cpuset.c 75.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  kernel/cpuset.c
 *
 *  Processor and Memory placement constraints for sets of tasks.
 *
 *  Copyright (C) 2003 BULL SA.
P
Paul Jackson 已提交
7
 *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8
 *  Copyright (C) 2006 Google, Inc
L
Linus Torvalds 已提交
9 10 11 12
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
13
 *  2003-10-10 Written by Simon Derr.
L
Linus Torvalds 已提交
14
 *  2003-10-22 Updates by Stephen Hemminger.
15
 *  2004 May-July Rework by Paul Jackson.
16
 *  2006 Rework by Paul Menage to use generic cgroups
17 18
 *  2008 Rework of the scheduler domains and CPU hotplug handling
 *       by Max Krasnyansky
L
Linus Torvalds 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/cpuset.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/kmod.h>
#include <linux/list.h>
37
#include <linux/mempolicy.h>
L
Linus Torvalds 已提交
38
#include <linux/mm.h>
39
#include <linux/memory.h>
40
#include <linux/export.h>
L
Linus Torvalds 已提交
41 42 43 44
#include <linux/mount.h>
#include <linux/namei.h>
#include <linux/pagemap.h>
#include <linux/proc_fs.h>
45
#include <linux/rcupdate.h>
L
Linus Torvalds 已提交
46 47
#include <linux/sched.h>
#include <linux/seq_file.h>
48
#include <linux/security.h>
L
Linus Torvalds 已提交
49 50 51 52 53 54 55 56 57
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/time.h>
#include <linux/backing-dev.h>
#include <linux/sort.h>

#include <asm/uaccess.h>
A
Arun Sharma 已提交
58
#include <linux/atomic.h>
59
#include <linux/mutex.h>
60 61
#include <linux/workqueue.h>
#include <linux/cgroup.h>
62
#include <linux/wait.h>
L
Linus Torvalds 已提交
63

64
struct static_key cpusets_enabled_key __read_mostly = STATIC_KEY_INIT_FALSE;
65

66 67 68 69 70 71 72 73 74
/* See "Frequency meter" comments, below. */

struct fmeter {
	int cnt;		/* unprocessed events count */
	int val;		/* most recent output value */
	time_t time;		/* clock (secs) when val computed */
	spinlock_t lock;	/* guards read or write of above */
};

L
Linus Torvalds 已提交
75
struct cpuset {
76 77
	struct cgroup_subsys_state css;

L
Linus Torvalds 已提交
78
	unsigned long flags;		/* "unsigned long" so bitops work */
79

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
	/*
	 * On default hierarchy:
	 *
	 * The user-configured masks can only be changed by writing to
	 * cpuset.cpus and cpuset.mems, and won't be limited by the
	 * parent masks.
	 *
	 * The effective masks is the real masks that apply to the tasks
	 * in the cpuset. They may be changed if the configured masks are
	 * changed or hotplug happens.
	 *
	 * effective_mask == configured_mask & parent's effective_mask,
	 * and if it ends up empty, it will inherit the parent's mask.
	 *
	 *
	 * On legacy hierachy:
	 *
	 * The user-configured masks are always the same with effective masks.
	 */

100 101 102 103 104 105 106
	/* user-configured CPUs and Memory Nodes allow to tasks */
	cpumask_var_t cpus_allowed;
	nodemask_t mems_allowed;

	/* effective CPUs and Memory Nodes allow to tasks */
	cpumask_var_t effective_cpus;
	nodemask_t effective_mems;
L
Linus Torvalds 已提交
107

108 109 110 111 112 113 114 115 116 117 118 119
	/*
	 * This is old Memory Nodes tasks took on.
	 *
	 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
	 * - A new cpuset's old_mems_allowed is initialized when some
	 *   task is moved into it.
	 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
	 *   cpuset.mems_allowed and have tasks' nodemask updated, and
	 *   then old_mems_allowed is updated to mems_allowed.
	 */
	nodemask_t old_mems_allowed;

120
	struct fmeter fmeter;		/* memory_pressure filter */
P
Paul Jackson 已提交
121

122 123 124 125 126 127
	/*
	 * Tasks are being attached to this cpuset.  Used to prevent
	 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
	 */
	int attach_in_progress;

P
Paul Jackson 已提交
128 129
	/* partition number for rebuild_sched_domains() */
	int pn;
130

131 132
	/* for custom sched domain */
	int relax_domain_level;
L
Linus Torvalds 已提交
133 134
};

135
static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
136
{
137
	return css ? container_of(css, struct cpuset, css) : NULL;
138 139 140 141 142
}

/* Retrieve the cpuset for a task */
static inline struct cpuset *task_cs(struct task_struct *task)
{
143
	return css_cs(task_css(task, cpuset_cgrp_id));
144 145
}

146
static inline struct cpuset *parent_cs(struct cpuset *cs)
T
Tejun Heo 已提交
147
{
T
Tejun Heo 已提交
148
	return css_cs(cs->css.parent);
T
Tejun Heo 已提交
149 150
}

151 152 153 154 155 156 157 158 159 160 161 162 163
#ifdef CONFIG_NUMA
static inline bool task_has_mempolicy(struct task_struct *task)
{
	return task->mempolicy;
}
#else
static inline bool task_has_mempolicy(struct task_struct *task)
{
	return false;
}
#endif


L
Linus Torvalds 已提交
164 165
/* bits in struct cpuset flags field */
typedef enum {
T
Tejun Heo 已提交
166
	CS_ONLINE,
L
Linus Torvalds 已提交
167 168
	CS_CPU_EXCLUSIVE,
	CS_MEM_EXCLUSIVE,
169
	CS_MEM_HARDWALL,
170
	CS_MEMORY_MIGRATE,
P
Paul Jackson 已提交
171
	CS_SCHED_LOAD_BALANCE,
172 173
	CS_SPREAD_PAGE,
	CS_SPREAD_SLAB,
L
Linus Torvalds 已提交
174 175 176
} cpuset_flagbits_t;

/* convenient tests for these bits */
T
Tejun Heo 已提交
177 178 179 180 181
static inline bool is_cpuset_online(const struct cpuset *cs)
{
	return test_bit(CS_ONLINE, &cs->flags);
}

L
Linus Torvalds 已提交
182 183
static inline int is_cpu_exclusive(const struct cpuset *cs)
{
184
	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
185 186 187 188
}

static inline int is_mem_exclusive(const struct cpuset *cs)
{
189
	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
190 191
}

192 193 194 195 196
static inline int is_mem_hardwall(const struct cpuset *cs)
{
	return test_bit(CS_MEM_HARDWALL, &cs->flags);
}

P
Paul Jackson 已提交
197 198 199 200 201
static inline int is_sched_load_balance(const struct cpuset *cs)
{
	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
}

202 203
static inline int is_memory_migrate(const struct cpuset *cs)
{
204
	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
205 206
}

207 208 209 210 211 212 213 214 215 216
static inline int is_spread_page(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_PAGE, &cs->flags);
}

static inline int is_spread_slab(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_SLAB, &cs->flags);
}

L
Linus Torvalds 已提交
217
static struct cpuset top_cpuset = {
T
Tejun Heo 已提交
218 219
	.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
		  (1 << CS_MEM_EXCLUSIVE)),
L
Linus Torvalds 已提交
220 221
};

222 223 224
/**
 * cpuset_for_each_child - traverse online children of a cpuset
 * @child_cs: loop cursor pointing to the current child
225
 * @pos_css: used for iteration
226 227 228 229 230
 * @parent_cs: target cpuset to walk children of
 *
 * Walk @child_cs through the online children of @parent_cs.  Must be used
 * with RCU read locked.
 */
231 232 233
#define cpuset_for_each_child(child_cs, pos_css, parent_cs)		\
	css_for_each_child((pos_css), &(parent_cs)->css)		\
		if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
234

235 236 237
/**
 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
 * @des_cs: loop cursor pointing to the current descendant
238
 * @pos_css: used for iteration
239 240 241
 * @root_cs: target cpuset to walk ancestor of
 *
 * Walk @des_cs through the online descendants of @root_cs.  Must be used
242
 * with RCU read locked.  The caller may modify @pos_css by calling
243 244
 * css_rightmost_descendant() to skip subtree.  @root_cs is included in the
 * iteration and the first node to be visited.
245
 */
246 247 248
#define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)	\
	css_for_each_descendant_pre((pos_css), &(root_cs)->css)		\
		if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
249

L
Linus Torvalds 已提交
250
/*
251 252 253 254
 * There are two global locks guarding cpuset structures - cpuset_mutex and
 * callback_lock. We also require taking task_lock() when dereferencing a
 * task's cpuset pointer. See "The task_lock() exception", at the end of this
 * comment.
255
 *
256
 * A task must hold both locks to modify cpusets.  If a task holds
257
 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
258
 * is the only task able to also acquire callback_lock and be able to
259 260 261
 * modify cpusets.  It can perform various checks on the cpuset structure
 * first, knowing nothing will change.  It can also allocate memory while
 * just holding cpuset_mutex.  While it is performing these checks, various
262 263
 * callback routines can briefly acquire callback_lock to query cpusets.
 * Once it is ready to make the changes, it takes callback_lock, blocking
264
 * everyone else.
265 266
 *
 * Calls to the kernel memory allocator can not be made while holding
267
 * callback_lock, as that would risk double tripping on callback_lock
268 269 270
 * from one of the callbacks into the cpuset code from within
 * __alloc_pages().
 *
271
 * If a task is only holding callback_lock, then it has read-only
272 273
 * access to cpusets.
 *
274 275 276
 * Now, the task_struct fields mems_allowed and mempolicy may be changed
 * by other task, we use alloc_lock in the task_struct fields to protect
 * them.
277
 *
278
 * The cpuset_common_file_read() handlers only hold callback_lock across
279 280 281
 * small pieces of code, such as when reading out possibly multi-word
 * cpumasks and nodemasks.
 *
282 283
 * Accessing a task's cpuset should be done in accordance with the
 * guidelines for accessing subsystem state in kernel/cgroup.c
L
Linus Torvalds 已提交
284 285
 */

286
static DEFINE_MUTEX(cpuset_mutex);
287
static DEFINE_SPINLOCK(callback_lock);
288

289 290 291 292 293 294
/*
 * CPU / memory hotplug is handled asynchronously.
 */
static void cpuset_hotplug_workfn(struct work_struct *work);
static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);

295 296
static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);

297 298
/*
 * This is ugly, but preserves the userspace API for existing cpuset
299
 * users. If someone tries to mount the "cpuset" filesystem, we
300 301
 * silently switch it to mount "cgroup" instead
 */
A
Al Viro 已提交
302 303
static struct dentry *cpuset_mount(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name, void *data)
L
Linus Torvalds 已提交
304
{
305
	struct file_system_type *cgroup_fs = get_fs_type("cgroup");
A
Al Viro 已提交
306
	struct dentry *ret = ERR_PTR(-ENODEV);
307 308 309 310
	if (cgroup_fs) {
		char mountopts[] =
			"cpuset,noprefix,"
			"release_agent=/sbin/cpuset_release_agent";
A
Al Viro 已提交
311 312
		ret = cgroup_fs->mount(cgroup_fs, flags,
					   unused_dev_name, mountopts);
313 314 315
		put_filesystem(cgroup_fs);
	}
	return ret;
L
Linus Torvalds 已提交
316 317 318 319
}

static struct file_system_type cpuset_fs_type = {
	.name = "cpuset",
A
Al Viro 已提交
320
	.mount = cpuset_mount,
L
Linus Torvalds 已提交
321 322 323
};

/*
324
 * Return in pmask the portion of a cpusets's cpus_allowed that
L
Linus Torvalds 已提交
325
 * are online.  If none are online, walk up the cpuset hierarchy
326 327
 * until we find one that does have some online cpus.  The top
 * cpuset always has some cpus online.
L
Linus Torvalds 已提交
328 329
 *
 * One way or another, we guarantee to return some non-empty subset
330
 * of cpu_online_mask.
L
Linus Torvalds 已提交
331
 *
332
 * Call with callback_lock or cpuset_mutex held.
L
Linus Torvalds 已提交
333
 */
334
static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
L
Linus Torvalds 已提交
335
{
336
	while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask))
T
Tejun Heo 已提交
337
		cs = parent_cs(cs);
338
	cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
L
Linus Torvalds 已提交
339 340 341 342
}

/*
 * Return in *pmask the portion of a cpusets's mems_allowed that
343 344
 * are online, with memory.  If none are online with memory, walk
 * up the cpuset hierarchy until we find one that does have some
345
 * online mems.  The top cpuset always has some mems online.
L
Linus Torvalds 已提交
346 347
 *
 * One way or another, we guarantee to return some non-empty subset
348
 * of node_states[N_MEMORY].
L
Linus Torvalds 已提交
349
 *
350
 * Call with callback_lock or cpuset_mutex held.
L
Linus Torvalds 已提交
351
 */
352
static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
L
Linus Torvalds 已提交
353
{
354
	while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
T
Tejun Heo 已提交
355
		cs = parent_cs(cs);
356
	nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
L
Linus Torvalds 已提交
357 358
}

359 360 361
/*
 * update task's spread flag if cpuset's page/slab spread flag is set
 *
362
 * Call with callback_lock or cpuset_mutex held.
363 364 365 366 367
 */
static void cpuset_update_task_spread_flag(struct cpuset *cs,
					struct task_struct *tsk)
{
	if (is_spread_page(cs))
368
		task_set_spread_page(tsk);
369
	else
370 371
		task_clear_spread_page(tsk);

372
	if (is_spread_slab(cs))
373
		task_set_spread_slab(tsk);
374
	else
375
		task_clear_spread_slab(tsk);
376 377
}

L
Linus Torvalds 已提交
378 379 380 381 382
/*
 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
 *
 * One cpuset is a subset of another if all its allowed CPUs and
 * Memory Nodes are a subset of the other, and its exclusive flags
383
 * are only set if the other's are set.  Call holding cpuset_mutex.
L
Linus Torvalds 已提交
384 385 386 387
 */

static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
{
388
	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
L
Linus Torvalds 已提交
389 390 391 392 393
		nodes_subset(p->mems_allowed, q->mems_allowed) &&
		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
		is_mem_exclusive(p) <= is_mem_exclusive(q);
}

394 395 396 397
/**
 * alloc_trial_cpuset - allocate a trial cpuset
 * @cs: the cpuset that the trial cpuset duplicates
 */
398
static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
399
{
400 401 402 403 404 405
	struct cpuset *trial;

	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
	if (!trial)
		return NULL;

406 407 408 409
	if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL))
		goto free_cs;
	if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL))
		goto free_cpus;
410

411 412
	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
	cpumask_copy(trial->effective_cpus, cs->effective_cpus);
413
	return trial;
414 415 416 417 418 419

free_cpus:
	free_cpumask_var(trial->cpus_allowed);
free_cs:
	kfree(trial);
	return NULL;
420 421 422 423 424 425 426 427
}

/**
 * free_trial_cpuset - free the trial cpuset
 * @trial: the trial cpuset to be freed
 */
static void free_trial_cpuset(struct cpuset *trial)
{
428
	free_cpumask_var(trial->effective_cpus);
429
	free_cpumask_var(trial->cpus_allowed);
430 431 432
	kfree(trial);
}

L
Linus Torvalds 已提交
433 434 435 436 437 438 439
/*
 * validate_change() - Used to validate that any proposed cpuset change
 *		       follows the structural rules for cpusets.
 *
 * If we replaced the flag and mask values of the current cpuset
 * (cur) with those values in the trial cpuset (trial), would
 * our various subset and exclusive rules still be valid?  Presumes
440
 * cpuset_mutex held.
L
Linus Torvalds 已提交
441 442 443 444 445 446 447 448 449 450 451 452
 *
 * 'cur' is the address of an actual, in-use cpuset.  Operations
 * such as list traversal that depend on the actual address of the
 * cpuset in the list must use cur below, not trial.
 *
 * 'trial' is the address of bulk structure copy of cur, with
 * perhaps one or more of the fields cpus_allowed, mems_allowed,
 * or flags changed to new, trial values.
 *
 * Return 0 if valid, -errno if not.
 */

453
static int validate_change(struct cpuset *cur, struct cpuset *trial)
L
Linus Torvalds 已提交
454
{
455
	struct cgroup_subsys_state *css;
L
Linus Torvalds 已提交
456
	struct cpuset *c, *par;
457 458 459
	int ret;

	rcu_read_lock();
L
Linus Torvalds 已提交
460 461

	/* Each of our child cpusets must be a subset of us */
462
	ret = -EBUSY;
463
	cpuset_for_each_child(c, css, cur)
464 465
		if (!is_cpuset_subset(c, trial))
			goto out;
L
Linus Torvalds 已提交
466 467

	/* Remaining checks don't apply to root cpuset */
468
	ret = 0;
469
	if (cur == &top_cpuset)
470
		goto out;
L
Linus Torvalds 已提交
471

T
Tejun Heo 已提交
472
	par = parent_cs(cur);
473

474
	/* On legacy hiearchy, we must be a subset of our parent cpuset. */
475
	ret = -EACCES;
476
	if (!cgroup_on_dfl(cur->css.cgroup) && !is_cpuset_subset(trial, par))
477
		goto out;
L
Linus Torvalds 已提交
478

479 480 481 482
	/*
	 * If either I or some sibling (!= me) is exclusive, we can't
	 * overlap
	 */
483
	ret = -EINVAL;
484
	cpuset_for_each_child(c, css, par) {
L
Linus Torvalds 已提交
485 486
		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
		    c != cur &&
487
		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
488
			goto out;
L
Linus Torvalds 已提交
489 490 491
		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
		    c != cur &&
		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
492
			goto out;
L
Linus Torvalds 已提交
493 494
	}

495 496
	/*
	 * Cpusets with tasks - existing or newly being attached - can't
497
	 * be changed to have empty cpus_allowed or mems_allowed.
498
	 */
499
	ret = -ENOSPC;
500
	if ((cgroup_has_tasks(cur->css.cgroup) || cur->attach_in_progress)) {
501 502 503 504 505 506 507
		if (!cpumask_empty(cur->cpus_allowed) &&
		    cpumask_empty(trial->cpus_allowed))
			goto out;
		if (!nodes_empty(cur->mems_allowed) &&
		    nodes_empty(trial->mems_allowed))
			goto out;
	}
508

509 510 511 512 513 514 515 516 517 518
	/*
	 * We can't shrink if we won't have enough room for SCHED_DEADLINE
	 * tasks.
	 */
	ret = -EBUSY;
	if (is_cpu_exclusive(cur) &&
	    !cpuset_cpumask_can_shrink(cur->cpus_allowed,
				       trial->cpus_allowed))
		goto out;

519 520 521 522
	ret = 0;
out:
	rcu_read_unlock();
	return ret;
L
Linus Torvalds 已提交
523 524
}

525
#ifdef CONFIG_SMP
P
Paul Jackson 已提交
526
/*
527
 * Helper routine for generate_sched_domains().
528
 * Do cpusets a, b have overlapping effective cpus_allowed masks?
P
Paul Jackson 已提交
529 530 531
 */
static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
{
532
	return cpumask_intersects(a->effective_cpus, b->effective_cpus);
P
Paul Jackson 已提交
533 534
}

535 536 537 538 539 540 541 542
static void
update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
{
	if (dattr->relax_domain_level < c->relax_domain_level)
		dattr->relax_domain_level = c->relax_domain_level;
	return;
}

543 544
static void update_domain_attr_tree(struct sched_domain_attr *dattr,
				    struct cpuset *root_cs)
545
{
546
	struct cpuset *cp;
547
	struct cgroup_subsys_state *pos_css;
548

549
	rcu_read_lock();
550
	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
551 552 553
		if (cp == root_cs)
			continue;

554 555
		/* skip the whole subtree if @cp doesn't have any CPU */
		if (cpumask_empty(cp->cpus_allowed)) {
556
			pos_css = css_rightmost_descendant(pos_css);
557
			continue;
558
		}
559 560 561 562

		if (is_sched_load_balance(cp))
			update_domain_attr(dattr, cp);
	}
563
	rcu_read_unlock();
564 565
}

P
Paul Jackson 已提交
566
/*
567 568 569 570 571
 * generate_sched_domains()
 *
 * This function builds a partial partition of the systems CPUs
 * A 'partial partition' is a set of non-overlapping subsets whose
 * union is a subset of that set.
572
 * The output of this function needs to be passed to kernel/sched/core.c
573 574 575
 * partition_sched_domains() routine, which will rebuild the scheduler's
 * load balancing domains (sched domains) as specified by that partial
 * partition.
P
Paul Jackson 已提交
576
 *
L
Li Zefan 已提交
577
 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
P
Paul Jackson 已提交
578 579 580 581 582 583 584
 * for a background explanation of this.
 *
 * Does not return errors, on the theory that the callers of this
 * routine would rather not worry about failures to rebuild sched
 * domains when operating in the severe memory shortage situations
 * that could cause allocation failures below.
 *
585
 * Must be called with cpuset_mutex held.
P
Paul Jackson 已提交
586 587
 *
 * The three key local variables below are:
588
 *    q  - a linked-list queue of cpuset pointers, used to implement a
P
Paul Jackson 已提交
589 590 591 592 593 594 595 596 597 598 599 600
 *	   top-down scan of all cpusets.  This scan loads a pointer
 *	   to each cpuset marked is_sched_load_balance into the
 *	   array 'csa'.  For our purposes, rebuilding the schedulers
 *	   sched domains, we can ignore !is_sched_load_balance cpusets.
 *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
 *	   that need to be load balanced, for convenient iterative
 *	   access by the subsequent code that finds the best partition,
 *	   i.e the set of domains (subsets) of CPUs such that the
 *	   cpus_allowed of every cpuset marked is_sched_load_balance
 *	   is a subset of one of these domains, while there are as
 *	   many such domains as possible, each as small as possible.
 * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
601
 *	   the kernel/sched/core.c routine partition_sched_domains() in a
P
Paul Jackson 已提交
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
 *	   convenient format, that can be easily compared to the prior
 *	   value to determine what partition elements (sched domains)
 *	   were changed (added or removed.)
 *
 * Finding the best partition (set of domains):
 *	The triple nested loops below over i, j, k scan over the
 *	load balanced cpusets (using the array of cpuset pointers in
 *	csa[]) looking for pairs of cpusets that have overlapping
 *	cpus_allowed, but which don't have the same 'pn' partition
 *	number and gives them in the same partition number.  It keeps
 *	looping on the 'restart' label until it can no longer find
 *	any such pairs.
 *
 *	The union of the cpus_allowed masks from the set of
 *	all cpusets having the same 'pn' value then form the one
 *	element of the partition (one sched domain) to be passed to
 *	partition_sched_domains().
 */
620
static int generate_sched_domains(cpumask_var_t **domains,
621
			struct sched_domain_attr **attributes)
P
Paul Jackson 已提交
622 623 624 625 626
{
	struct cpuset *cp;	/* scans q */
	struct cpuset **csa;	/* array of all cpuset ptrs */
	int csn;		/* how many cpuset ptrs in csa so far */
	int i, j, k;		/* indices for partition finding loops */
627
	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
628
	struct sched_domain_attr *dattr;  /* attributes for custom domains */
629
	int ndoms = 0;		/* number of sched domains in result */
630
	int nslot;		/* next empty doms[] struct cpumask slot */
631
	struct cgroup_subsys_state *pos_css;
P
Paul Jackson 已提交
632 633

	doms = NULL;
634
	dattr = NULL;
635
	csa = NULL;
P
Paul Jackson 已提交
636 637 638

	/* Special case for the 99% of systems with one, full, sched domain */
	if (is_sched_load_balance(&top_cpuset)) {
639 640
		ndoms = 1;
		doms = alloc_sched_domains(ndoms);
P
Paul Jackson 已提交
641
		if (!doms)
642 643
			goto done;

644 645 646
		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
		if (dattr) {
			*dattr = SD_ATTR_INIT;
647
			update_domain_attr_tree(dattr, &top_cpuset);
648
		}
649
		cpumask_copy(doms[0], top_cpuset.effective_cpus);
650 651

		goto done;
P
Paul Jackson 已提交
652 653
	}

654
	csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);
P
Paul Jackson 已提交
655 656 657 658
	if (!csa)
		goto done;
	csn = 0;

659
	rcu_read_lock();
660
	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
661 662
		if (cp == &top_cpuset)
			continue;
663
		/*
664 665 666 667 668 669
		 * Continue traversing beyond @cp iff @cp has some CPUs and
		 * isn't load balancing.  The former is obvious.  The
		 * latter: All child cpusets contain a subset of the
		 * parent's cpus, so just skip them, and then we call
		 * update_domain_attr_tree() to calc relax_domain_level of
		 * the corresponding sched domain.
670
		 */
671 672
		if (!cpumask_empty(cp->cpus_allowed) &&
		    !is_sched_load_balance(cp))
673
			continue;
674

675 676 677 678
		if (is_sched_load_balance(cp))
			csa[csn++] = cp;

		/* skip @cp's subtree */
679
		pos_css = css_rightmost_descendant(pos_css);
680 681
	}
	rcu_read_unlock();
P
Paul Jackson 已提交
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709

	for (i = 0; i < csn; i++)
		csa[i]->pn = i;
	ndoms = csn;

restart:
	/* Find the best partition (set of sched domains) */
	for (i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
		int apn = a->pn;

		for (j = 0; j < csn; j++) {
			struct cpuset *b = csa[j];
			int bpn = b->pn;

			if (apn != bpn && cpusets_overlap(a, b)) {
				for (k = 0; k < csn; k++) {
					struct cpuset *c = csa[k];

					if (c->pn == bpn)
						c->pn = apn;
				}
				ndoms--;	/* one less element */
				goto restart;
			}
		}
	}

710 711 712 713
	/*
	 * Now we know how many domains to create.
	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
	 */
714
	doms = alloc_sched_domains(ndoms);
715
	if (!doms)
716 717 718 719 720 721
		goto done;

	/*
	 * The rest of the code, including the scheduler, can deal with
	 * dattr==NULL case. No need to abort if alloc fails.
	 */
722
	dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
P
Paul Jackson 已提交
723 724 725

	for (nslot = 0, i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
726
		struct cpumask *dp;
P
Paul Jackson 已提交
727 728
		int apn = a->pn;

729 730 731 732 733
		if (apn < 0) {
			/* Skip completed partitions */
			continue;
		}

734
		dp = doms[nslot];
735 736 737 738

		if (nslot == ndoms) {
			static int warnings = 10;
			if (warnings) {
739 740
				pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
					nslot, ndoms, csn, i, apn);
741
				warnings--;
P
Paul Jackson 已提交
742
			}
743 744
			continue;
		}
P
Paul Jackson 已提交
745

746
		cpumask_clear(dp);
747 748 749 750 751 752
		if (dattr)
			*(dattr + nslot) = SD_ATTR_INIT;
		for (j = i; j < csn; j++) {
			struct cpuset *b = csa[j];

			if (apn == b->pn) {
753
				cpumask_or(dp, dp, b->effective_cpus);
754 755 756 757 758
				if (dattr)
					update_domain_attr_tree(dattr + nslot, b);

				/* Done with this partition */
				b->pn = -1;
P
Paul Jackson 已提交
759 760
			}
		}
761
		nslot++;
P
Paul Jackson 已提交
762 763 764
	}
	BUG_ON(nslot != ndoms);

765 766 767
done:
	kfree(csa);

768 769 770 771 772 773 774
	/*
	 * Fallback to the default domain if kmalloc() failed.
	 * See comments in partition_sched_domains().
	 */
	if (doms == NULL)
		ndoms = 1;

775 776 777 778 779 780 781 782
	*domains    = doms;
	*attributes = dattr;
	return ndoms;
}

/*
 * Rebuild scheduler domains.
 *
783 784 785 786 787
 * If the flag 'sched_load_balance' of any cpuset with non-empty
 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
 * which has that flag enabled, or if any cpuset with a non-empty
 * 'cpus' is removed, then call this routine to rebuild the
 * scheduler's dynamic sched domains.
788
 *
789
 * Call with cpuset_mutex held.  Takes get_online_cpus().
790
 */
791
static void rebuild_sched_domains_locked(void)
792 793
{
	struct sched_domain_attr *attr;
794
	cpumask_var_t *doms;
795 796
	int ndoms;

797
	lockdep_assert_held(&cpuset_mutex);
798
	get_online_cpus();
799

800 801 802 803 804
	/*
	 * We have raced with CPU hotplug. Don't do anything to avoid
	 * passing doms with offlined cpu to partition_sched_domains().
	 * Anyways, hotplug work item will rebuild sched domains.
	 */
805
	if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
806 807
		goto out;

808 809 810 811 812
	/* Generate domain masks and attrs */
	ndoms = generate_sched_domains(&doms, &attr);

	/* Have scheduler rebuild the domains */
	partition_sched_domains(ndoms, doms, attr);
813
out:
814
	put_online_cpus();
815
}
816
#else /* !CONFIG_SMP */
817
static void rebuild_sched_domains_locked(void)
818 819 820
{
}
#endif /* CONFIG_SMP */
P
Paul Jackson 已提交
821

822 823
void rebuild_sched_domains(void)
{
824
	mutex_lock(&cpuset_mutex);
825
	rebuild_sched_domains_locked();
826
	mutex_unlock(&cpuset_mutex);
P
Paul Jackson 已提交
827 828
}

829 830 831 832
/**
 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
 *
833 834 835
 * Iterate through each task of @cs updating its cpus_allowed to the
 * effective cpuset's.  As this function is called with cpuset_mutex held,
 * cpuset membership stays stable.
836
 */
837
static void update_tasks_cpumask(struct cpuset *cs)
838
{
839 840 841 842 843
	struct css_task_iter it;
	struct task_struct *task;

	css_task_iter_start(&cs->css, &it);
	while ((task = css_task_iter_next(&it)))
844
		set_cpus_allowed_ptr(task, cs->effective_cpus);
845
	css_task_iter_end(&it);
846 847
}

848
/*
849 850 851 852 853 854
 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
 * @cs: the cpuset to consider
 * @new_cpus: temp variable for calculating new effective_cpus
 *
 * When congifured cpumask is changed, the effective cpumasks of this cpuset
 * and all its descendants need to be updated.
855
 *
856
 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
857 858 859
 *
 * Called with cpuset_mutex held
 */
860
static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus)
861 862
{
	struct cpuset *cp;
863
	struct cgroup_subsys_state *pos_css;
864
	bool need_rebuild_sched_domains = false;
865 866

	rcu_read_lock();
867 868 869 870 871
	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
		struct cpuset *parent = parent_cs(cp);

		cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus);

872 873 874 875 876 877 878
		/*
		 * If it becomes empty, inherit the effective mask of the
		 * parent, which is guaranteed to have some CPUs.
		 */
		if (cpumask_empty(new_cpus))
			cpumask_copy(new_cpus, parent->effective_cpus);

879 880 881 882
		/* Skip the whole subtree if the cpumask remains the same. */
		if (cpumask_equal(new_cpus, cp->effective_cpus)) {
			pos_css = css_rightmost_descendant(pos_css);
			continue;
883
		}
884

885
		if (!css_tryget_online(&cp->css))
886 887 888
			continue;
		rcu_read_unlock();

889
		spin_lock_irq(&callback_lock);
890
		cpumask_copy(cp->effective_cpus, new_cpus);
891
		spin_unlock_irq(&callback_lock);
892 893 894 895

		WARN_ON(!cgroup_on_dfl(cp->css.cgroup) &&
			!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));

896
		update_tasks_cpumask(cp);
897

898 899 900 901 902 903 904 905
		/*
		 * If the effective cpumask of any non-empty cpuset is changed,
		 * we need to rebuild sched domains.
		 */
		if (!cpumask_empty(cp->cpus_allowed) &&
		    is_sched_load_balance(cp))
			need_rebuild_sched_domains = true;

906 907 908 909
		rcu_read_lock();
		css_put(&cp->css);
	}
	rcu_read_unlock();
910 911 912

	if (need_rebuild_sched_domains)
		rebuild_sched_domains_locked();
913 914
}

C
Cliff Wickman 已提交
915 916 917
/**
 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
 * @cs: the cpuset to consider
918
 * @trialcs: trial cpuset
C
Cliff Wickman 已提交
919 920
 * @buf: buffer of cpu numbers written to this cpuset
 */
921 922
static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
			  const char *buf)
L
Linus Torvalds 已提交
923
{
C
Cliff Wickman 已提交
924
	int retval;
L
Linus Torvalds 已提交
925

926
	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
927 928 929
	if (cs == &top_cpuset)
		return -EACCES;

930
	/*
931
	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
932 933 934
	 * Since cpulist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have cpus.
935
	 */
936
	if (!*buf) {
937
		cpumask_clear(trialcs->cpus_allowed);
938
	} else {
939
		retval = cpulist_parse(buf, trialcs->cpus_allowed);
940 941
		if (retval < 0)
			return retval;
942

943 944
		if (!cpumask_subset(trialcs->cpus_allowed,
				    top_cpuset.cpus_allowed))
945
			return -EINVAL;
946
	}
P
Paul Jackson 已提交
947

P
Paul Menage 已提交
948
	/* Nothing to do if the cpus didn't change */
949
	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
P
Paul Menage 已提交
950
		return 0;
C
Cliff Wickman 已提交
951

952 953 954 955
	retval = validate_change(cs, trialcs);
	if (retval < 0)
		return retval;

956
	spin_lock_irq(&callback_lock);
957
	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
958
	spin_unlock_irq(&callback_lock);
P
Paul Jackson 已提交
959

960 961
	/* use trialcs->cpus_allowed as a temp variable */
	update_cpumasks_hier(cs, trialcs->cpus_allowed);
962
	return 0;
L
Linus Torvalds 已提交
963 964
}

965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
/*
 * cpuset_migrate_mm
 *
 *    Migrate memory region from one set of nodes to another.
 *
 *    Temporarilly set tasks mems_allowed to target nodes of migration,
 *    so that the migration code can allocate pages on these nodes.
 *
 *    While the mm_struct we are migrating is typically from some
 *    other task, the task_struct mems_allowed that we are hacking
 *    is for our current task, which must allocate new pages for that
 *    migrating memory region.
 */

static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
							const nodemask_t *to)
{
	struct task_struct *tsk = current;

	tsk->mems_allowed = *to;

	do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);

988
	rcu_read_lock();
989
	guarantee_online_mems(task_cs(tsk), &tsk->mems_allowed);
990
	rcu_read_unlock();
991 992
}

993
/*
994 995 996 997 998 999 1000 1001 1002 1003 1004
 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
 * @tsk: the task to change
 * @newmems: new nodes that the task will be set
 *
 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
 * we structure updates as setting all new allowed nodes, then clearing newly
 * disallowed ones.
 */
static void cpuset_change_task_nodemask(struct task_struct *tsk,
					nodemask_t *newmems)
{
1005
	bool need_loop;
1006

1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return;
	if (current->flags & PF_EXITING) /* Let dying task have memory */
		return;

	task_lock(tsk);
1017 1018
	/*
	 * Determine if a loop is necessary if another thread is doing
1019
	 * read_mems_allowed_begin().  If at least one node remains unchanged and
1020 1021 1022 1023 1024
	 * tsk does not have a mempolicy, then an empty nodemask will not be
	 * possible when mems_allowed is larger than a word.
	 */
	need_loop = task_has_mempolicy(tsk) ||
			!nodes_intersects(*newmems, tsk->mems_allowed);
1025

1026 1027
	if (need_loop) {
		local_irq_disable();
1028
		write_seqcount_begin(&tsk->mems_allowed_seq);
1029
	}
1030

1031 1032
	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
	mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
1033 1034

	mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
1035
	tsk->mems_allowed = *newmems;
1036

1037
	if (need_loop) {
1038
		write_seqcount_end(&tsk->mems_allowed_seq);
1039 1040
		local_irq_enable();
	}
1041

1042
	task_unlock(tsk);
1043 1044
}

1045 1046
static void *cpuset_being_rebound;

1047 1048 1049 1050
/**
 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
 *
1051 1052 1053
 * Iterate through each task of @cs updating its mems_allowed to the
 * effective cpuset's.  As this function is called with cpuset_mutex held,
 * cpuset membership stays stable.
1054
 */
1055
static void update_tasks_nodemask(struct cpuset *cs)
L
Linus Torvalds 已提交
1056
{
1057
	static nodemask_t newmems;	/* protected by cpuset_mutex */
1058 1059
	struct css_task_iter it;
	struct task_struct *task;
1060

1061
	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
1062

1063
	guarantee_online_mems(cs, &newmems);
1064

1065
	/*
1066 1067 1068 1069
	 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
	 * take while holding tasklist_lock.  Forks can happen - the
	 * mpol_dup() cpuset_being_rebound check will catch such forks,
	 * and rebind their vma mempolicies too.  Because we still hold
1070
	 * the global cpuset_mutex, we know that no other rebind effort
1071
	 * will be contending for the global variable cpuset_being_rebound.
1072
	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1073
	 * is idempotent.  Also migrate pages in each mm to new nodes.
1074
	 */
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
	css_task_iter_start(&cs->css, &it);
	while ((task = css_task_iter_next(&it))) {
		struct mm_struct *mm;
		bool migrate;

		cpuset_change_task_nodemask(task, &newmems);

		mm = get_task_mm(task);
		if (!mm)
			continue;

		migrate = is_memory_migrate(cs);

		mpol_rebind_mm(mm, &cs->mems_allowed);
		if (migrate)
			cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
		mmput(mm);
	}
	css_task_iter_end(&it);
1094

1095 1096 1097 1098 1099 1100
	/*
	 * All the tasks' nodemasks have been updated, update
	 * cs->old_mems_allowed.
	 */
	cs->old_mems_allowed = newmems;

1101
	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
1102
	cpuset_being_rebound = NULL;
L
Linus Torvalds 已提交
1103 1104
}

1105
/*
1106 1107 1108
 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
 * @cs: the cpuset to consider
 * @new_mems: a temp variable for calculating new effective_mems
1109
 *
1110 1111
 * When configured nodemask is changed, the effective nodemasks of this cpuset
 * and all its descendants need to be updated.
1112
 *
1113
 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1114 1115 1116
 *
 * Called with cpuset_mutex held
 */
1117
static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1118 1119
{
	struct cpuset *cp;
1120
	struct cgroup_subsys_state *pos_css;
1121 1122

	rcu_read_lock();
1123 1124 1125 1126 1127
	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
		struct cpuset *parent = parent_cs(cp);

		nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);

1128 1129 1130 1131 1132 1133 1134
		/*
		 * If it becomes empty, inherit the effective mask of the
		 * parent, which is guaranteed to have some MEMs.
		 */
		if (nodes_empty(*new_mems))
			*new_mems = parent->effective_mems;

1135 1136 1137 1138
		/* Skip the whole subtree if the nodemask remains the same. */
		if (nodes_equal(*new_mems, cp->effective_mems)) {
			pos_css = css_rightmost_descendant(pos_css);
			continue;
1139
		}
1140

1141
		if (!css_tryget_online(&cp->css))
1142 1143 1144
			continue;
		rcu_read_unlock();

1145
		spin_lock_irq(&callback_lock);
1146
		cp->effective_mems = *new_mems;
1147
		spin_unlock_irq(&callback_lock);
1148 1149

		WARN_ON(!cgroup_on_dfl(cp->css.cgroup) &&
1150
			!nodes_equal(cp->mems_allowed, cp->effective_mems));
1151

1152
		update_tasks_nodemask(cp);
1153 1154 1155 1156 1157 1158 1159

		rcu_read_lock();
		css_put(&cp->css);
	}
	rcu_read_unlock();
}

1160 1161 1162
/*
 * Handle user request to change the 'mems' memory placement
 * of a cpuset.  Needs to validate the request, update the
1163 1164 1165 1166
 * cpusets mems_allowed, and for each task in the cpuset,
 * update mems_allowed and rebind task's mempolicy and any vma
 * mempolicies and if the cpuset is marked 'memory_migrate',
 * migrate the tasks pages to the new memory.
1167
 *
1168
 * Call with cpuset_mutex held. May take callback_lock during call.
1169 1170 1171 1172
 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
 * their mempolicies to the cpusets new mems_allowed.
 */
1173 1174
static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
			   const char *buf)
1175 1176 1177 1178
{
	int retval;

	/*
1179
	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1180 1181
	 * it's read-only
	 */
1182 1183 1184 1185
	if (cs == &top_cpuset) {
		retval = -EACCES;
		goto done;
	}
1186 1187 1188 1189 1190 1191 1192 1193

	/*
	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
	 * Since nodelist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have memory.
	 */
	if (!*buf) {
1194
		nodes_clear(trialcs->mems_allowed);
1195
	} else {
1196
		retval = nodelist_parse(buf, trialcs->mems_allowed);
1197 1198 1199
		if (retval < 0)
			goto done;

1200
		if (!nodes_subset(trialcs->mems_allowed,
1201 1202
				  top_cpuset.mems_allowed)) {
			retval = -EINVAL;
1203 1204
			goto done;
		}
1205
	}
1206 1207

	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1208 1209 1210
		retval = 0;		/* Too easy - nothing to do */
		goto done;
	}
1211
	retval = validate_change(cs, trialcs);
1212 1213 1214
	if (retval < 0)
		goto done;

1215
	spin_lock_irq(&callback_lock);
1216
	cs->mems_allowed = trialcs->mems_allowed;
1217
	spin_unlock_irq(&callback_lock);
1218

1219 1220
	/* use trialcs->mems_allowed as a temp variable */
	update_nodemasks_hier(cs, &cs->mems_allowed);
1221 1222 1223 1224
done:
	return retval;
}

1225 1226
int current_cpuset_is_being_rebound(void)
{
1227 1228 1229 1230 1231 1232 1233
	int ret;

	rcu_read_lock();
	ret = task_cs(current) == cpuset_being_rebound;
	rcu_read_unlock();

	return ret;
1234 1235
}

1236
static int update_relax_domain_level(struct cpuset *cs, s64 val)
1237
{
1238
#ifdef CONFIG_SMP
1239
	if (val < -1 || val >= sched_domain_level_max)
1240
		return -EINVAL;
1241
#endif
1242 1243 1244

	if (val != cs->relax_domain_level) {
		cs->relax_domain_level = val;
1245 1246
		if (!cpumask_empty(cs->cpus_allowed) &&
		    is_sched_load_balance(cs))
1247
			rebuild_sched_domains_locked();
1248 1249 1250 1251 1252
	}

	return 0;
}

1253
/**
1254 1255 1256
 * update_tasks_flags - update the spread flags of tasks in the cpuset.
 * @cs: the cpuset in which each task's spread flags needs to be changed
 *
1257 1258 1259
 * Iterate through each task of @cs updating its spread flags.  As this
 * function is called with cpuset_mutex held, cpuset membership stays
 * stable.
1260
 */
1261
static void update_tasks_flags(struct cpuset *cs)
1262
{
1263 1264 1265 1266 1267 1268 1269
	struct css_task_iter it;
	struct task_struct *task;

	css_task_iter_start(&cs->css, &it);
	while ((task = css_task_iter_next(&it)))
		cpuset_update_task_spread_flag(cs, task);
	css_task_iter_end(&it);
1270 1271
}

L
Linus Torvalds 已提交
1272 1273
/*
 * update_flag - read a 0 or a 1 in a file and update associated flag
1274 1275 1276
 * bit:		the bit to update (see cpuset_flagbits_t)
 * cs:		the cpuset to update
 * turning_on: 	whether the flag is being set or cleared
1277
 *
1278
 * Call with cpuset_mutex held.
L
Linus Torvalds 已提交
1279 1280
 */

1281 1282
static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
		       int turning_on)
L
Linus Torvalds 已提交
1283
{
1284
	struct cpuset *trialcs;
R
Rakib Mullick 已提交
1285
	int balance_flag_changed;
1286 1287
	int spread_flag_changed;
	int err;
L
Linus Torvalds 已提交
1288

1289 1290 1291 1292
	trialcs = alloc_trial_cpuset(cs);
	if (!trialcs)
		return -ENOMEM;

L
Linus Torvalds 已提交
1293
	if (turning_on)
1294
		set_bit(bit, &trialcs->flags);
L
Linus Torvalds 已提交
1295
	else
1296
		clear_bit(bit, &trialcs->flags);
L
Linus Torvalds 已提交
1297

1298
	err = validate_change(cs, trialcs);
1299
	if (err < 0)
1300
		goto out;
P
Paul Jackson 已提交
1301 1302

	balance_flag_changed = (is_sched_load_balance(cs) !=
1303
				is_sched_load_balance(trialcs));
P
Paul Jackson 已提交
1304

1305 1306 1307
	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
			|| (is_spread_page(cs) != is_spread_page(trialcs)));

1308
	spin_lock_irq(&callback_lock);
1309
	cs->flags = trialcs->flags;
1310
	spin_unlock_irq(&callback_lock);
1311

1312
	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1313
		rebuild_sched_domains_locked();
P
Paul Jackson 已提交
1314

1315
	if (spread_flag_changed)
1316
		update_tasks_flags(cs);
1317 1318 1319
out:
	free_trial_cpuset(trialcs);
	return err;
L
Linus Torvalds 已提交
1320 1321
}

1322
/*
A
Adrian Bunk 已提交
1323
 * Frequency meter - How fast is some event occurring?
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
 *
 * These routines manage a digitally filtered, constant time based,
 * event frequency meter.  There are four routines:
 *   fmeter_init() - initialize a frequency meter.
 *   fmeter_markevent() - called each time the event happens.
 *   fmeter_getrate() - returns the recent rate of such events.
 *   fmeter_update() - internal routine used to update fmeter.
 *
 * A common data structure is passed to each of these routines,
 * which is used to keep track of the state required to manage the
 * frequency meter and its digital filter.
 *
 * The filter works on the number of events marked per unit time.
 * The filter is single-pole low-pass recursive (IIR).  The time unit
 * is 1 second.  Arithmetic is done using 32-bit integers scaled to
 * simulate 3 decimal digits of precision (multiplied by 1000).
 *
 * With an FM_COEF of 933, and a time base of 1 second, the filter
 * has a half-life of 10 seconds, meaning that if the events quit
 * happening, then the rate returned from the fmeter_getrate()
 * will be cut in half each 10 seconds, until it converges to zero.
 *
 * It is not worth doing a real infinitely recursive filter.  If more
 * than FM_MAXTICKS ticks have elapsed since the last filter event,
 * just compute FM_MAXTICKS ticks worth, by which point the level
 * will be stable.
 *
 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
 * arithmetic overflow in the fmeter_update() routine.
 *
 * Given the simple 32 bit integer arithmetic used, this meter works
 * best for reporting rates between one per millisecond (msec) and
 * one per 32 (approx) seconds.  At constant rates faster than one
 * per msec it maxes out at values just under 1,000,000.  At constant
 * rates between one per msec, and one per second it will stabilize
 * to a value N*1000, where N is the rate of events per second.
 * At constant rates between one per second and one per 32 seconds,
 * it will be choppy, moving up on the seconds that have an event,
 * and then decaying until the next event.  At rates slower than
 * about one in 32 seconds, it decays all the way back to zero between
 * each event.
 */

#define FM_COEF 933		/* coefficient for half-life of 10 secs */
#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
#define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
#define FM_SCALE 1000		/* faux fixed point scale */

/* Initialize a frequency meter */
static void fmeter_init(struct fmeter *fmp)
{
	fmp->cnt = 0;
	fmp->val = 0;
	fmp->time = 0;
	spin_lock_init(&fmp->lock);
}

/* Internal meter update - process cnt events and update value */
static void fmeter_update(struct fmeter *fmp)
{
	time_t now = get_seconds();
	time_t ticks = now - fmp->time;

	if (ticks == 0)
		return;

	ticks = min(FM_MAXTICKS, ticks);
	while (ticks-- > 0)
		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
	fmp->time = now;

	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
	fmp->cnt = 0;
}

/* Process any previous ticks, then bump cnt by one (times scale). */
static void fmeter_markevent(struct fmeter *fmp)
{
	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
	spin_unlock(&fmp->lock);
}

/* Process any previous ticks, then return current value. */
static int fmeter_getrate(struct fmeter *fmp)
{
	int val;

	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	val = fmp->val;
	spin_unlock(&fmp->lock);
	return val;
}

1420 1421
static struct cpuset *cpuset_attach_old_cs;

1422
/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1423 1424
static int cpuset_can_attach(struct cgroup_subsys_state *css,
			     struct cgroup_taskset *tset)
1425
{
1426
	struct cpuset *cs = css_cs(css);
1427 1428
	struct task_struct *task;
	int ret;
L
Linus Torvalds 已提交
1429

1430 1431 1432
	/* used later by cpuset_attach() */
	cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset));

1433 1434
	mutex_lock(&cpuset_mutex);

1435
	/* allow moving tasks into an empty cpuset if on default hierarchy */
1436
	ret = -ENOSPC;
1437
	if (!cgroup_on_dfl(css->cgroup) &&
1438
	    (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
1439
		goto out_unlock;
1440

1441
	cgroup_taskset_for_each(task, tset) {
1442 1443
		ret = task_can_attach(task, cs->cpus_allowed);
		if (ret)
1444 1445 1446 1447
			goto out_unlock;
		ret = security_task_setscheduler(task);
		if (ret)
			goto out_unlock;
1448
	}
1449

1450 1451 1452 1453 1454
	/*
	 * Mark attach is in progress.  This makes validate_change() fail
	 * changes which zero cpus/mems_allowed.
	 */
	cs->attach_in_progress++;
1455 1456 1457 1458
	ret = 0;
out_unlock:
	mutex_unlock(&cpuset_mutex);
	return ret;
1459
}
1460

1461
static void cpuset_cancel_attach(struct cgroup_subsys_state *css,
1462 1463
				 struct cgroup_taskset *tset)
{
1464
	mutex_lock(&cpuset_mutex);
1465
	css_cs(css)->attach_in_progress--;
1466
	mutex_unlock(&cpuset_mutex);
1467
}
L
Linus Torvalds 已提交
1468

1469
/*
1470
 * Protected by cpuset_mutex.  cpus_attach is used only by cpuset_attach()
1471 1472 1473 1474 1475
 * but we can't allocate it dynamically there.  Define it global and
 * allocate from cpuset_init().
 */
static cpumask_var_t cpus_attach;

1476 1477
static void cpuset_attach(struct cgroup_subsys_state *css,
			  struct cgroup_taskset *tset)
1478
{
1479
	/* static buf protected by cpuset_mutex */
1480
	static nodemask_t cpuset_attach_nodemask_to;
1481
	struct mm_struct *mm;
1482 1483
	struct task_struct *task;
	struct task_struct *leader = cgroup_taskset_first(tset);
1484
	struct cpuset *cs = css_cs(css);
1485
	struct cpuset *oldcs = cpuset_attach_old_cs;
1486

1487 1488
	mutex_lock(&cpuset_mutex);

1489 1490 1491 1492
	/* prepare for attach */
	if (cs == &top_cpuset)
		cpumask_copy(cpus_attach, cpu_possible_mask);
	else
1493
		guarantee_online_cpus(cs, cpus_attach);
1494

1495
	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
1496

1497
	cgroup_taskset_for_each(task, tset) {
1498 1499 1500 1501 1502 1503 1504 1505 1506
		/*
		 * can_attach beforehand should guarantee that this doesn't
		 * fail.  TODO: have a better way to handle failure here
		 */
		WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));

		cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
		cpuset_update_task_spread_flag(cs, task);
	}
1507

1508 1509 1510 1511
	/*
	 * Change mm, possibly for multiple threads in a threadgroup. This is
	 * expensive and may sleep.
	 */
1512
	cpuset_attach_nodemask_to = cs->effective_mems;
1513
	mm = get_task_mm(leader);
1514
	if (mm) {
1515
		mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1516 1517 1518 1519 1520 1521 1522 1523 1524

		/*
		 * old_mems_allowed is the same with mems_allowed here, except
		 * if this task is being moved automatically due to hotplug.
		 * In that case @mems_allowed has been updated and is empty,
		 * so @old_mems_allowed is the right nodesets that we migrate
		 * mm from.
		 */
		if (is_memory_migrate(cs)) {
1525
			cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
1526
					  &cpuset_attach_nodemask_to);
1527
		}
1528 1529
		mmput(mm);
	}
1530

1531
	cs->old_mems_allowed = cpuset_attach_nodemask_to;
1532

1533
	cs->attach_in_progress--;
1534 1535
	if (!cs->attach_in_progress)
		wake_up(&cpuset_attach_wq);
1536 1537

	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
1538 1539 1540 1541 1542
}

/* The various types of files and directories in a cpuset file system */

typedef enum {
1543
	FILE_MEMORY_MIGRATE,
L
Linus Torvalds 已提交
1544 1545
	FILE_CPULIST,
	FILE_MEMLIST,
1546 1547
	FILE_EFFECTIVE_CPULIST,
	FILE_EFFECTIVE_MEMLIST,
L
Linus Torvalds 已提交
1548 1549
	FILE_CPU_EXCLUSIVE,
	FILE_MEM_EXCLUSIVE,
1550
	FILE_MEM_HARDWALL,
P
Paul Jackson 已提交
1551
	FILE_SCHED_LOAD_BALANCE,
1552
	FILE_SCHED_RELAX_DOMAIN_LEVEL,
1553 1554
	FILE_MEMORY_PRESSURE_ENABLED,
	FILE_MEMORY_PRESSURE,
1555 1556
	FILE_SPREAD_PAGE,
	FILE_SPREAD_SLAB,
L
Linus Torvalds 已提交
1557 1558
} cpuset_filetype_t;

1559 1560
static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
			    u64 val)
1561
{
1562
	struct cpuset *cs = css_cs(css);
1563
	cpuset_filetype_t type = cft->private;
1564
	int retval = 0;
1565

1566
	mutex_lock(&cpuset_mutex);
1567 1568
	if (!is_cpuset_online(cs)) {
		retval = -ENODEV;
1569
		goto out_unlock;
1570
	}
1571 1572

	switch (type) {
L
Linus Torvalds 已提交
1573
	case FILE_CPU_EXCLUSIVE:
1574
		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
L
Linus Torvalds 已提交
1575 1576
		break;
	case FILE_MEM_EXCLUSIVE:
1577
		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
L
Linus Torvalds 已提交
1578
		break;
1579 1580 1581
	case FILE_MEM_HARDWALL:
		retval = update_flag(CS_MEM_HARDWALL, cs, val);
		break;
P
Paul Jackson 已提交
1582
	case FILE_SCHED_LOAD_BALANCE:
1583
		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1584
		break;
1585
	case FILE_MEMORY_MIGRATE:
1586
		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1587
		break;
1588
	case FILE_MEMORY_PRESSURE_ENABLED:
1589
		cpuset_memory_pressure_enabled = !!val;
1590 1591 1592 1593
		break;
	case FILE_MEMORY_PRESSURE:
		retval = -EACCES;
		break;
1594
	case FILE_SPREAD_PAGE:
1595
		retval = update_flag(CS_SPREAD_PAGE, cs, val);
1596 1597
		break;
	case FILE_SPREAD_SLAB:
1598
		retval = update_flag(CS_SPREAD_SLAB, cs, val);
1599
		break;
L
Linus Torvalds 已提交
1600 1601
	default:
		retval = -EINVAL;
1602
		break;
L
Linus Torvalds 已提交
1603
	}
1604 1605
out_unlock:
	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
1606 1607 1608
	return retval;
}

1609 1610
static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
			    s64 val)
1611
{
1612
	struct cpuset *cs = css_cs(css);
1613
	cpuset_filetype_t type = cft->private;
1614
	int retval = -ENODEV;
1615

1616 1617 1618
	mutex_lock(&cpuset_mutex);
	if (!is_cpuset_online(cs))
		goto out_unlock;
1619

1620 1621 1622 1623 1624 1625 1626 1627
	switch (type) {
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		retval = update_relax_domain_level(cs, val);
		break;
	default:
		retval = -EINVAL;
		break;
	}
1628 1629
out_unlock:
	mutex_unlock(&cpuset_mutex);
1630 1631 1632
	return retval;
}

1633 1634 1635
/*
 * Common handling for a write to a "cpus" or "mems" file.
 */
1636 1637
static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
				    char *buf, size_t nbytes, loff_t off)
1638
{
1639
	struct cpuset *cs = css_cs(of_css(of));
1640
	struct cpuset *trialcs;
1641
	int retval = -ENODEV;
1642

1643 1644
	buf = strstrip(buf);

1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
	/*
	 * CPU or memory hotunplug may leave @cs w/o any execution
	 * resources, in which case the hotplug code asynchronously updates
	 * configuration and transfers all tasks to the nearest ancestor
	 * which can execute.
	 *
	 * As writes to "cpus" or "mems" may restore @cs's execution
	 * resources, wait for the previously scheduled operations before
	 * proceeding, so that we don't end up keep removing tasks added
	 * after execution capability is restored.
1655 1656 1657 1658 1659 1660 1661 1662
	 *
	 * cpuset_hotplug_work calls back into cgroup core via
	 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
	 * operation like this one can lead to a deadlock through kernfs
	 * active_ref protection.  Let's break the protection.  Losing the
	 * protection is okay as we check whether @cs is online after
	 * grabbing cpuset_mutex anyway.  This only happens on the legacy
	 * hierarchies.
1663
	 */
1664 1665
	css_get(&cs->css);
	kernfs_break_active_protection(of->kn);
1666 1667
	flush_work(&cpuset_hotplug_work);

1668 1669 1670
	mutex_lock(&cpuset_mutex);
	if (!is_cpuset_online(cs))
		goto out_unlock;
1671

1672
	trialcs = alloc_trial_cpuset(cs);
1673 1674
	if (!trialcs) {
		retval = -ENOMEM;
1675
		goto out_unlock;
1676
	}
1677

1678
	switch (of_cft(of)->private) {
1679
	case FILE_CPULIST:
1680
		retval = update_cpumask(cs, trialcs, buf);
1681 1682
		break;
	case FILE_MEMLIST:
1683
		retval = update_nodemask(cs, trialcs, buf);
1684 1685 1686 1687 1688
		break;
	default:
		retval = -EINVAL;
		break;
	}
1689 1690

	free_trial_cpuset(trialcs);
1691 1692
out_unlock:
	mutex_unlock(&cpuset_mutex);
1693 1694
	kernfs_unbreak_active_protection(of->kn);
	css_put(&cs->css);
1695
	return retval ?: nbytes;
1696 1697
}

L
Linus Torvalds 已提交
1698 1699 1700 1701 1702 1703 1704 1705
/*
 * These ascii lists should be read in a single call, by using a user
 * buffer large enough to hold the entire map.  If read in smaller
 * chunks, there is no guarantee of atomicity.  Since the display format
 * used, list of ranges of sequential numbers, is variable length,
 * and since these maps can change value dynamically, one could read
 * gibberish by doing partial reads while a list was changing.
 */
1706
static int cpuset_common_seq_show(struct seq_file *sf, void *v)
L
Linus Torvalds 已提交
1707
{
1708 1709
	struct cpuset *cs = css_cs(seq_css(sf));
	cpuset_filetype_t type = seq_cft(sf)->private;
1710
	int ret = 0;
L
Linus Torvalds 已提交
1711

1712
	spin_lock_irq(&callback_lock);
L
Linus Torvalds 已提交
1713 1714 1715

	switch (type) {
	case FILE_CPULIST:
1716
		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
L
Linus Torvalds 已提交
1717 1718
		break;
	case FILE_MEMLIST:
1719
		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
L
Linus Torvalds 已提交
1720
		break;
1721
	case FILE_EFFECTIVE_CPULIST:
1722
		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
1723 1724
		break;
	case FILE_EFFECTIVE_MEMLIST:
1725
		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
1726
		break;
L
Linus Torvalds 已提交
1727
	default:
1728
		ret = -EINVAL;
L
Linus Torvalds 已提交
1729 1730
	}

1731
	spin_unlock_irq(&callback_lock);
1732
	return ret;
L
Linus Torvalds 已提交
1733 1734
}

1735
static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
1736
{
1737
	struct cpuset *cs = css_cs(css);
1738 1739 1740 1741 1742 1743
	cpuset_filetype_t type = cft->private;
	switch (type) {
	case FILE_CPU_EXCLUSIVE:
		return is_cpu_exclusive(cs);
	case FILE_MEM_EXCLUSIVE:
		return is_mem_exclusive(cs);
1744 1745
	case FILE_MEM_HARDWALL:
		return is_mem_hardwall(cs);
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
	case FILE_SCHED_LOAD_BALANCE:
		return is_sched_load_balance(cs);
	case FILE_MEMORY_MIGRATE:
		return is_memory_migrate(cs);
	case FILE_MEMORY_PRESSURE_ENABLED:
		return cpuset_memory_pressure_enabled;
	case FILE_MEMORY_PRESSURE:
		return fmeter_getrate(&cs->fmeter);
	case FILE_SPREAD_PAGE:
		return is_spread_page(cs);
	case FILE_SPREAD_SLAB:
		return is_spread_slab(cs);
	default:
		BUG();
	}
1761 1762 1763

	/* Unreachable but makes gcc happy */
	return 0;
1764
}
L
Linus Torvalds 已提交
1765

1766
static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
1767
{
1768
	struct cpuset *cs = css_cs(css);
1769 1770 1771 1772 1773 1774 1775
	cpuset_filetype_t type = cft->private;
	switch (type) {
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		return cs->relax_domain_level;
	default:
		BUG();
	}
1776 1777 1778

	/* Unrechable but makes gcc happy */
	return 0;
1779 1780
}

L
Linus Torvalds 已提交
1781 1782 1783 1784 1785

/*
 * for the common functions, 'private' gives the type of file
 */

1786 1787 1788
static struct cftype files[] = {
	{
		.name = "cpus",
1789
		.seq_show = cpuset_common_seq_show,
1790
		.write = cpuset_write_resmask,
1791
		.max_write_len = (100U + 6 * NR_CPUS),
1792 1793 1794 1795 1796
		.private = FILE_CPULIST,
	},

	{
		.name = "mems",
1797
		.seq_show = cpuset_common_seq_show,
1798
		.write = cpuset_write_resmask,
1799
		.max_write_len = (100U + 6 * MAX_NUMNODES),
1800 1801 1802
		.private = FILE_MEMLIST,
	},

1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
	{
		.name = "effective_cpus",
		.seq_show = cpuset_common_seq_show,
		.private = FILE_EFFECTIVE_CPULIST,
	},

	{
		.name = "effective_mems",
		.seq_show = cpuset_common_seq_show,
		.private = FILE_EFFECTIVE_MEMLIST,
	},

1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
	{
		.name = "cpu_exclusive",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_CPU_EXCLUSIVE,
	},

	{
		.name = "mem_exclusive",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEM_EXCLUSIVE,
	},

1829 1830 1831 1832 1833 1834 1835
	{
		.name = "mem_hardwall",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEM_HARDWALL,
	},

1836 1837 1838 1839 1840 1841 1842 1843 1844
	{
		.name = "sched_load_balance",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SCHED_LOAD_BALANCE,
	},

	{
		.name = "sched_relax_domain_level",
1845 1846
		.read_s64 = cpuset_read_s64,
		.write_s64 = cpuset_write_s64,
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
	},

	{
		.name = "memory_migrate",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_MIGRATE,
	},

	{
		.name = "memory_pressure",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_PRESSURE,
L
Li Zefan 已提交
1862
		.mode = S_IRUGO,
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
	},

	{
		.name = "memory_spread_page",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SPREAD_PAGE,
	},

	{
		.name = "memory_spread_slab",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SPREAD_SLAB,
	},
1878

1879 1880 1881 1882 1883 1884 1885
	{
		.name = "memory_pressure_enabled",
		.flags = CFTYPE_ONLY_ON_ROOT,
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_PRESSURE_ENABLED,
	},
L
Linus Torvalds 已提交
1886

1887 1888
	{ }	/* terminate */
};
L
Linus Torvalds 已提交
1889 1890

/*
1891
 *	cpuset_css_alloc - allocate a cpuset css
L
Li Zefan 已提交
1892
 *	cgrp:	control group that the new cpuset will be part of
L
Linus Torvalds 已提交
1893 1894
 */

1895 1896
static struct cgroup_subsys_state *
cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
L
Linus Torvalds 已提交
1897
{
T
Tejun Heo 已提交
1898
	struct cpuset *cs;
L
Linus Torvalds 已提交
1899

1900
	if (!parent_css)
1901
		return &top_cpuset.css;
1902

T
Tejun Heo 已提交
1903
	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
L
Linus Torvalds 已提交
1904
	if (!cs)
1905
		return ERR_PTR(-ENOMEM);
1906 1907 1908 1909
	if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL))
		goto free_cs;
	if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL))
		goto free_cpus;
L
Linus Torvalds 已提交
1910

P
Paul Jackson 已提交
1911
	set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1912
	cpumask_clear(cs->cpus_allowed);
1913
	nodes_clear(cs->mems_allowed);
1914 1915
	cpumask_clear(cs->effective_cpus);
	nodes_clear(cs->effective_mems);
1916
	fmeter_init(&cs->fmeter);
1917
	cs->relax_domain_level = -1;
L
Linus Torvalds 已提交
1918

T
Tejun Heo 已提交
1919
	return &cs->css;
1920 1921 1922 1923 1924 1925

free_cpus:
	free_cpumask_var(cs->cpus_allowed);
free_cs:
	kfree(cs);
	return ERR_PTR(-ENOMEM);
T
Tejun Heo 已提交
1926 1927
}

1928
static int cpuset_css_online(struct cgroup_subsys_state *css)
T
Tejun Heo 已提交
1929
{
1930
	struct cpuset *cs = css_cs(css);
T
Tejun Heo 已提交
1931
	struct cpuset *parent = parent_cs(cs);
1932
	struct cpuset *tmp_cs;
1933
	struct cgroup_subsys_state *pos_css;
T
Tejun Heo 已提交
1934 1935 1936 1937

	if (!parent)
		return 0;

1938 1939
	mutex_lock(&cpuset_mutex);

T
Tejun Heo 已提交
1940
	set_bit(CS_ONLINE, &cs->flags);
T
Tejun Heo 已提交
1941 1942 1943 1944
	if (is_spread_page(parent))
		set_bit(CS_SPREAD_PAGE, &cs->flags);
	if (is_spread_slab(parent))
		set_bit(CS_SPREAD_SLAB, &cs->flags);
L
Linus Torvalds 已提交
1945

1946
	cpuset_inc();
1947

1948
	spin_lock_irq(&callback_lock);
1949 1950 1951 1952
	if (cgroup_on_dfl(cs->css.cgroup)) {
		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
		cs->effective_mems = parent->effective_mems;
	}
1953
	spin_unlock_irq(&callback_lock);
1954

1955
	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
1956
		goto out_unlock;
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970

	/*
	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
	 * set.  This flag handling is implemented in cgroup core for
	 * histrical reasons - the flag may be specified during mount.
	 *
	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
	 * refuse to clone the configuration - thereby refusing the task to
	 * be entered, and as a result refusing the sys_unshare() or
	 * clone() which initiated it.  If this becomes a problem for some
	 * users who wish to allow that scenario, then this could be
	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
	 * (and likewise for mems) to the new cgroup.
	 */
1971
	rcu_read_lock();
1972
	cpuset_for_each_child(tmp_cs, pos_css, parent) {
1973 1974
		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
			rcu_read_unlock();
1975
			goto out_unlock;
1976
		}
1977
	}
1978
	rcu_read_unlock();
1979

1980
	spin_lock_irq(&callback_lock);
1981 1982
	cs->mems_allowed = parent->mems_allowed;
	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
D
Dan Carpenter 已提交
1983
	spin_unlock_irq(&callback_lock);
1984 1985
out_unlock:
	mutex_unlock(&cpuset_mutex);
T
Tejun Heo 已提交
1986 1987 1988
	return 0;
}

1989 1990 1991 1992 1993 1994
/*
 * If the cpuset being removed has its flag 'sched_load_balance'
 * enabled, then simulate turning sched_load_balance off, which
 * will call rebuild_sched_domains_locked().
 */

1995
static void cpuset_css_offline(struct cgroup_subsys_state *css)
T
Tejun Heo 已提交
1996
{
1997
	struct cpuset *cs = css_cs(css);
T
Tejun Heo 已提交
1998

1999
	mutex_lock(&cpuset_mutex);
T
Tejun Heo 已提交
2000 2001 2002 2003

	if (is_sched_load_balance(cs))
		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);

2004
	cpuset_dec();
T
Tejun Heo 已提交
2005
	clear_bit(CS_ONLINE, &cs->flags);
T
Tejun Heo 已提交
2006

2007
	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
2008 2009
}

2010
static void cpuset_css_free(struct cgroup_subsys_state *css)
L
Linus Torvalds 已提交
2011
{
2012
	struct cpuset *cs = css_cs(css);
L
Linus Torvalds 已提交
2013

2014
	free_cpumask_var(cs->effective_cpus);
2015
	free_cpumask_var(cs->cpus_allowed);
2016
	kfree(cs);
L
Linus Torvalds 已提交
2017 2018
}

2019 2020 2021
static void cpuset_bind(struct cgroup_subsys_state *root_css)
{
	mutex_lock(&cpuset_mutex);
2022
	spin_lock_irq(&callback_lock);
2023 2024 2025 2026 2027 2028 2029 2030 2031 2032

	if (cgroup_on_dfl(root_css->cgroup)) {
		cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
		top_cpuset.mems_allowed = node_possible_map;
	} else {
		cpumask_copy(top_cpuset.cpus_allowed,
			     top_cpuset.effective_cpus);
		top_cpuset.mems_allowed = top_cpuset.effective_mems;
	}

2033
	spin_unlock_irq(&callback_lock);
2034 2035 2036
	mutex_unlock(&cpuset_mutex);
}

2037
struct cgroup_subsys cpuset_cgrp_subsys = {
2038 2039 2040 2041 2042 2043 2044 2045
	.css_alloc	= cpuset_css_alloc,
	.css_online	= cpuset_css_online,
	.css_offline	= cpuset_css_offline,
	.css_free	= cpuset_css_free,
	.can_attach	= cpuset_can_attach,
	.cancel_attach	= cpuset_cancel_attach,
	.attach		= cpuset_attach,
	.bind		= cpuset_bind,
2046
	.legacy_cftypes	= files,
2047
	.early_init	= 1,
2048 2049
};

L
Linus Torvalds 已提交
2050 2051 2052 2053 2054 2055 2056 2057
/**
 * cpuset_init - initialize cpusets at system boot
 *
 * Description: Initialize top_cpuset and the cpuset internal file system,
 **/

int __init cpuset_init(void)
{
2058
	int err = 0;
L
Linus Torvalds 已提交
2059

2060 2061
	if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
		BUG();
2062 2063
	if (!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL))
		BUG();
2064

2065
	cpumask_setall(top_cpuset.cpus_allowed);
2066
	nodes_setall(top_cpuset.mems_allowed);
2067 2068
	cpumask_setall(top_cpuset.effective_cpus);
	nodes_setall(top_cpuset.effective_mems);
L
Linus Torvalds 已提交
2069

2070
	fmeter_init(&top_cpuset.fmeter);
P
Paul Jackson 已提交
2071
	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2072
	top_cpuset.relax_domain_level = -1;
L
Linus Torvalds 已提交
2073 2074 2075

	err = register_filesystem(&cpuset_fs_type);
	if (err < 0)
2076 2077
		return err;

2078 2079 2080
	if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
		BUG();

2081
	return 0;
L
Linus Torvalds 已提交
2082 2083
}

2084
/*
2085
 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2086 2087
 * or memory nodes, we need to walk over the cpuset hierarchy,
 * removing that CPU or node from all cpusets.  If this removes the
2088 2089
 * last CPU or node from a cpuset, then move the tasks in the empty
 * cpuset to its next-highest non-empty parent.
2090
 */
2091 2092 2093 2094 2095 2096 2097 2098
static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
{
	struct cpuset *parent;

	/*
	 * Find its next-highest non-empty parent, (top cpuset
	 * has online cpus, so can't be empty).
	 */
T
Tejun Heo 已提交
2099
	parent = parent_cs(cs);
2100
	while (cpumask_empty(parent->cpus_allowed) ||
2101
			nodes_empty(parent->mems_allowed))
T
Tejun Heo 已提交
2102
		parent = parent_cs(parent);
2103

2104
	if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2105
		pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
T
Tejun Heo 已提交
2106 2107
		pr_cont_cgroup_name(cs->css.cgroup);
		pr_cont("\n");
2108
	}
2109 2110
}

2111 2112 2113 2114
static void
hotplug_update_tasks_legacy(struct cpuset *cs,
			    struct cpumask *new_cpus, nodemask_t *new_mems,
			    bool cpus_updated, bool mems_updated)
2115 2116 2117
{
	bool is_empty;

2118
	spin_lock_irq(&callback_lock);
2119 2120 2121 2122
	cpumask_copy(cs->cpus_allowed, new_cpus);
	cpumask_copy(cs->effective_cpus, new_cpus);
	cs->mems_allowed = *new_mems;
	cs->effective_mems = *new_mems;
2123
	spin_unlock_irq(&callback_lock);
2124 2125 2126 2127 2128

	/*
	 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
	 * as the tasks will be migratecd to an ancestor.
	 */
2129
	if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
2130
		update_tasks_cpumask(cs);
2131
	if (mems_updated && !nodes_empty(cs->mems_allowed))
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
		update_tasks_nodemask(cs);

	is_empty = cpumask_empty(cs->cpus_allowed) ||
		   nodes_empty(cs->mems_allowed);

	mutex_unlock(&cpuset_mutex);

	/*
	 * Move tasks to the nearest ancestor with execution resources,
	 * This is full cgroup operation which will also call back into
	 * cpuset. Should be done outside any lock.
	 */
	if (is_empty)
		remove_tasks_in_empty_cpuset(cs);

	mutex_lock(&cpuset_mutex);
}

2150 2151 2152 2153
static void
hotplug_update_tasks(struct cpuset *cs,
		     struct cpumask *new_cpus, nodemask_t *new_mems,
		     bool cpus_updated, bool mems_updated)
2154
{
2155 2156 2157 2158 2159
	if (cpumask_empty(new_cpus))
		cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
	if (nodes_empty(*new_mems))
		*new_mems = parent_cs(cs)->effective_mems;

2160
	spin_lock_irq(&callback_lock);
2161 2162
	cpumask_copy(cs->effective_cpus, new_cpus);
	cs->effective_mems = *new_mems;
2163
	spin_unlock_irq(&callback_lock);
2164

2165
	if (cpus_updated)
2166
		update_tasks_cpumask(cs);
2167
	if (mems_updated)
2168 2169 2170
		update_tasks_nodemask(cs);
}

2171
/**
2172
 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2173
 * @cs: cpuset in interest
2174
 *
2175 2176 2177
 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
 * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
 * all its tasks are moved to the nearest ancestor with both resources.
2178
 */
2179
static void cpuset_hotplug_update_tasks(struct cpuset *cs)
2180
{
2181 2182 2183 2184
	static cpumask_t new_cpus;
	static nodemask_t new_mems;
	bool cpus_updated;
	bool mems_updated;
2185 2186
retry:
	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2187

2188
	mutex_lock(&cpuset_mutex);
2189

2190 2191 2192 2193 2194 2195 2196 2197 2198
	/*
	 * We have raced with task attaching. We wait until attaching
	 * is finished, so we won't attach a task to an empty cpuset.
	 */
	if (cs->attach_in_progress) {
		mutex_unlock(&cpuset_mutex);
		goto retry;
	}

2199 2200
	cpumask_and(&new_cpus, cs->cpus_allowed, parent_cs(cs)->effective_cpus);
	nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems);
2201

2202 2203
	cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
	mems_updated = !nodes_equal(new_mems, cs->effective_mems);
2204

2205
	if (cgroup_on_dfl(cs->css.cgroup))
2206 2207
		hotplug_update_tasks(cs, &new_cpus, &new_mems,
				     cpus_updated, mems_updated);
2208
	else
2209 2210
		hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
					    cpus_updated, mems_updated);
2211

2212
	mutex_unlock(&cpuset_mutex);
2213 2214
}

2215
/**
2216
 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2217
 *
2218 2219 2220 2221 2222
 * This function is called after either CPU or memory configuration has
 * changed and updates cpuset accordingly.  The top_cpuset is always
 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
 * order to make cpusets transparent (of no affect) on systems that are
 * actively using CPU hotplug but making no active use of cpusets.
2223
 *
2224
 * Non-root cpusets are only affected by offlining.  If any CPUs or memory
2225 2226
 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
 * all descendants.
2227
 *
2228 2229
 * Note that CPU offlining during suspend is ignored.  We don't modify
 * cpusets across suspend/resume cycles at all.
2230
 */
2231
static void cpuset_hotplug_workfn(struct work_struct *work)
2232
{
2233 2234
	static cpumask_t new_cpus;
	static nodemask_t new_mems;
2235
	bool cpus_updated, mems_updated;
2236
	bool on_dfl = cgroup_on_dfl(top_cpuset.css.cgroup);
2237

2238
	mutex_lock(&cpuset_mutex);
2239

2240 2241 2242
	/* fetch the available cpus/mems and find out which changed how */
	cpumask_copy(&new_cpus, cpu_active_mask);
	new_mems = node_states[N_MEMORY];
2243

2244 2245
	cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
	mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
2246

2247 2248
	/* synchronize cpus_allowed to cpu_active_mask */
	if (cpus_updated) {
2249
		spin_lock_irq(&callback_lock);
2250 2251
		if (!on_dfl)
			cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2252
		cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
2253
		spin_unlock_irq(&callback_lock);
2254 2255
		/* we don't mess with cpumasks of tasks in top_cpuset */
	}
2256

2257 2258
	/* synchronize mems_allowed to N_MEMORY */
	if (mems_updated) {
2259
		spin_lock_irq(&callback_lock);
2260 2261
		if (!on_dfl)
			top_cpuset.mems_allowed = new_mems;
2262
		top_cpuset.effective_mems = new_mems;
2263
		spin_unlock_irq(&callback_lock);
2264
		update_tasks_nodemask(&top_cpuset);
2265
	}
2266

2267 2268
	mutex_unlock(&cpuset_mutex);

2269 2270
	/* if cpus or mems changed, we need to propagate to descendants */
	if (cpus_updated || mems_updated) {
2271
		struct cpuset *cs;
2272
		struct cgroup_subsys_state *pos_css;
2273

2274
		rcu_read_lock();
2275
		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
2276
			if (cs == &top_cpuset || !css_tryget_online(&cs->css))
2277 2278
				continue;
			rcu_read_unlock();
2279

2280
			cpuset_hotplug_update_tasks(cs);
2281

2282 2283 2284 2285 2286
			rcu_read_lock();
			css_put(&cs->css);
		}
		rcu_read_unlock();
	}
2287

2288
	/* rebuild sched domains if cpus_allowed has changed */
2289 2290
	if (cpus_updated)
		rebuild_sched_domains();
2291 2292
}

2293
void cpuset_update_active_cpus(bool cpu_online)
2294
{
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
	/*
	 * We're inside cpu hotplug critical region which usually nests
	 * inside cgroup synchronization.  Bounce actual hotplug processing
	 * to a work item to avoid reverse locking order.
	 *
	 * We still need to do partition_sched_domains() synchronously;
	 * otherwise, the scheduler will get confused and put tasks to the
	 * dead CPU.  Fall back to the default single domain.
	 * cpuset_hotplug_workfn() will rebuild it as necessary.
	 */
	partition_sched_domains(1, NULL, NULL);
	schedule_work(&cpuset_hotplug_work);
2307 2308
}

2309
/*
2310 2311
 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
 * Call this routine anytime after node_states[N_MEMORY] changes.
2312
 * See cpuset_update_active_cpus() for CPU hotplug handling.
2313
 */
2314 2315
static int cpuset_track_online_nodes(struct notifier_block *self,
				unsigned long action, void *arg)
2316
{
2317
	schedule_work(&cpuset_hotplug_work);
2318
	return NOTIFY_OK;
2319
}
2320 2321 2322 2323 2324

static struct notifier_block cpuset_track_online_nodes_nb = {
	.notifier_call = cpuset_track_online_nodes,
	.priority = 10,		/* ??! */
};
2325

L
Linus Torvalds 已提交
2326 2327 2328 2329
/**
 * cpuset_init_smp - initialize cpus_allowed
 *
 * Description: Finish top cpuset after cpu, node maps are initialized
2330
 */
L
Linus Torvalds 已提交
2331 2332
void __init cpuset_init_smp(void)
{
2333
	cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2334
	top_cpuset.mems_allowed = node_states[N_MEMORY];
2335
	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
2336

2337 2338 2339
	cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
	top_cpuset.effective_mems = node_states[N_MEMORY];

2340
	register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
L
Linus Torvalds 已提交
2341 2342 2343 2344 2345
}

/**
 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2346
 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
L
Linus Torvalds 已提交
2347
 *
2348
 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
L
Linus Torvalds 已提交
2349
 * attached to the specified @tsk.  Guaranteed to return some non-empty
2350
 * subset of cpu_online_mask, even if this means going outside the
L
Linus Torvalds 已提交
2351 2352 2353
 * tasks cpuset.
 **/

2354
void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
L
Linus Torvalds 已提交
2355
{
2356 2357 2358
	unsigned long flags;

	spin_lock_irqsave(&callback_lock, flags);
2359
	rcu_read_lock();
2360
	guarantee_online_cpus(task_cs(tsk), pmask);
2361
	rcu_read_unlock();
2362
	spin_unlock_irqrestore(&callback_lock, flags);
L
Linus Torvalds 已提交
2363 2364
}

2365
void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2366 2367
{
	rcu_read_lock();
2368
	do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus);
2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
	rcu_read_unlock();

	/*
	 * We own tsk->cpus_allowed, nobody can change it under us.
	 *
	 * But we used cs && cs->cpus_allowed lockless and thus can
	 * race with cgroup_attach_task() or update_cpumask() and get
	 * the wrong tsk->cpus_allowed. However, both cases imply the
	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
	 * which takes task_rq_lock().
	 *
	 * If we are called after it dropped the lock we must see all
	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
	 * set any mask even if it is not right from task_cs() pov,
	 * the pending set_cpus_allowed_ptr() will fix things.
2384 2385 2386
	 *
	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
	 * if required.
2387 2388 2389
	 */
}

2390
void __init cpuset_init_current_mems_allowed(void)
L
Linus Torvalds 已提交
2391
{
2392
	nodes_setall(current->mems_allowed);
L
Linus Torvalds 已提交
2393 2394
}

2395 2396 2397 2398 2399 2400
/**
 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
 *
 * Description: Returns the nodemask_t mems_allowed of the cpuset
 * attached to the specified @tsk.  Guaranteed to return some non-empty
2401
 * subset of node_states[N_MEMORY], even if this means going outside the
2402 2403 2404 2405 2406 2407
 * tasks cpuset.
 **/

nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
{
	nodemask_t mask;
2408
	unsigned long flags;
2409

2410
	spin_lock_irqsave(&callback_lock, flags);
2411
	rcu_read_lock();
2412
	guarantee_online_mems(task_cs(tsk), &mask);
2413
	rcu_read_unlock();
2414
	spin_unlock_irqrestore(&callback_lock, flags);
2415 2416 2417 2418

	return mask;
}

2419
/**
2420 2421
 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
 * @nodemask: the nodemask to be checked
2422
 *
2423
 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
L
Linus Torvalds 已提交
2424
 */
2425
int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
L
Linus Torvalds 已提交
2426
{
2427
	return nodes_intersects(*nodemask, current->mems_allowed);
L
Linus Torvalds 已提交
2428 2429
}

2430
/*
2431 2432
 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
 * mem_hardwall ancestor to the specified cpuset.  Call holding
2433
 * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall
2434
 * (an unusual configuration), then returns the root cpuset.
2435
 */
2436
static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
2437
{
T
Tejun Heo 已提交
2438 2439
	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
		cs = parent_cs(cs);
2440 2441 2442
	return cs;
}

2443
/**
2444
 * cpuset_node_allowed - Can we allocate on a memory node?
2445
 * @node: is this an allowed node?
2446
 * @gfp_mask: memory allocation flags
2447
 *
2448 2449 2450 2451 2452 2453
 * If we're in interrupt, yes, we can always allocate.  If __GFP_THISNODE is
 * set, yes, we can always allocate.  If node is in our task's mems_allowed,
 * yes.  If it's not a __GFP_HARDWALL request and this node is in the nearest
 * hardwalled cpuset ancestor to this task's cpuset, yes.  If the task has been
 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
 * flag, yes.
2454 2455
 * Otherwise, no.
 *
2456 2457 2458 2459 2460 2461
 * The __GFP_THISNODE placement logic is really handled elsewhere,
 * by forcibly using a zonelist starting at a specified node, and by
 * (in get_page_from_freelist()) refusing to consider the zones for
 * any node on the zonelist except the first.  By the time any such
 * calls get to this routine, we should just shut up and say 'yes'.
 *
2462
 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2463 2464
 * and do not allow allocations outside the current tasks cpuset
 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2465
 * GFP_KERNEL allocations are not so marked, so can escape to the
2466
 * nearest enclosing hardwalled ancestor cpuset.
2467
 *
2468
 * Scanning up parent cpusets requires callback_lock.  The
2469 2470 2471 2472
 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
 * current tasks mems_allowed came up empty on the first pass over
 * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
2473
 * cpuset are short of memory, might require taking the callback_lock.
2474
 *
2475
 * The first call here from mm/page_alloc:get_page_from_freelist()
2476 2477 2478
 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
 * so no allocation on a node outside the cpuset is allowed (unless
 * in interrupt, of course).
2479 2480 2481 2482 2483 2484
 *
 * The second pass through get_page_from_freelist() doesn't even call
 * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
 * in alloc_flags.  That logic and the checks below have the combined
 * affect that:
2485 2486
 *	in_interrupt - any node ok (current task context irrelevant)
 *	GFP_ATOMIC   - any node ok
2487
 *	TIF_MEMDIE   - any node ok
2488
 *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
2489
 *	GFP_USER     - only nodes in current tasks mems allowed ok.
2490
 */
2491
int __cpuset_node_allowed(int node, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2492
{
2493
	struct cpuset *cs;		/* current cpuset ancestors */
2494
	int allowed;			/* is allocation in zone z allowed? */
2495
	unsigned long flags;
2496

2497
	if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2498 2499 2500
		return 1;
	if (node_isset(node, current->mems_allowed))
		return 1;
2501 2502 2503 2504 2505 2506
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return 1;
2507 2508 2509
	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
		return 0;

2510 2511 2512
	if (current->flags & PF_EXITING) /* Let dying task have memory */
		return 1;

2513
	/* Not hardwall and node outside mems_allowed: scan up cpusets */
2514
	spin_lock_irqsave(&callback_lock, flags);
2515

2516
	rcu_read_lock();
2517
	cs = nearest_hardwall_ancestor(task_cs(current));
2518
	allowed = node_isset(node, cs->mems_allowed);
2519
	rcu_read_unlock();
2520

2521
	spin_unlock_irqrestore(&callback_lock, flags);
2522
	return allowed;
L
Linus Torvalds 已提交
2523 2524
}

2525
/**
2526 2527
 * cpuset_mem_spread_node() - On which node to begin search for a file page
 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551
 *
 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
 * tasks in a cpuset with is_spread_page or is_spread_slab set),
 * and if the memory allocation used cpuset_mem_spread_node()
 * to determine on which node to start looking, as it will for
 * certain page cache or slab cache pages such as used for file
 * system buffers and inode caches, then instead of starting on the
 * local node to look for a free page, rather spread the starting
 * node around the tasks mems_allowed nodes.
 *
 * We don't have to worry about the returned node being offline
 * because "it can't happen", and even if it did, it would be ok.
 *
 * The routines calling guarantee_online_mems() are careful to
 * only set nodes in task->mems_allowed that are online.  So it
 * should not be possible for the following code to return an
 * offline node.  But if it did, that would be ok, as this routine
 * is not returning the node where the allocation must be, only
 * the node where the search should start.  The zonelist passed to
 * __alloc_pages() will include all nodes.  If the slab allocator
 * is passed an offline node, it will fall back to the local node.
 * See kmem_cache_alloc_node().
 */

2552
static int cpuset_spread_node(int *rotor)
2553 2554 2555
{
	int node;

2556
	node = next_node(*rotor, current->mems_allowed);
2557 2558
	if (node == MAX_NUMNODES)
		node = first_node(current->mems_allowed);
2559
	*rotor = node;
2560 2561
	return node;
}
2562 2563 2564

int cpuset_mem_spread_node(void)
{
2565 2566 2567 2568
	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
		current->cpuset_mem_spread_rotor =
			node_random(&current->mems_allowed);

2569 2570 2571 2572 2573
	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
}

int cpuset_slab_spread_node(void)
{
2574 2575 2576 2577
	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
		current->cpuset_slab_spread_rotor =
			node_random(&current->mems_allowed);

2578 2579 2580
	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
}

2581 2582
EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);

2583
/**
2584 2585 2586 2587 2588 2589 2590 2591
 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
 * @tsk1: pointer to task_struct of some task.
 * @tsk2: pointer to task_struct of some other task.
 *
 * Description: Return true if @tsk1's mems_allowed intersects the
 * mems_allowed of @tsk2.  Used by the OOM killer to determine if
 * one of the task's memory usage might impact the memory available
 * to the other.
2592 2593
 **/

2594 2595
int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
				   const struct task_struct *tsk2)
2596
{
2597
	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2598 2599
}

2600 2601
/**
 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2602
 * @tsk: pointer to task_struct of some task.
2603 2604
 *
 * Description: Prints @task's name, cpuset name, and cached copy of its
2605
 * mems_allowed to the kernel log.
2606 2607 2608
 */
void cpuset_print_task_mems_allowed(struct task_struct *tsk)
{
2609
	struct cgroup *cgrp;
2610

2611
	rcu_read_lock();
2612

2613
	cgrp = task_cs(tsk)->css.cgroup;
2614
	pr_info("%s cpuset=", tsk->comm);
T
Tejun Heo 已提交
2615
	pr_cont_cgroup_name(cgrp);
2616
	pr_cont(" mems_allowed=%*pbl\n", nodemask_pr_args(&tsk->mems_allowed));
2617

2618
	rcu_read_unlock();
2619 2620
}

2621 2622 2623 2624 2625 2626
/*
 * Collection of memory_pressure is suppressed unless
 * this flag is enabled by writing "1" to the special
 * cpuset file 'memory_pressure_enabled' in the root cpuset.
 */

2627
int cpuset_memory_pressure_enabled __read_mostly;
2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648

/**
 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
 *
 * Keep a running average of the rate of synchronous (direct)
 * page reclaim efforts initiated by tasks in each cpuset.
 *
 * This represents the rate at which some task in the cpuset
 * ran low on memory on all nodes it was allowed to use, and
 * had to enter the kernels page reclaim code in an effort to
 * create more free memory by tossing clean pages or swapping
 * or writing dirty pages.
 *
 * Display to user space in the per-cpuset read-only file
 * "memory_pressure".  Value displayed is an integer
 * representing the recent rate of entry into the synchronous
 * (direct) page reclaim by any task attached to the cpuset.
 **/

void __cpuset_memory_pressure_bump(void)
{
2649
	rcu_read_lock();
2650
	fmeter_markevent(&task_cs(current)->fmeter);
2651
	rcu_read_unlock();
2652 2653
}

2654
#ifdef CONFIG_PROC_PID_CPUSET
L
Linus Torvalds 已提交
2655 2656 2657 2658
/*
 * proc_cpuset_show()
 *  - Print tasks cpuset path into seq_file.
 *  - Used for /proc/<pid>/cpuset.
2659 2660
 *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
 *    doesn't really matter if tsk->cpuset changes after we read it,
2661
 *    and we take cpuset_mutex, keeping cpuset_attach() from changing it
2662
 *    anyway.
L
Linus Torvalds 已提交
2663
 */
Z
Zefan Li 已提交
2664 2665
int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
		     struct pid *pid, struct task_struct *tsk)
L
Linus Torvalds 已提交
2666
{
T
Tejun Heo 已提交
2667
	char *buf, *p;
2668
	struct cgroup_subsys_state *css;
2669
	int retval;
L
Linus Torvalds 已提交
2670

2671
	retval = -ENOMEM;
T
Tejun Heo 已提交
2672
	buf = kmalloc(PATH_MAX, GFP_KERNEL);
L
Linus Torvalds 已提交
2673
	if (!buf)
2674 2675
		goto out;

T
Tejun Heo 已提交
2676
	retval = -ENAMETOOLONG;
L
Li Zefan 已提交
2677
	rcu_read_lock();
2678
	css = task_css(tsk, cpuset_cgrp_id);
T
Tejun Heo 已提交
2679
	p = cgroup_path(css->cgroup, buf, PATH_MAX);
L
Li Zefan 已提交
2680
	rcu_read_unlock();
T
Tejun Heo 已提交
2681
	if (!p)
Z
Zefan Li 已提交
2682
		goto out_free;
T
Tejun Heo 已提交
2683
	seq_puts(m, p);
L
Linus Torvalds 已提交
2684
	seq_putc(m, '\n');
T
Tejun Heo 已提交
2685
	retval = 0;
2686
out_free:
L
Linus Torvalds 已提交
2687
	kfree(buf);
2688
out:
L
Linus Torvalds 已提交
2689 2690
	return retval;
}
2691
#endif /* CONFIG_PROC_PID_CPUSET */
L
Linus Torvalds 已提交
2692

2693
/* Display task mems_allowed in /proc/<pid>/status file. */
2694 2695
void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
{
2696 2697 2698 2699
	seq_printf(m, "Mems_allowed:\t%*pb\n",
		   nodemask_pr_args(&task->mems_allowed));
	seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
		   nodemask_pr_args(&task->mems_allowed));
L
Linus Torvalds 已提交
2700
}