cpuset.c 77.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  kernel/cpuset.c
 *
 *  Processor and Memory placement constraints for sets of tasks.
 *
 *  Copyright (C) 2003 BULL SA.
P
Paul Jackson 已提交
7
 *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8
 *  Copyright (C) 2006 Google, Inc
L
Linus Torvalds 已提交
9 10 11 12
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
13
 *  2003-10-10 Written by Simon Derr.
L
Linus Torvalds 已提交
14
 *  2003-10-22 Updates by Stephen Hemminger.
15
 *  2004 May-July Rework by Paul Jackson.
16
 *  2006 Rework by Paul Menage to use generic cgroups
17 18
 *  2008 Rework of the scheduler domains and CPU hotplug handling
 *       by Max Krasnyansky
L
Linus Torvalds 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/cpuset.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/kmod.h>
#include <linux/list.h>
37
#include <linux/mempolicy.h>
L
Linus Torvalds 已提交
38
#include <linux/mm.h>
39
#include <linux/memory.h>
40
#include <linux/export.h>
L
Linus Torvalds 已提交
41 42 43 44
#include <linux/mount.h>
#include <linux/namei.h>
#include <linux/pagemap.h>
#include <linux/proc_fs.h>
45
#include <linux/rcupdate.h>
L
Linus Torvalds 已提交
46 47
#include <linux/sched.h>
#include <linux/seq_file.h>
48
#include <linux/security.h>
L
Linus Torvalds 已提交
49 50 51 52 53 54 55 56 57
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/time.h>
#include <linux/backing-dev.h>
#include <linux/sort.h>

#include <asm/uaccess.h>
A
Arun Sharma 已提交
58
#include <linux/atomic.h>
59
#include <linux/mutex.h>
60 61
#include <linux/workqueue.h>
#include <linux/cgroup.h>
62
#include <linux/wait.h>
L
Linus Torvalds 已提交
63

64
struct static_key cpusets_enabled_key __read_mostly = STATIC_KEY_INIT_FALSE;
65

66 67 68 69 70 71 72 73 74
/* See "Frequency meter" comments, below. */

struct fmeter {
	int cnt;		/* unprocessed events count */
	int val;		/* most recent output value */
	time_t time;		/* clock (secs) when val computed */
	spinlock_t lock;	/* guards read or write of above */
};

L
Linus Torvalds 已提交
75
struct cpuset {
76 77
	struct cgroup_subsys_state css;

L
Linus Torvalds 已提交
78
	unsigned long flags;		/* "unsigned long" so bitops work */
79

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
	/*
	 * On default hierarchy:
	 *
	 * The user-configured masks can only be changed by writing to
	 * cpuset.cpus and cpuset.mems, and won't be limited by the
	 * parent masks.
	 *
	 * The effective masks is the real masks that apply to the tasks
	 * in the cpuset. They may be changed if the configured masks are
	 * changed or hotplug happens.
	 *
	 * effective_mask == configured_mask & parent's effective_mask,
	 * and if it ends up empty, it will inherit the parent's mask.
	 *
	 *
	 * On legacy hierachy:
	 *
	 * The user-configured masks are always the same with effective masks.
	 */

100 101 102 103 104 105 106
	/* user-configured CPUs and Memory Nodes allow to tasks */
	cpumask_var_t cpus_allowed;
	nodemask_t mems_allowed;

	/* effective CPUs and Memory Nodes allow to tasks */
	cpumask_var_t effective_cpus;
	nodemask_t effective_mems;
L
Linus Torvalds 已提交
107

108 109 110 111 112 113 114 115 116 117 118 119
	/*
	 * This is old Memory Nodes tasks took on.
	 *
	 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
	 * - A new cpuset's old_mems_allowed is initialized when some
	 *   task is moved into it.
	 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
	 *   cpuset.mems_allowed and have tasks' nodemask updated, and
	 *   then old_mems_allowed is updated to mems_allowed.
	 */
	nodemask_t old_mems_allowed;

120
	struct fmeter fmeter;		/* memory_pressure filter */
P
Paul Jackson 已提交
121

122 123 124 125 126 127
	/*
	 * Tasks are being attached to this cpuset.  Used to prevent
	 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
	 */
	int attach_in_progress;

P
Paul Jackson 已提交
128 129
	/* partition number for rebuild_sched_domains() */
	int pn;
130

131 132
	/* for custom sched domain */
	int relax_domain_level;
L
Linus Torvalds 已提交
133 134
};

135
static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
136
{
137
	return css ? container_of(css, struct cpuset, css) : NULL;
138 139 140 141 142
}

/* Retrieve the cpuset for a task */
static inline struct cpuset *task_cs(struct task_struct *task)
{
143
	return css_cs(task_css(task, cpuset_cgrp_id));
144 145
}

146
static inline struct cpuset *parent_cs(struct cpuset *cs)
T
Tejun Heo 已提交
147
{
T
Tejun Heo 已提交
148
	return css_cs(cs->css.parent);
T
Tejun Heo 已提交
149 150
}

151 152 153 154 155 156 157 158 159 160 161 162 163
#ifdef CONFIG_NUMA
static inline bool task_has_mempolicy(struct task_struct *task)
{
	return task->mempolicy;
}
#else
static inline bool task_has_mempolicy(struct task_struct *task)
{
	return false;
}
#endif


L
Linus Torvalds 已提交
164 165
/* bits in struct cpuset flags field */
typedef enum {
T
Tejun Heo 已提交
166
	CS_ONLINE,
L
Linus Torvalds 已提交
167 168
	CS_CPU_EXCLUSIVE,
	CS_MEM_EXCLUSIVE,
169
	CS_MEM_HARDWALL,
170
	CS_MEMORY_MIGRATE,
P
Paul Jackson 已提交
171
	CS_SCHED_LOAD_BALANCE,
172 173
	CS_SPREAD_PAGE,
	CS_SPREAD_SLAB,
L
Linus Torvalds 已提交
174 175 176
} cpuset_flagbits_t;

/* convenient tests for these bits */
T
Tejun Heo 已提交
177 178 179 180 181
static inline bool is_cpuset_online(const struct cpuset *cs)
{
	return test_bit(CS_ONLINE, &cs->flags);
}

L
Linus Torvalds 已提交
182 183
static inline int is_cpu_exclusive(const struct cpuset *cs)
{
184
	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
185 186 187 188
}

static inline int is_mem_exclusive(const struct cpuset *cs)
{
189
	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
190 191
}

192 193 194 195 196
static inline int is_mem_hardwall(const struct cpuset *cs)
{
	return test_bit(CS_MEM_HARDWALL, &cs->flags);
}

P
Paul Jackson 已提交
197 198 199 200 201
static inline int is_sched_load_balance(const struct cpuset *cs)
{
	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
}

202 203
static inline int is_memory_migrate(const struct cpuset *cs)
{
204
	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
205 206
}

207 208 209 210 211 212 213 214 215 216
static inline int is_spread_page(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_PAGE, &cs->flags);
}

static inline int is_spread_slab(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_SLAB, &cs->flags);
}

L
Linus Torvalds 已提交
217
static struct cpuset top_cpuset = {
T
Tejun Heo 已提交
218 219
	.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
		  (1 << CS_MEM_EXCLUSIVE)),
L
Linus Torvalds 已提交
220 221
};

222 223 224
/**
 * cpuset_for_each_child - traverse online children of a cpuset
 * @child_cs: loop cursor pointing to the current child
225
 * @pos_css: used for iteration
226 227 228 229 230
 * @parent_cs: target cpuset to walk children of
 *
 * Walk @child_cs through the online children of @parent_cs.  Must be used
 * with RCU read locked.
 */
231 232 233
#define cpuset_for_each_child(child_cs, pos_css, parent_cs)		\
	css_for_each_child((pos_css), &(parent_cs)->css)		\
		if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
234

235 236 237
/**
 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
 * @des_cs: loop cursor pointing to the current descendant
238
 * @pos_css: used for iteration
239 240 241
 * @root_cs: target cpuset to walk ancestor of
 *
 * Walk @des_cs through the online descendants of @root_cs.  Must be used
242
 * with RCU read locked.  The caller may modify @pos_css by calling
243 244
 * css_rightmost_descendant() to skip subtree.  @root_cs is included in the
 * iteration and the first node to be visited.
245
 */
246 247 248
#define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)	\
	css_for_each_descendant_pre((pos_css), &(root_cs)->css)		\
		if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
249

L
Linus Torvalds 已提交
250
/*
251 252 253 254 255 256 257 258 259 260 261 262 263 264
 * There are two global mutexes guarding cpuset structures - cpuset_mutex
 * and callback_mutex.  The latter may nest inside the former.  We also
 * require taking task_lock() when dereferencing a task's cpuset pointer.
 * See "The task_lock() exception", at the end of this comment.
 *
 * A task must hold both mutexes to modify cpusets.  If a task holds
 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
 * is the only task able to also acquire callback_mutex and be able to
 * modify cpusets.  It can perform various checks on the cpuset structure
 * first, knowing nothing will change.  It can also allocate memory while
 * just holding cpuset_mutex.  While it is performing these checks, various
 * callback routines can briefly acquire callback_mutex to query cpusets.
 * Once it is ready to make the changes, it takes callback_mutex, blocking
 * everyone else.
265 266
 *
 * Calls to the kernel memory allocator can not be made while holding
267
 * callback_mutex, as that would risk double tripping on callback_mutex
268 269 270
 * from one of the callbacks into the cpuset code from within
 * __alloc_pages().
 *
271
 * If a task is only holding callback_mutex, then it has read-only
272 273
 * access to cpusets.
 *
274 275 276
 * Now, the task_struct fields mems_allowed and mempolicy may be changed
 * by other task, we use alloc_lock in the task_struct fields to protect
 * them.
277
 *
278
 * The cpuset_common_file_read() handlers only hold callback_mutex across
279 280 281
 * small pieces of code, such as when reading out possibly multi-word
 * cpumasks and nodemasks.
 *
282 283
 * Accessing a task's cpuset should be done in accordance with the
 * guidelines for accessing subsystem state in kernel/cgroup.c
L
Linus Torvalds 已提交
284 285
 */

286
static DEFINE_MUTEX(cpuset_mutex);
287
static DEFINE_MUTEX(callback_mutex);
288

289 290 291 292 293 294
/*
 * CPU / memory hotplug is handled asynchronously.
 */
static void cpuset_hotplug_workfn(struct work_struct *work);
static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);

295 296
static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);

297 298
/*
 * This is ugly, but preserves the userspace API for existing cpuset
299
 * users. If someone tries to mount the "cpuset" filesystem, we
300 301
 * silently switch it to mount "cgroup" instead
 */
A
Al Viro 已提交
302 303
static struct dentry *cpuset_mount(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name, void *data)
L
Linus Torvalds 已提交
304
{
305
	struct file_system_type *cgroup_fs = get_fs_type("cgroup");
A
Al Viro 已提交
306
	struct dentry *ret = ERR_PTR(-ENODEV);
307 308 309 310
	if (cgroup_fs) {
		char mountopts[] =
			"cpuset,noprefix,"
			"release_agent=/sbin/cpuset_release_agent";
A
Al Viro 已提交
311 312
		ret = cgroup_fs->mount(cgroup_fs, flags,
					   unused_dev_name, mountopts);
313 314 315
		put_filesystem(cgroup_fs);
	}
	return ret;
L
Linus Torvalds 已提交
316 317 318 319
}

static struct file_system_type cpuset_fs_type = {
	.name = "cpuset",
A
Al Viro 已提交
320
	.mount = cpuset_mount,
L
Linus Torvalds 已提交
321 322 323
};

/*
324
 * Return in pmask the portion of a cpusets's cpus_allowed that
L
Linus Torvalds 已提交
325
 * are online.  If none are online, walk up the cpuset hierarchy
326 327
 * until we find one that does have some online cpus.  The top
 * cpuset always has some cpus online.
L
Linus Torvalds 已提交
328 329
 *
 * One way or another, we guarantee to return some non-empty subset
330
 * of cpu_online_mask.
L
Linus Torvalds 已提交
331
 *
332
 * Call with callback_mutex held.
L
Linus Torvalds 已提交
333
 */
334
static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
L
Linus Torvalds 已提交
335
{
336
	while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask))
T
Tejun Heo 已提交
337
		cs = parent_cs(cs);
338
	cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
L
Linus Torvalds 已提交
339 340 341 342
}

/*
 * Return in *pmask the portion of a cpusets's mems_allowed that
343 344
 * are online, with memory.  If none are online with memory, walk
 * up the cpuset hierarchy until we find one that does have some
345
 * online mems.  The top cpuset always has some mems online.
L
Linus Torvalds 已提交
346 347
 *
 * One way or another, we guarantee to return some non-empty subset
348
 * of node_states[N_MEMORY].
L
Linus Torvalds 已提交
349
 *
350
 * Call with callback_mutex held.
L
Linus Torvalds 已提交
351
 */
352
static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
L
Linus Torvalds 已提交
353
{
354
	while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
T
Tejun Heo 已提交
355
		cs = parent_cs(cs);
356
	nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
L
Linus Torvalds 已提交
357 358
}

359 360 361
/*
 * update task's spread flag if cpuset's page/slab spread flag is set
 *
362
 * Called with callback_mutex/cpuset_mutex held
363 364 365 366 367
 */
static void cpuset_update_task_spread_flag(struct cpuset *cs,
					struct task_struct *tsk)
{
	if (is_spread_page(cs))
368
		task_set_spread_page(tsk);
369
	else
370 371
		task_clear_spread_page(tsk);

372
	if (is_spread_slab(cs))
373
		task_set_spread_slab(tsk);
374
	else
375
		task_clear_spread_slab(tsk);
376 377
}

L
Linus Torvalds 已提交
378 379 380 381 382
/*
 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
 *
 * One cpuset is a subset of another if all its allowed CPUs and
 * Memory Nodes are a subset of the other, and its exclusive flags
383
 * are only set if the other's are set.  Call holding cpuset_mutex.
L
Linus Torvalds 已提交
384 385 386 387
 */

static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
{
388
	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
L
Linus Torvalds 已提交
389 390 391 392 393
		nodes_subset(p->mems_allowed, q->mems_allowed) &&
		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
		is_mem_exclusive(p) <= is_mem_exclusive(q);
}

394 395 396 397
/**
 * alloc_trial_cpuset - allocate a trial cpuset
 * @cs: the cpuset that the trial cpuset duplicates
 */
398
static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
399
{
400 401 402 403 404 405
	struct cpuset *trial;

	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
	if (!trial)
		return NULL;

406 407 408 409
	if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL))
		goto free_cs;
	if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL))
		goto free_cpus;
410

411 412
	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
	cpumask_copy(trial->effective_cpus, cs->effective_cpus);
413
	return trial;
414 415 416 417 418 419

free_cpus:
	free_cpumask_var(trial->cpus_allowed);
free_cs:
	kfree(trial);
	return NULL;
420 421 422 423 424 425 426 427
}

/**
 * free_trial_cpuset - free the trial cpuset
 * @trial: the trial cpuset to be freed
 */
static void free_trial_cpuset(struct cpuset *trial)
{
428
	free_cpumask_var(trial->effective_cpus);
429
	free_cpumask_var(trial->cpus_allowed);
430 431 432
	kfree(trial);
}

L
Linus Torvalds 已提交
433 434 435 436 437 438 439
/*
 * validate_change() - Used to validate that any proposed cpuset change
 *		       follows the structural rules for cpusets.
 *
 * If we replaced the flag and mask values of the current cpuset
 * (cur) with those values in the trial cpuset (trial), would
 * our various subset and exclusive rules still be valid?  Presumes
440
 * cpuset_mutex held.
L
Linus Torvalds 已提交
441 442 443 444 445 446 447 448 449 450 451 452
 *
 * 'cur' is the address of an actual, in-use cpuset.  Operations
 * such as list traversal that depend on the actual address of the
 * cpuset in the list must use cur below, not trial.
 *
 * 'trial' is the address of bulk structure copy of cur, with
 * perhaps one or more of the fields cpus_allowed, mems_allowed,
 * or flags changed to new, trial values.
 *
 * Return 0 if valid, -errno if not.
 */

453
static int validate_change(struct cpuset *cur, struct cpuset *trial)
L
Linus Torvalds 已提交
454
{
455
	struct cgroup_subsys_state *css;
L
Linus Torvalds 已提交
456
	struct cpuset *c, *par;
457 458 459
	int ret;

	rcu_read_lock();
L
Linus Torvalds 已提交
460 461

	/* Each of our child cpusets must be a subset of us */
462
	ret = -EBUSY;
463
	cpuset_for_each_child(c, css, cur)
464 465
		if (!is_cpuset_subset(c, trial))
			goto out;
L
Linus Torvalds 已提交
466 467

	/* Remaining checks don't apply to root cpuset */
468
	ret = 0;
469
	if (cur == &top_cpuset)
470
		goto out;
L
Linus Torvalds 已提交
471

T
Tejun Heo 已提交
472
	par = parent_cs(cur);
473

474
	/* On legacy hiearchy, we must be a subset of our parent cpuset. */
475
	ret = -EACCES;
476
	if (!cgroup_on_dfl(cur->css.cgroup) && !is_cpuset_subset(trial, par))
477
		goto out;
L
Linus Torvalds 已提交
478

479 480 481 482
	/*
	 * If either I or some sibling (!= me) is exclusive, we can't
	 * overlap
	 */
483
	ret = -EINVAL;
484
	cpuset_for_each_child(c, css, par) {
L
Linus Torvalds 已提交
485 486
		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
		    c != cur &&
487
		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
488
			goto out;
L
Linus Torvalds 已提交
489 490 491
		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
		    c != cur &&
		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
492
			goto out;
L
Linus Torvalds 已提交
493 494
	}

495 496
	/*
	 * Cpusets with tasks - existing or newly being attached - can't
497
	 * be changed to have empty cpus_allowed or mems_allowed.
498
	 */
499
	ret = -ENOSPC;
500
	if ((cgroup_has_tasks(cur->css.cgroup) || cur->attach_in_progress)) {
501 502 503 504 505 506 507
		if (!cpumask_empty(cur->cpus_allowed) &&
		    cpumask_empty(trial->cpus_allowed))
			goto out;
		if (!nodes_empty(cur->mems_allowed) &&
		    nodes_empty(trial->mems_allowed))
			goto out;
	}
508

509 510 511 512
	ret = 0;
out:
	rcu_read_unlock();
	return ret;
L
Linus Torvalds 已提交
513 514
}

515
#ifdef CONFIG_SMP
P
Paul Jackson 已提交
516
/*
517
 * Helper routine for generate_sched_domains().
518
 * Do cpusets a, b have overlapping effective cpus_allowed masks?
P
Paul Jackson 已提交
519 520 521
 */
static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
{
522
	return cpumask_intersects(a->effective_cpus, b->effective_cpus);
P
Paul Jackson 已提交
523 524
}

525 526 527 528 529 530 531 532
static void
update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
{
	if (dattr->relax_domain_level < c->relax_domain_level)
		dattr->relax_domain_level = c->relax_domain_level;
	return;
}

533 534
static void update_domain_attr_tree(struct sched_domain_attr *dattr,
				    struct cpuset *root_cs)
535
{
536
	struct cpuset *cp;
537
	struct cgroup_subsys_state *pos_css;
538

539
	rcu_read_lock();
540
	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
541 542 543
		if (cp == root_cs)
			continue;

544 545
		/* skip the whole subtree if @cp doesn't have any CPU */
		if (cpumask_empty(cp->cpus_allowed)) {
546
			pos_css = css_rightmost_descendant(pos_css);
547
			continue;
548
		}
549 550 551 552

		if (is_sched_load_balance(cp))
			update_domain_attr(dattr, cp);
	}
553
	rcu_read_unlock();
554 555
}

P
Paul Jackson 已提交
556
/*
557 558 559 560 561
 * generate_sched_domains()
 *
 * This function builds a partial partition of the systems CPUs
 * A 'partial partition' is a set of non-overlapping subsets whose
 * union is a subset of that set.
562
 * The output of this function needs to be passed to kernel/sched/core.c
563 564 565
 * partition_sched_domains() routine, which will rebuild the scheduler's
 * load balancing domains (sched domains) as specified by that partial
 * partition.
P
Paul Jackson 已提交
566
 *
L
Li Zefan 已提交
567
 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
P
Paul Jackson 已提交
568 569 570 571 572 573 574
 * for a background explanation of this.
 *
 * Does not return errors, on the theory that the callers of this
 * routine would rather not worry about failures to rebuild sched
 * domains when operating in the severe memory shortage situations
 * that could cause allocation failures below.
 *
575
 * Must be called with cpuset_mutex held.
P
Paul Jackson 已提交
576 577
 *
 * The three key local variables below are:
578
 *    q  - a linked-list queue of cpuset pointers, used to implement a
P
Paul Jackson 已提交
579 580 581 582 583 584 585 586 587 588 589 590
 *	   top-down scan of all cpusets.  This scan loads a pointer
 *	   to each cpuset marked is_sched_load_balance into the
 *	   array 'csa'.  For our purposes, rebuilding the schedulers
 *	   sched domains, we can ignore !is_sched_load_balance cpusets.
 *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
 *	   that need to be load balanced, for convenient iterative
 *	   access by the subsequent code that finds the best partition,
 *	   i.e the set of domains (subsets) of CPUs such that the
 *	   cpus_allowed of every cpuset marked is_sched_load_balance
 *	   is a subset of one of these domains, while there are as
 *	   many such domains as possible, each as small as possible.
 * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
591
 *	   the kernel/sched/core.c routine partition_sched_domains() in a
P
Paul Jackson 已提交
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
 *	   convenient format, that can be easily compared to the prior
 *	   value to determine what partition elements (sched domains)
 *	   were changed (added or removed.)
 *
 * Finding the best partition (set of domains):
 *	The triple nested loops below over i, j, k scan over the
 *	load balanced cpusets (using the array of cpuset pointers in
 *	csa[]) looking for pairs of cpusets that have overlapping
 *	cpus_allowed, but which don't have the same 'pn' partition
 *	number and gives them in the same partition number.  It keeps
 *	looping on the 'restart' label until it can no longer find
 *	any such pairs.
 *
 *	The union of the cpus_allowed masks from the set of
 *	all cpusets having the same 'pn' value then form the one
 *	element of the partition (one sched domain) to be passed to
 *	partition_sched_domains().
 */
610
static int generate_sched_domains(cpumask_var_t **domains,
611
			struct sched_domain_attr **attributes)
P
Paul Jackson 已提交
612 613 614 615 616
{
	struct cpuset *cp;	/* scans q */
	struct cpuset **csa;	/* array of all cpuset ptrs */
	int csn;		/* how many cpuset ptrs in csa so far */
	int i, j, k;		/* indices for partition finding loops */
617
	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
618
	struct sched_domain_attr *dattr;  /* attributes for custom domains */
619
	int ndoms = 0;		/* number of sched domains in result */
620
	int nslot;		/* next empty doms[] struct cpumask slot */
621
	struct cgroup_subsys_state *pos_css;
P
Paul Jackson 已提交
622 623

	doms = NULL;
624
	dattr = NULL;
625
	csa = NULL;
P
Paul Jackson 已提交
626 627 628

	/* Special case for the 99% of systems with one, full, sched domain */
	if (is_sched_load_balance(&top_cpuset)) {
629 630
		ndoms = 1;
		doms = alloc_sched_domains(ndoms);
P
Paul Jackson 已提交
631
		if (!doms)
632 633
			goto done;

634 635 636
		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
		if (dattr) {
			*dattr = SD_ATTR_INIT;
637
			update_domain_attr_tree(dattr, &top_cpuset);
638
		}
639
		cpumask_copy(doms[0], top_cpuset.effective_cpus);
640 641

		goto done;
P
Paul Jackson 已提交
642 643
	}

644
	csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);
P
Paul Jackson 已提交
645 646 647 648
	if (!csa)
		goto done;
	csn = 0;

649
	rcu_read_lock();
650
	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
651 652
		if (cp == &top_cpuset)
			continue;
653
		/*
654 655 656 657 658 659
		 * Continue traversing beyond @cp iff @cp has some CPUs and
		 * isn't load balancing.  The former is obvious.  The
		 * latter: All child cpusets contain a subset of the
		 * parent's cpus, so just skip them, and then we call
		 * update_domain_attr_tree() to calc relax_domain_level of
		 * the corresponding sched domain.
660
		 */
661 662
		if (!cpumask_empty(cp->cpus_allowed) &&
		    !is_sched_load_balance(cp))
663
			continue;
664

665 666 667 668
		if (is_sched_load_balance(cp))
			csa[csn++] = cp;

		/* skip @cp's subtree */
669
		pos_css = css_rightmost_descendant(pos_css);
670 671
	}
	rcu_read_unlock();
P
Paul Jackson 已提交
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699

	for (i = 0; i < csn; i++)
		csa[i]->pn = i;
	ndoms = csn;

restart:
	/* Find the best partition (set of sched domains) */
	for (i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
		int apn = a->pn;

		for (j = 0; j < csn; j++) {
			struct cpuset *b = csa[j];
			int bpn = b->pn;

			if (apn != bpn && cpusets_overlap(a, b)) {
				for (k = 0; k < csn; k++) {
					struct cpuset *c = csa[k];

					if (c->pn == bpn)
						c->pn = apn;
				}
				ndoms--;	/* one less element */
				goto restart;
			}
		}
	}

700 701 702 703
	/*
	 * Now we know how many domains to create.
	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
	 */
704
	doms = alloc_sched_domains(ndoms);
705
	if (!doms)
706 707 708 709 710 711
		goto done;

	/*
	 * The rest of the code, including the scheduler, can deal with
	 * dattr==NULL case. No need to abort if alloc fails.
	 */
712
	dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
P
Paul Jackson 已提交
713 714 715

	for (nslot = 0, i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
716
		struct cpumask *dp;
P
Paul Jackson 已提交
717 718
		int apn = a->pn;

719 720 721 722 723
		if (apn < 0) {
			/* Skip completed partitions */
			continue;
		}

724
		dp = doms[nslot];
725 726 727 728

		if (nslot == ndoms) {
			static int warnings = 10;
			if (warnings) {
729 730
				pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
					nslot, ndoms, csn, i, apn);
731
				warnings--;
P
Paul Jackson 已提交
732
			}
733 734
			continue;
		}
P
Paul Jackson 已提交
735

736
		cpumask_clear(dp);
737 738 739 740 741 742
		if (dattr)
			*(dattr + nslot) = SD_ATTR_INIT;
		for (j = i; j < csn; j++) {
			struct cpuset *b = csa[j];

			if (apn == b->pn) {
743
				cpumask_or(dp, dp, b->effective_cpus);
744 745 746 747 748
				if (dattr)
					update_domain_attr_tree(dattr + nslot, b);

				/* Done with this partition */
				b->pn = -1;
P
Paul Jackson 已提交
749 750
			}
		}
751
		nslot++;
P
Paul Jackson 已提交
752 753 754
	}
	BUG_ON(nslot != ndoms);

755 756 757
done:
	kfree(csa);

758 759 760 761 762 763 764
	/*
	 * Fallback to the default domain if kmalloc() failed.
	 * See comments in partition_sched_domains().
	 */
	if (doms == NULL)
		ndoms = 1;

765 766 767 768 769 770 771 772
	*domains    = doms;
	*attributes = dattr;
	return ndoms;
}

/*
 * Rebuild scheduler domains.
 *
773 774 775 776 777
 * If the flag 'sched_load_balance' of any cpuset with non-empty
 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
 * which has that flag enabled, or if any cpuset with a non-empty
 * 'cpus' is removed, then call this routine to rebuild the
 * scheduler's dynamic sched domains.
778
 *
779
 * Call with cpuset_mutex held.  Takes get_online_cpus().
780
 */
781
static void rebuild_sched_domains_locked(void)
782 783
{
	struct sched_domain_attr *attr;
784
	cpumask_var_t *doms;
785 786
	int ndoms;

787
	lockdep_assert_held(&cpuset_mutex);
788
	get_online_cpus();
789

790 791 792 793 794
	/*
	 * We have raced with CPU hotplug. Don't do anything to avoid
	 * passing doms with offlined cpu to partition_sched_domains().
	 * Anyways, hotplug work item will rebuild sched domains.
	 */
795
	if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
796 797
		goto out;

798 799 800 801 802
	/* Generate domain masks and attrs */
	ndoms = generate_sched_domains(&doms, &attr);

	/* Have scheduler rebuild the domains */
	partition_sched_domains(ndoms, doms, attr);
803
out:
804
	put_online_cpus();
805
}
806
#else /* !CONFIG_SMP */
807
static void rebuild_sched_domains_locked(void)
808 809 810
{
}
#endif /* CONFIG_SMP */
P
Paul Jackson 已提交
811

812 813
void rebuild_sched_domains(void)
{
814
	mutex_lock(&cpuset_mutex);
815
	rebuild_sched_domains_locked();
816
	mutex_unlock(&cpuset_mutex);
P
Paul Jackson 已提交
817 818
}

819 820 821 822
/**
 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
 *
823 824 825
 * Iterate through each task of @cs updating its cpus_allowed to the
 * effective cpuset's.  As this function is called with cpuset_mutex held,
 * cpuset membership stays stable.
826
 */
827
static void update_tasks_cpumask(struct cpuset *cs)
828
{
829 830 831 832 833
	struct css_task_iter it;
	struct task_struct *task;

	css_task_iter_start(&cs->css, &it);
	while ((task = css_task_iter_next(&it)))
834
		set_cpus_allowed_ptr(task, cs->effective_cpus);
835
	css_task_iter_end(&it);
836 837
}

838
/*
839 840 841 842 843 844
 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
 * @cs: the cpuset to consider
 * @new_cpus: temp variable for calculating new effective_cpus
 *
 * When congifured cpumask is changed, the effective cpumasks of this cpuset
 * and all its descendants need to be updated.
845
 *
846
 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
847 848 849
 *
 * Called with cpuset_mutex held
 */
850
static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus)
851 852
{
	struct cpuset *cp;
853
	struct cgroup_subsys_state *pos_css;
854
	bool need_rebuild_sched_domains = false;
855 856

	rcu_read_lock();
857 858 859 860 861
	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
		struct cpuset *parent = parent_cs(cp);

		cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus);

862 863 864 865 866 867 868
		/*
		 * If it becomes empty, inherit the effective mask of the
		 * parent, which is guaranteed to have some CPUs.
		 */
		if (cpumask_empty(new_cpus))
			cpumask_copy(new_cpus, parent->effective_cpus);

869 870 871 872
		/* Skip the whole subtree if the cpumask remains the same. */
		if (cpumask_equal(new_cpus, cp->effective_cpus)) {
			pos_css = css_rightmost_descendant(pos_css);
			continue;
873
		}
874

875
		if (!css_tryget_online(&cp->css))
876 877 878
			continue;
		rcu_read_unlock();

879 880 881 882 883 884 885
		mutex_lock(&callback_mutex);
		cpumask_copy(cp->effective_cpus, new_cpus);
		mutex_unlock(&callback_mutex);

		WARN_ON(!cgroup_on_dfl(cp->css.cgroup) &&
			!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));

886
		update_tasks_cpumask(cp);
887

888 889 890 891 892 893 894 895
		/*
		 * If the effective cpumask of any non-empty cpuset is changed,
		 * we need to rebuild sched domains.
		 */
		if (!cpumask_empty(cp->cpus_allowed) &&
		    is_sched_load_balance(cp))
			need_rebuild_sched_domains = true;

896 897 898 899
		rcu_read_lock();
		css_put(&cp->css);
	}
	rcu_read_unlock();
900 901 902

	if (need_rebuild_sched_domains)
		rebuild_sched_domains_locked();
903 904
}

C
Cliff Wickman 已提交
905 906 907
/**
 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
 * @cs: the cpuset to consider
908
 * @trialcs: trial cpuset
C
Cliff Wickman 已提交
909 910
 * @buf: buffer of cpu numbers written to this cpuset
 */
911 912
static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
			  const char *buf)
L
Linus Torvalds 已提交
913
{
C
Cliff Wickman 已提交
914
	int retval;
L
Linus Torvalds 已提交
915

916
	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
917 918 919
	if (cs == &top_cpuset)
		return -EACCES;

920
	/*
921
	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
922 923 924
	 * Since cpulist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have cpus.
925
	 */
926
	if (!*buf) {
927
		cpumask_clear(trialcs->cpus_allowed);
928
	} else {
929
		retval = cpulist_parse(buf, trialcs->cpus_allowed);
930 931
		if (retval < 0)
			return retval;
932

933 934
		if (!cpumask_subset(trialcs->cpus_allowed,
				    top_cpuset.cpus_allowed))
935
			return -EINVAL;
936
	}
P
Paul Jackson 已提交
937

P
Paul Menage 已提交
938
	/* Nothing to do if the cpus didn't change */
939
	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
P
Paul Menage 已提交
940
		return 0;
C
Cliff Wickman 已提交
941

942 943 944 945
	retval = validate_change(cs, trialcs);
	if (retval < 0)
		return retval;

946
	mutex_lock(&callback_mutex);
947
	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
948
	mutex_unlock(&callback_mutex);
P
Paul Jackson 已提交
949

950 951
	/* use trialcs->cpus_allowed as a temp variable */
	update_cpumasks_hier(cs, trialcs->cpus_allowed);
952
	return 0;
L
Linus Torvalds 已提交
953 954
}

955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
/*
 * cpuset_migrate_mm
 *
 *    Migrate memory region from one set of nodes to another.
 *
 *    Temporarilly set tasks mems_allowed to target nodes of migration,
 *    so that the migration code can allocate pages on these nodes.
 *
 *    While the mm_struct we are migrating is typically from some
 *    other task, the task_struct mems_allowed that we are hacking
 *    is for our current task, which must allocate new pages for that
 *    migrating memory region.
 */

static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
							const nodemask_t *to)
{
	struct task_struct *tsk = current;

	tsk->mems_allowed = *to;

	do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);

978
	rcu_read_lock();
979
	guarantee_online_mems(task_cs(tsk), &tsk->mems_allowed);
980
	rcu_read_unlock();
981 982
}

983
/*
984 985 986 987 988 989 990 991 992 993 994
 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
 * @tsk: the task to change
 * @newmems: new nodes that the task will be set
 *
 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
 * we structure updates as setting all new allowed nodes, then clearing newly
 * disallowed ones.
 */
static void cpuset_change_task_nodemask(struct task_struct *tsk,
					nodemask_t *newmems)
{
995
	bool need_loop;
996

997 998 999 1000 1001 1002 1003 1004 1005 1006
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return;
	if (current->flags & PF_EXITING) /* Let dying task have memory */
		return;

	task_lock(tsk);
1007 1008
	/*
	 * Determine if a loop is necessary if another thread is doing
1009
	 * read_mems_allowed_begin().  If at least one node remains unchanged and
1010 1011 1012 1013 1014
	 * tsk does not have a mempolicy, then an empty nodemask will not be
	 * possible when mems_allowed is larger than a word.
	 */
	need_loop = task_has_mempolicy(tsk) ||
			!nodes_intersects(*newmems, tsk->mems_allowed);
1015

1016 1017
	if (need_loop) {
		local_irq_disable();
1018
		write_seqcount_begin(&tsk->mems_allowed_seq);
1019
	}
1020

1021 1022
	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
	mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
1023 1024

	mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
1025
	tsk->mems_allowed = *newmems;
1026

1027
	if (need_loop) {
1028
		write_seqcount_end(&tsk->mems_allowed_seq);
1029 1030
		local_irq_enable();
	}
1031

1032
	task_unlock(tsk);
1033 1034
}

1035 1036
static void *cpuset_being_rebound;

1037 1038 1039 1040
/**
 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
 *
1041 1042 1043
 * Iterate through each task of @cs updating its mems_allowed to the
 * effective cpuset's.  As this function is called with cpuset_mutex held,
 * cpuset membership stays stable.
1044
 */
1045
static void update_tasks_nodemask(struct cpuset *cs)
L
Linus Torvalds 已提交
1046
{
1047
	static nodemask_t newmems;	/* protected by cpuset_mutex */
1048 1049
	struct css_task_iter it;
	struct task_struct *task;
1050

1051
	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
1052

1053
	guarantee_online_mems(cs, &newmems);
1054

1055
	/*
1056 1057 1058 1059
	 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
	 * take while holding tasklist_lock.  Forks can happen - the
	 * mpol_dup() cpuset_being_rebound check will catch such forks,
	 * and rebind their vma mempolicies too.  Because we still hold
1060
	 * the global cpuset_mutex, we know that no other rebind effort
1061
	 * will be contending for the global variable cpuset_being_rebound.
1062
	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1063
	 * is idempotent.  Also migrate pages in each mm to new nodes.
1064
	 */
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
	css_task_iter_start(&cs->css, &it);
	while ((task = css_task_iter_next(&it))) {
		struct mm_struct *mm;
		bool migrate;

		cpuset_change_task_nodemask(task, &newmems);

		mm = get_task_mm(task);
		if (!mm)
			continue;

		migrate = is_memory_migrate(cs);

		mpol_rebind_mm(mm, &cs->mems_allowed);
		if (migrate)
			cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
		mmput(mm);
	}
	css_task_iter_end(&it);
1084

1085 1086 1087 1088 1089 1090
	/*
	 * All the tasks' nodemasks have been updated, update
	 * cs->old_mems_allowed.
	 */
	cs->old_mems_allowed = newmems;

1091
	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
1092
	cpuset_being_rebound = NULL;
L
Linus Torvalds 已提交
1093 1094
}

1095
/*
1096 1097 1098
 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
 * @cs: the cpuset to consider
 * @new_mems: a temp variable for calculating new effective_mems
1099
 *
1100 1101
 * When configured nodemask is changed, the effective nodemasks of this cpuset
 * and all its descendants need to be updated.
1102
 *
1103
 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1104 1105 1106
 *
 * Called with cpuset_mutex held
 */
1107
static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1108 1109
{
	struct cpuset *cp;
1110
	struct cgroup_subsys_state *pos_css;
1111 1112

	rcu_read_lock();
1113 1114 1115 1116 1117
	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
		struct cpuset *parent = parent_cs(cp);

		nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);

1118 1119 1120 1121 1122 1123 1124
		/*
		 * If it becomes empty, inherit the effective mask of the
		 * parent, which is guaranteed to have some MEMs.
		 */
		if (nodes_empty(*new_mems))
			*new_mems = parent->effective_mems;

1125 1126 1127 1128
		/* Skip the whole subtree if the nodemask remains the same. */
		if (nodes_equal(*new_mems, cp->effective_mems)) {
			pos_css = css_rightmost_descendant(pos_css);
			continue;
1129
		}
1130

1131
		if (!css_tryget_online(&cp->css))
1132 1133 1134
			continue;
		rcu_read_unlock();

1135 1136 1137 1138 1139
		mutex_lock(&callback_mutex);
		cp->effective_mems = *new_mems;
		mutex_unlock(&callback_mutex);

		WARN_ON(!cgroup_on_dfl(cp->css.cgroup) &&
1140
			!nodes_equal(cp->mems_allowed, cp->effective_mems));
1141

1142
		update_tasks_nodemask(cp);
1143 1144 1145 1146 1147 1148 1149

		rcu_read_lock();
		css_put(&cp->css);
	}
	rcu_read_unlock();
}

1150 1151 1152
/*
 * Handle user request to change the 'mems' memory placement
 * of a cpuset.  Needs to validate the request, update the
1153 1154 1155 1156
 * cpusets mems_allowed, and for each task in the cpuset,
 * update mems_allowed and rebind task's mempolicy and any vma
 * mempolicies and if the cpuset is marked 'memory_migrate',
 * migrate the tasks pages to the new memory.
1157
 *
1158
 * Call with cpuset_mutex held.  May take callback_mutex during call.
1159 1160 1161 1162
 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
 * their mempolicies to the cpusets new mems_allowed.
 */
1163 1164
static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
			   const char *buf)
1165 1166 1167 1168
{
	int retval;

	/*
1169
	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1170 1171
	 * it's read-only
	 */
1172 1173 1174 1175
	if (cs == &top_cpuset) {
		retval = -EACCES;
		goto done;
	}
1176 1177 1178 1179 1180 1181 1182 1183

	/*
	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
	 * Since nodelist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have memory.
	 */
	if (!*buf) {
1184
		nodes_clear(trialcs->mems_allowed);
1185
	} else {
1186
		retval = nodelist_parse(buf, trialcs->mems_allowed);
1187 1188 1189
		if (retval < 0)
			goto done;

1190
		if (!nodes_subset(trialcs->mems_allowed,
1191 1192
				  top_cpuset.mems_allowed)) {
			retval = -EINVAL;
1193 1194
			goto done;
		}
1195
	}
1196 1197

	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1198 1199 1200
		retval = 0;		/* Too easy - nothing to do */
		goto done;
	}
1201
	retval = validate_change(cs, trialcs);
1202 1203 1204 1205
	if (retval < 0)
		goto done;

	mutex_lock(&callback_mutex);
1206
	cs->mems_allowed = trialcs->mems_allowed;
1207 1208
	mutex_unlock(&callback_mutex);

1209 1210
	/* use trialcs->mems_allowed as a temp variable */
	update_nodemasks_hier(cs, &cs->mems_allowed);
1211 1212 1213 1214
done:
	return retval;
}

1215 1216
int current_cpuset_is_being_rebound(void)
{
1217 1218 1219 1220 1221 1222 1223
	int ret;

	rcu_read_lock();
	ret = task_cs(current) == cpuset_being_rebound;
	rcu_read_unlock();

	return ret;
1224 1225
}

1226
static int update_relax_domain_level(struct cpuset *cs, s64 val)
1227
{
1228
#ifdef CONFIG_SMP
1229
	if (val < -1 || val >= sched_domain_level_max)
1230
		return -EINVAL;
1231
#endif
1232 1233 1234

	if (val != cs->relax_domain_level) {
		cs->relax_domain_level = val;
1235 1236
		if (!cpumask_empty(cs->cpus_allowed) &&
		    is_sched_load_balance(cs))
1237
			rebuild_sched_domains_locked();
1238 1239 1240 1241 1242
	}

	return 0;
}

1243
/**
1244 1245 1246
 * update_tasks_flags - update the spread flags of tasks in the cpuset.
 * @cs: the cpuset in which each task's spread flags needs to be changed
 *
1247 1248 1249
 * Iterate through each task of @cs updating its spread flags.  As this
 * function is called with cpuset_mutex held, cpuset membership stays
 * stable.
1250
 */
1251
static void update_tasks_flags(struct cpuset *cs)
1252
{
1253 1254 1255 1256 1257 1258 1259
	struct css_task_iter it;
	struct task_struct *task;

	css_task_iter_start(&cs->css, &it);
	while ((task = css_task_iter_next(&it)))
		cpuset_update_task_spread_flag(cs, task);
	css_task_iter_end(&it);
1260 1261
}

L
Linus Torvalds 已提交
1262 1263
/*
 * update_flag - read a 0 or a 1 in a file and update associated flag
1264 1265 1266
 * bit:		the bit to update (see cpuset_flagbits_t)
 * cs:		the cpuset to update
 * turning_on: 	whether the flag is being set or cleared
1267
 *
1268
 * Call with cpuset_mutex held.
L
Linus Torvalds 已提交
1269 1270
 */

1271 1272
static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
		       int turning_on)
L
Linus Torvalds 已提交
1273
{
1274
	struct cpuset *trialcs;
R
Rakib Mullick 已提交
1275
	int balance_flag_changed;
1276 1277
	int spread_flag_changed;
	int err;
L
Linus Torvalds 已提交
1278

1279 1280 1281 1282
	trialcs = alloc_trial_cpuset(cs);
	if (!trialcs)
		return -ENOMEM;

L
Linus Torvalds 已提交
1283
	if (turning_on)
1284
		set_bit(bit, &trialcs->flags);
L
Linus Torvalds 已提交
1285
	else
1286
		clear_bit(bit, &trialcs->flags);
L
Linus Torvalds 已提交
1287

1288
	err = validate_change(cs, trialcs);
1289
	if (err < 0)
1290
		goto out;
P
Paul Jackson 已提交
1291 1292

	balance_flag_changed = (is_sched_load_balance(cs) !=
1293
				is_sched_load_balance(trialcs));
P
Paul Jackson 已提交
1294

1295 1296 1297
	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
			|| (is_spread_page(cs) != is_spread_page(trialcs)));

1298
	mutex_lock(&callback_mutex);
1299
	cs->flags = trialcs->flags;
1300
	mutex_unlock(&callback_mutex);
1301

1302
	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1303
		rebuild_sched_domains_locked();
P
Paul Jackson 已提交
1304

1305
	if (spread_flag_changed)
1306
		update_tasks_flags(cs);
1307 1308 1309
out:
	free_trial_cpuset(trialcs);
	return err;
L
Linus Torvalds 已提交
1310 1311
}

1312
/*
A
Adrian Bunk 已提交
1313
 * Frequency meter - How fast is some event occurring?
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
 *
 * These routines manage a digitally filtered, constant time based,
 * event frequency meter.  There are four routines:
 *   fmeter_init() - initialize a frequency meter.
 *   fmeter_markevent() - called each time the event happens.
 *   fmeter_getrate() - returns the recent rate of such events.
 *   fmeter_update() - internal routine used to update fmeter.
 *
 * A common data structure is passed to each of these routines,
 * which is used to keep track of the state required to manage the
 * frequency meter and its digital filter.
 *
 * The filter works on the number of events marked per unit time.
 * The filter is single-pole low-pass recursive (IIR).  The time unit
 * is 1 second.  Arithmetic is done using 32-bit integers scaled to
 * simulate 3 decimal digits of precision (multiplied by 1000).
 *
 * With an FM_COEF of 933, and a time base of 1 second, the filter
 * has a half-life of 10 seconds, meaning that if the events quit
 * happening, then the rate returned from the fmeter_getrate()
 * will be cut in half each 10 seconds, until it converges to zero.
 *
 * It is not worth doing a real infinitely recursive filter.  If more
 * than FM_MAXTICKS ticks have elapsed since the last filter event,
 * just compute FM_MAXTICKS ticks worth, by which point the level
 * will be stable.
 *
 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
 * arithmetic overflow in the fmeter_update() routine.
 *
 * Given the simple 32 bit integer arithmetic used, this meter works
 * best for reporting rates between one per millisecond (msec) and
 * one per 32 (approx) seconds.  At constant rates faster than one
 * per msec it maxes out at values just under 1,000,000.  At constant
 * rates between one per msec, and one per second it will stabilize
 * to a value N*1000, where N is the rate of events per second.
 * At constant rates between one per second and one per 32 seconds,
 * it will be choppy, moving up on the seconds that have an event,
 * and then decaying until the next event.  At rates slower than
 * about one in 32 seconds, it decays all the way back to zero between
 * each event.
 */

#define FM_COEF 933		/* coefficient for half-life of 10 secs */
#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
#define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
#define FM_SCALE 1000		/* faux fixed point scale */

/* Initialize a frequency meter */
static void fmeter_init(struct fmeter *fmp)
{
	fmp->cnt = 0;
	fmp->val = 0;
	fmp->time = 0;
	spin_lock_init(&fmp->lock);
}

/* Internal meter update - process cnt events and update value */
static void fmeter_update(struct fmeter *fmp)
{
	time_t now = get_seconds();
	time_t ticks = now - fmp->time;

	if (ticks == 0)
		return;

	ticks = min(FM_MAXTICKS, ticks);
	while (ticks-- > 0)
		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
	fmp->time = now;

	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
	fmp->cnt = 0;
}

/* Process any previous ticks, then bump cnt by one (times scale). */
static void fmeter_markevent(struct fmeter *fmp)
{
	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
	spin_unlock(&fmp->lock);
}

/* Process any previous ticks, then return current value. */
static int fmeter_getrate(struct fmeter *fmp)
{
	int val;

	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	val = fmp->val;
	spin_unlock(&fmp->lock);
	return val;
}

1410 1411
static struct cpuset *cpuset_attach_old_cs;

1412
/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1413 1414
static int cpuset_can_attach(struct cgroup_subsys_state *css,
			     struct cgroup_taskset *tset)
1415
{
1416
	struct cpuset *cs = css_cs(css);
1417 1418
	struct task_struct *task;
	int ret;
L
Linus Torvalds 已提交
1419

1420 1421 1422
	/* used later by cpuset_attach() */
	cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset));

1423 1424
	mutex_lock(&cpuset_mutex);

1425
	/* allow moving tasks into an empty cpuset if on default hierarchy */
1426
	ret = -ENOSPC;
1427
	if (!cgroup_on_dfl(css->cgroup) &&
1428
	    (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
1429
		goto out_unlock;
1430

1431
	cgroup_taskset_for_each(task, tset) {
1432 1433
		ret = task_can_attach(task, cs->cpus_allowed);
		if (ret)
1434 1435 1436 1437
			goto out_unlock;
		ret = security_task_setscheduler(task);
		if (ret)
			goto out_unlock;
1438
	}
1439

1440 1441 1442 1443 1444
	/*
	 * Mark attach is in progress.  This makes validate_change() fail
	 * changes which zero cpus/mems_allowed.
	 */
	cs->attach_in_progress++;
1445 1446 1447 1448
	ret = 0;
out_unlock:
	mutex_unlock(&cpuset_mutex);
	return ret;
1449
}
1450

1451
static void cpuset_cancel_attach(struct cgroup_subsys_state *css,
1452 1453
				 struct cgroup_taskset *tset)
{
1454
	mutex_lock(&cpuset_mutex);
1455
	css_cs(css)->attach_in_progress--;
1456
	mutex_unlock(&cpuset_mutex);
1457
}
L
Linus Torvalds 已提交
1458

1459
/*
1460
 * Protected by cpuset_mutex.  cpus_attach is used only by cpuset_attach()
1461 1462 1463 1464 1465
 * but we can't allocate it dynamically there.  Define it global and
 * allocate from cpuset_init().
 */
static cpumask_var_t cpus_attach;

1466 1467
static void cpuset_attach(struct cgroup_subsys_state *css,
			  struct cgroup_taskset *tset)
1468
{
1469
	/* static buf protected by cpuset_mutex */
1470
	static nodemask_t cpuset_attach_nodemask_to;
1471
	struct mm_struct *mm;
1472 1473
	struct task_struct *task;
	struct task_struct *leader = cgroup_taskset_first(tset);
1474
	struct cpuset *cs = css_cs(css);
1475
	struct cpuset *oldcs = cpuset_attach_old_cs;
1476

1477 1478
	mutex_lock(&cpuset_mutex);

1479 1480 1481 1482
	/* prepare for attach */
	if (cs == &top_cpuset)
		cpumask_copy(cpus_attach, cpu_possible_mask);
	else
1483
		guarantee_online_cpus(cs, cpus_attach);
1484

1485
	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
1486

1487
	cgroup_taskset_for_each(task, tset) {
1488 1489 1490 1491 1492 1493 1494 1495 1496
		/*
		 * can_attach beforehand should guarantee that this doesn't
		 * fail.  TODO: have a better way to handle failure here
		 */
		WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));

		cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
		cpuset_update_task_spread_flag(cs, task);
	}
1497

1498 1499 1500 1501
	/*
	 * Change mm, possibly for multiple threads in a threadgroup. This is
	 * expensive and may sleep.
	 */
1502
	cpuset_attach_nodemask_to = cs->effective_mems;
1503
	mm = get_task_mm(leader);
1504
	if (mm) {
1505
		mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1506 1507 1508 1509 1510 1511 1512 1513 1514

		/*
		 * old_mems_allowed is the same with mems_allowed here, except
		 * if this task is being moved automatically due to hotplug.
		 * In that case @mems_allowed has been updated and is empty,
		 * so @old_mems_allowed is the right nodesets that we migrate
		 * mm from.
		 */
		if (is_memory_migrate(cs)) {
1515
			cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
1516
					  &cpuset_attach_nodemask_to);
1517
		}
1518 1519
		mmput(mm);
	}
1520

1521
	cs->old_mems_allowed = cpuset_attach_nodemask_to;
1522

1523
	cs->attach_in_progress--;
1524 1525
	if (!cs->attach_in_progress)
		wake_up(&cpuset_attach_wq);
1526 1527

	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
1528 1529 1530 1531 1532
}

/* The various types of files and directories in a cpuset file system */

typedef enum {
1533
	FILE_MEMORY_MIGRATE,
L
Linus Torvalds 已提交
1534 1535
	FILE_CPULIST,
	FILE_MEMLIST,
1536 1537
	FILE_EFFECTIVE_CPULIST,
	FILE_EFFECTIVE_MEMLIST,
L
Linus Torvalds 已提交
1538 1539
	FILE_CPU_EXCLUSIVE,
	FILE_MEM_EXCLUSIVE,
1540
	FILE_MEM_HARDWALL,
P
Paul Jackson 已提交
1541
	FILE_SCHED_LOAD_BALANCE,
1542
	FILE_SCHED_RELAX_DOMAIN_LEVEL,
1543 1544
	FILE_MEMORY_PRESSURE_ENABLED,
	FILE_MEMORY_PRESSURE,
1545 1546
	FILE_SPREAD_PAGE,
	FILE_SPREAD_SLAB,
L
Linus Torvalds 已提交
1547 1548
} cpuset_filetype_t;

1549 1550
static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
			    u64 val)
1551
{
1552
	struct cpuset *cs = css_cs(css);
1553
	cpuset_filetype_t type = cft->private;
1554
	int retval = 0;
1555

1556
	mutex_lock(&cpuset_mutex);
1557 1558
	if (!is_cpuset_online(cs)) {
		retval = -ENODEV;
1559
		goto out_unlock;
1560
	}
1561 1562

	switch (type) {
L
Linus Torvalds 已提交
1563
	case FILE_CPU_EXCLUSIVE:
1564
		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
L
Linus Torvalds 已提交
1565 1566
		break;
	case FILE_MEM_EXCLUSIVE:
1567
		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
L
Linus Torvalds 已提交
1568
		break;
1569 1570 1571
	case FILE_MEM_HARDWALL:
		retval = update_flag(CS_MEM_HARDWALL, cs, val);
		break;
P
Paul Jackson 已提交
1572
	case FILE_SCHED_LOAD_BALANCE:
1573
		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1574
		break;
1575
	case FILE_MEMORY_MIGRATE:
1576
		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1577
		break;
1578
	case FILE_MEMORY_PRESSURE_ENABLED:
1579
		cpuset_memory_pressure_enabled = !!val;
1580 1581 1582 1583
		break;
	case FILE_MEMORY_PRESSURE:
		retval = -EACCES;
		break;
1584
	case FILE_SPREAD_PAGE:
1585
		retval = update_flag(CS_SPREAD_PAGE, cs, val);
1586 1587
		break;
	case FILE_SPREAD_SLAB:
1588
		retval = update_flag(CS_SPREAD_SLAB, cs, val);
1589
		break;
L
Linus Torvalds 已提交
1590 1591
	default:
		retval = -EINVAL;
1592
		break;
L
Linus Torvalds 已提交
1593
	}
1594 1595
out_unlock:
	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
1596 1597 1598
	return retval;
}

1599 1600
static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
			    s64 val)
1601
{
1602
	struct cpuset *cs = css_cs(css);
1603
	cpuset_filetype_t type = cft->private;
1604
	int retval = -ENODEV;
1605

1606 1607 1608
	mutex_lock(&cpuset_mutex);
	if (!is_cpuset_online(cs))
		goto out_unlock;
1609

1610 1611 1612 1613 1614 1615 1616 1617
	switch (type) {
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		retval = update_relax_domain_level(cs, val);
		break;
	default:
		retval = -EINVAL;
		break;
	}
1618 1619
out_unlock:
	mutex_unlock(&cpuset_mutex);
1620 1621 1622
	return retval;
}

1623 1624 1625
/*
 * Common handling for a write to a "cpus" or "mems" file.
 */
1626 1627
static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
				    char *buf, size_t nbytes, loff_t off)
1628
{
1629
	struct cpuset *cs = css_cs(of_css(of));
1630
	struct cpuset *trialcs;
1631
	int retval = -ENODEV;
1632

1633 1634
	buf = strstrip(buf);

1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
	/*
	 * CPU or memory hotunplug may leave @cs w/o any execution
	 * resources, in which case the hotplug code asynchronously updates
	 * configuration and transfers all tasks to the nearest ancestor
	 * which can execute.
	 *
	 * As writes to "cpus" or "mems" may restore @cs's execution
	 * resources, wait for the previously scheduled operations before
	 * proceeding, so that we don't end up keep removing tasks added
	 * after execution capability is restored.
1645 1646 1647 1648 1649 1650 1651 1652
	 *
	 * cpuset_hotplug_work calls back into cgroup core via
	 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
	 * operation like this one can lead to a deadlock through kernfs
	 * active_ref protection.  Let's break the protection.  Losing the
	 * protection is okay as we check whether @cs is online after
	 * grabbing cpuset_mutex anyway.  This only happens on the legacy
	 * hierarchies.
1653
	 */
1654 1655
	css_get(&cs->css);
	kernfs_break_active_protection(of->kn);
1656 1657
	flush_work(&cpuset_hotplug_work);

1658 1659 1660
	mutex_lock(&cpuset_mutex);
	if (!is_cpuset_online(cs))
		goto out_unlock;
1661

1662
	trialcs = alloc_trial_cpuset(cs);
1663 1664
	if (!trialcs) {
		retval = -ENOMEM;
1665
		goto out_unlock;
1666
	}
1667

1668
	switch (of_cft(of)->private) {
1669
	case FILE_CPULIST:
1670
		retval = update_cpumask(cs, trialcs, buf);
1671 1672
		break;
	case FILE_MEMLIST:
1673
		retval = update_nodemask(cs, trialcs, buf);
1674 1675 1676 1677 1678
		break;
	default:
		retval = -EINVAL;
		break;
	}
1679 1680

	free_trial_cpuset(trialcs);
1681 1682
out_unlock:
	mutex_unlock(&cpuset_mutex);
1683 1684
	kernfs_unbreak_active_protection(of->kn);
	css_put(&cs->css);
1685
	return retval ?: nbytes;
1686 1687
}

L
Linus Torvalds 已提交
1688 1689 1690 1691 1692 1693 1694 1695
/*
 * These ascii lists should be read in a single call, by using a user
 * buffer large enough to hold the entire map.  If read in smaller
 * chunks, there is no guarantee of atomicity.  Since the display format
 * used, list of ranges of sequential numbers, is variable length,
 * and since these maps can change value dynamically, one could read
 * gibberish by doing partial reads while a list was changing.
 */
1696
static int cpuset_common_seq_show(struct seq_file *sf, void *v)
L
Linus Torvalds 已提交
1697
{
1698 1699
	struct cpuset *cs = css_cs(seq_css(sf));
	cpuset_filetype_t type = seq_cft(sf)->private;
1700 1701 1702
	ssize_t count;
	char *buf, *s;
	int ret = 0;
L
Linus Torvalds 已提交
1703

1704 1705
	count = seq_get_buf(sf, &buf);
	s = buf;
L
Linus Torvalds 已提交
1706

1707
	mutex_lock(&callback_mutex);
L
Linus Torvalds 已提交
1708 1709 1710

	switch (type) {
	case FILE_CPULIST:
1711
		s += cpulist_scnprintf(s, count, cs->cpus_allowed);
L
Linus Torvalds 已提交
1712 1713
		break;
	case FILE_MEMLIST:
1714
		s += nodelist_scnprintf(s, count, cs->mems_allowed);
L
Linus Torvalds 已提交
1715
		break;
1716 1717 1718 1719 1720 1721
	case FILE_EFFECTIVE_CPULIST:
		s += cpulist_scnprintf(s, count, cs->effective_cpus);
		break;
	case FILE_EFFECTIVE_MEMLIST:
		s += nodelist_scnprintf(s, count, cs->effective_mems);
		break;
L
Linus Torvalds 已提交
1722
	default:
1723 1724
		ret = -EINVAL;
		goto out_unlock;
L
Linus Torvalds 已提交
1725 1726
	}

1727 1728 1729 1730 1731 1732 1733 1734 1735
	if (s < buf + count - 1) {
		*s++ = '\n';
		seq_commit(sf, s - buf);
	} else {
		seq_commit(sf, -1);
	}
out_unlock:
	mutex_unlock(&callback_mutex);
	return ret;
L
Linus Torvalds 已提交
1736 1737
}

1738
static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
1739
{
1740
	struct cpuset *cs = css_cs(css);
1741 1742 1743 1744 1745 1746
	cpuset_filetype_t type = cft->private;
	switch (type) {
	case FILE_CPU_EXCLUSIVE:
		return is_cpu_exclusive(cs);
	case FILE_MEM_EXCLUSIVE:
		return is_mem_exclusive(cs);
1747 1748
	case FILE_MEM_HARDWALL:
		return is_mem_hardwall(cs);
1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
	case FILE_SCHED_LOAD_BALANCE:
		return is_sched_load_balance(cs);
	case FILE_MEMORY_MIGRATE:
		return is_memory_migrate(cs);
	case FILE_MEMORY_PRESSURE_ENABLED:
		return cpuset_memory_pressure_enabled;
	case FILE_MEMORY_PRESSURE:
		return fmeter_getrate(&cs->fmeter);
	case FILE_SPREAD_PAGE:
		return is_spread_page(cs);
	case FILE_SPREAD_SLAB:
		return is_spread_slab(cs);
	default:
		BUG();
	}
1764 1765 1766

	/* Unreachable but makes gcc happy */
	return 0;
1767
}
L
Linus Torvalds 已提交
1768

1769
static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
1770
{
1771
	struct cpuset *cs = css_cs(css);
1772 1773 1774 1775 1776 1777 1778
	cpuset_filetype_t type = cft->private;
	switch (type) {
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		return cs->relax_domain_level;
	default:
		BUG();
	}
1779 1780 1781

	/* Unrechable but makes gcc happy */
	return 0;
1782 1783
}

L
Linus Torvalds 已提交
1784 1785 1786 1787 1788

/*
 * for the common functions, 'private' gives the type of file
 */

1789 1790 1791
static struct cftype files[] = {
	{
		.name = "cpus",
1792
		.seq_show = cpuset_common_seq_show,
1793
		.write = cpuset_write_resmask,
1794
		.max_write_len = (100U + 6 * NR_CPUS),
1795 1796 1797 1798 1799
		.private = FILE_CPULIST,
	},

	{
		.name = "mems",
1800
		.seq_show = cpuset_common_seq_show,
1801
		.write = cpuset_write_resmask,
1802
		.max_write_len = (100U + 6 * MAX_NUMNODES),
1803 1804 1805
		.private = FILE_MEMLIST,
	},

1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
	{
		.name = "effective_cpus",
		.seq_show = cpuset_common_seq_show,
		.private = FILE_EFFECTIVE_CPULIST,
	},

	{
		.name = "effective_mems",
		.seq_show = cpuset_common_seq_show,
		.private = FILE_EFFECTIVE_MEMLIST,
	},

1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
	{
		.name = "cpu_exclusive",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_CPU_EXCLUSIVE,
	},

	{
		.name = "mem_exclusive",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEM_EXCLUSIVE,
	},

1832 1833 1834 1835 1836 1837 1838
	{
		.name = "mem_hardwall",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEM_HARDWALL,
	},

1839 1840 1841 1842 1843 1844 1845 1846 1847
	{
		.name = "sched_load_balance",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SCHED_LOAD_BALANCE,
	},

	{
		.name = "sched_relax_domain_level",
1848 1849
		.read_s64 = cpuset_read_s64,
		.write_s64 = cpuset_write_s64,
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
	},

	{
		.name = "memory_migrate",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_MIGRATE,
	},

	{
		.name = "memory_pressure",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_PRESSURE,
L
Li Zefan 已提交
1865
		.mode = S_IRUGO,
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
	},

	{
		.name = "memory_spread_page",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SPREAD_PAGE,
	},

	{
		.name = "memory_spread_slab",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SPREAD_SLAB,
	},
1881

1882 1883 1884 1885 1886 1887 1888
	{
		.name = "memory_pressure_enabled",
		.flags = CFTYPE_ONLY_ON_ROOT,
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_PRESSURE_ENABLED,
	},
L
Linus Torvalds 已提交
1889

1890 1891
	{ }	/* terminate */
};
L
Linus Torvalds 已提交
1892 1893

/*
1894
 *	cpuset_css_alloc - allocate a cpuset css
L
Li Zefan 已提交
1895
 *	cgrp:	control group that the new cpuset will be part of
L
Linus Torvalds 已提交
1896 1897
 */

1898 1899
static struct cgroup_subsys_state *
cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
L
Linus Torvalds 已提交
1900
{
T
Tejun Heo 已提交
1901
	struct cpuset *cs;
L
Linus Torvalds 已提交
1902

1903
	if (!parent_css)
1904
		return &top_cpuset.css;
1905

T
Tejun Heo 已提交
1906
	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
L
Linus Torvalds 已提交
1907
	if (!cs)
1908
		return ERR_PTR(-ENOMEM);
1909 1910 1911 1912
	if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL))
		goto free_cs;
	if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL))
		goto free_cpus;
L
Linus Torvalds 已提交
1913

P
Paul Jackson 已提交
1914
	set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1915
	cpumask_clear(cs->cpus_allowed);
1916
	nodes_clear(cs->mems_allowed);
1917 1918
	cpumask_clear(cs->effective_cpus);
	nodes_clear(cs->effective_mems);
1919
	fmeter_init(&cs->fmeter);
1920
	cs->relax_domain_level = -1;
L
Linus Torvalds 已提交
1921

T
Tejun Heo 已提交
1922
	return &cs->css;
1923 1924 1925 1926 1927 1928

free_cpus:
	free_cpumask_var(cs->cpus_allowed);
free_cs:
	kfree(cs);
	return ERR_PTR(-ENOMEM);
T
Tejun Heo 已提交
1929 1930
}

1931
static int cpuset_css_online(struct cgroup_subsys_state *css)
T
Tejun Heo 已提交
1932
{
1933
	struct cpuset *cs = css_cs(css);
T
Tejun Heo 已提交
1934
	struct cpuset *parent = parent_cs(cs);
1935
	struct cpuset *tmp_cs;
1936
	struct cgroup_subsys_state *pos_css;
T
Tejun Heo 已提交
1937 1938 1939 1940

	if (!parent)
		return 0;

1941 1942
	mutex_lock(&cpuset_mutex);

T
Tejun Heo 已提交
1943
	set_bit(CS_ONLINE, &cs->flags);
T
Tejun Heo 已提交
1944 1945 1946 1947
	if (is_spread_page(parent))
		set_bit(CS_SPREAD_PAGE, &cs->flags);
	if (is_spread_slab(parent))
		set_bit(CS_SPREAD_SLAB, &cs->flags);
L
Linus Torvalds 已提交
1948

1949
	cpuset_inc();
1950

1951 1952 1953 1954 1955 1956 1957
	mutex_lock(&callback_mutex);
	if (cgroup_on_dfl(cs->css.cgroup)) {
		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
		cs->effective_mems = parent->effective_mems;
	}
	mutex_unlock(&callback_mutex);

1958
	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
1959
		goto out_unlock;
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973

	/*
	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
	 * set.  This flag handling is implemented in cgroup core for
	 * histrical reasons - the flag may be specified during mount.
	 *
	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
	 * refuse to clone the configuration - thereby refusing the task to
	 * be entered, and as a result refusing the sys_unshare() or
	 * clone() which initiated it.  If this becomes a problem for some
	 * users who wish to allow that scenario, then this could be
	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
	 * (and likewise for mems) to the new cgroup.
	 */
1974
	rcu_read_lock();
1975
	cpuset_for_each_child(tmp_cs, pos_css, parent) {
1976 1977
		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
			rcu_read_unlock();
1978
			goto out_unlock;
1979
		}
1980
	}
1981
	rcu_read_unlock();
1982 1983 1984 1985 1986

	mutex_lock(&callback_mutex);
	cs->mems_allowed = parent->mems_allowed;
	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
	mutex_unlock(&callback_mutex);
1987 1988
out_unlock:
	mutex_unlock(&cpuset_mutex);
T
Tejun Heo 已提交
1989 1990 1991
	return 0;
}

1992 1993 1994 1995 1996 1997
/*
 * If the cpuset being removed has its flag 'sched_load_balance'
 * enabled, then simulate turning sched_load_balance off, which
 * will call rebuild_sched_domains_locked().
 */

1998
static void cpuset_css_offline(struct cgroup_subsys_state *css)
T
Tejun Heo 已提交
1999
{
2000
	struct cpuset *cs = css_cs(css);
T
Tejun Heo 已提交
2001

2002
	mutex_lock(&cpuset_mutex);
T
Tejun Heo 已提交
2003 2004 2005 2006

	if (is_sched_load_balance(cs))
		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);

2007
	cpuset_dec();
T
Tejun Heo 已提交
2008
	clear_bit(CS_ONLINE, &cs->flags);
T
Tejun Heo 已提交
2009

2010
	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
2011 2012
}

2013
static void cpuset_css_free(struct cgroup_subsys_state *css)
L
Linus Torvalds 已提交
2014
{
2015
	struct cpuset *cs = css_cs(css);
L
Linus Torvalds 已提交
2016

2017
	free_cpumask_var(cs->effective_cpus);
2018
	free_cpumask_var(cs->cpus_allowed);
2019
	kfree(cs);
L
Linus Torvalds 已提交
2020 2021
}

2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
static void cpuset_bind(struct cgroup_subsys_state *root_css)
{
	mutex_lock(&cpuset_mutex);
	mutex_lock(&callback_mutex);

	if (cgroup_on_dfl(root_css->cgroup)) {
		cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
		top_cpuset.mems_allowed = node_possible_map;
	} else {
		cpumask_copy(top_cpuset.cpus_allowed,
			     top_cpuset.effective_cpus);
		top_cpuset.mems_allowed = top_cpuset.effective_mems;
	}

	mutex_unlock(&callback_mutex);
	mutex_unlock(&cpuset_mutex);
}

2040
struct cgroup_subsys cpuset_cgrp_subsys = {
2041 2042 2043 2044 2045 2046 2047 2048
	.css_alloc	= cpuset_css_alloc,
	.css_online	= cpuset_css_online,
	.css_offline	= cpuset_css_offline,
	.css_free	= cpuset_css_free,
	.can_attach	= cpuset_can_attach,
	.cancel_attach	= cpuset_cancel_attach,
	.attach		= cpuset_attach,
	.bind		= cpuset_bind,
2049
	.legacy_cftypes	= files,
2050
	.early_init	= 1,
2051 2052
};

L
Linus Torvalds 已提交
2053 2054 2055 2056 2057 2058 2059 2060
/**
 * cpuset_init - initialize cpusets at system boot
 *
 * Description: Initialize top_cpuset and the cpuset internal file system,
 **/

int __init cpuset_init(void)
{
2061
	int err = 0;
L
Linus Torvalds 已提交
2062

2063 2064
	if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
		BUG();
2065 2066
	if (!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL))
		BUG();
2067

2068
	cpumask_setall(top_cpuset.cpus_allowed);
2069
	nodes_setall(top_cpuset.mems_allowed);
2070 2071
	cpumask_setall(top_cpuset.effective_cpus);
	nodes_setall(top_cpuset.effective_mems);
L
Linus Torvalds 已提交
2072

2073
	fmeter_init(&top_cpuset.fmeter);
P
Paul Jackson 已提交
2074
	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2075
	top_cpuset.relax_domain_level = -1;
L
Linus Torvalds 已提交
2076 2077 2078

	err = register_filesystem(&cpuset_fs_type);
	if (err < 0)
2079 2080
		return err;

2081 2082 2083
	if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
		BUG();

2084
	return 0;
L
Linus Torvalds 已提交
2085 2086
}

2087
/*
2088
 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2089 2090
 * or memory nodes, we need to walk over the cpuset hierarchy,
 * removing that CPU or node from all cpusets.  If this removes the
2091 2092
 * last CPU or node from a cpuset, then move the tasks in the empty
 * cpuset to its next-highest non-empty parent.
2093
 */
2094 2095 2096 2097 2098 2099 2100 2101
static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
{
	struct cpuset *parent;

	/*
	 * Find its next-highest non-empty parent, (top cpuset
	 * has online cpus, so can't be empty).
	 */
T
Tejun Heo 已提交
2102
	parent = parent_cs(cs);
2103
	while (cpumask_empty(parent->cpus_allowed) ||
2104
			nodes_empty(parent->mems_allowed))
T
Tejun Heo 已提交
2105
		parent = parent_cs(parent);
2106

2107
	if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2108
		pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
T
Tejun Heo 已提交
2109 2110
		pr_cont_cgroup_name(cs->css.cgroup);
		pr_cont("\n");
2111
	}
2112 2113
}

2114 2115 2116 2117
static void
hotplug_update_tasks_legacy(struct cpuset *cs,
			    struct cpumask *new_cpus, nodemask_t *new_mems,
			    bool cpus_updated, bool mems_updated)
2118 2119 2120 2121
{
	bool is_empty;

	mutex_lock(&callback_mutex);
2122 2123 2124 2125
	cpumask_copy(cs->cpus_allowed, new_cpus);
	cpumask_copy(cs->effective_cpus, new_cpus);
	cs->mems_allowed = *new_mems;
	cs->effective_mems = *new_mems;
2126 2127 2128 2129 2130 2131
	mutex_unlock(&callback_mutex);

	/*
	 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
	 * as the tasks will be migratecd to an ancestor.
	 */
2132
	if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
2133
		update_tasks_cpumask(cs);
2134
	if (mems_updated && !nodes_empty(cs->mems_allowed))
2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
		update_tasks_nodemask(cs);

	is_empty = cpumask_empty(cs->cpus_allowed) ||
		   nodes_empty(cs->mems_allowed);

	mutex_unlock(&cpuset_mutex);

	/*
	 * Move tasks to the nearest ancestor with execution resources,
	 * This is full cgroup operation which will also call back into
	 * cpuset. Should be done outside any lock.
	 */
	if (is_empty)
		remove_tasks_in_empty_cpuset(cs);

	mutex_lock(&cpuset_mutex);
}

2153 2154 2155 2156
static void
hotplug_update_tasks(struct cpuset *cs,
		     struct cpumask *new_cpus, nodemask_t *new_mems,
		     bool cpus_updated, bool mems_updated)
2157
{
2158 2159 2160 2161 2162
	if (cpumask_empty(new_cpus))
		cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
	if (nodes_empty(*new_mems))
		*new_mems = parent_cs(cs)->effective_mems;

2163
	mutex_lock(&callback_mutex);
2164 2165
	cpumask_copy(cs->effective_cpus, new_cpus);
	cs->effective_mems = *new_mems;
2166 2167
	mutex_unlock(&callback_mutex);

2168
	if (cpus_updated)
2169
		update_tasks_cpumask(cs);
2170
	if (mems_updated)
2171 2172 2173
		update_tasks_nodemask(cs);
}

2174
/**
2175
 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2176
 * @cs: cpuset in interest
2177
 *
2178 2179 2180
 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
 * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
 * all its tasks are moved to the nearest ancestor with both resources.
2181
 */
2182
static void cpuset_hotplug_update_tasks(struct cpuset *cs)
2183
{
2184 2185 2186 2187
	static cpumask_t new_cpus;
	static nodemask_t new_mems;
	bool cpus_updated;
	bool mems_updated;
2188 2189
retry:
	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2190

2191
	mutex_lock(&cpuset_mutex);
2192

2193 2194 2195 2196 2197 2198 2199 2200 2201
	/*
	 * We have raced with task attaching. We wait until attaching
	 * is finished, so we won't attach a task to an empty cpuset.
	 */
	if (cs->attach_in_progress) {
		mutex_unlock(&cpuset_mutex);
		goto retry;
	}

2202 2203
	cpumask_and(&new_cpus, cs->cpus_allowed, parent_cs(cs)->effective_cpus);
	nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems);
2204

2205 2206
	cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
	mems_updated = !nodes_equal(new_mems, cs->effective_mems);
2207

2208
	if (cgroup_on_dfl(cs->css.cgroup))
2209 2210
		hotplug_update_tasks(cs, &new_cpus, &new_mems,
				     cpus_updated, mems_updated);
2211
	else
2212 2213
		hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
					    cpus_updated, mems_updated);
2214

2215
	mutex_unlock(&cpuset_mutex);
2216 2217
}

2218
/**
2219
 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2220
 *
2221 2222 2223 2224 2225
 * This function is called after either CPU or memory configuration has
 * changed and updates cpuset accordingly.  The top_cpuset is always
 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
 * order to make cpusets transparent (of no affect) on systems that are
 * actively using CPU hotplug but making no active use of cpusets.
2226
 *
2227
 * Non-root cpusets are only affected by offlining.  If any CPUs or memory
2228 2229
 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
 * all descendants.
2230
 *
2231 2232
 * Note that CPU offlining during suspend is ignored.  We don't modify
 * cpusets across suspend/resume cycles at all.
2233
 */
2234
static void cpuset_hotplug_workfn(struct work_struct *work)
2235
{
2236 2237
	static cpumask_t new_cpus;
	static nodemask_t new_mems;
2238
	bool cpus_updated, mems_updated;
2239
	bool on_dfl = cgroup_on_dfl(top_cpuset.css.cgroup);
2240

2241
	mutex_lock(&cpuset_mutex);
2242

2243 2244 2245
	/* fetch the available cpus/mems and find out which changed how */
	cpumask_copy(&new_cpus, cpu_active_mask);
	new_mems = node_states[N_MEMORY];
2246

2247 2248
	cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
	mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
2249

2250 2251 2252
	/* synchronize cpus_allowed to cpu_active_mask */
	if (cpus_updated) {
		mutex_lock(&callback_mutex);
2253 2254
		if (!on_dfl)
			cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2255
		cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
2256 2257 2258
		mutex_unlock(&callback_mutex);
		/* we don't mess with cpumasks of tasks in top_cpuset */
	}
2259

2260 2261 2262
	/* synchronize mems_allowed to N_MEMORY */
	if (mems_updated) {
		mutex_lock(&callback_mutex);
2263 2264
		if (!on_dfl)
			top_cpuset.mems_allowed = new_mems;
2265
		top_cpuset.effective_mems = new_mems;
2266
		mutex_unlock(&callback_mutex);
2267
		update_tasks_nodemask(&top_cpuset);
2268
	}
2269

2270 2271
	mutex_unlock(&cpuset_mutex);

2272 2273
	/* if cpus or mems changed, we need to propagate to descendants */
	if (cpus_updated || mems_updated) {
2274
		struct cpuset *cs;
2275
		struct cgroup_subsys_state *pos_css;
2276

2277
		rcu_read_lock();
2278
		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
2279
			if (cs == &top_cpuset || !css_tryget_online(&cs->css))
2280 2281
				continue;
			rcu_read_unlock();
2282

2283
			cpuset_hotplug_update_tasks(cs);
2284

2285 2286 2287 2288 2289
			rcu_read_lock();
			css_put(&cs->css);
		}
		rcu_read_unlock();
	}
2290

2291
	/* rebuild sched domains if cpus_allowed has changed */
2292 2293
	if (cpus_updated)
		rebuild_sched_domains();
2294 2295
}

2296
void cpuset_update_active_cpus(bool cpu_online)
2297
{
2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
	/*
	 * We're inside cpu hotplug critical region which usually nests
	 * inside cgroup synchronization.  Bounce actual hotplug processing
	 * to a work item to avoid reverse locking order.
	 *
	 * We still need to do partition_sched_domains() synchronously;
	 * otherwise, the scheduler will get confused and put tasks to the
	 * dead CPU.  Fall back to the default single domain.
	 * cpuset_hotplug_workfn() will rebuild it as necessary.
	 */
	partition_sched_domains(1, NULL, NULL);
	schedule_work(&cpuset_hotplug_work);
2310 2311
}

2312
/*
2313 2314
 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
 * Call this routine anytime after node_states[N_MEMORY] changes.
2315
 * See cpuset_update_active_cpus() for CPU hotplug handling.
2316
 */
2317 2318
static int cpuset_track_online_nodes(struct notifier_block *self,
				unsigned long action, void *arg)
2319
{
2320
	schedule_work(&cpuset_hotplug_work);
2321
	return NOTIFY_OK;
2322
}
2323 2324 2325 2326 2327

static struct notifier_block cpuset_track_online_nodes_nb = {
	.notifier_call = cpuset_track_online_nodes,
	.priority = 10,		/* ??! */
};
2328

L
Linus Torvalds 已提交
2329 2330 2331 2332
/**
 * cpuset_init_smp - initialize cpus_allowed
 *
 * Description: Finish top cpuset after cpu, node maps are initialized
2333
 */
L
Linus Torvalds 已提交
2334 2335
void __init cpuset_init_smp(void)
{
2336
	cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2337
	top_cpuset.mems_allowed = node_states[N_MEMORY];
2338
	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
2339

2340 2341 2342
	cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
	top_cpuset.effective_mems = node_states[N_MEMORY];

2343
	register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
L
Linus Torvalds 已提交
2344 2345 2346 2347 2348
}

/**
 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2349
 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
L
Linus Torvalds 已提交
2350
 *
2351
 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
L
Linus Torvalds 已提交
2352
 * attached to the specified @tsk.  Guaranteed to return some non-empty
2353
 * subset of cpu_online_mask, even if this means going outside the
L
Linus Torvalds 已提交
2354 2355 2356
 * tasks cpuset.
 **/

2357
void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
L
Linus Torvalds 已提交
2358
{
2359
	mutex_lock(&callback_mutex);
2360
	rcu_read_lock();
2361
	guarantee_online_cpus(task_cs(tsk), pmask);
2362
	rcu_read_unlock();
2363
	mutex_unlock(&callback_mutex);
L
Linus Torvalds 已提交
2364 2365
}

2366
void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2367 2368
{
	rcu_read_lock();
2369
	do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus);
2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
	rcu_read_unlock();

	/*
	 * We own tsk->cpus_allowed, nobody can change it under us.
	 *
	 * But we used cs && cs->cpus_allowed lockless and thus can
	 * race with cgroup_attach_task() or update_cpumask() and get
	 * the wrong tsk->cpus_allowed. However, both cases imply the
	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
	 * which takes task_rq_lock().
	 *
	 * If we are called after it dropped the lock we must see all
	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
	 * set any mask even if it is not right from task_cs() pov,
	 * the pending set_cpus_allowed_ptr() will fix things.
2385 2386 2387
	 *
	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
	 * if required.
2388 2389 2390
	 */
}

L
Linus Torvalds 已提交
2391 2392
void cpuset_init_current_mems_allowed(void)
{
2393
	nodes_setall(current->mems_allowed);
L
Linus Torvalds 已提交
2394 2395
}

2396 2397 2398 2399 2400 2401
/**
 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
 *
 * Description: Returns the nodemask_t mems_allowed of the cpuset
 * attached to the specified @tsk.  Guaranteed to return some non-empty
2402
 * subset of node_states[N_MEMORY], even if this means going outside the
2403 2404 2405 2406 2407 2408 2409
 * tasks cpuset.
 **/

nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
{
	nodemask_t mask;

2410
	mutex_lock(&callback_mutex);
2411
	rcu_read_lock();
2412
	guarantee_online_mems(task_cs(tsk), &mask);
2413
	rcu_read_unlock();
2414
	mutex_unlock(&callback_mutex);
2415 2416 2417 2418

	return mask;
}

2419
/**
2420 2421
 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
 * @nodemask: the nodemask to be checked
2422
 *
2423
 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
L
Linus Torvalds 已提交
2424
 */
2425
int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
L
Linus Torvalds 已提交
2426
{
2427
	return nodes_intersects(*nodemask, current->mems_allowed);
L
Linus Torvalds 已提交
2428 2429
}

2430
/*
2431 2432 2433 2434
 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
 * mem_hardwall ancestor to the specified cpuset.  Call holding
 * callback_mutex.  If no ancestor is mem_exclusive or mem_hardwall
 * (an unusual configuration), then returns the root cpuset.
2435
 */
2436
static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
2437
{
T
Tejun Heo 已提交
2438 2439
	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
		cs = parent_cs(cs);
2440 2441 2442
	return cs;
}

2443
/**
2444 2445
 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
 * @node: is this an allowed node?
2446
 * @gfp_mask: memory allocation flags
2447
 *
2448 2449 2450 2451 2452 2453
 * If we're in interrupt, yes, we can always allocate.  If __GFP_THISNODE is
 * set, yes, we can always allocate.  If node is in our task's mems_allowed,
 * yes.  If it's not a __GFP_HARDWALL request and this node is in the nearest
 * hardwalled cpuset ancestor to this task's cpuset, yes.  If the task has been
 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
 * flag, yes.
2454 2455
 * Otherwise, no.
 *
2456 2457 2458
 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
 * cpuset_node_allowed_hardwall().  Otherwise, cpuset_node_allowed_softwall()
 * might sleep, and might allow a node from an enclosing cpuset.
2459
 *
2460 2461
 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
 * cpusets, and never sleeps.
2462 2463 2464 2465 2466 2467 2468
 *
 * The __GFP_THISNODE placement logic is really handled elsewhere,
 * by forcibly using a zonelist starting at a specified node, and by
 * (in get_page_from_freelist()) refusing to consider the zones for
 * any node on the zonelist except the first.  By the time any such
 * calls get to this routine, we should just shut up and say 'yes'.
 *
2469
 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2470 2471
 * and do not allow allocations outside the current tasks cpuset
 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2472
 * GFP_KERNEL allocations are not so marked, so can escape to the
2473
 * nearest enclosing hardwalled ancestor cpuset.
2474
 *
2475 2476 2477 2478 2479 2480 2481
 * Scanning up parent cpusets requires callback_mutex.  The
 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
 * current tasks mems_allowed came up empty on the first pass over
 * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
 * cpuset are short of memory, might require taking the callback_mutex
 * mutex.
2482
 *
2483
 * The first call here from mm/page_alloc:get_page_from_freelist()
2484 2485 2486
 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
 * so no allocation on a node outside the cpuset is allowed (unless
 * in interrupt, of course).
2487 2488 2489 2490 2491 2492
 *
 * The second pass through get_page_from_freelist() doesn't even call
 * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
 * in alloc_flags.  That logic and the checks below have the combined
 * affect that:
2493 2494
 *	in_interrupt - any node ok (current task context irrelevant)
 *	GFP_ATOMIC   - any node ok
2495
 *	TIF_MEMDIE   - any node ok
2496
 *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
2497
 *	GFP_USER     - only nodes in current tasks mems allowed ok.
2498 2499
 *
 * Rule:
2500
 *    Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
2501 2502
 *    pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
 *    the code that might scan up ancestor cpusets and sleep.
2503
 */
2504
int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2505
{
2506
	struct cpuset *cs;		/* current cpuset ancestors */
2507
	int allowed;			/* is allocation in zone z allowed? */
2508

2509
	if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2510
		return 1;
2511
	might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
2512 2513
	if (node_isset(node, current->mems_allowed))
		return 1;
2514 2515 2516 2517 2518 2519
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return 1;
2520 2521 2522
	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
		return 0;

2523 2524 2525
	if (current->flags & PF_EXITING) /* Let dying task have memory */
		return 1;

2526
	/* Not hardwall and node outside mems_allowed: scan up cpusets */
2527
	mutex_lock(&callback_mutex);
2528

2529
	rcu_read_lock();
2530
	cs = nearest_hardwall_ancestor(task_cs(current));
2531
	allowed = node_isset(node, cs->mems_allowed);
2532
	rcu_read_unlock();
2533

2534
	mutex_unlock(&callback_mutex);
2535
	return allowed;
L
Linus Torvalds 已提交
2536 2537
}

2538
/*
2539 2540
 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
 * @node: is this an allowed node?
2541 2542
 * @gfp_mask: memory allocation flags
 *
2543 2544 2545 2546 2547
 * If we're in interrupt, yes, we can always allocate.  If __GFP_THISNODE is
 * set, yes, we can always allocate.  If node is in our task's mems_allowed,
 * yes.  If the task has been OOM killed and has access to memory reserves as
 * specified by the TIF_MEMDIE flag, yes.
 * Otherwise, no.
2548 2549 2550 2551 2552 2553 2554
 *
 * The __GFP_THISNODE placement logic is really handled elsewhere,
 * by forcibly using a zonelist starting at a specified node, and by
 * (in get_page_from_freelist()) refusing to consider the zones for
 * any node on the zonelist except the first.  By the time any such
 * calls get to this routine, we should just shut up and say 'yes'.
 *
2555 2556
 * Unlike the cpuset_node_allowed_softwall() variant, above,
 * this variant requires that the node be in the current task's
2557 2558 2559 2560
 * mems_allowed or that we're in interrupt.  It does not scan up the
 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
 * It never sleeps.
 */
2561
int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
2562 2563 2564 2565 2566
{
	if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
		return 1;
	if (node_isset(node, current->mems_allowed))
		return 1;
D
Daniel Walker 已提交
2567 2568 2569 2570 2571 2572
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return 1;
2573 2574 2575
	return 0;
}

2576
/**
2577 2578
 * cpuset_mem_spread_node() - On which node to begin search for a file page
 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602
 *
 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
 * tasks in a cpuset with is_spread_page or is_spread_slab set),
 * and if the memory allocation used cpuset_mem_spread_node()
 * to determine on which node to start looking, as it will for
 * certain page cache or slab cache pages such as used for file
 * system buffers and inode caches, then instead of starting on the
 * local node to look for a free page, rather spread the starting
 * node around the tasks mems_allowed nodes.
 *
 * We don't have to worry about the returned node being offline
 * because "it can't happen", and even if it did, it would be ok.
 *
 * The routines calling guarantee_online_mems() are careful to
 * only set nodes in task->mems_allowed that are online.  So it
 * should not be possible for the following code to return an
 * offline node.  But if it did, that would be ok, as this routine
 * is not returning the node where the allocation must be, only
 * the node where the search should start.  The zonelist passed to
 * __alloc_pages() will include all nodes.  If the slab allocator
 * is passed an offline node, it will fall back to the local node.
 * See kmem_cache_alloc_node().
 */

2603
static int cpuset_spread_node(int *rotor)
2604 2605 2606
{
	int node;

2607
	node = next_node(*rotor, current->mems_allowed);
2608 2609
	if (node == MAX_NUMNODES)
		node = first_node(current->mems_allowed);
2610
	*rotor = node;
2611 2612
	return node;
}
2613 2614 2615

int cpuset_mem_spread_node(void)
{
2616 2617 2618 2619
	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
		current->cpuset_mem_spread_rotor =
			node_random(&current->mems_allowed);

2620 2621 2622 2623 2624
	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
}

int cpuset_slab_spread_node(void)
{
2625 2626 2627 2628
	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
		current->cpuset_slab_spread_rotor =
			node_random(&current->mems_allowed);

2629 2630 2631
	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
}

2632 2633
EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);

2634
/**
2635 2636 2637 2638 2639 2640 2641 2642
 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
 * @tsk1: pointer to task_struct of some task.
 * @tsk2: pointer to task_struct of some other task.
 *
 * Description: Return true if @tsk1's mems_allowed intersects the
 * mems_allowed of @tsk2.  Used by the OOM killer to determine if
 * one of the task's memory usage might impact the memory available
 * to the other.
2643 2644
 **/

2645 2646
int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
				   const struct task_struct *tsk2)
2647
{
2648
	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2649 2650
}

2651 2652
#define CPUSET_NODELIST_LEN	(256)

2653 2654
/**
 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2655
 * @tsk: pointer to task_struct of some task.
2656 2657
 *
 * Description: Prints @task's name, cpuset name, and cached copy of its
2658
 * mems_allowed to the kernel log.
2659 2660 2661
 */
void cpuset_print_task_mems_allowed(struct task_struct *tsk)
{
2662 2663 2664
	 /* Statically allocated to prevent using excess stack. */
	static char cpuset_nodelist[CPUSET_NODELIST_LEN];
	static DEFINE_SPINLOCK(cpuset_buffer_lock);
2665
	struct cgroup *cgrp;
2666

2667
	spin_lock(&cpuset_buffer_lock);
2668
	rcu_read_lock();
2669

2670
	cgrp = task_cs(tsk)->css.cgroup;
2671 2672
	nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
			   tsk->mems_allowed);
2673
	pr_info("%s cpuset=", tsk->comm);
T
Tejun Heo 已提交
2674 2675
	pr_cont_cgroup_name(cgrp);
	pr_cont(" mems_allowed=%s\n", cpuset_nodelist);
2676

2677
	rcu_read_unlock();
2678 2679 2680
	spin_unlock(&cpuset_buffer_lock);
}

2681 2682 2683 2684 2685 2686
/*
 * Collection of memory_pressure is suppressed unless
 * this flag is enabled by writing "1" to the special
 * cpuset file 'memory_pressure_enabled' in the root cpuset.
 */

2687
int cpuset_memory_pressure_enabled __read_mostly;
2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708

/**
 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
 *
 * Keep a running average of the rate of synchronous (direct)
 * page reclaim efforts initiated by tasks in each cpuset.
 *
 * This represents the rate at which some task in the cpuset
 * ran low on memory on all nodes it was allowed to use, and
 * had to enter the kernels page reclaim code in an effort to
 * create more free memory by tossing clean pages or swapping
 * or writing dirty pages.
 *
 * Display to user space in the per-cpuset read-only file
 * "memory_pressure".  Value displayed is an integer
 * representing the recent rate of entry into the synchronous
 * (direct) page reclaim by any task attached to the cpuset.
 **/

void __cpuset_memory_pressure_bump(void)
{
2709
	rcu_read_lock();
2710
	fmeter_markevent(&task_cs(current)->fmeter);
2711
	rcu_read_unlock();
2712 2713
}

2714
#ifdef CONFIG_PROC_PID_CPUSET
L
Linus Torvalds 已提交
2715 2716 2717 2718
/*
 * proc_cpuset_show()
 *  - Print tasks cpuset path into seq_file.
 *  - Used for /proc/<pid>/cpuset.
2719 2720
 *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
 *    doesn't really matter if tsk->cpuset changes after we read it,
2721
 *    and we take cpuset_mutex, keeping cpuset_attach() from changing it
2722
 *    anyway.
L
Linus Torvalds 已提交
2723
 */
Z
Zefan Li 已提交
2724 2725
int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
		     struct pid *pid, struct task_struct *tsk)
L
Linus Torvalds 已提交
2726
{
T
Tejun Heo 已提交
2727
	char *buf, *p;
2728
	struct cgroup_subsys_state *css;
2729
	int retval;
L
Linus Torvalds 已提交
2730

2731
	retval = -ENOMEM;
T
Tejun Heo 已提交
2732
	buf = kmalloc(PATH_MAX, GFP_KERNEL);
L
Linus Torvalds 已提交
2733
	if (!buf)
2734 2735
		goto out;

T
Tejun Heo 已提交
2736
	retval = -ENAMETOOLONG;
L
Li Zefan 已提交
2737
	rcu_read_lock();
2738
	css = task_css(tsk, cpuset_cgrp_id);
T
Tejun Heo 已提交
2739
	p = cgroup_path(css->cgroup, buf, PATH_MAX);
L
Li Zefan 已提交
2740
	rcu_read_unlock();
T
Tejun Heo 已提交
2741
	if (!p)
Z
Zefan Li 已提交
2742
		goto out_free;
T
Tejun Heo 已提交
2743
	seq_puts(m, p);
L
Linus Torvalds 已提交
2744
	seq_putc(m, '\n');
T
Tejun Heo 已提交
2745
	retval = 0;
2746
out_free:
L
Linus Torvalds 已提交
2747
	kfree(buf);
2748
out:
L
Linus Torvalds 已提交
2749 2750
	return retval;
}
2751
#endif /* CONFIG_PROC_PID_CPUSET */
L
Linus Torvalds 已提交
2752

2753
/* Display task mems_allowed in /proc/<pid>/status file. */
2754 2755
void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
{
2756
	seq_puts(m, "Mems_allowed:\t");
2757
	seq_nodemask(m, &task->mems_allowed);
2758 2759
	seq_puts(m, "\n");
	seq_puts(m, "Mems_allowed_list:\t");
2760
	seq_nodemask_list(m, &task->mems_allowed);
2761
	seq_puts(m, "\n");
L
Linus Torvalds 已提交
2762
}