mv_xor.c 34.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/*
 * offload engine driver for the Marvell XOR engine
 * Copyright (C) 2007, 2008, Marvell International Ltd.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
 */

#include <linux/init.h>
#include <linux/module.h>
21
#include <linux/slab.h>
22 23 24 25 26 27
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/memory.h>
28
#include <linux/clk.h>
29 30 31
#include <linux/of.h>
#include <linux/of_irq.h>
#include <linux/irqdomain.h>
32
#include <linux/platform_data/dma-mv_xor.h>
33 34

#include "dmaengine.h"
35 36 37 38 39
#include "mv_xor.h"

static void mv_xor_issue_pending(struct dma_chan *chan);

#define to_mv_xor_chan(chan)		\
40
	container_of(chan, struct mv_xor_chan, dmachan)
41 42 43 44

#define to_mv_xor_slot(tx)		\
	container_of(tx, struct mv_xor_desc_slot, async_tx)

45
#define mv_chan_to_devp(chan)           \
46
	((chan)->dmadev.dev)
47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
static void mv_desc_init(struct mv_xor_desc_slot *desc, unsigned long flags)
{
	struct mv_xor_desc *hw_desc = desc->hw_desc;

	hw_desc->status = (1 << 31);
	hw_desc->phy_next_desc = 0;
	hw_desc->desc_command = (1 << 31);
}

static u32 mv_desc_get_dest_addr(struct mv_xor_desc_slot *desc)
{
	struct mv_xor_desc *hw_desc = desc->hw_desc;
	return hw_desc->phy_dest_addr;
}

static u32 mv_desc_get_src_addr(struct mv_xor_desc_slot *desc,
				int src_idx)
{
	struct mv_xor_desc *hw_desc = desc->hw_desc;
67
	return hw_desc->phy_src_addr[mv_phy_src_idx(src_idx)];
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
}


static void mv_desc_set_byte_count(struct mv_xor_desc_slot *desc,
				   u32 byte_count)
{
	struct mv_xor_desc *hw_desc = desc->hw_desc;
	hw_desc->byte_count = byte_count;
}

static void mv_desc_set_next_desc(struct mv_xor_desc_slot *desc,
				  u32 next_desc_addr)
{
	struct mv_xor_desc *hw_desc = desc->hw_desc;
	BUG_ON(hw_desc->phy_next_desc);
	hw_desc->phy_next_desc = next_desc_addr;
}

static void mv_desc_clear_next_desc(struct mv_xor_desc_slot *desc)
{
	struct mv_xor_desc *hw_desc = desc->hw_desc;
	hw_desc->phy_next_desc = 0;
}

static void mv_desc_set_dest_addr(struct mv_xor_desc_slot *desc,
				  dma_addr_t addr)
{
	struct mv_xor_desc *hw_desc = desc->hw_desc;
	hw_desc->phy_dest_addr = addr;
}

static int mv_chan_memset_slot_count(size_t len)
{
	return 1;
}

#define mv_chan_memcpy_slot_count(c) mv_chan_memset_slot_count(c)

static void mv_desc_set_src_addr(struct mv_xor_desc_slot *desc,
				 int index, dma_addr_t addr)
{
	struct mv_xor_desc *hw_desc = desc->hw_desc;
110
	hw_desc->phy_src_addr[mv_phy_src_idx(index)] = addr;
111 112 113 114 115 116
	if (desc->type == DMA_XOR)
		hw_desc->desc_command |= (1 << index);
}

static u32 mv_chan_get_current_desc(struct mv_xor_chan *chan)
{
117
	return readl_relaxed(XOR_CURR_DESC(chan));
118 119 120 121 122
}

static void mv_chan_set_next_descriptor(struct mv_xor_chan *chan,
					u32 next_desc_addr)
{
123
	writel_relaxed(next_desc_addr, XOR_NEXT_DESC(chan));
124 125 126 127
}

static void mv_chan_unmask_interrupts(struct mv_xor_chan *chan)
{
128
	u32 val = readl_relaxed(XOR_INTR_MASK(chan));
129
	val |= XOR_INTR_MASK_VALUE << (chan->idx * 16);
130
	writel_relaxed(val, XOR_INTR_MASK(chan));
131 132 133 134
}

static u32 mv_chan_get_intr_cause(struct mv_xor_chan *chan)
{
135
	u32 intr_cause = readl_relaxed(XOR_INTR_CAUSE(chan));
136 137 138 139 140 141 142 143 144 145 146 147 148 149
	intr_cause = (intr_cause >> (chan->idx * 16)) & 0xFFFF;
	return intr_cause;
}

static int mv_is_err_intr(u32 intr_cause)
{
	if (intr_cause & ((1<<4)|(1<<5)|(1<<6)|(1<<7)|(1<<8)|(1<<9)))
		return 1;

	return 0;
}

static void mv_xor_device_clear_eoc_cause(struct mv_xor_chan *chan)
{
150
	u32 val = ~(1 << (chan->idx * 16));
151
	dev_dbg(mv_chan_to_devp(chan), "%s, val 0x%08x\n", __func__, val);
152
	writel_relaxed(val, XOR_INTR_CAUSE(chan));
153 154 155 156 157
}

static void mv_xor_device_clear_err_status(struct mv_xor_chan *chan)
{
	u32 val = 0xFFFF0000 >> (chan->idx * 16);
158
	writel_relaxed(val, XOR_INTR_CAUSE(chan));
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
}

static int mv_can_chain(struct mv_xor_desc_slot *desc)
{
	struct mv_xor_desc_slot *chain_old_tail = list_entry(
		desc->chain_node.prev, struct mv_xor_desc_slot, chain_node);

	if (chain_old_tail->type != desc->type)
		return 0;

	return 1;
}

static void mv_set_mode(struct mv_xor_chan *chan,
			       enum dma_transaction_type type)
{
	u32 op_mode;
176
	u32 config = readl_relaxed(XOR_CONFIG(chan));
177 178 179 180 181 182 183 184 185

	switch (type) {
	case DMA_XOR:
		op_mode = XOR_OPERATION_MODE_XOR;
		break;
	case DMA_MEMCPY:
		op_mode = XOR_OPERATION_MODE_MEMCPY;
		break;
	default:
186
		dev_err(mv_chan_to_devp(chan),
187
			"error: unsupported operation %d\n",
188
			type);
189 190 191 192 193 194
		BUG();
		return;
	}

	config &= ~0x7;
	config |= op_mode;
195 196 197 198 199 200 201

#if defined(__BIG_ENDIAN)
	config |= XOR_DESCRIPTOR_SWAP;
#else
	config &= ~XOR_DESCRIPTOR_SWAP;
#endif

202
	writel_relaxed(config, XOR_CONFIG(chan));
203 204 205 206 207 208 209
	chan->current_type = type;
}

static void mv_chan_activate(struct mv_xor_chan *chan)
{
	u32 activation;

210
	dev_dbg(mv_chan_to_devp(chan), " activate chan.\n");
211
	activation = readl_relaxed(XOR_ACTIVATION(chan));
212
	activation |= 0x1;
213
	writel_relaxed(activation, XOR_ACTIVATION(chan));
214 215 216 217
}

static char mv_chan_is_busy(struct mv_xor_chan *chan)
{
218
	u32 state = readl_relaxed(XOR_ACTIVATION(chan));
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237

	state = (state >> 4) & 0x3;

	return (state == 1) ? 1 : 0;
}

static int mv_chan_xor_slot_count(size_t len, int src_cnt)
{
	return 1;
}

/**
 * mv_xor_free_slots - flags descriptor slots for reuse
 * @slot: Slot to free
 * Caller must hold &mv_chan->lock while calling this function
 */
static void mv_xor_free_slots(struct mv_xor_chan *mv_chan,
			      struct mv_xor_desc_slot *slot)
{
238
	dev_dbg(mv_chan_to_devp(mv_chan), "%s %d slot %p\n",
239 240 241 242 243 244 245 246 247 248 249 250 251 252
		__func__, __LINE__, slot);

	slot->slots_per_op = 0;

}

/*
 * mv_xor_start_new_chain - program the engine to operate on new chain headed by
 * sw_desc
 * Caller must hold &mv_chan->lock while calling this function
 */
static void mv_xor_start_new_chain(struct mv_xor_chan *mv_chan,
				   struct mv_xor_desc_slot *sw_desc)
{
253
	dev_dbg(mv_chan_to_devp(mv_chan), "%s %d: sw_desc %p\n",
254 255 256 257
		__func__, __LINE__, sw_desc);
	if (sw_desc->type != mv_chan->current_type)
		mv_set_mode(mv_chan, sw_desc->type);

258 259 260
	/* set the hardware chain */
	mv_chan_set_next_descriptor(mv_chan, sw_desc->async_tx.phys);

261
	mv_chan->pending += sw_desc->slot_cnt;
262
	mv_xor_issue_pending(&mv_chan->dmachan);
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
}

static dma_cookie_t
mv_xor_run_tx_complete_actions(struct mv_xor_desc_slot *desc,
	struct mv_xor_chan *mv_chan, dma_cookie_t cookie)
{
	BUG_ON(desc->async_tx.cookie < 0);

	if (desc->async_tx.cookie > 0) {
		cookie = desc->async_tx.cookie;

		/* call the callback (must not sleep or submit new
		 * operations to this channel)
		 */
		if (desc->async_tx.callback)
			desc->async_tx.callback(
				desc->async_tx.callback_param);

		/* unmap dma addresses
		 * (unmap_single vs unmap_page?)
		 */
		if (desc->group_head && desc->unmap_len) {
			struct mv_xor_desc_slot *unmap = desc->group_head;
286
			struct device *dev = mv_chan_to_devp(mv_chan);
287
			u32 len = unmap->unmap_len;
288 289 290
			enum dma_ctrl_flags flags = desc->async_tx.flags;
			u32 src_cnt;
			dma_addr_t addr;
291
			dma_addr_t dest;
292

293 294
			src_cnt = unmap->unmap_src_cnt;
			dest = mv_desc_get_dest_addr(unmap);
295
			if (!(flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
296 297 298 299 300 301 302
				enum dma_data_direction dir;

				if (src_cnt > 1) /* is xor ? */
					dir = DMA_BIDIRECTIONAL;
				else
					dir = DMA_FROM_DEVICE;
				dma_unmap_page(dev, dest, len, dir);
303 304 305 306 307 308
			}

			if (!(flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
				while (src_cnt--) {
					addr = mv_desc_get_src_addr(unmap,
								    src_cnt);
309 310
					if (addr == dest)
						continue;
311 312 313
					dma_unmap_page(dev, addr, len,
						       DMA_TO_DEVICE);
				}
314 315 316 317 318 319
			}
			desc->group_head = NULL;
		}
	}

	/* run dependent operations */
320
	dma_run_dependencies(&desc->async_tx);
321 322 323 324 325 326 327 328 329

	return cookie;
}

static int
mv_xor_clean_completed_slots(struct mv_xor_chan *mv_chan)
{
	struct mv_xor_desc_slot *iter, *_iter;

330
	dev_dbg(mv_chan_to_devp(mv_chan), "%s %d\n", __func__, __LINE__);
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
	list_for_each_entry_safe(iter, _iter, &mv_chan->completed_slots,
				 completed_node) {

		if (async_tx_test_ack(&iter->async_tx)) {
			list_del(&iter->completed_node);
			mv_xor_free_slots(mv_chan, iter);
		}
	}
	return 0;
}

static int
mv_xor_clean_slot(struct mv_xor_desc_slot *desc,
	struct mv_xor_chan *mv_chan)
{
346
	dev_dbg(mv_chan_to_devp(mv_chan), "%s %d: desc %p flags %d\n",
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
		__func__, __LINE__, desc, desc->async_tx.flags);
	list_del(&desc->chain_node);
	/* the client is allowed to attach dependent operations
	 * until 'ack' is set
	 */
	if (!async_tx_test_ack(&desc->async_tx)) {
		/* move this slot to the completed_slots */
		list_add_tail(&desc->completed_node, &mv_chan->completed_slots);
		return 0;
	}

	mv_xor_free_slots(mv_chan, desc);
	return 0;
}

static void __mv_xor_slot_cleanup(struct mv_xor_chan *mv_chan)
{
	struct mv_xor_desc_slot *iter, *_iter;
	dma_cookie_t cookie = 0;
	int busy = mv_chan_is_busy(mv_chan);
	u32 current_desc = mv_chan_get_current_desc(mv_chan);
	int seen_current = 0;

370 371
	dev_dbg(mv_chan_to_devp(mv_chan), "%s %d\n", __func__, __LINE__);
	dev_dbg(mv_chan_to_devp(mv_chan), "current_desc %x\n", current_desc);
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
	mv_xor_clean_completed_slots(mv_chan);

	/* free completed slots from the chain starting with
	 * the oldest descriptor
	 */

	list_for_each_entry_safe(iter, _iter, &mv_chan->chain,
					chain_node) {
		prefetch(_iter);
		prefetch(&_iter->async_tx);

		/* do not advance past the current descriptor loaded into the
		 * hardware channel, subsequent descriptors are either in
		 * process or have not been submitted
		 */
		if (seen_current)
			break;

		/* stop the search if we reach the current descriptor and the
		 * channel is busy
		 */
		if (iter->async_tx.phys == current_desc) {
			seen_current = 1;
			if (busy)
				break;
		}

		cookie = mv_xor_run_tx_complete_actions(iter, mv_chan, cookie);

		if (mv_xor_clean_slot(iter, mv_chan))
			break;
	}

	if ((busy == 0) && !list_empty(&mv_chan->chain)) {
		struct mv_xor_desc_slot *chain_head;
		chain_head = list_entry(mv_chan->chain.next,
					struct mv_xor_desc_slot,
					chain_node);

		mv_xor_start_new_chain(mv_chan, chain_head);
	}

	if (cookie > 0)
415
		mv_chan->dmachan.completed_cookie = cookie;
416 417 418 419 420 421 422 423 424 425 426 427 428
}

static void
mv_xor_slot_cleanup(struct mv_xor_chan *mv_chan)
{
	spin_lock_bh(&mv_chan->lock);
	__mv_xor_slot_cleanup(mv_chan);
	spin_unlock_bh(&mv_chan->lock);
}

static void mv_xor_tasklet(unsigned long data)
{
	struct mv_xor_chan *chan = (struct mv_xor_chan *) data;
429
	mv_xor_slot_cleanup(chan);
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
}

static struct mv_xor_desc_slot *
mv_xor_alloc_slots(struct mv_xor_chan *mv_chan, int num_slots,
		    int slots_per_op)
{
	struct mv_xor_desc_slot *iter, *_iter, *alloc_start = NULL;
	LIST_HEAD(chain);
	int slots_found, retry = 0;

	/* start search from the last allocated descrtiptor
	 * if a contiguous allocation can not be found start searching
	 * from the beginning of the list
	 */
retry:
	slots_found = 0;
	if (retry == 0)
		iter = mv_chan->last_used;
	else
		iter = list_entry(&mv_chan->all_slots,
			struct mv_xor_desc_slot,
			slot_node);

	list_for_each_entry_safe_continue(
		iter, _iter, &mv_chan->all_slots, slot_node) {
		prefetch(_iter);
		prefetch(&_iter->async_tx);
		if (iter->slots_per_op) {
			/* give up after finding the first busy slot
			 * on the second pass through the list
			 */
			if (retry)
				break;

			slots_found = 0;
			continue;
		}

		/* start the allocation if the slot is correctly aligned */
		if (!slots_found++)
			alloc_start = iter;

		if (slots_found == num_slots) {
			struct mv_xor_desc_slot *alloc_tail = NULL;
			struct mv_xor_desc_slot *last_used = NULL;
			iter = alloc_start;
			while (num_slots) {
				int i;

				/* pre-ack all but the last descriptor */
				async_tx_ack(&iter->async_tx);

				list_add_tail(&iter->chain_node, &chain);
				alloc_tail = iter;
				iter->async_tx.cookie = 0;
				iter->slot_cnt = num_slots;
				iter->xor_check_result = NULL;
				for (i = 0; i < slots_per_op; i++) {
					iter->slots_per_op = slots_per_op - i;
					last_used = iter;
					iter = list_entry(iter->slot_node.next,
						struct mv_xor_desc_slot,
						slot_node);
				}
				num_slots -= slots_per_op;
			}
			alloc_tail->group_head = alloc_start;
			alloc_tail->async_tx.cookie = -EBUSY;
498
			list_splice(&chain, &alloc_tail->tx_list);
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
			mv_chan->last_used = last_used;
			mv_desc_clear_next_desc(alloc_start);
			mv_desc_clear_next_desc(alloc_tail);
			return alloc_tail;
		}
	}
	if (!retry++)
		goto retry;

	/* try to free some slots if the allocation fails */
	tasklet_schedule(&mv_chan->irq_tasklet);

	return NULL;
}

/************************ DMA engine API functions ****************************/
static dma_cookie_t
mv_xor_tx_submit(struct dma_async_tx_descriptor *tx)
{
	struct mv_xor_desc_slot *sw_desc = to_mv_xor_slot(tx);
	struct mv_xor_chan *mv_chan = to_mv_xor_chan(tx->chan);
	struct mv_xor_desc_slot *grp_start, *old_chain_tail;
	dma_cookie_t cookie;
	int new_hw_chain = 1;

524
	dev_dbg(mv_chan_to_devp(mv_chan),
525 526 527 528 529 530
		"%s sw_desc %p: async_tx %p\n",
		__func__, sw_desc, &sw_desc->async_tx);

	grp_start = sw_desc->group_head;

	spin_lock_bh(&mv_chan->lock);
531
	cookie = dma_cookie_assign(tx);
532 533

	if (list_empty(&mv_chan->chain))
534
		list_splice_init(&sw_desc->tx_list, &mv_chan->chain);
535 536 537 538 539 540
	else {
		new_hw_chain = 0;

		old_chain_tail = list_entry(mv_chan->chain.prev,
					    struct mv_xor_desc_slot,
					    chain_node);
541
		list_splice_init(&grp_start->tx_list,
542 543 544 545 546
				 &old_chain_tail->chain_node);

		if (!mv_can_chain(grp_start))
			goto submit_done;

547
		dev_dbg(mv_chan_to_devp(mv_chan), "Append to last desc %x\n",
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
			old_chain_tail->async_tx.phys);

		/* fix up the hardware chain */
		mv_desc_set_next_desc(old_chain_tail, grp_start->async_tx.phys);

		/* if the channel is not busy */
		if (!mv_chan_is_busy(mv_chan)) {
			u32 current_desc = mv_chan_get_current_desc(mv_chan);
			/*
			 * and the curren desc is the end of the chain before
			 * the append, then we need to start the channel
			 */
			if (current_desc == old_chain_tail->async_tx.phys)
				new_hw_chain = 1;
		}
	}

	if (new_hw_chain)
		mv_xor_start_new_chain(mv_chan, grp_start);

submit_done:
	spin_unlock_bh(&mv_chan->lock);

	return cookie;
}

/* returns the number of allocated descriptors */
575
static int mv_xor_alloc_chan_resources(struct dma_chan *chan)
576 577 578 579 580
{
	char *hw_desc;
	int idx;
	struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
	struct mv_xor_desc_slot *slot = NULL;
581
	int num_descs_in_pool = MV_XOR_POOL_SIZE/MV_XOR_SLOT_SIZE;
582 583 584 585 586 587 588 589 590 591

	/* Allocate descriptor slots */
	idx = mv_chan->slots_allocated;
	while (idx < num_descs_in_pool) {
		slot = kzalloc(sizeof(*slot), GFP_KERNEL);
		if (!slot) {
			printk(KERN_INFO "MV XOR Channel only initialized"
				" %d descriptor slots", idx);
			break;
		}
592
		hw_desc = (char *) mv_chan->dma_desc_pool_virt;
593 594 595 596 597 598
		slot->hw_desc = (void *) &hw_desc[idx * MV_XOR_SLOT_SIZE];

		dma_async_tx_descriptor_init(&slot->async_tx, chan);
		slot->async_tx.tx_submit = mv_xor_tx_submit;
		INIT_LIST_HEAD(&slot->chain_node);
		INIT_LIST_HEAD(&slot->slot_node);
599
		INIT_LIST_HEAD(&slot->tx_list);
600
		hw_desc = (char *) mv_chan->dma_desc_pool;
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
		slot->async_tx.phys =
			(dma_addr_t) &hw_desc[idx * MV_XOR_SLOT_SIZE];
		slot->idx = idx++;

		spin_lock_bh(&mv_chan->lock);
		mv_chan->slots_allocated = idx;
		list_add_tail(&slot->slot_node, &mv_chan->all_slots);
		spin_unlock_bh(&mv_chan->lock);
	}

	if (mv_chan->slots_allocated && !mv_chan->last_used)
		mv_chan->last_used = list_entry(mv_chan->all_slots.next,
					struct mv_xor_desc_slot,
					slot_node);

616
	dev_dbg(mv_chan_to_devp(mv_chan),
617 618 619 620 621 622 623 624 625 626 627 628 629 630
		"allocated %d descriptor slots last_used: %p\n",
		mv_chan->slots_allocated, mv_chan->last_used);

	return mv_chan->slots_allocated ? : -ENOMEM;
}

static struct dma_async_tx_descriptor *
mv_xor_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
		size_t len, unsigned long flags)
{
	struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
	struct mv_xor_desc_slot *sw_desc, *grp_start;
	int slot_cnt;

631
	dev_dbg(mv_chan_to_devp(mv_chan),
632 633 634 635 636
		"%s dest: %x src %x len: %u flags: %ld\n",
		__func__, dest, src, len, flags);
	if (unlikely(len < MV_XOR_MIN_BYTE_COUNT))
		return NULL;

637
	BUG_ON(len > MV_XOR_MAX_BYTE_COUNT);
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654

	spin_lock_bh(&mv_chan->lock);
	slot_cnt = mv_chan_memcpy_slot_count(len);
	sw_desc = mv_xor_alloc_slots(mv_chan, slot_cnt, 1);
	if (sw_desc) {
		sw_desc->type = DMA_MEMCPY;
		sw_desc->async_tx.flags = flags;
		grp_start = sw_desc->group_head;
		mv_desc_init(grp_start, flags);
		mv_desc_set_byte_count(grp_start, len);
		mv_desc_set_dest_addr(sw_desc->group_head, dest);
		mv_desc_set_src_addr(grp_start, 0, src);
		sw_desc->unmap_src_cnt = 1;
		sw_desc->unmap_len = len;
	}
	spin_unlock_bh(&mv_chan->lock);

655
	dev_dbg(mv_chan_to_devp(mv_chan),
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
		"%s sw_desc %p async_tx %p\n",
		__func__, sw_desc, sw_desc ? &sw_desc->async_tx : 0);

	return sw_desc ? &sw_desc->async_tx : NULL;
}

static struct dma_async_tx_descriptor *
mv_xor_prep_dma_xor(struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
		    unsigned int src_cnt, size_t len, unsigned long flags)
{
	struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
	struct mv_xor_desc_slot *sw_desc, *grp_start;
	int slot_cnt;

	if (unlikely(len < MV_XOR_MIN_BYTE_COUNT))
		return NULL;

673
	BUG_ON(len > MV_XOR_MAX_BYTE_COUNT);
674

675
	dev_dbg(mv_chan_to_devp(mv_chan),
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
		"%s src_cnt: %d len: dest %x %u flags: %ld\n",
		__func__, src_cnt, len, dest, flags);

	spin_lock_bh(&mv_chan->lock);
	slot_cnt = mv_chan_xor_slot_count(len, src_cnt);
	sw_desc = mv_xor_alloc_slots(mv_chan, slot_cnt, 1);
	if (sw_desc) {
		sw_desc->type = DMA_XOR;
		sw_desc->async_tx.flags = flags;
		grp_start = sw_desc->group_head;
		mv_desc_init(grp_start, flags);
		/* the byte count field is the same as in memcpy desc*/
		mv_desc_set_byte_count(grp_start, len);
		mv_desc_set_dest_addr(sw_desc->group_head, dest);
		sw_desc->unmap_src_cnt = src_cnt;
		sw_desc->unmap_len = len;
		while (src_cnt--)
			mv_desc_set_src_addr(grp_start, src_cnt, src[src_cnt]);
	}
	spin_unlock_bh(&mv_chan->lock);
696
	dev_dbg(mv_chan_to_devp(mv_chan),
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
		"%s sw_desc %p async_tx %p \n",
		__func__, sw_desc, &sw_desc->async_tx);
	return sw_desc ? &sw_desc->async_tx : NULL;
}

static void mv_xor_free_chan_resources(struct dma_chan *chan)
{
	struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
	struct mv_xor_desc_slot *iter, *_iter;
	int in_use_descs = 0;

	mv_xor_slot_cleanup(mv_chan);

	spin_lock_bh(&mv_chan->lock);
	list_for_each_entry_safe(iter, _iter, &mv_chan->chain,
					chain_node) {
		in_use_descs++;
		list_del(&iter->chain_node);
	}
	list_for_each_entry_safe(iter, _iter, &mv_chan->completed_slots,
				 completed_node) {
		in_use_descs++;
		list_del(&iter->completed_node);
	}
	list_for_each_entry_safe_reverse(
		iter, _iter, &mv_chan->all_slots, slot_node) {
		list_del(&iter->slot_node);
		kfree(iter);
		mv_chan->slots_allocated--;
	}
	mv_chan->last_used = NULL;

729
	dev_dbg(mv_chan_to_devp(mv_chan), "%s slots_allocated %d\n",
730 731 732 733
		__func__, mv_chan->slots_allocated);
	spin_unlock_bh(&mv_chan->lock);

	if (in_use_descs)
734
		dev_err(mv_chan_to_devp(mv_chan),
735 736 737 738
			"freeing %d in use descriptors!\n", in_use_descs);
}

/**
739
 * mv_xor_status - poll the status of an XOR transaction
740 741
 * @chan: XOR channel handle
 * @cookie: XOR transaction identifier
742
 * @txstate: XOR transactions state holder (or NULL)
743
 */
744
static enum dma_status mv_xor_status(struct dma_chan *chan,
745
					  dma_cookie_t cookie,
746
					  struct dma_tx_state *txstate)
747 748 749 750
{
	struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
	enum dma_status ret;

751
	ret = dma_cookie_status(chan, cookie, txstate);
752 753 754 755 756 757
	if (ret == DMA_SUCCESS) {
		mv_xor_clean_completed_slots(mv_chan);
		return ret;
	}
	mv_xor_slot_cleanup(mv_chan);

758
	return dma_cookie_status(chan, cookie, txstate);
759 760 761 762 763 764
}

static void mv_dump_xor_regs(struct mv_xor_chan *chan)
{
	u32 val;

765
	val = readl_relaxed(XOR_CONFIG(chan));
766
	dev_err(mv_chan_to_devp(chan), "config       0x%08x\n", val);
767

768
	val = readl_relaxed(XOR_ACTIVATION(chan));
769
	dev_err(mv_chan_to_devp(chan), "activation   0x%08x\n", val);
770

771
	val = readl_relaxed(XOR_INTR_CAUSE(chan));
772
	dev_err(mv_chan_to_devp(chan), "intr cause   0x%08x\n", val);
773

774
	val = readl_relaxed(XOR_INTR_MASK(chan));
775
	dev_err(mv_chan_to_devp(chan), "intr mask    0x%08x\n", val);
776

777
	val = readl_relaxed(XOR_ERROR_CAUSE(chan));
778
	dev_err(mv_chan_to_devp(chan), "error cause  0x%08x\n", val);
779

780
	val = readl_relaxed(XOR_ERROR_ADDR(chan));
781
	dev_err(mv_chan_to_devp(chan), "error addr   0x%08x\n", val);
782 783 784 785 786 787
}

static void mv_xor_err_interrupt_handler(struct mv_xor_chan *chan,
					 u32 intr_cause)
{
	if (intr_cause & (1 << 4)) {
788
	     dev_dbg(mv_chan_to_devp(chan),
789 790 791 792
		     "ignore this error\n");
	     return;
	}

793
	dev_err(mv_chan_to_devp(chan),
794
		"error on chan %d. intr cause 0x%08x\n",
795
		chan->idx, intr_cause);
796 797 798 799 800 801 802 803 804 805

	mv_dump_xor_regs(chan);
	BUG();
}

static irqreturn_t mv_xor_interrupt_handler(int irq, void *data)
{
	struct mv_xor_chan *chan = data;
	u32 intr_cause = mv_chan_get_intr_cause(chan);

806
	dev_dbg(mv_chan_to_devp(chan), "intr cause %x\n", intr_cause);
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832

	if (mv_is_err_intr(intr_cause))
		mv_xor_err_interrupt_handler(chan, intr_cause);

	tasklet_schedule(&chan->irq_tasklet);

	mv_xor_device_clear_eoc_cause(chan);

	return IRQ_HANDLED;
}

static void mv_xor_issue_pending(struct dma_chan *chan)
{
	struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);

	if (mv_chan->pending >= MV_XOR_THRESHOLD) {
		mv_chan->pending = 0;
		mv_chan_activate(mv_chan);
	}
}

/*
 * Perform a transaction to verify the HW works.
 */
#define MV_XOR_TEST_SIZE 2000

833
static int mv_xor_memcpy_self_test(struct mv_xor_chan *mv_chan)
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
{
	int i;
	void *src, *dest;
	dma_addr_t src_dma, dest_dma;
	struct dma_chan *dma_chan;
	dma_cookie_t cookie;
	struct dma_async_tx_descriptor *tx;
	int err = 0;

	src = kmalloc(sizeof(u8) * MV_XOR_TEST_SIZE, GFP_KERNEL);
	if (!src)
		return -ENOMEM;

	dest = kzalloc(sizeof(u8) * MV_XOR_TEST_SIZE, GFP_KERNEL);
	if (!dest) {
		kfree(src);
		return -ENOMEM;
	}

	/* Fill in src buffer */
	for (i = 0; i < MV_XOR_TEST_SIZE; i++)
		((u8 *) src)[i] = (u8)i;

857
	dma_chan = &mv_chan->dmachan;
858
	if (mv_xor_alloc_chan_resources(dma_chan) < 1) {
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
		err = -ENODEV;
		goto out;
	}

	dest_dma = dma_map_single(dma_chan->device->dev, dest,
				  MV_XOR_TEST_SIZE, DMA_FROM_DEVICE);

	src_dma = dma_map_single(dma_chan->device->dev, src,
				 MV_XOR_TEST_SIZE, DMA_TO_DEVICE);

	tx = mv_xor_prep_dma_memcpy(dma_chan, dest_dma, src_dma,
				    MV_XOR_TEST_SIZE, 0);
	cookie = mv_xor_tx_submit(tx);
	mv_xor_issue_pending(dma_chan);
	async_tx_ack(tx);
	msleep(1);

876
	if (mv_xor_status(dma_chan, cookie, NULL) !=
877
	    DMA_SUCCESS) {
878 879
		dev_err(dma_chan->device->dev,
			"Self-test copy timed out, disabling\n");
880 881 882 883
		err = -ENODEV;
		goto free_resources;
	}

884
	dma_sync_single_for_cpu(dma_chan->device->dev, dest_dma,
885 886
				MV_XOR_TEST_SIZE, DMA_FROM_DEVICE);
	if (memcmp(src, dest, MV_XOR_TEST_SIZE)) {
887 888
		dev_err(dma_chan->device->dev,
			"Self-test copy failed compare, disabling\n");
889 890 891 892 893 894 895 896 897 898 899 900 901
		err = -ENODEV;
		goto free_resources;
	}

free_resources:
	mv_xor_free_chan_resources(dma_chan);
out:
	kfree(src);
	kfree(dest);
	return err;
}

#define MV_XOR_NUM_SRC_TEST 4 /* must be <= 15 */
B
Bill Pemberton 已提交
902
static int
903
mv_xor_xor_self_test(struct mv_xor_chan *mv_chan)
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
{
	int i, src_idx;
	struct page *dest;
	struct page *xor_srcs[MV_XOR_NUM_SRC_TEST];
	dma_addr_t dma_srcs[MV_XOR_NUM_SRC_TEST];
	dma_addr_t dest_dma;
	struct dma_async_tx_descriptor *tx;
	struct dma_chan *dma_chan;
	dma_cookie_t cookie;
	u8 cmp_byte = 0;
	u32 cmp_word;
	int err = 0;

	for (src_idx = 0; src_idx < MV_XOR_NUM_SRC_TEST; src_idx++) {
		xor_srcs[src_idx] = alloc_page(GFP_KERNEL);
919 920
		if (!xor_srcs[src_idx]) {
			while (src_idx--)
921
				__free_page(xor_srcs[src_idx]);
922 923
			return -ENOMEM;
		}
924 925 926
	}

	dest = alloc_page(GFP_KERNEL);
927 928
	if (!dest) {
		while (src_idx--)
929
			__free_page(xor_srcs[src_idx]);
930 931
		return -ENOMEM;
	}
932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947

	/* Fill in src buffers */
	for (src_idx = 0; src_idx < MV_XOR_NUM_SRC_TEST; src_idx++) {
		u8 *ptr = page_address(xor_srcs[src_idx]);
		for (i = 0; i < PAGE_SIZE; i++)
			ptr[i] = (1 << src_idx);
	}

	for (src_idx = 0; src_idx < MV_XOR_NUM_SRC_TEST; src_idx++)
		cmp_byte ^= (u8) (1 << src_idx);

	cmp_word = (cmp_byte << 24) | (cmp_byte << 16) |
		(cmp_byte << 8) | cmp_byte;

	memset(page_address(dest), 0, PAGE_SIZE);

948
	dma_chan = &mv_chan->dmachan;
949
	if (mv_xor_alloc_chan_resources(dma_chan) < 1) {
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
		err = -ENODEV;
		goto out;
	}

	/* test xor */
	dest_dma = dma_map_page(dma_chan->device->dev, dest, 0, PAGE_SIZE,
				DMA_FROM_DEVICE);

	for (i = 0; i < MV_XOR_NUM_SRC_TEST; i++)
		dma_srcs[i] = dma_map_page(dma_chan->device->dev, xor_srcs[i],
					   0, PAGE_SIZE, DMA_TO_DEVICE);

	tx = mv_xor_prep_dma_xor(dma_chan, dest_dma, dma_srcs,
				 MV_XOR_NUM_SRC_TEST, PAGE_SIZE, 0);

	cookie = mv_xor_tx_submit(tx);
	mv_xor_issue_pending(dma_chan);
	async_tx_ack(tx);
	msleep(8);

970
	if (mv_xor_status(dma_chan, cookie, NULL) !=
971
	    DMA_SUCCESS) {
972 973
		dev_err(dma_chan->device->dev,
			"Self-test xor timed out, disabling\n");
974 975 976 977
		err = -ENODEV;
		goto free_resources;
	}

978
	dma_sync_single_for_cpu(dma_chan->device->dev, dest_dma,
979 980 981 982
				PAGE_SIZE, DMA_FROM_DEVICE);
	for (i = 0; i < (PAGE_SIZE / sizeof(u32)); i++) {
		u32 *ptr = page_address(dest);
		if (ptr[i] != cmp_word) {
983
			dev_err(dma_chan->device->dev,
984 985
				"Self-test xor failed compare, disabling. index %d, data %x, expected %x\n",
				i, ptr[i], cmp_word);
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
			err = -ENODEV;
			goto free_resources;
		}
	}

free_resources:
	mv_xor_free_chan_resources(dma_chan);
out:
	src_idx = MV_XOR_NUM_SRC_TEST;
	while (src_idx--)
		__free_page(xor_srcs[src_idx]);
	__free_page(dest);
	return err;
}

1001 1002 1003 1004 1005 1006 1007 1008
/* This driver does not implement any of the optional DMA operations. */
static int
mv_xor_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
	       unsigned long arg)
{
	return -ENOSYS;
}

1009
static int mv_xor_channel_remove(struct mv_xor_chan *mv_chan)
1010 1011
{
	struct dma_chan *chan, *_chan;
1012
	struct device *dev = mv_chan->dmadev.dev;
1013

1014
	dma_async_device_unregister(&mv_chan->dmadev);
1015

1016
	dma_free_coherent(dev, MV_XOR_POOL_SIZE,
1017
			  mv_chan->dma_desc_pool_virt, mv_chan->dma_desc_pool);
1018

1019
	list_for_each_entry_safe(chan, _chan, &mv_chan->dmadev.channels,
1020
				 device_node) {
1021 1022 1023
		list_del(&chan->device_node);
	}

1024 1025
	free_irq(mv_chan->irq, mv_chan);

1026 1027 1028
	return 0;
}

1029
static struct mv_xor_chan *
1030
mv_xor_channel_add(struct mv_xor_device *xordev,
1031
		   struct platform_device *pdev,
1032
		   int idx, dma_cap_mask_t cap_mask, int irq)
1033 1034 1035 1036 1037
{
	int ret = 0;
	struct mv_xor_chan *mv_chan;
	struct dma_device *dma_dev;

1038 1039 1040 1041 1042
	mv_chan = devm_kzalloc(&pdev->dev, sizeof(*mv_chan), GFP_KERNEL);
	if (!mv_chan) {
		ret = -ENOMEM;
		goto err_free_dma;
	}
1043

1044
	mv_chan->idx = idx;
1045
	mv_chan->irq = irq;
1046

1047
	dma_dev = &mv_chan->dmadev;
1048 1049 1050 1051 1052

	/* allocate coherent memory for hardware descriptors
	 * note: writecombine gives slightly better performance, but
	 * requires that we explicitly flush the writes
	 */
1053
	mv_chan->dma_desc_pool_virt =
1054
	  dma_alloc_writecombine(&pdev->dev, MV_XOR_POOL_SIZE,
1055 1056
				 &mv_chan->dma_desc_pool, GFP_KERNEL);
	if (!mv_chan->dma_desc_pool_virt)
1057
		return ERR_PTR(-ENOMEM);
1058 1059

	/* discover transaction capabilites from the platform data */
1060
	dma_dev->cap_mask = cap_mask;
1061 1062 1063 1064 1065 1066

	INIT_LIST_HEAD(&dma_dev->channels);

	/* set base routines */
	dma_dev->device_alloc_chan_resources = mv_xor_alloc_chan_resources;
	dma_dev->device_free_chan_resources = mv_xor_free_chan_resources;
1067
	dma_dev->device_tx_status = mv_xor_status;
1068
	dma_dev->device_issue_pending = mv_xor_issue_pending;
1069
	dma_dev->device_control = mv_xor_control;
1070 1071 1072 1073 1074 1075
	dma_dev->dev = &pdev->dev;

	/* set prep routines based on capability */
	if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask))
		dma_dev->device_prep_dma_memcpy = mv_xor_prep_dma_memcpy;
	if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
1076
		dma_dev->max_xor = 8;
1077 1078 1079
		dma_dev->device_prep_dma_xor = mv_xor_prep_dma_xor;
	}

1080
	mv_chan->mmr_base = xordev->xor_base;
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
	if (!mv_chan->mmr_base) {
		ret = -ENOMEM;
		goto err_free_dma;
	}
	tasklet_init(&mv_chan->irq_tasklet, mv_xor_tasklet, (unsigned long)
		     mv_chan);

	/* clear errors before enabling interrupts */
	mv_xor_device_clear_err_status(mv_chan);

1091 1092
	ret = request_irq(mv_chan->irq, mv_xor_interrupt_handler,
			  0, dev_name(&pdev->dev), mv_chan);
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
	if (ret)
		goto err_free_dma;

	mv_chan_unmask_interrupts(mv_chan);

	mv_set_mode(mv_chan, DMA_MEMCPY);

	spin_lock_init(&mv_chan->lock);
	INIT_LIST_HEAD(&mv_chan->chain);
	INIT_LIST_HEAD(&mv_chan->completed_slots);
	INIT_LIST_HEAD(&mv_chan->all_slots);
1104 1105
	mv_chan->dmachan.device = dma_dev;
	dma_cookie_init(&mv_chan->dmachan);
1106

1107
	list_add_tail(&mv_chan->dmachan.device_node, &dma_dev->channels);
1108 1109

	if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask)) {
1110
		ret = mv_xor_memcpy_self_test(mv_chan);
1111 1112
		dev_dbg(&pdev->dev, "memcpy self test returned %d\n", ret);
		if (ret)
1113
			goto err_free_irq;
1114 1115 1116
	}

	if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
1117
		ret = mv_xor_xor_self_test(mv_chan);
1118 1119
		dev_dbg(&pdev->dev, "xor self test returned %d\n", ret);
		if (ret)
1120
			goto err_free_irq;
1121 1122
	}

1123
	dev_info(&pdev->dev, "Marvell XOR: ( %s%s%s)\n",
1124 1125 1126
		 dma_has_cap(DMA_XOR, dma_dev->cap_mask) ? "xor " : "",
		 dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask) ? "cpy " : "",
		 dma_has_cap(DMA_INTERRUPT, dma_dev->cap_mask) ? "intr " : "");
1127 1128

	dma_async_device_register(dma_dev);
1129
	return mv_chan;
1130

1131 1132
err_free_irq:
	free_irq(mv_chan->irq, mv_chan);
1133
 err_free_dma:
1134
	dma_free_coherent(&pdev->dev, MV_XOR_POOL_SIZE,
1135
			  mv_chan->dma_desc_pool_virt, mv_chan->dma_desc_pool);
1136
	return ERR_PTR(ret);
1137 1138 1139
}

static void
1140
mv_xor_conf_mbus_windows(struct mv_xor_device *xordev,
1141
			 const struct mbus_dram_target_info *dram)
1142
{
1143
	void __iomem *base = xordev->xor_base;
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
	u32 win_enable = 0;
	int i;

	for (i = 0; i < 8; i++) {
		writel(0, base + WINDOW_BASE(i));
		writel(0, base + WINDOW_SIZE(i));
		if (i < 4)
			writel(0, base + WINDOW_REMAP_HIGH(i));
	}

	for (i = 0; i < dram->num_cs; i++) {
1155
		const struct mbus_dram_window *cs = dram->cs + i;
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167

		writel((cs->base & 0xffff0000) |
		       (cs->mbus_attr << 8) |
		       dram->mbus_dram_target_id, base + WINDOW_BASE(i));
		writel((cs->size - 1) & 0xffff0000, base + WINDOW_SIZE(i));

		win_enable |= (1 << i);
		win_enable |= 3 << (16 + (2 * i));
	}

	writel(win_enable, base + WINDOW_BAR_ENABLE(0));
	writel(win_enable, base + WINDOW_BAR_ENABLE(1));
1168 1169
	writel(0, base + WINDOW_OVERRIDE_CTRL(0));
	writel(0, base + WINDOW_OVERRIDE_CTRL(1));
1170 1171
}

1172
static int mv_xor_probe(struct platform_device *pdev)
1173
{
1174
	const struct mbus_dram_target_info *dram;
1175
	struct mv_xor_device *xordev;
1176
	struct mv_xor_platform_data *pdata = pdev->dev.platform_data;
1177
	struct resource *res;
1178
	int i, ret;
1179

1180
	dev_notice(&pdev->dev, "Marvell shared XOR driver\n");
1181

1182 1183
	xordev = devm_kzalloc(&pdev->dev, sizeof(*xordev), GFP_KERNEL);
	if (!xordev)
1184 1185 1186 1187 1188 1189
		return -ENOMEM;

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!res)
		return -ENODEV;

1190 1191 1192
	xordev->xor_base = devm_ioremap(&pdev->dev, res->start,
					resource_size(res));
	if (!xordev->xor_base)
1193 1194 1195 1196 1197 1198
		return -EBUSY;

	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
	if (!res)
		return -ENODEV;

1199 1200 1201
	xordev->xor_high_base = devm_ioremap(&pdev->dev, res->start,
					     resource_size(res));
	if (!xordev->xor_high_base)
1202 1203
		return -EBUSY;

1204
	platform_set_drvdata(pdev, xordev);
1205 1206 1207 1208

	/*
	 * (Re-)program MBUS remapping windows if we are asked to.
	 */
1209 1210
	dram = mv_mbus_dram_info();
	if (dram)
1211
		mv_xor_conf_mbus_windows(xordev, dram);
1212

1213 1214 1215
	/* Not all platforms can gate the clock, so it is not
	 * an error if the clock does not exists.
	 */
1216 1217 1218
	xordev->clk = clk_get(&pdev->dev, NULL);
	if (!IS_ERR(xordev->clk))
		clk_prepare_enable(xordev->clk);
1219

1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
	if (pdev->dev.of_node) {
		struct device_node *np;
		int i = 0;

		for_each_child_of_node(pdev->dev.of_node, np) {
			dma_cap_mask_t cap_mask;
			int irq;

			dma_cap_zero(cap_mask);
			if (of_property_read_bool(np, "dmacap,memcpy"))
				dma_cap_set(DMA_MEMCPY, cap_mask);
			if (of_property_read_bool(np, "dmacap,xor"))
				dma_cap_set(DMA_XOR, cap_mask);
			if (of_property_read_bool(np, "dmacap,interrupt"))
				dma_cap_set(DMA_INTERRUPT, cap_mask);

			irq = irq_of_parse_and_map(np, 0);
1237 1238
			if (!irq) {
				ret = -ENODEV;
1239 1240 1241 1242 1243 1244 1245 1246
				goto err_channel_add;
			}

			xordev->channels[i] =
				mv_xor_channel_add(xordev, pdev, i,
						   cap_mask, irq);
			if (IS_ERR(xordev->channels[i])) {
				ret = PTR_ERR(xordev->channels[i]);
1247
				xordev->channels[i] = NULL;
1248 1249 1250 1251 1252 1253 1254
				irq_dispose_mapping(irq);
				goto err_channel_add;
			}

			i++;
		}
	} else if (pdata && pdata->channels) {
1255
		for (i = 0; i < MV_XOR_MAX_CHANNELS; i++) {
1256
			struct mv_xor_channel_data *cd;
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
			int irq;

			cd = &pdata->channels[i];
			if (!cd) {
				ret = -ENODEV;
				goto err_channel_add;
			}

			irq = platform_get_irq(pdev, i);
			if (irq < 0) {
				ret = irq;
				goto err_channel_add;
			}

1271
			xordev->channels[i] =
1272
				mv_xor_channel_add(xordev, pdev, i,
1273
						   cd->cap_mask, irq);
1274 1275
			if (IS_ERR(xordev->channels[i])) {
				ret = PTR_ERR(xordev->channels[i]);
1276 1277 1278 1279
				goto err_channel_add;
			}
		}
	}
1280

1281
	return 0;
1282 1283 1284

err_channel_add:
	for (i = 0; i < MV_XOR_MAX_CHANNELS; i++)
1285
		if (xordev->channels[i]) {
1286
			mv_xor_channel_remove(xordev->channels[i]);
1287 1288 1289
			if (pdev->dev.of_node)
				irq_dispose_mapping(xordev->channels[i]->irq);
		}
1290

1291 1292 1293 1294 1295
	if (!IS_ERR(xordev->clk)) {
		clk_disable_unprepare(xordev->clk);
		clk_put(xordev->clk);
	}

1296
	return ret;
1297 1298
}

1299
static int mv_xor_remove(struct platform_device *pdev)
1300
{
1301
	struct mv_xor_device *xordev = platform_get_drvdata(pdev);
1302 1303 1304
	int i;

	for (i = 0; i < MV_XOR_MAX_CHANNELS; i++) {
1305 1306
		if (xordev->channels[i])
			mv_xor_channel_remove(xordev->channels[i]);
1307
	}
1308

1309 1310 1311
	if (!IS_ERR(xordev->clk)) {
		clk_disable_unprepare(xordev->clk);
		clk_put(xordev->clk);
1312 1313
	}

1314 1315 1316
	return 0;
}

1317
#ifdef CONFIG_OF
1318
static struct of_device_id mv_xor_dt_ids[] = {
1319 1320 1321 1322 1323 1324
       { .compatible = "marvell,orion-xor", },
       {},
};
MODULE_DEVICE_TABLE(of, mv_xor_dt_ids);
#endif

1325 1326
static struct platform_driver mv_xor_driver = {
	.probe		= mv_xor_probe,
1327
	.remove		= mv_xor_remove,
1328
	.driver		= {
1329 1330 1331
		.owner	        = THIS_MODULE,
		.name	        = MV_XOR_NAME,
		.of_match_table = of_match_ptr(mv_xor_dt_ids),
1332 1333 1334 1335 1336 1337
	},
};


static int __init mv_xor_init(void)
{
1338
	return platform_driver_register(&mv_xor_driver);
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
}
module_init(mv_xor_init);

/* it's currently unsafe to unload this module */
#if 0
static void __exit mv_xor_exit(void)
{
	platform_driver_unregister(&mv_xor_driver);
	return;
}

module_exit(mv_xor_exit);
#endif

MODULE_AUTHOR("Saeed Bishara <saeed@marvell.com>");
MODULE_DESCRIPTION("DMA engine driver for Marvell's XOR engine");
MODULE_LICENSE("GPL");