cpufreq_conservative.c 15.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 *  drivers/cpufreq/cpufreq_conservative.c
 *
 *  Copyright (C)  2001 Russell King
 *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
 *                      Jun Nakajima <jun.nakajima@intel.com>
 *            (C)  2004 Alexander Clouter <alex-kernel@digriz.org.uk>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/smp.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/ctype.h>
#include <linux/cpufreq.h>
#include <linux/sysctl.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/sysfs.h>
A
Andrew Morton 已提交
25
#include <linux/cpu.h>
26 27 28 29 30
#include <linux/kmod.h>
#include <linux/workqueue.h>
#include <linux/jiffies.h>
#include <linux/kernel_stat.h>
#include <linux/percpu.h>
31
#include <linux/mutex.h>
32 33 34 35 36 37 38 39 40 41 42 43 44 45
/*
 * dbs is used in this file as a shortform for demandbased switching
 * It helps to keep variable names smaller, simpler
 */

#define DEF_FREQUENCY_UP_THRESHOLD		(80)
#define DEF_FREQUENCY_DOWN_THRESHOLD		(20)

/* 
 * The polling frequency of this governor depends on the capability of 
 * the processor. Default polling frequency is 1000 times the transition
 * latency of the processor. The governor will work on any processor with 
 * transition latency <= 10mS, using appropriate sampling 
 * rate.
46 47
 * For CPUs with transition latency > 10mS (mostly drivers
 * with CPUFREQ_ETERNAL), this governor will not work.
48 49 50
 * All times here are in uS.
 */
static unsigned int 				def_sampling_rate;
51 52
#define MIN_SAMPLING_RATE_RATIO			(2)
/* for correct statistics, we need at least 10 ticks between each measure */
53 54 55 56
#define MIN_STAT_SAMPLING_RATE			\
			(MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
#define MIN_SAMPLING_RATE			\
			(def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
57
#define MAX_SAMPLING_RATE			(500 * def_sampling_rate)
58 59 60
#define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER	(1000)
#define DEF_SAMPLING_DOWN_FACTOR		(1)
#define MAX_SAMPLING_DOWN_FACTOR		(10)
61 62
#define TRANSITION_LATENCY_LIMIT		(10 * 1000)

D
David Howells 已提交
63
static void do_dbs_timer(struct work_struct *work);
64 65 66 67 68 69

struct cpu_dbs_info_s {
	struct cpufreq_policy 	*cur_policy;
	unsigned int 		prev_cpu_idle_up;
	unsigned int 		prev_cpu_idle_down;
	unsigned int 		enable;
70 71
	unsigned int		down_skip;
	unsigned int		requested_freq;
72 73 74 75 76
};
static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);

static unsigned int dbs_enable;	/* number of CPUs using this policy */

77 78 79 80 81 82 83 84
/*
 * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
 * lock and dbs_mutex. cpu_hotplug lock should always be held before
 * dbs_mutex. If any function that can potentially take cpu_hotplug lock
 * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
 * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
 * is recursive for the same process. -Venki
 */
85
static DEFINE_MUTEX 	(dbs_mutex);
D
David Howells 已提交
86
static DECLARE_DELAYED_WORK(dbs_work, do_dbs_timer);
87 88 89 90 91 92 93 94 95 96 97 98 99 100

struct dbs_tuners {
	unsigned int 		sampling_rate;
	unsigned int		sampling_down_factor;
	unsigned int		up_threshold;
	unsigned int		down_threshold;
	unsigned int		ignore_nice;
	unsigned int		freq_step;
};

static struct dbs_tuners dbs_tuners_ins = {
	.up_threshold 		= DEF_FREQUENCY_UP_THRESHOLD,
	.down_threshold 	= DEF_FREQUENCY_DOWN_THRESHOLD,
	.sampling_down_factor 	= DEF_SAMPLING_DOWN_FACTOR,
101 102
	.ignore_nice		= 0,
	.freq_step		= 5,
103 104
};

105 106
static inline unsigned int get_cpu_idle_time(unsigned int cpu)
{
107 108 109 110 111 112
	unsigned int add_nice = 0, ret;

	if (dbs_tuners_ins.ignore_nice)
		add_nice = kstat_cpu(cpu).cpustat.nice;

	ret = 	kstat_cpu(cpu).cpustat.idle +
113
		kstat_cpu(cpu).cpustat.iowait +
114 115 116
		add_nice;

	return ret;
117 118
}

119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
/************************** sysfs interface ************************/
static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
{
	return sprintf (buf, "%u\n", MAX_SAMPLING_RATE);
}

static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
{
	return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
}

#define define_one_ro(_name) 					\
static struct freq_attr _name =  				\
__ATTR(_name, 0444, show_##_name, NULL)

define_one_ro(sampling_rate_max);
define_one_ro(sampling_rate_min);

/* cpufreq_conservative Governor Tunables */
#define show_one(file_name, object)					\
static ssize_t show_##file_name						\
(struct cpufreq_policy *unused, char *buf)				\
{									\
	return sprintf(buf, "%u\n", dbs_tuners_ins.object);		\
}
show_one(sampling_rate, sampling_rate);
show_one(sampling_down_factor, sampling_down_factor);
show_one(up_threshold, up_threshold);
show_one(down_threshold, down_threshold);
148
show_one(ignore_nice_load, ignore_nice);
149 150 151 152 153 154 155 156
show_one(freq_step, freq_step);

static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused, 
		const char *buf, size_t count)
{
	unsigned int input;
	int ret;
	ret = sscanf (buf, "%u", &input);
157
	if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
158 159
		return -EINVAL;

160
	mutex_lock(&dbs_mutex);
161
	dbs_tuners_ins.sampling_down_factor = input;
162
	mutex_unlock(&dbs_mutex);
163 164 165 166 167 168 169 170 171 172 173

	return count;
}

static ssize_t store_sampling_rate(struct cpufreq_policy *unused, 
		const char *buf, size_t count)
{
	unsigned int input;
	int ret;
	ret = sscanf (buf, "%u", &input);

174
	mutex_lock(&dbs_mutex);
175
	if (ret != 1 || input > MAX_SAMPLING_RATE || input < MIN_SAMPLING_RATE) {
176
		mutex_unlock(&dbs_mutex);
177 178 179 180
		return -EINVAL;
	}

	dbs_tuners_ins.sampling_rate = input;
181
	mutex_unlock(&dbs_mutex);
182 183 184 185 186 187 188 189 190 191 192

	return count;
}

static ssize_t store_up_threshold(struct cpufreq_policy *unused, 
		const char *buf, size_t count)
{
	unsigned int input;
	int ret;
	ret = sscanf (buf, "%u", &input);

193
	mutex_lock(&dbs_mutex);
194
	if (ret != 1 || input > 100 || input <= dbs_tuners_ins.down_threshold) {
195
		mutex_unlock(&dbs_mutex);
196 197 198 199
		return -EINVAL;
	}

	dbs_tuners_ins.up_threshold = input;
200
	mutex_unlock(&dbs_mutex);
201 202 203 204 205 206 207 208 209 210 211

	return count;
}

static ssize_t store_down_threshold(struct cpufreq_policy *unused, 
		const char *buf, size_t count)
{
	unsigned int input;
	int ret;
	ret = sscanf (buf, "%u", &input);

212
	mutex_lock(&dbs_mutex);
213
	if (ret != 1 || input > 100 || input >= dbs_tuners_ins.up_threshold) {
214
		mutex_unlock(&dbs_mutex);
215 216 217 218
		return -EINVAL;
	}

	dbs_tuners_ins.down_threshold = input;
219
	mutex_unlock(&dbs_mutex);
220 221 222 223

	return count;
}

224
static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
225 226 227 228 229 230 231 232 233 234 235 236 237 238
		const char *buf, size_t count)
{
	unsigned int input;
	int ret;

	unsigned int j;
	
	ret = sscanf (buf, "%u", &input);
	if ( ret != 1 )
		return -EINVAL;

	if ( input > 1 )
		input = 1;
	
239
	mutex_lock(&dbs_mutex);
240
	if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */
241
		mutex_unlock(&dbs_mutex);
242 243 244 245 246
		return count;
	}
	dbs_tuners_ins.ignore_nice = input;

	/* we need to re-evaluate prev_cpu_idle_up and prev_cpu_idle_down */
247
	for_each_online_cpu(j) {
248 249
		struct cpu_dbs_info_s *j_dbs_info;
		j_dbs_info = &per_cpu(cpu_dbs_info, j);
250
		j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j);
251 252
		j_dbs_info->prev_cpu_idle_down = j_dbs_info->prev_cpu_idle_up;
	}
253
	mutex_unlock(&dbs_mutex);
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273

	return count;
}

static ssize_t store_freq_step(struct cpufreq_policy *policy,
		const char *buf, size_t count)
{
	unsigned int input;
	int ret;

	ret = sscanf (buf, "%u", &input);

	if ( ret != 1 )
		return -EINVAL;

	if ( input > 100 )
		input = 100;
	
	/* no need to test here if freq_step is zero as the user might actually
	 * want this, they would be crazy though :) */
274
	mutex_lock(&dbs_mutex);
275
	dbs_tuners_ins.freq_step = input;
276
	mutex_unlock(&dbs_mutex);
277 278 279 280 281 282 283 284 285 286 287 288

	return count;
}

#define define_one_rw(_name) \
static struct freq_attr _name = \
__ATTR(_name, 0644, show_##_name, store_##_name)

define_one_rw(sampling_rate);
define_one_rw(sampling_down_factor);
define_one_rw(up_threshold);
define_one_rw(down_threshold);
289
define_one_rw(ignore_nice_load);
290 291 292 293 294 295 296 297 298
define_one_rw(freq_step);

static struct attribute * dbs_attributes[] = {
	&sampling_rate_max.attr,
	&sampling_rate_min.attr,
	&sampling_rate.attr,
	&sampling_down_factor.attr,
	&up_threshold.attr,
	&down_threshold.attr,
299
	&ignore_nice_load.attr,
300 301 302 303 304 305 306 307 308 309 310 311 312 313
	&freq_step.attr,
	NULL
};

static struct attribute_group dbs_attr_group = {
	.attrs = dbs_attributes,
	.name = "conservative",
};

/************************** sysfs end ************************/

static void dbs_check_cpu(int cpu)
{
	unsigned int idle_ticks, up_idle_ticks, down_idle_ticks;
314
	unsigned int tmp_idle_ticks, total_idle_ticks;
315 316
	unsigned int freq_step;
	unsigned int freq_down_sampling_rate;
317
	struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
318 319 320 321 322
	struct cpufreq_policy *policy;

	if (!this_dbs_info->enable)
		return;

323 324
	policy = this_dbs_info->cur_policy;

325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
	/* 
	 * The default safe range is 20% to 80% 
	 * Every sampling_rate, we check
	 * 	- If current idle time is less than 20%, then we try to 
	 * 	  increase frequency
	 * Every sampling_rate*sampling_down_factor, we check
	 * 	- If current idle time is more than 80%, then we try to
	 * 	  decrease frequency
	 *
	 * Any frequency increase takes it to the maximum frequency. 
	 * Frequency reduction happens at minimum steps of 
	 * 5% (default) of max_frequency 
	 */

	/* Check for frequency increase */
340
	idle_ticks = UINT_MAX;
341

342 343 344 345 346 347 348 349
	/* Check for frequency increase */
	total_idle_ticks = get_cpu_idle_time(cpu);
	tmp_idle_ticks = total_idle_ticks -
		this_dbs_info->prev_cpu_idle_up;
	this_dbs_info->prev_cpu_idle_up = total_idle_ticks;

	if (tmp_idle_ticks < idle_ticks)
		idle_ticks = tmp_idle_ticks;
350 351 352 353

	/* Scale idle ticks by 100 and compare with up and down ticks */
	idle_ticks *= 100;
	up_idle_ticks = (100 - dbs_tuners_ins.up_threshold) *
354
			usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
355 356

	if (idle_ticks < up_idle_ticks) {
357
		this_dbs_info->down_skip = 0;
358 359
		this_dbs_info->prev_cpu_idle_down =
			this_dbs_info->prev_cpu_idle_up;
360

361
		/* if we are already at full speed then break out early */
362
		if (this_dbs_info->requested_freq == policy->max)
363 364 365 366 367 368 369 370
			return;
		
		freq_step = (dbs_tuners_ins.freq_step * policy->max) / 100;

		/* max freq cannot be less than 100. But who knows.... */
		if (unlikely(freq_step == 0))
			freq_step = 5;
		
371 372 373
		this_dbs_info->requested_freq += freq_step;
		if (this_dbs_info->requested_freq > policy->max)
			this_dbs_info->requested_freq = policy->max;
374

375
		__cpufreq_driver_target(policy, this_dbs_info->requested_freq,
376 377 378 379 380
			CPUFREQ_RELATION_H);
		return;
	}

	/* Check for frequency decrease */
381 382
	this_dbs_info->down_skip++;
	if (this_dbs_info->down_skip < dbs_tuners_ins.sampling_down_factor)
383 384
		return;

385 386 387 388 389
	/* Check for frequency decrease */
	total_idle_ticks = this_dbs_info->prev_cpu_idle_up;
	tmp_idle_ticks = total_idle_ticks -
		this_dbs_info->prev_cpu_idle_down;
	this_dbs_info->prev_cpu_idle_down = total_idle_ticks;
390

391 392
	if (tmp_idle_ticks < idle_ticks)
		idle_ticks = tmp_idle_ticks;
393 394 395

	/* Scale idle ticks by 100 and compare with up and down ticks */
	idle_ticks *= 100;
396
	this_dbs_info->down_skip = 0;
397 398 399 400

	freq_down_sampling_rate = dbs_tuners_ins.sampling_rate *
		dbs_tuners_ins.sampling_down_factor;
	down_idle_ticks = (100 - dbs_tuners_ins.down_threshold) *
401
		usecs_to_jiffies(freq_down_sampling_rate);
402

403
	if (idle_ticks > down_idle_ticks) {
404 405
		/*
		 * if we are already at the lowest speed then break out early
406
		 * or if we 'cannot' reduce the speed as the user might want
407 408
		 * freq_step to be zero
		 */
409
		if (this_dbs_info->requested_freq == policy->min
410 411 412 413 414 415 416 417 418
				|| dbs_tuners_ins.freq_step == 0)
			return;

		freq_step = (dbs_tuners_ins.freq_step * policy->max) / 100;

		/* max freq cannot be less than 100. But who knows.... */
		if (unlikely(freq_step == 0))
			freq_step = 5;

419 420 421
		this_dbs_info->requested_freq -= freq_step;
		if (this_dbs_info->requested_freq < policy->min)
			this_dbs_info->requested_freq = policy->min;
422

423
		__cpufreq_driver_target(policy, this_dbs_info->requested_freq,
424
				CPUFREQ_RELATION_H);
425 426 427 428
		return;
	}
}

D
David Howells 已提交
429
static void do_dbs_timer(struct work_struct *work)
430 431
{ 
	int i;
432
	mutex_lock(&dbs_mutex);
433 434 435 436
	for_each_online_cpu(i)
		dbs_check_cpu(i);
	schedule_delayed_work(&dbs_work, 
			usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
437
	mutex_unlock(&dbs_mutex);
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
} 

static inline void dbs_timer_init(void)
{
	schedule_delayed_work(&dbs_work,
			usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
	return;
}

static inline void dbs_timer_exit(void)
{
	cancel_delayed_work(&dbs_work);
	return;
}

static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
				   unsigned int event)
{
	unsigned int cpu = policy->cpu;
	struct cpu_dbs_info_s *this_dbs_info;
	unsigned int j;
J
Jeff Garzik 已提交
459
	int rc;
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474

	this_dbs_info = &per_cpu(cpu_dbs_info, cpu);

	switch (event) {
	case CPUFREQ_GOV_START:
		if ((!cpu_online(cpu)) || 
		    (!policy->cur))
			return -EINVAL;

		if (policy->cpuinfo.transition_latency >
				(TRANSITION_LATENCY_LIMIT * 1000))
			return -EINVAL;
		if (this_dbs_info->enable) /* Already enabled */
			break;
		 
475
		mutex_lock(&dbs_mutex);
J
Jeff Garzik 已提交
476 477 478 479 480 481 482

		rc = sysfs_create_group(&policy->kobj, &dbs_attr_group);
		if (rc) {
			mutex_unlock(&dbs_mutex);
			return rc;
		}

483 484 485 486 487
		for_each_cpu_mask(j, policy->cpus) {
			struct cpu_dbs_info_s *j_dbs_info;
			j_dbs_info = &per_cpu(cpu_dbs_info, j);
			j_dbs_info->cur_policy = policy;
		
488
			j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(cpu);
489 490 491 492
			j_dbs_info->prev_cpu_idle_down
				= j_dbs_info->prev_cpu_idle_up;
		}
		this_dbs_info->enable = 1;
493 494
		this_dbs_info->down_skip = 0;
		this_dbs_info->requested_freq = policy->cur;
J
Jeff Garzik 已提交
495

496 497 498 499 500 501 502 503
		dbs_enable++;
		/*
		 * Start the timerschedule work, when this governor
		 * is used for first time
		 */
		if (dbs_enable == 1) {
			unsigned int latency;
			/* policy latency is in nS. Convert it to uS first */
504 505 506
			latency = policy->cpuinfo.transition_latency / 1000;
			if (latency == 0)
				latency = 1;
507

508
			def_sampling_rate = 10 * latency *
509
					DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
510 511 512 513

			if (def_sampling_rate < MIN_STAT_SAMPLING_RATE)
				def_sampling_rate = MIN_STAT_SAMPLING_RATE;

514 515 516 517 518
			dbs_tuners_ins.sampling_rate = def_sampling_rate;

			dbs_timer_init();
		}
		
519
		mutex_unlock(&dbs_mutex);
520 521 522
		break;

	case CPUFREQ_GOV_STOP:
523
		mutex_lock(&dbs_mutex);
524 525 526 527 528 529 530 531 532 533
		this_dbs_info->enable = 0;
		sysfs_remove_group(&policy->kobj, &dbs_attr_group);
		dbs_enable--;
		/*
		 * Stop the timerschedule work, when this governor
		 * is used for first time
		 */
		if (dbs_enable == 0) 
			dbs_timer_exit();
		
534
		mutex_unlock(&dbs_mutex);
535 536 537 538

		break;

	case CPUFREQ_GOV_LIMITS:
539
		mutex_lock(&dbs_mutex);
540 541 542 543 544 545 546 547
		if (policy->max < this_dbs_info->cur_policy->cur)
			__cpufreq_driver_target(
					this_dbs_info->cur_policy,
				       	policy->max, CPUFREQ_RELATION_H);
		else if (policy->min > this_dbs_info->cur_policy->cur)
			__cpufreq_driver_target(
					this_dbs_info->cur_policy,
				       	policy->min, CPUFREQ_RELATION_L);
548
		mutex_unlock(&dbs_mutex);
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
		break;
	}
	return 0;
}

static struct cpufreq_governor cpufreq_gov_dbs = {
	.name		= "conservative",
	.governor	= cpufreq_governor_dbs,
	.owner		= THIS_MODULE,
};

static int __init cpufreq_gov_dbs_init(void)
{
	return cpufreq_register_governor(&cpufreq_gov_dbs);
}

static void __exit cpufreq_gov_dbs_exit(void)
{
	/* Make sure that the scheduled work is indeed not running */
	flush_scheduled_work();

	cpufreq_unregister_governor(&cpufreq_gov_dbs);
}


MODULE_AUTHOR ("Alexander Clouter <alex-kernel@digriz.org.uk>");
MODULE_DESCRIPTION ("'cpufreq_conservative' - A dynamic cpufreq governor for "
		"Low Latency Frequency Transition capable processors "
		"optimised for use in a battery environment");
MODULE_LICENSE ("GPL");

module_init(cpufreq_gov_dbs_init);
module_exit(cpufreq_gov_dbs_exit);