attr,
	&deactivate_full_attr.attr,
	&deactivate_empty_attr.attr,
	&deactivate_to_head_attr.attr,
	&deactivate_to_tail_attr.attr,
	&deactivate_remote_frees_attr.attr,
4946
	&deactivate_bypass_attr.attr,
4947
	&order_fallback_attr.attr,
4948 4949
	&cmpxchg_double_fail_attr.attr,
	&cmpxchg_double_cpu_fail_attr.attr,
4950 4951
	&cpu_partial_alloc_attr.attr,
	&cpu_partial_free_attr.attr,
4952 4953
	&cpu_partial_node_attr.attr,
	&cpu_partial_drain_attr.attr,
C
Christoph Lameter 已提交
4954
#endif
4955 4956 4957 4958
#ifdef CONFIG_FAILSLAB
	&failslab_attr.attr,
#endif

C
Christoph Lameter 已提交
4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999
	NULL
};

static struct attribute_group slab_attr_group = {
	.attrs = slab_attrs,
};

static ssize_t slab_attr_show(struct kobject *kobj,
				struct attribute *attr,
				char *buf)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->show)
		return -EIO;

	err = attribute->show(s, buf);

	return err;
}

static ssize_t slab_attr_store(struct kobject *kobj,
				struct attribute *attr,
				const char *buf, size_t len)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->store)
		return -EIO;

	err = attribute->store(s, buf, len);
5000 5001 5002
#ifdef CONFIG_MEMCG_KMEM
	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
		int i;
C
Christoph Lameter 已提交
5003

5004 5005 5006 5007
		mutex_lock(&slab_mutex);
		if (s->max_attr_size < len)
			s->max_attr_size = len;

5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024
		/*
		 * This is a best effort propagation, so this function's return
		 * value will be determined by the parent cache only. This is
		 * basically because not all attributes will have a well
		 * defined semantics for rollbacks - most of the actions will
		 * have permanent effects.
		 *
		 * Returning the error value of any of the children that fail
		 * is not 100 % defined, in the sense that users seeing the
		 * error code won't be able to know anything about the state of
		 * the cache.
		 *
		 * Only returning the error code for the parent cache at least
		 * has well defined semantics. The cache being written to
		 * directly either failed or succeeded, in which case we loop
		 * through the descendants with best-effort propagation.
		 */
5025 5026 5027 5028 5029 5030 5031 5032
		for_each_memcg_cache_index(i) {
			struct kmem_cache *c = cache_from_memcg(s, i);
			if (c)
				attribute->store(c, buf, len);
		}
		mutex_unlock(&slab_mutex);
	}
#endif
C
Christoph Lameter 已提交
5033 5034 5035
	return err;
}

5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088
static void memcg_propagate_slab_attrs(struct kmem_cache *s)
{
#ifdef CONFIG_MEMCG_KMEM
	int i;
	char *buffer = NULL;

	if (!is_root_cache(s))
		return;

	/*
	 * This mean this cache had no attribute written. Therefore, no point
	 * in copying default values around
	 */
	if (!s->max_attr_size)
		return;

	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
		char mbuf[64];
		char *buf;
		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);

		if (!attr || !attr->store || !attr->show)
			continue;

		/*
		 * It is really bad that we have to allocate here, so we will
		 * do it only as a fallback. If we actually allocate, though,
		 * we can just use the allocated buffer until the end.
		 *
		 * Most of the slub attributes will tend to be very small in
		 * size, but sysfs allows buffers up to a page, so they can
		 * theoretically happen.
		 */
		if (buffer)
			buf = buffer;
		else if (s->max_attr_size < ARRAY_SIZE(mbuf))
			buf = mbuf;
		else {
			buffer = (char *) get_zeroed_page(GFP_KERNEL);
			if (WARN_ON(!buffer))
				continue;
			buf = buffer;
		}

		attr->show(s->memcg_params->root_cache, buf);
		attr->store(s, buf, strlen(buf));
	}

	if (buffer)
		free_page((unsigned long)buffer);
#endif
}

5089
static const struct sysfs_ops slab_sysfs_ops = {
C
Christoph Lameter 已提交
5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106
	.show = slab_attr_show,
	.store = slab_attr_store,
};

static struct kobj_type slab_ktype = {
	.sysfs_ops = &slab_sysfs_ops,
};

static int uevent_filter(struct kset *kset, struct kobject *kobj)
{
	struct kobj_type *ktype = get_ktype(kobj);

	if (ktype == &slab_ktype)
		return 1;
	return 0;
}

5107
static const struct kset_uevent_ops slab_uevent_ops = {
C
Christoph Lameter 已提交
5108 5109 5110
	.filter = uevent_filter,
};

5111
static struct kset *slab_kset;
C
Christoph Lameter 已提交
5112 5113 5114 5115

#define ID_STR_LENGTH 64

/* Create a unique string id for a slab cache:
C
Christoph Lameter 已提交
5116 5117
 *
 * Format	:[flags-]size
C
Christoph Lameter 已提交
5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139
 */
static char *create_unique_id(struct kmem_cache *s)
{
	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
	char *p = name;

	BUG_ON(!name);

	*p++ = ':';
	/*
	 * First flags affecting slabcache operations. We will only
	 * get here for aliasable slabs so we do not need to support
	 * too many flags. The flags here must cover all flags that
	 * are matched during merging to guarantee that the id is
	 * unique.
	 */
	if (s->flags & SLAB_CACHE_DMA)
		*p++ = 'd';
	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		*p++ = 'a';
	if (s->flags & SLAB_DEBUG_FREE)
		*p++ = 'F';
V
Vegard Nossum 已提交
5140 5141
	if (!(s->flags & SLAB_NOTRACK))
		*p++ = 't';
C
Christoph Lameter 已提交
5142 5143 5144
	if (p != name + 1)
		*p++ = '-';
	p += sprintf(p, "%07d", s->size);
5145 5146 5147

#ifdef CONFIG_MEMCG_KMEM
	if (!is_root_cache(s))
5148 5149
		p += sprintf(p, "-%08d",
				memcg_cache_id(s->memcg_params->memcg));
5150 5151
#endif

C
Christoph Lameter 已提交
5152 5153 5154 5155 5156 5157 5158 5159
	BUG_ON(p > name + ID_STR_LENGTH - 1);
	return name;
}

static int sysfs_slab_add(struct kmem_cache *s)
{
	int err;
	const char *name;
5160
	int unmergeable = slab_unmergeable(s);
C
Christoph Lameter 已提交
5161 5162 5163 5164 5165 5166 5167

	if (unmergeable) {
		/*
		 * Slabcache can never be merged so we can use the name proper.
		 * This is typically the case for debug situations. In that
		 * case we can catch duplicate names easily.
		 */
5168
		sysfs_remove_link(&slab_kset->kobj, s->name);
C
Christoph Lameter 已提交
5169 5170 5171 5172 5173 5174 5175 5176 5177
		name = s->name;
	} else {
		/*
		 * Create a unique name for the slab as a target
		 * for the symlinks.
		 */
		name = create_unique_id(s);
	}

5178
	s->kobj.kset = slab_kset;
5179 5180 5181
	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
	if (err) {
		kobject_put(&s->kobj);
C
Christoph Lameter 已提交
5182
		return err;
5183
	}
C
Christoph Lameter 已提交
5184 5185

	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5186 5187 5188
	if (err) {
		kobject_del(&s->kobj);
		kobject_put(&s->kobj);
C
Christoph Lameter 已提交
5189
		return err;
5190
	}
C
Christoph Lameter 已提交
5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201
	kobject_uevent(&s->kobj, KOBJ_ADD);
	if (!unmergeable) {
		/* Setup first alias */
		sysfs_slab_alias(s, s->name);
		kfree(name);
	}
	return 0;
}

static void sysfs_slab_remove(struct kmem_cache *s)
{
5202
	if (slab_state < FULL)
5203 5204 5205 5206 5207 5208
		/*
		 * Sysfs has not been setup yet so no need to remove the
		 * cache from sysfs.
		 */
		return;

C
Christoph Lameter 已提交
5209 5210
	kobject_uevent(&s->kobj, KOBJ_REMOVE);
	kobject_del(&s->kobj);
C
Christoph Lameter 已提交
5211
	kobject_put(&s->kobj);
C
Christoph Lameter 已提交
5212 5213 5214 5215
}

/*
 * Need to buffer aliases during bootup until sysfs becomes
N
Nick Andrew 已提交
5216
 * available lest we lose that information.
C
Christoph Lameter 已提交
5217 5218 5219 5220 5221 5222 5223
 */
struct saved_alias {
	struct kmem_cache *s;
	const char *name;
	struct saved_alias *next;
};

A
Adrian Bunk 已提交
5224
static struct saved_alias *alias_list;
C
Christoph Lameter 已提交
5225 5226 5227 5228 5229

static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
{
	struct saved_alias *al;

5230
	if (slab_state == FULL) {
C
Christoph Lameter 已提交
5231 5232 5233
		/*
		 * If we have a leftover link then remove it.
		 */
5234 5235
		sysfs_remove_link(&slab_kset->kobj, name);
		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
C
Christoph Lameter 已提交
5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250
	}

	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
	if (!al)
		return -ENOMEM;

	al->s = s;
	al->name = name;
	al->next = alias_list;
	alias_list = al;
	return 0;
}

static int __init slab_sysfs_init(void)
{
5251
	struct kmem_cache *s;
C
Christoph Lameter 已提交
5252 5253
	int err;

5254
	mutex_lock(&slab_mutex);
5255

5256
	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5257
	if (!slab_kset) {
5258
		mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
5259 5260 5261 5262
		printk(KERN_ERR "Cannot register slab subsystem.\n");
		return -ENOSYS;
	}

5263
	slab_state = FULL;
5264

5265
	list_for_each_entry(s, &slab_caches, list) {
5266
		err = sysfs_slab_add(s);
5267 5268 5269
		if (err)
			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
						" to sysfs\n", s->name);
5270
	}
C
Christoph Lameter 已提交
5271 5272 5273 5274 5275 5276

	while (alias_list) {
		struct saved_alias *al = alias_list;

		alias_list = alias_list->next;
		err = sysfs_slab_alias(al->s, al->name);
5277 5278
		if (err)
			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5279
					" %s to sysfs\n", al->name);
C
Christoph Lameter 已提交
5280 5281 5282
		kfree(al);
	}

5283
	mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
5284 5285 5286 5287 5288
	resiliency_test();
	return 0;
}

__initcall(slab_sysfs_init);
5289
#endif /* CONFIG_SYSFS */
P
Pekka J Enberg 已提交
5290 5291 5292 5293

/*
 * The /proc/slabinfo ABI
 */
5294
#ifdef CONFIG_SLABINFO
5295
void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
P
Pekka J Enberg 已提交
5296 5297
{
	unsigned long nr_slabs = 0;
5298 5299
	unsigned long nr_objs = 0;
	unsigned long nr_free = 0;
P
Pekka J Enberg 已提交
5300 5301 5302 5303 5304 5305 5306 5307
	int node;

	for_each_online_node(node) {
		struct kmem_cache_node *n = get_node(s, node);

		if (!n)
			continue;

5308 5309
		nr_slabs += node_nr_slabs(n);
		nr_objs += node_nr_objs(n);
5310
		nr_free += count_partial(n, count_free);
P
Pekka J Enberg 已提交
5311 5312
	}

5313 5314 5315 5316 5317 5318
	sinfo->active_objs = nr_objs - nr_free;
	sinfo->num_objs = nr_objs;
	sinfo->active_slabs = nr_slabs;
	sinfo->num_slabs = nr_slabs;
	sinfo->objects_per_slab = oo_objects(s->oo);
	sinfo->cache_order = oo_order(s->oo);
P
Pekka J Enberg 已提交
5319 5320
}

5321
void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5322 5323 5324
{
}

5325 5326
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
		       size_t count, loff_t *ppos)
5327
{
5328
	return -EIO;
5329
}
5330
#endif /* CONFIG_SLABINFO */