nmi.c 15.6 KB
Newer Older
D
Don Zickus 已提交
1 2 3
/*
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4
 *  Copyright (C) 2011	Don Zickus Red Hat, Inc.
D
Don Zickus 已提交
5 6 7 8 9 10 11 12 13 14 15 16
 *
 *  Pentium III FXSR, SSE support
 *	Gareth Hughes <gareth@valinux.com>, May 2000
 */

/*
 * Handle hardware traps and faults.
 */
#include <linux/spinlock.h>
#include <linux/kprobes.h>
#include <linux/kdebug.h>
#include <linux/nmi.h>
17
#include <linux/debugfs.h>
18 19 20
#include <linux/delay.h>
#include <linux/hardirq.h>
#include <linux/slab.h>
21
#include <linux/export.h>
D
Don Zickus 已提交
22 23 24 25 26 27 28 29

#if defined(CONFIG_EDAC)
#include <linux/edac.h>
#endif

#include <linux/atomic.h>
#include <asm/traps.h>
#include <asm/mach_traps.h>
30
#include <asm/nmi.h>
31
#include <asm/x86_init.h>
32

D
Dave Hansen 已提交
33 34 35
#define CREATE_TRACE_POINTS
#include <trace/events/nmi.h>

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
struct nmi_desc {
	spinlock_t lock;
	struct list_head head;
};

static struct nmi_desc nmi_desc[NMI_MAX] = 
{
	{
		.lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
		.head = LIST_HEAD_INIT(nmi_desc[0].head),
	},
	{
		.lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
		.head = LIST_HEAD_INIT(nmi_desc[1].head),
	},
51 52 53 54 55 56 57 58
	{
		.lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock),
		.head = LIST_HEAD_INIT(nmi_desc[2].head),
	},
	{
		.lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock),
		.head = LIST_HEAD_INIT(nmi_desc[3].head),
	},
59 60

};
D
Don Zickus 已提交
61

D
Don Zickus 已提交
62 63 64 65 66 67 68 69 70
struct nmi_stats {
	unsigned int normal;
	unsigned int unknown;
	unsigned int external;
	unsigned int swallow;
};

static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);

D
Don Zickus 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
static int ignore_nmis;

int unknown_nmi_panic;
/*
 * Prevent NMI reason port (0x61) being accessed simultaneously, can
 * only be used in NMI handler.
 */
static DEFINE_RAW_SPINLOCK(nmi_reason_lock);

static int __init setup_unknown_nmi_panic(char *str)
{
	unknown_nmi_panic = 1;
	return 1;
}
__setup("unknown_nmi_panic", setup_unknown_nmi_panic);

87 88
#define nmi_to_desc(type) (&nmi_desc[type])

89
static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC;
90

91 92 93 94 95 96 97 98
static int __init nmi_warning_debugfs(void)
{
	debugfs_create_u64("nmi_longest_ns", 0644,
			arch_debugfs_dir, &nmi_longest_ns);
	return 0;
}
fs_initcall(nmi_warning_debugfs);

99 100 101 102 103 104 105 106 107 108 109 110 111 112
static void nmi_max_handler(struct irq_work *w)
{
	struct nmiaction *a = container_of(w, struct nmiaction, irq_work);
	int remainder_ns, decimal_msecs;
	u64 whole_msecs = ACCESS_ONCE(a->max_duration);

	remainder_ns = do_div(whole_msecs, (1000 * 1000));
	decimal_msecs = remainder_ns / 1000;

	printk_ratelimited(KERN_INFO
		"INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n",
		a->handler, whole_msecs, decimal_msecs);
}

113
static int __kprobes nmi_handle(unsigned int type, struct pt_regs *regs, bool b2b)
114 115 116 117 118 119 120 121 122 123 124 125 126
{
	struct nmi_desc *desc = nmi_to_desc(type);
	struct nmiaction *a;
	int handled=0;

	rcu_read_lock();

	/*
	 * NMIs are edge-triggered, which means if you have enough
	 * of them concurrently, you can lose some because only one
	 * can be latched at any given time.  Walk the whole list
	 * to handle those situations.
	 */
127
	list_for_each_entry_rcu(a, &desc->head, list) {
128 129
		int thishandled;
		u64 delta;
130

131
		delta = sched_clock();
D
Dave Hansen 已提交
132 133
		thishandled = a->handler(type, regs);
		handled += thishandled;
134
		delta = sched_clock() - delta;
D
Dave Hansen 已提交
135
		trace_nmi_handler(a->handler, (int)delta, thishandled);
136

137
		if (delta < nmi_longest_ns || delta < a->max_duration)
138 139
			continue;

140 141
		a->max_duration = delta;
		irq_work_queue(&a->irq_work);
142
	}
143 144 145 146 147 148 149

	rcu_read_unlock();

	/* return total number of NMI events handled */
	return handled;
}

150
int __register_nmi_handler(unsigned int type, struct nmiaction *action)
151 152 153 154
{
	struct nmi_desc *desc = nmi_to_desc(type);
	unsigned long flags;

155 156 157
	if (!action->handler)
		return -EINVAL;

158 159
	init_irq_work(&action->irq_work, nmi_max_handler);

160 161
	spin_lock_irqsave(&desc->lock, flags);

162 163 164 165 166 167
	/*
	 * most handlers of type NMI_UNKNOWN never return because
	 * they just assume the NMI is theirs.  Just a sanity check
	 * to manage expectations
	 */
	WARN_ON_ONCE(type == NMI_UNKNOWN && !list_empty(&desc->head));
168 169
	WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head));
	WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head));
170

171 172 173 174 175 176 177 178 179 180 181 182
	/*
	 * some handlers need to be executed first otherwise a fake
	 * event confuses some handlers (kdump uses this flag)
	 */
	if (action->flags & NMI_FLAG_FIRST)
		list_add_rcu(&action->list, &desc->head);
	else
		list_add_tail_rcu(&action->list, &desc->head);
	
	spin_unlock_irqrestore(&desc->lock, flags);
	return 0;
}
183
EXPORT_SYMBOL(__register_nmi_handler);
184

185
void unregister_nmi_handler(unsigned int type, const char *name)
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
{
	struct nmi_desc *desc = nmi_to_desc(type);
	struct nmiaction *n;
	unsigned long flags;

	spin_lock_irqsave(&desc->lock, flags);

	list_for_each_entry_rcu(n, &desc->head, list) {
		/*
		 * the name passed in to describe the nmi handler
		 * is used as the lookup key
		 */
		if (!strcmp(n->name, name)) {
			WARN(in_nmi(),
				"Trying to free NMI (%s) from NMI context!\n", n->name);
			list_del_rcu(&n->list);
			break;
		}
	}

	spin_unlock_irqrestore(&desc->lock, flags);
	synchronize_rcu();
}
EXPORT_SYMBOL_GPL(unregister_nmi_handler);

211
static __kprobes void
D
Don Zickus 已提交
212 213
pci_serr_error(unsigned char reason, struct pt_regs *regs)
{
214 215 216 217
	/* check to see if anyone registered against these types of errors */
	if (nmi_handle(NMI_SERR, regs, false))
		return;

D
Don Zickus 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
	pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
		 reason, smp_processor_id());

	/*
	 * On some machines, PCI SERR line is used to report memory
	 * errors. EDAC makes use of it.
	 */
#if defined(CONFIG_EDAC)
	if (edac_handler_set()) {
		edac_atomic_assert_error();
		return;
	}
#endif

	if (panic_on_unrecovered_nmi)
		panic("NMI: Not continuing");

	pr_emerg("Dazed and confused, but trying to continue\n");

	/* Clear and disable the PCI SERR error line. */
	reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
	outb(reason, NMI_REASON_PORT);
}

242
static __kprobes void
D
Don Zickus 已提交
243 244 245 246
io_check_error(unsigned char reason, struct pt_regs *regs)
{
	unsigned long i;

247 248 249 250
	/* check to see if anyone registered against these types of errors */
	if (nmi_handle(NMI_IO_CHECK, regs, false))
		return;

D
Don Zickus 已提交
251 252 253
	pr_emerg(
	"NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
		 reason, smp_processor_id());
254
	show_regs(regs);
D
Don Zickus 已提交
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272

	if (panic_on_io_nmi)
		panic("NMI IOCK error: Not continuing");

	/* Re-enable the IOCK line, wait for a few seconds */
	reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
	outb(reason, NMI_REASON_PORT);

	i = 20000;
	while (--i) {
		touch_nmi_watchdog();
		udelay(100);
	}

	reason &= ~NMI_REASON_CLEAR_IOCHK;
	outb(reason, NMI_REASON_PORT);
}

273
static __kprobes void
D
Don Zickus 已提交
274 275
unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
{
276 277
	int handled;

278 279 280 281 282 283 284
	/*
	 * Use 'false' as back-to-back NMIs are dealt with one level up.
	 * Of course this makes having multiple 'unknown' handlers useless
	 * as only the first one is ever run (unless it can actually determine
	 * if it caused the NMI)
	 */
	handled = nmi_handle(NMI_UNKNOWN, regs, false);
D
Don Zickus 已提交
285 286
	if (handled) {
		__this_cpu_add(nmi_stats.unknown, handled);
D
Don Zickus 已提交
287
		return;
D
Don Zickus 已提交
288 289 290 291
	}

	__this_cpu_add(nmi_stats.unknown, 1);

D
Don Zickus 已提交
292 293 294 295 296 297 298 299 300 301
	pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
		 reason, smp_processor_id());

	pr_emerg("Do you have a strange power saving mode enabled?\n");
	if (unknown_nmi_panic || panic_on_unrecovered_nmi)
		panic("NMI: Not continuing");

	pr_emerg("Dazed and confused, but trying to continue\n");
}

302 303 304
static DEFINE_PER_CPU(bool, swallow_nmi);
static DEFINE_PER_CPU(unsigned long, last_nmi_rip);

305
static __kprobes void default_do_nmi(struct pt_regs *regs)
D
Don Zickus 已提交
306 307
{
	unsigned char reason = 0;
308
	int handled;
309
	bool b2b = false;
D
Don Zickus 已提交
310 311 312 313 314 315

	/*
	 * CPU-specific NMI must be processed before non-CPU-specific
	 * NMI, otherwise we may lose it, because the CPU-specific
	 * NMI can not be detected/processed on other CPUs.
	 */
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331

	/*
	 * Back-to-back NMIs are interesting because they can either
	 * be two NMI or more than two NMIs (any thing over two is dropped
	 * due to NMI being edge-triggered).  If this is the second half
	 * of the back-to-back NMI, assume we dropped things and process
	 * more handlers.  Otherwise reset the 'swallow' NMI behaviour
	 */
	if (regs->ip == __this_cpu_read(last_nmi_rip))
		b2b = true;
	else
		__this_cpu_write(swallow_nmi, false);

	__this_cpu_write(last_nmi_rip, regs->ip);

	handled = nmi_handle(NMI_LOCAL, regs, b2b);
D
Don Zickus 已提交
332
	__this_cpu_add(nmi_stats.normal, handled);
333 334 335 336 337 338 339 340 341 342 343
	if (handled) {
		/*
		 * There are cases when a NMI handler handles multiple
		 * events in the current NMI.  One of these events may
		 * be queued for in the next NMI.  Because the event is
		 * already handled, the next NMI will result in an unknown
		 * NMI.  Instead lets flag this for a potential NMI to
		 * swallow.
		 */
		if (handled > 1)
			__this_cpu_write(swallow_nmi, true);
D
Don Zickus 已提交
344
		return;
345
	}
D
Don Zickus 已提交
346 347 348

	/* Non-CPU-specific NMI: NMI sources can be processed on any CPU */
	raw_spin_lock(&nmi_reason_lock);
349
	reason = x86_platform.get_nmi_reason();
D
Don Zickus 已提交
350 351 352 353 354 355 356 357 358 359 360 361 362

	if (reason & NMI_REASON_MASK) {
		if (reason & NMI_REASON_SERR)
			pci_serr_error(reason, regs);
		else if (reason & NMI_REASON_IOCHK)
			io_check_error(reason, regs);
#ifdef CONFIG_X86_32
		/*
		 * Reassert NMI in case it became active
		 * meanwhile as it's edge-triggered:
		 */
		reassert_nmi();
#endif
D
Don Zickus 已提交
363
		__this_cpu_add(nmi_stats.external, 1);
D
Don Zickus 已提交
364 365 366 367 368
		raw_spin_unlock(&nmi_reason_lock);
		return;
	}
	raw_spin_unlock(&nmi_reason_lock);

369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
	/*
	 * Only one NMI can be latched at a time.  To handle
	 * this we may process multiple nmi handlers at once to
	 * cover the case where an NMI is dropped.  The downside
	 * to this approach is we may process an NMI prematurely,
	 * while its real NMI is sitting latched.  This will cause
	 * an unknown NMI on the next run of the NMI processing.
	 *
	 * We tried to flag that condition above, by setting the
	 * swallow_nmi flag when we process more than one event.
	 * This condition is also only present on the second half
	 * of a back-to-back NMI, so we flag that condition too.
	 *
	 * If both are true, we assume we already processed this
	 * NMI previously and we swallow it.  Otherwise we reset
	 * the logic.
	 *
	 * There are scenarios where we may accidentally swallow
	 * a 'real' unknown NMI.  For example, while processing
	 * a perf NMI another perf NMI comes in along with a
	 * 'real' unknown NMI.  These two NMIs get combined into
	 * one (as descibed above).  When the next NMI gets
	 * processed, it will be flagged by perf as handled, but
	 * noone will know that there was a 'real' unknown NMI sent
	 * also.  As a result it gets swallowed.  Or if the first
	 * perf NMI returns two events handled then the second
	 * NMI will get eaten by the logic below, again losing a
	 * 'real' unknown NMI.  But this is the best we can do
	 * for now.
	 */
	if (b2b && __this_cpu_read(swallow_nmi))
D
Don Zickus 已提交
400
		__this_cpu_add(nmi_stats.swallow, 1);
401 402
	else
		unknown_nmi_error(reason, regs);
D
Don Zickus 已提交
403 404
}

405 406 407 408 409 410 411
/*
 * NMIs can hit breakpoints which will cause it to lose its
 * NMI context with the CPU when the breakpoint does an iret.
 */
#ifdef CONFIG_X86_32
/*
 * For i386, NMIs use the same stack as the kernel, and we can
412 413 414
 * add a workaround to the iret problem in C (preventing nested
 * NMIs if an NMI takes a trap). Simply have 3 states the NMI
 * can be in:
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
 *
 *  1) not running
 *  2) executing
 *  3) latched
 *
 * When no NMI is in progress, it is in the "not running" state.
 * When an NMI comes in, it goes into the "executing" state.
 * Normally, if another NMI is triggered, it does not interrupt
 * the running NMI and the HW will simply latch it so that when
 * the first NMI finishes, it will restart the second NMI.
 * (Note, the latch is binary, thus multiple NMIs triggering,
 *  when one is running, are ignored. Only one NMI is restarted.)
 *
 * If an NMI hits a breakpoint that executes an iret, another
 * NMI can preempt it. We do not want to allow this new NMI
 * to run, but we want to execute it when the first one finishes.
431 432 433 434 435 436 437 438 439 440 441
 * We set the state to "latched", and the exit of the first NMI will
 * perform a dec_return, if the result is zero (NOT_RUNNING), then
 * it will simply exit the NMI handler. If not, the dec_return
 * would have set the state to NMI_EXECUTING (what we want it to
 * be when we are running). In this case, we simply jump back
 * to rerun the NMI handler again, and restart the 'latched' NMI.
 *
 * No trap (breakpoint or page fault) should be hit before nmi_restart,
 * thus there is no race between the first check of state for NOT_RUNNING
 * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs
 * at this point.
442 443 444 445 446 447 448 449
 *
 * In case the NMI takes a page fault, we need to save off the CR2
 * because the NMI could have preempted another page fault and corrupt
 * the CR2 that is about to be read. As nested NMIs must be restarted
 * and they can not take breakpoints or page faults, the update of the
 * CR2 must be done before converting the nmi state back to NOT_RUNNING.
 * Otherwise, there would be a race of another nested NMI coming in
 * after setting state to NOT_RUNNING but before updating the nmi_cr2.
450 451
 */
enum nmi_states {
452
	NMI_NOT_RUNNING = 0,
453 454 455 456
	NMI_EXECUTING,
	NMI_LATCHED,
};
static DEFINE_PER_CPU(enum nmi_states, nmi_state);
457
static DEFINE_PER_CPU(unsigned long, nmi_cr2);
458 459 460

#define nmi_nesting_preprocess(regs)					\
	do {								\
461 462
		if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) {	\
			this_cpu_write(nmi_state, NMI_LATCHED);		\
463 464
			return;						\
		}							\
465
		this_cpu_write(nmi_state, NMI_EXECUTING);		\
466
		this_cpu_write(nmi_cr2, read_cr2());			\
467 468
	} while (0);							\
	nmi_restart:
469 470 471

#define nmi_nesting_postprocess()					\
	do {								\
472 473
		if (unlikely(this_cpu_read(nmi_cr2) != read_cr2()))	\
			write_cr2(this_cpu_read(nmi_cr2));		\
474
		if (this_cpu_dec_return(nmi_state))			\
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
			goto nmi_restart;				\
	} while (0)
#else /* x86_64 */
/*
 * In x86_64 things are a bit more difficult. This has the same problem
 * where an NMI hitting a breakpoint that calls iret will remove the
 * NMI context, allowing a nested NMI to enter. What makes this more
 * difficult is that both NMIs and breakpoints have their own stack.
 * When a new NMI or breakpoint is executed, the stack is set to a fixed
 * point. If an NMI is nested, it will have its stack set at that same
 * fixed address that the first NMI had, and will start corrupting the
 * stack. This is handled in entry_64.S, but the same problem exists with
 * the breakpoint stack.
 *
 * If a breakpoint is being processed, and the debug stack is being used,
 * if an NMI comes in and also hits a breakpoint, the stack pointer
 * will be set to the same fixed address as the breakpoint that was
 * interrupted, causing that stack to be corrupted. To handle this case,
 * check if the stack that was interrupted is the debug stack, and if
 * so, change the IDT so that new breakpoints will use the current stack
 * and not switch to the fixed address. On return of the NMI, switch back
 * to the original IDT.
 */
static DEFINE_PER_CPU(int, update_debug_stack);
499

500 501
static inline void nmi_nesting_preprocess(struct pt_regs *regs)
{
502 503 504 505 506 507 508 509
	/*
	 * If we interrupted a breakpoint, it is possible that
	 * the nmi handler will have breakpoints too. We need to
	 * change the IDT such that breakpoints that happen here
	 * continue to use the NMI stack.
	 */
	if (unlikely(is_debug_stack(regs->sp))) {
		debug_stack_set_zero();
510
		this_cpu_write(update_debug_stack, 1);
511
	}
512 513 514 515
}

static inline void nmi_nesting_postprocess(void)
{
516
	if (unlikely(this_cpu_read(update_debug_stack))) {
517
		debug_stack_reset();
518 519
		this_cpu_write(update_debug_stack, 0);
	}
520 521 522 523 524 525 526 527
}
#endif

dotraplinkage notrace __kprobes void
do_nmi(struct pt_regs *regs, long error_code)
{
	nmi_nesting_preprocess(regs);

D
Don Zickus 已提交
528 529 530 531 532 533 534 535
	nmi_enter();

	inc_irq_stat(__nmi_count);

	if (!ignore_nmis)
		default_do_nmi(regs);

	nmi_exit();
536

537 538
	/* On i386, may loop back to preprocess */
	nmi_nesting_postprocess();
D
Don Zickus 已提交
539 540 541 542 543 544 545 546 547 548 549
}

void stop_nmi(void)
{
	ignore_nmis++;
}

void restart_nmi(void)
{
	ignore_nmis--;
}
550 551 552 553 554 555

/* reset the back-to-back NMI logic */
void local_touch_nmi(void)
{
	__this_cpu_write(last_nmi_rip, 0);
}
556
EXPORT_SYMBOL_GPL(local_touch_nmi);