cache.S 6.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
/*
 * Cache maintenance
 *
 * Copyright (C) 2001 Deep Blue Solutions Ltd.
 * Copyright (C) 2012 ARM Ltd.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include <linux/linkage.h>
#include <linux/init.h>
#include <asm/assembler.h>

#include "proc-macros.S"

/*
 *	__flush_dcache_all()
 *
 *	Flush the whole D-cache.
 *
 *	Corrupted registers: x0-x7, x9-x11
 */
33
__flush_dcache_all:
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
	dsb	sy				// ensure ordering with previous memory accesses
	mrs	x0, clidr_el1			// read clidr
	and	x3, x0, #0x7000000		// extract loc from clidr
	lsr	x3, x3, #23			// left align loc bit field
	cbz	x3, finished			// if loc is 0, then no need to clean
	mov	x10, #0				// start clean at cache level 0
loop1:
	add	x2, x10, x10, lsr #1		// work out 3x current cache level
	lsr	x1, x0, x2			// extract cache type bits from clidr
	and	x1, x1, #7			// mask of the bits for current cache only
	cmp	x1, #2				// see what cache we have at this level
	b.lt	skip				// skip if no cache, or just i-cache
	save_and_disable_irqs x9		// make CSSELR and CCSIDR access atomic
	msr	csselr_el1, x10			// select current cache level in csselr
	isb					// isb to sych the new cssr&csidr
	mrs	x1, ccsidr_el1			// read the new ccsidr
	restore_irqs x9
	and	x2, x1, #7			// extract the length of the cache lines
	add	x2, x2, #4			// add 4 (line length offset)
	mov	x4, #0x3ff
	and	x4, x4, x1, lsr #3		// find maximum number on the way size
55
	clz	w5, w4				// find bit position of way size increment
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
	mov	x7, #0x7fff
	and	x7, x7, x1, lsr #13		// extract max number of the index size
loop2:
	mov	x9, x4				// create working copy of max way size
loop3:
	lsl	x6, x9, x5
	orr	x11, x10, x6			// factor way and cache number into x11
	lsl	x6, x7, x2
	orr	x11, x11, x6			// factor index number into x11
	dc	cisw, x11			// clean & invalidate by set/way
	subs	x9, x9, #1			// decrement the way
	b.ge	loop3
	subs	x7, x7, #1			// decrement the index
	b.ge	loop2
skip:
	add	x10, x10, #2			// increment cache number
	cmp	x3, x10
	b.gt	loop1
finished:
	mov	x10, #0				// swith back to cache level 0
	msr	csselr_el1, x10			// select current cache level in csselr
	dsb	sy
	isb
	ret
ENDPROC(__flush_dcache_all)

/*
 *	flush_cache_all()
 *
 *	Flush the entire cache system.  The data cache flush is now achieved
 *	using atomic clean / invalidates working outwards from L1 cache. This
 *	is done using Set/Way based cache maintainance instructions.  The
 *	instruction cache can still be invalidated back to the point of
 *	unification in a single instruction.
 */
ENTRY(flush_cache_all)
	mov	x12, lr
	bl	__flush_dcache_all
	mov	x0, #0
	ic	ialluis				// I+BTB cache invalidate
	ret	x12
ENDPROC(flush_cache_all)

/*
 *	flush_icache_range(start,end)
 *
 *	Ensure that the I and D caches are coherent within specified region.
 *	This is typically used when code has been written to a memory region,
 *	and will be executed.
 *
 *	- start   - virtual start address of region
 *	- end     - virtual end address of region
 */
ENTRY(flush_icache_range)
	/* FALLTHROUGH */

/*
 *	__flush_cache_user_range(start,end)
 *
 *	Ensure that the I and D caches are coherent within specified region.
 *	This is typically used when code has been written to a memory region,
 *	and will be executed.
 *
 *	- start   - virtual start address of region
 *	- end     - virtual end address of region
 */
ENTRY(__flush_cache_user_range)
	dcache_line_size x2, x3
	sub	x3, x2, #1
	bic	x4, x0, x3
1:
USER(9f, dc	cvau, x4	)		// clean D line to PoU
	add	x4, x4, x2
	cmp	x4, x1
	b.lo	1b
	dsb	sy

	icache_line_size x2, x3
	sub	x3, x2, #1
	bic	x4, x0, x3
1:
USER(9f, ic	ivau, x4	)		// invalidate I line PoU
	add	x4, x4, x2
	cmp	x4, x1
	b.lo	1b
9:						// ignore any faulting cache operation
	dsb	sy
	isb
	ret
ENDPROC(flush_icache_range)
ENDPROC(__flush_cache_user_range)

/*
149
 *	__flush_dcache_area(kaddr, size)
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
 *
 *	Ensure that the data held in the page kaddr is written back to the
 *	page in question.
 *
 *	- kaddr   - kernel address
 *	- size    - size in question
 */
ENTRY(__flush_dcache_area)
	dcache_line_size x2, x3
	add	x1, x0, x1
	sub	x3, x2, #1
	bic	x0, x0, x3
1:	dc	civac, x0			// clean & invalidate D line / unified line
	add	x0, x0, x2
	cmp	x0, x1
	b.lo	1b
	dsb	sy
	ret
ENDPROC(__flush_dcache_area)
169

170 171 172 173 174 175 176 177
/*
 *	__inval_cache_range(start, end)
 *	- start   - start address of region
 *	- end     - end address of region
 */
ENTRY(__inval_cache_range)
	/* FALLTHROUGH */

178 179 180 181 182 183 184 185
/*
 *	__dma_inv_range(start, end)
 *	- start   - virtual start address of region
 *	- end     - virtual end address of region
 */
__dma_inv_range:
	dcache_line_size x2, x3
	sub	x3, x2, #1
186
	tst	x1, x3				// end cache line aligned?
187
	bic	x1, x1, x3
188 189 190 191 192 193 194 195 196
	b.eq	1f
	dc	civac, x1			// clean & invalidate D / U line
1:	tst	x0, x3				// start cache line aligned?
	bic	x0, x0, x3
	b.eq	2f
	dc	civac, x0			// clean & invalidate D / U line
	b	3f
2:	dc	ivac, x0			// invalidate D / U line
3:	add	x0, x0, x2
197
	cmp	x0, x1
198
	b.lo	2b
199 200
	dsb	sy
	ret
201
ENDPROC(__inval_cache_range)
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
ENDPROC(__dma_inv_range)

/*
 *	__dma_clean_range(start, end)
 *	- start   - virtual start address of region
 *	- end     - virtual end address of region
 */
__dma_clean_range:
	dcache_line_size x2, x3
	sub	x3, x2, #1
	bic	x0, x0, x3
1:	dc	cvac, x0			// clean D / U line
	add	x0, x0, x2
	cmp	x0, x1
	b.lo	1b
	dsb	sy
	ret
ENDPROC(__dma_clean_range)

/*
 *	__dma_flush_range(start, end)
 *	- start   - virtual start address of region
 *	- end     - virtual end address of region
 */
ENTRY(__dma_flush_range)
	dcache_line_size x2, x3
	sub	x3, x2, #1
	bic	x0, x0, x3
1:	dc	civac, x0			// clean & invalidate D / U line
	add	x0, x0, x2
	cmp	x0, x1
	b.lo	1b
	dsb	sy
	ret
ENDPROC(__dma_flush_range)

/*
 *	__dma_map_area(start, size, dir)
 *	- start	- kernel virtual start address
 *	- size	- size of region
 *	- dir	- DMA direction
 */
ENTRY(__dma_map_area)
	add	x1, x1, x0
	cmp	w2, #DMA_FROM_DEVICE
	b.eq	__dma_inv_range
	b	__dma_clean_range
ENDPROC(__dma_map_area)

/*
 *	__dma_unmap_area(start, size, dir)
 *	- start	- kernel virtual start address
 *	- size	- size of region
 *	- dir	- DMA direction
 */
ENTRY(__dma_unmap_area)
	add	x1, x1, x0
	cmp	w2, #DMA_TO_DEVICE
	b.ne	__dma_inv_range
	ret
ENDPROC(__dma_unmap_area)