cpufreq_conservative.c 14.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 *  drivers/cpufreq/cpufreq_conservative.c
 *
 *  Copyright (C)  2001 Russell King
 *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
 *                      Jun Nakajima <jun.nakajima@intel.com>
 *            (C)  2004 Alexander Clouter <alex-kernel@digriz.org.uk>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/smp.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/ctype.h>
#include <linux/cpufreq.h>
#include <linux/sysctl.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/sysfs.h>
#include <linux/sched.h>
#include <linux/kmod.h>
#include <linux/workqueue.h>
#include <linux/jiffies.h>
#include <linux/kernel_stat.h>
#include <linux/percpu.h>
31
#include <linux/mutex.h>
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
/*
 * dbs is used in this file as a shortform for demandbased switching
 * It helps to keep variable names smaller, simpler
 */

#define DEF_FREQUENCY_UP_THRESHOLD		(80)
#define DEF_FREQUENCY_DOWN_THRESHOLD		(20)

/* 
 * The polling frequency of this governor depends on the capability of 
 * the processor. Default polling frequency is 1000 times the transition
 * latency of the processor. The governor will work on any processor with 
 * transition latency <= 10mS, using appropriate sampling 
 * rate.
 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
 * this governor will not work.
 * All times here are in uS.
 */
static unsigned int 				def_sampling_rate;
51 52 53 54
#define MIN_SAMPLING_RATE_RATIO			(2)
/* for correct statistics, we need at least 10 ticks between each measure */
#define MIN_STAT_SAMPLING_RATE			(MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
#define MIN_SAMPLING_RATE			(def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
55
#define MAX_SAMPLING_RATE			(500 * def_sampling_rate)
56 57 58
#define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER	(1000)
#define DEF_SAMPLING_DOWN_FACTOR		(1)
#define MAX_SAMPLING_DOWN_FACTOR		(10)
59 60 61 62 63 64 65 66 67
#define TRANSITION_LATENCY_LIMIT		(10 * 1000)

static void do_dbs_timer(void *data);

struct cpu_dbs_info_s {
	struct cpufreq_policy 	*cur_policy;
	unsigned int 		prev_cpu_idle_up;
	unsigned int 		prev_cpu_idle_down;
	unsigned int 		enable;
68 69
	unsigned int		down_skip;
	unsigned int		requested_freq;
70 71 72 73 74
};
static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);

static unsigned int dbs_enable;	/* number of CPUs using this policy */

75
static DEFINE_MUTEX 	(dbs_mutex);
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
static DECLARE_WORK	(dbs_work, do_dbs_timer, NULL);

struct dbs_tuners {
	unsigned int 		sampling_rate;
	unsigned int		sampling_down_factor;
	unsigned int		up_threshold;
	unsigned int		down_threshold;
	unsigned int		ignore_nice;
	unsigned int		freq_step;
};

static struct dbs_tuners dbs_tuners_ins = {
	.up_threshold 		= DEF_FREQUENCY_UP_THRESHOLD,
	.down_threshold 	= DEF_FREQUENCY_DOWN_THRESHOLD,
	.sampling_down_factor 	= DEF_SAMPLING_DOWN_FACTOR,
91 92
	.ignore_nice		= 0,
	.freq_step		= 5,
93 94
};

95 96 97 98
static inline unsigned int get_cpu_idle_time(unsigned int cpu)
{
	return	kstat_cpu(cpu).cpustat.idle +
		kstat_cpu(cpu).cpustat.iowait +
99
		( dbs_tuners_ins.ignore_nice ?
100 101 102 103
		  kstat_cpu(cpu).cpustat.nice :
		  0);
}

104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
/************************** sysfs interface ************************/
static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
{
	return sprintf (buf, "%u\n", MAX_SAMPLING_RATE);
}

static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
{
	return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
}

#define define_one_ro(_name) 					\
static struct freq_attr _name =  				\
__ATTR(_name, 0444, show_##_name, NULL)

define_one_ro(sampling_rate_max);
define_one_ro(sampling_rate_min);

/* cpufreq_conservative Governor Tunables */
#define show_one(file_name, object)					\
static ssize_t show_##file_name						\
(struct cpufreq_policy *unused, char *buf)				\
{									\
	return sprintf(buf, "%u\n", dbs_tuners_ins.object);		\
}
show_one(sampling_rate, sampling_rate);
show_one(sampling_down_factor, sampling_down_factor);
show_one(up_threshold, up_threshold);
show_one(down_threshold, down_threshold);
133
show_one(ignore_nice_load, ignore_nice);
134 135 136 137 138 139 140 141
show_one(freq_step, freq_step);

static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused, 
		const char *buf, size_t count)
{
	unsigned int input;
	int ret;
	ret = sscanf (buf, "%u", &input);
142
	if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
143 144
		return -EINVAL;

145
	mutex_lock(&dbs_mutex);
146
	dbs_tuners_ins.sampling_down_factor = input;
147
	mutex_unlock(&dbs_mutex);
148 149 150 151 152 153 154 155 156 157 158

	return count;
}

static ssize_t store_sampling_rate(struct cpufreq_policy *unused, 
		const char *buf, size_t count)
{
	unsigned int input;
	int ret;
	ret = sscanf (buf, "%u", &input);

159
	mutex_lock(&dbs_mutex);
160
	if (ret != 1 || input > MAX_SAMPLING_RATE || input < MIN_SAMPLING_RATE) {
161
		mutex_unlock(&dbs_mutex);
162 163 164 165
		return -EINVAL;
	}

	dbs_tuners_ins.sampling_rate = input;
166
	mutex_unlock(&dbs_mutex);
167 168 169 170 171 172 173 174 175 176 177

	return count;
}

static ssize_t store_up_threshold(struct cpufreq_policy *unused, 
		const char *buf, size_t count)
{
	unsigned int input;
	int ret;
	ret = sscanf (buf, "%u", &input);

178
	mutex_lock(&dbs_mutex);
179
	if (ret != 1 || input > 100 || input < 0 ||
180
			input <= dbs_tuners_ins.down_threshold) {
181
		mutex_unlock(&dbs_mutex);
182 183 184 185
		return -EINVAL;
	}

	dbs_tuners_ins.up_threshold = input;
186
	mutex_unlock(&dbs_mutex);
187 188 189 190 191 192 193 194 195 196 197

	return count;
}

static ssize_t store_down_threshold(struct cpufreq_policy *unused, 
		const char *buf, size_t count)
{
	unsigned int input;
	int ret;
	ret = sscanf (buf, "%u", &input);

198
	mutex_lock(&dbs_mutex);
199
	if (ret != 1 || input > 100 || input < 0 ||
200
			input >= dbs_tuners_ins.up_threshold) {
201
		mutex_unlock(&dbs_mutex);
202 203 204 205
		return -EINVAL;
	}

	dbs_tuners_ins.down_threshold = input;
206
	mutex_unlock(&dbs_mutex);
207 208 209 210

	return count;
}

211
static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
212 213 214 215 216 217 218 219 220 221 222 223 224 225
		const char *buf, size_t count)
{
	unsigned int input;
	int ret;

	unsigned int j;
	
	ret = sscanf (buf, "%u", &input);
	if ( ret != 1 )
		return -EINVAL;

	if ( input > 1 )
		input = 1;
	
226
	mutex_lock(&dbs_mutex);
227
	if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */
228
		mutex_unlock(&dbs_mutex);
229 230 231 232 233
		return count;
	}
	dbs_tuners_ins.ignore_nice = input;

	/* we need to re-evaluate prev_cpu_idle_up and prev_cpu_idle_down */
234
	for_each_online_cpu(j) {
235 236
		struct cpu_dbs_info_s *j_dbs_info;
		j_dbs_info = &per_cpu(cpu_dbs_info, j);
237
		j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j);
238 239
		j_dbs_info->prev_cpu_idle_down = j_dbs_info->prev_cpu_idle_up;
	}
240
	mutex_unlock(&dbs_mutex);
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260

	return count;
}

static ssize_t store_freq_step(struct cpufreq_policy *policy,
		const char *buf, size_t count)
{
	unsigned int input;
	int ret;

	ret = sscanf (buf, "%u", &input);

	if ( ret != 1 )
		return -EINVAL;

	if ( input > 100 )
		input = 100;
	
	/* no need to test here if freq_step is zero as the user might actually
	 * want this, they would be crazy though :) */
261
	mutex_lock(&dbs_mutex);
262
	dbs_tuners_ins.freq_step = input;
263
	mutex_unlock(&dbs_mutex);
264 265 266 267 268 269 270 271 272 273 274 275

	return count;
}

#define define_one_rw(_name) \
static struct freq_attr _name = \
__ATTR(_name, 0644, show_##_name, store_##_name)

define_one_rw(sampling_rate);
define_one_rw(sampling_down_factor);
define_one_rw(up_threshold);
define_one_rw(down_threshold);
276
define_one_rw(ignore_nice_load);
277 278 279 280 281 282 283 284 285
define_one_rw(freq_step);

static struct attribute * dbs_attributes[] = {
	&sampling_rate_max.attr,
	&sampling_rate_min.attr,
	&sampling_rate.attr,
	&sampling_down_factor.attr,
	&up_threshold.attr,
	&down_threshold.attr,
286
	&ignore_nice_load.attr,
287 288 289 290 291 292 293 294 295 296 297 298 299 300
	&freq_step.attr,
	NULL
};

static struct attribute_group dbs_attr_group = {
	.attrs = dbs_attributes,
	.name = "conservative",
};

/************************** sysfs end ************************/

static void dbs_check_cpu(int cpu)
{
	unsigned int idle_ticks, up_idle_ticks, down_idle_ticks;
301
	unsigned int tmp_idle_ticks, total_idle_ticks;
302 303
	unsigned int freq_step;
	unsigned int freq_down_sampling_rate;
304
	struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
305 306 307 308 309
	struct cpufreq_policy *policy;

	if (!this_dbs_info->enable)
		return;

310 311
	policy = this_dbs_info->cur_policy;

312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
	/* 
	 * The default safe range is 20% to 80% 
	 * Every sampling_rate, we check
	 * 	- If current idle time is less than 20%, then we try to 
	 * 	  increase frequency
	 * Every sampling_rate*sampling_down_factor, we check
	 * 	- If current idle time is more than 80%, then we try to
	 * 	  decrease frequency
	 *
	 * Any frequency increase takes it to the maximum frequency. 
	 * Frequency reduction happens at minimum steps of 
	 * 5% (default) of max_frequency 
	 */

	/* Check for frequency increase */
327
	idle_ticks = UINT_MAX;
328

329 330 331 332 333 334 335 336
	/* Check for frequency increase */
	total_idle_ticks = get_cpu_idle_time(cpu);
	tmp_idle_ticks = total_idle_ticks -
		this_dbs_info->prev_cpu_idle_up;
	this_dbs_info->prev_cpu_idle_up = total_idle_ticks;

	if (tmp_idle_ticks < idle_ticks)
		idle_ticks = tmp_idle_ticks;
337 338 339 340

	/* Scale idle ticks by 100 and compare with up and down ticks */
	idle_ticks *= 100;
	up_idle_ticks = (100 - dbs_tuners_ins.up_threshold) *
341
			usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
342 343

	if (idle_ticks < up_idle_ticks) {
344
		this_dbs_info->down_skip = 0;
345 346
		this_dbs_info->prev_cpu_idle_down =
			this_dbs_info->prev_cpu_idle_up;
347

348
		/* if we are already at full speed then break out early */
349
		if (this_dbs_info->requested_freq == policy->max)
350 351 352 353 354 355 356 357
			return;
		
		freq_step = (dbs_tuners_ins.freq_step * policy->max) / 100;

		/* max freq cannot be less than 100. But who knows.... */
		if (unlikely(freq_step == 0))
			freq_step = 5;
		
358 359 360
		this_dbs_info->requested_freq += freq_step;
		if (this_dbs_info->requested_freq > policy->max)
			this_dbs_info->requested_freq = policy->max;
361

362
		__cpufreq_driver_target(policy, this_dbs_info->requested_freq,
363 364 365 366 367
			CPUFREQ_RELATION_H);
		return;
	}

	/* Check for frequency decrease */
368 369
	this_dbs_info->down_skip++;
	if (this_dbs_info->down_skip < dbs_tuners_ins.sampling_down_factor)
370 371
		return;

372 373 374 375 376
	/* Check for frequency decrease */
	total_idle_ticks = this_dbs_info->prev_cpu_idle_up;
	tmp_idle_ticks = total_idle_ticks -
		this_dbs_info->prev_cpu_idle_down;
	this_dbs_info->prev_cpu_idle_down = total_idle_ticks;
377

378 379
	if (tmp_idle_ticks < idle_ticks)
		idle_ticks = tmp_idle_ticks;
380 381 382

	/* Scale idle ticks by 100 and compare with up and down ticks */
	idle_ticks *= 100;
383
	this_dbs_info->down_skip = 0;
384 385 386 387

	freq_down_sampling_rate = dbs_tuners_ins.sampling_rate *
		dbs_tuners_ins.sampling_down_factor;
	down_idle_ticks = (100 - dbs_tuners_ins.down_threshold) *
388
		usecs_to_jiffies(freq_down_sampling_rate);
389

390
	if (idle_ticks > down_idle_ticks) {
391 392
		/*
		 * if we are already at the lowest speed then break out early
393
		 * or if we 'cannot' reduce the speed as the user might want
394 395
		 * freq_step to be zero
		 */
396
		if (this_dbs_info->requested_freq == policy->min
397 398 399 400 401 402 403 404 405
				|| dbs_tuners_ins.freq_step == 0)
			return;

		freq_step = (dbs_tuners_ins.freq_step * policy->max) / 100;

		/* max freq cannot be less than 100. But who knows.... */
		if (unlikely(freq_step == 0))
			freq_step = 5;

406 407 408
		this_dbs_info->requested_freq -= freq_step;
		if (this_dbs_info->requested_freq < policy->min)
			this_dbs_info->requested_freq = policy->min;
409

410
		__cpufreq_driver_target(policy, this_dbs_info->requested_freq,
411
				CPUFREQ_RELATION_H);
412 413 414 415 416 417 418
		return;
	}
}

static void do_dbs_timer(void *data)
{ 
	int i;
419
	mutex_lock(&dbs_mutex);
420 421 422 423
	for_each_online_cpu(i)
		dbs_check_cpu(i);
	schedule_delayed_work(&dbs_work, 
			usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
424
	mutex_unlock(&dbs_mutex);
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
} 

static inline void dbs_timer_init(void)
{
	INIT_WORK(&dbs_work, do_dbs_timer, NULL);
	schedule_delayed_work(&dbs_work,
			usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
	return;
}

static inline void dbs_timer_exit(void)
{
	cancel_delayed_work(&dbs_work);
	return;
}

static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
				   unsigned int event)
{
	unsigned int cpu = policy->cpu;
	struct cpu_dbs_info_s *this_dbs_info;
	unsigned int j;

	this_dbs_info = &per_cpu(cpu_dbs_info, cpu);

	switch (event) {
	case CPUFREQ_GOV_START:
		if ((!cpu_online(cpu)) || 
		    (!policy->cur))
			return -EINVAL;

		if (policy->cpuinfo.transition_latency >
				(TRANSITION_LATENCY_LIMIT * 1000))
			return -EINVAL;
		if (this_dbs_info->enable) /* Already enabled */
			break;
		 
462
		mutex_lock(&dbs_mutex);
463 464 465 466 467
		for_each_cpu_mask(j, policy->cpus) {
			struct cpu_dbs_info_s *j_dbs_info;
			j_dbs_info = &per_cpu(cpu_dbs_info, j);
			j_dbs_info->cur_policy = policy;
		
468
			j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(cpu);
469 470 471 472
			j_dbs_info->prev_cpu_idle_down
				= j_dbs_info->prev_cpu_idle_up;
		}
		this_dbs_info->enable = 1;
473 474
		this_dbs_info->down_skip = 0;
		this_dbs_info->requested_freq = policy->cur;
475 476 477 478 479 480 481 482 483
		sysfs_create_group(&policy->kobj, &dbs_attr_group);
		dbs_enable++;
		/*
		 * Start the timerschedule work, when this governor
		 * is used for first time
		 */
		if (dbs_enable == 1) {
			unsigned int latency;
			/* policy latency is in nS. Convert it to uS first */
484 485 486
			latency = policy->cpuinfo.transition_latency / 1000;
			if (latency == 0)
				latency = 1;
487

488
			def_sampling_rate = 10 * latency *
489
					DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
490 491 492 493

			if (def_sampling_rate < MIN_STAT_SAMPLING_RATE)
				def_sampling_rate = MIN_STAT_SAMPLING_RATE;

494 495 496 497 498
			dbs_tuners_ins.sampling_rate = def_sampling_rate;

			dbs_timer_init();
		}
		
499
		mutex_unlock(&dbs_mutex);
500 501 502
		break;

	case CPUFREQ_GOV_STOP:
503
		mutex_lock(&dbs_mutex);
504 505 506 507 508 509 510 511 512 513
		this_dbs_info->enable = 0;
		sysfs_remove_group(&policy->kobj, &dbs_attr_group);
		dbs_enable--;
		/*
		 * Stop the timerschedule work, when this governor
		 * is used for first time
		 */
		if (dbs_enable == 0) 
			dbs_timer_exit();
		
514
		mutex_unlock(&dbs_mutex);
515 516 517 518

		break;

	case CPUFREQ_GOV_LIMITS:
519
		mutex_lock(&dbs_mutex);
520 521 522 523 524 525 526 527
		if (policy->max < this_dbs_info->cur_policy->cur)
			__cpufreq_driver_target(
					this_dbs_info->cur_policy,
				       	policy->max, CPUFREQ_RELATION_H);
		else if (policy->min > this_dbs_info->cur_policy->cur)
			__cpufreq_driver_target(
					this_dbs_info->cur_policy,
				       	policy->min, CPUFREQ_RELATION_L);
528
		mutex_unlock(&dbs_mutex);
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
		break;
	}
	return 0;
}

static struct cpufreq_governor cpufreq_gov_dbs = {
	.name		= "conservative",
	.governor	= cpufreq_governor_dbs,
	.owner		= THIS_MODULE,
};

static int __init cpufreq_gov_dbs_init(void)
{
	return cpufreq_register_governor(&cpufreq_gov_dbs);
}

static void __exit cpufreq_gov_dbs_exit(void)
{
	/* Make sure that the scheduled work is indeed not running */
	flush_scheduled_work();

	cpufreq_unregister_governor(&cpufreq_gov_dbs);
}


MODULE_AUTHOR ("Alexander Clouter <alex-kernel@digriz.org.uk>");
MODULE_DESCRIPTION ("'cpufreq_conservative' - A dynamic cpufreq governor for "
		"Low Latency Frequency Transition capable processors "
		"optimised for use in a battery environment");
MODULE_LICENSE ("GPL");

module_init(cpufreq_gov_dbs_init);
module_exit(cpufreq_gov_dbs_exit);